1
|
Doan TNA, Cowley JM, Phillips AL, Briffa JF, Leemaqz SY, Burton RA, Romano T, Wlodek ME, Bianco-Miotto T. Imprinted gene alterations in the kidneys of growth restricted offspring may be mediated by a long non-coding RNA. Epigenetics 2024; 19:2294516. [PMID: 38126131 PMCID: PMC10761017 DOI: 10.1080/15592294.2023.2294516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Altered epigenetic mechanisms have been previously reported in growth restricted offspring whose mothers experienced environmental insults during pregnancy in both human and rodent studies. We previously reported changes in the expression of the DNA methyltransferase Dnmt3a and the imprinted genes Cdkn1c (Cyclin-dependent kinase inhibitor 1C) and Kcnq1 (Potassium voltage-gated channel subfamily Q member 1) in the kidney tissue of growth restricted rats whose mothers had uteroplacental insufficiency induced on day 18 of gestation, at both embryonic day 20 (E20) and postnatal day 1 (PN1). To determine the mechanisms responsible for changes in the expression of these imprinted genes, we investigated DNA methylation of KvDMR1, an imprinting control region (ICR) that includes the promoter of the antisense long non-coding RNA Kcnq1ot1 (Kcnq1 opposite strand/antisense transcript 1). Kcnq1ot1 expression decreased by 51% in growth restricted offspring compared to sham at PN1. Interestingly, there was a negative correlation between Kcnq1ot1 and Kcnq1 in the E20 growth restricted group (Spearman's ρ = 0.014). No correlation was observed between Kcnq1ot1 and Cdkn1c expression in either group at any time point. Additionally, there was a 11.25% decrease in the methylation level at one CpG site within KvDMR1 ICR. This study, together with others in the literature, supports that long non-coding RNAs may mediate changes seen in tissues of growth restricted offspring.
Collapse
Affiliation(s)
- Thu N. A. Doan
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - James M. Cowley
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Aaron L. Phillips
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Jessica F. Briffa
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Shalem Y. Leemaqz
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- SAHMRI Women and Kids, South Australian Health & Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Rachel A. Burton
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tania Romano
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Mary E. Wlodek
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Doan TNA, Akison LK, Bianco-Miotto T. Epigenetic Mechanisms Responsible for the Transgenerational Inheritance of Intrauterine Growth Restriction Phenotypes. Front Endocrinol (Lausanne) 2022; 13:838737. [PMID: 35432208 PMCID: PMC9008301 DOI: 10.3389/fendo.2022.838737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
A poorly functioning placenta results in impaired exchanges of oxygen, nutrition, wastes and hormones between the mother and her fetus. This can lead to restriction of fetal growth. These growth restricted babies are at increased risk of developing chronic diseases, such as type-2 diabetes, hypertension, and kidney disease, later in life. Animal studies have shown that growth restricted phenotypes are sex-dependent and can be transmitted to subsequent generations through both the paternal and maternal lineages. Altered epigenetic mechanisms, specifically changes in DNA methylation, histone modifications, and non-coding RNAs that regulate expression of genes that are important for fetal development have been shown to be associated with the transmission pattern of growth restricted phenotypes. This review will discuss the subsequent health outcomes in the offspring after growth restriction and the transmission patterns of these diseases. Evidence of altered epigenetic mechanisms in association with fetal growth restriction will also be reviewed.
Collapse
Affiliation(s)
- Thu Ngoc Anh Doan
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Lisa K. Akison
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Tina Bianco-Miotto,
| |
Collapse
|
3
|
Abstract
Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.
Collapse
Affiliation(s)
- Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and Center for Childhood Nutrition Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Theresa L Powell
- Department of Pediatrics and Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Daniel B Hardy
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
4
|
Epigenetic mechanisms involved in intrauterine growth restriction and aberrant kidney development and function. J Dev Orig Health Dis 2020; 12:952-962. [PMID: 33349286 DOI: 10.1017/s2040174420001257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intrauterine growth restriction (IUGR) due to uteroplacental insufficiency results in a placenta that is unable to provide adequate nutrients and oxygen to the fetus. These growth-restricted babies have an increased risk of hypertension and chronic kidney disease later in life. In rats, both male and female growth-restricted offspring have nephron deficits but only males develop kidney dysfunction and high blood pressure. In addition, there is transgenerational transmission of nephron deficits and hypertension risk. Therefore, epigenetic mechanisms may explain the sex-specific programming and multigenerational transmission of IUGR-related phenotypes. Expression of DNA methyltransferases (Dnmt1and Dnmt3a) and imprinted genes (Peg3, Snrpn, Kcnq1, and Cdkn1c) were investigated in kidney tissues of sham and IUGR rats in F1 (embryonic day 20 (E20) and postnatal day 1 (PN1)) and F2 (6 and 12 months of age, paternal and maternal lines) generations (n = 6-13/group). In comparison to sham offspring, F1 IUGR rats had a 19% decrease in Dnmt3a expression at E20 (P < 0.05), with decreased Cdkn1c (19%, P < 0.05) and increased Kcnq1 (1.6-fold, P < 0.01) at PN1. There was a sex-specific difference in Cdkn1c and Snrpn expression at E20, with 29% and 34% higher expression in IUGR males compared to females, respectively (P < 0.05). Peg3 sex-specific expression was lost in the F2 IUGR offspring, only in the maternal line. These findings suggest that epigenetic mechanisms may be altered in renal embryonic and/or fetal development in growth-restricted offspring, which could alter kidney function, predisposing these offspring to kidney disease later in life.
Collapse
|
5
|
Mangwiro YT, Cuffe JS, Vickers MH, Reynolds CM, Mahizir D, Anevska K, Gravina S, Romano T, Moritz KM, Briffa JF, Wlodek ME. Maternal exercise alters rat fetoplacental stress response: Minimal effects of maternal growth restriction and high-fat feeding. Placenta 2020; 104:57-70. [PMID: 33276236 DOI: 10.1016/j.placenta.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Fetal growth restriction complicates 10% of pregnancies and increases offspring (F1) risk of metabolic disorders, including obesity and gestational diabetes mellitus (GDM). This disease predisposition can be passed onto the next generation (F2). Importantly, the risk of pregnancy complications in obese women can be exacerbated by a stressful pregnancy. Exercise can reduce adiposity and improve health outcomes in obese women and those with GDM. This study investigated the impacts of maternal growth restriction, obesity, exercise, and stress on fetal and placental endocrine function. METHODS Uteroplacental insufficiency (Restricted) or sham (Control) surgery was induced on embryonic day (E) 18 in F0 Wistar-Kyoto rats. F1 offspring were fed a Chow or High-fat (HFD) diet from weaning and, at 16 weeks, were randomly allocated an exercise protocol; Sedentary, Exercised prior to and during pregnancy (Exercise), or Exercised only during pregnancy (PregEx). Females were mated and further randomly allocated to either undergo (Stress), or not undergo (Unstressed), physiological measurements during pregnancy. On E20, F2 fetal plasma (steroid hormones), tissues (brain, liver), and placentae (morphology, stress genes) were collected. RESULTS Maternal growth restriction and high-fat feeding had minimal impact on fetoplacental endocrine function. PregEx and Exercise increased cross-sectional labyrinth and junctional zone areas. PregEx, but not Exercise, increased fetal deoxycorticosterone concentrations and reduced placental Hsd11b2 and Nr3c2 gene abundance. Maternal stress increased fetal corticosterone concentrations in Sedentary HFD dams and increased placental cross-sectional areas in PregEx mothers. DISCUSSION PregEx and Stress independently dysregulates the endocrine status of the developing fetus, which may program future disease.
Collapse
Affiliation(s)
- Yeukai Tm Mangwiro
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3083, Australia; Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - James Sm Cuffe
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Grafton, Auckland, 1142, New Zealand
| | - Clare M Reynolds
- Liggins Institute, University of Auckland, Grafton, Auckland, 1142, New Zealand
| | - Dayana Mahizir
- Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kristina Anevska
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3083, Australia; Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sogand Gravina
- Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Tania Romano
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia; Child Health Research Centre, The University of Queensland, South Brisbane, QLD, 4101, Australia
| | - Jessica F Briffa
- Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
6
|
Abstract
OBJECTIVE The Developmental Origins of Disease hypothesis has spurred increased interest in how prenatal exposures affect lifelong health, while mechanisms such as epigenetics may explain the multigenerational influences on health. Such factors are not well captured within conventional epidemiologic study designs. We explored the feasibility of collecting information on the offspring and grand-offspring of participants in a long-running study. DESIGN The Bogalusa Heart Study is a study, begun in 1973, of life-course cardiovascular health in a semirural population (65% white and 35% black). MAIN MEASURES Female participants who had previously provided information on their pregnancies were contacted to obtain contact information for their daughters aged 12 and older. Daughters were then contacted to obtain reproductive histories, and invited for a clinic or lab visit to measure cardiovascular risk factors. RESULTS Two hundred seventy-four daughters of 208 mothers were recruited; 81% (223) had a full clinic visit and 19% (51) a phone interview only. Forty-five percent of the daughters were black, and 55% white. Mean and median age at interview was 27, with 15% under the age of 18. The strongest predictors of participation were black race, recent maternal participation in the parent study, and living in or near Bogalusa. Simple correlations for cardiovascular risk factors across generations were between r = 0.19 (systolic blood pressure) and r = 0.39 (BMI, LDL). CONCLUSION It is feasible to contact the children of study participants even when participants are adults, and initial information on the grandchildren can also be determined in this manner.
Collapse
|
7
|
Harville EW, Apolzan JW, Bazzano LA. Maternal Pre-Pregnancy Cardiovascular Risk Factors and Offspring and Grandoffspring Health: Bogalusa Daughters. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 16:E15. [PMID: 30577626 PMCID: PMC6338978 DOI: 10.3390/ijerph16010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/10/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
Both maternal pre-pregnancy body mass index (BMI) and gestational weight gain have been associated with cardiovascular health in the offspring beyond two generations. A total of 274 daughters (aged 12⁻54) of 208 mothers who participated in the Bogalusa Heart Study were interviewed about their reproductive history. Mothers' data was taken from the original study, and cardiovascular measures at the visit prior to pregnancy were correlated with daughter's measures. Maternal pre-pregnancy BMI, skinfold, and waist circumference were examined as a predictor of daughters' blood pressure, lipids, and glucose, as well as a predictor of birthweight and gestational age of grandchildren. Maternal pre-pregnancy BMI was associated with higher blood pressure and lower low-density lipoprotein (LDL) and cholesterol in the daughters. Most maternal cardiometabolic risk factors were not associated with grandchildren's birth outcomes, even though higher cholesterol and LDL was associated with lower gestational age, and higher BMI and skinfold thickness with an increased risk of preterm birth. In this pilot study, some associations were found between maternal adiposity and cardiovascular risk, daughters' cardiovascular risk, and grandchild birth outcomes. Lack of conclusive associations could be due to a true lack of effect, effects being primarily mediated through daughter's BMI, or the low power of the study.
Collapse
Affiliation(s)
- Emily W Harville
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA.
| | - John W Apolzan
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | - Lydia A Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
8
|
Mills V, Plows JF, Zhao H, Oyston C, Vickers MH, Baker PN, Stanley JL. Effect of sildenafil citrate treatment in the eNOS knockout mouse model of fetal growth restriction on long-term cardiometabolic outcomes in male offspring. Pharmacol Res 2018; 137:122-134. [PMID: 30292428 DOI: 10.1016/j.phrs.2018.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 09/16/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
Abstract
Fetal growth restriction (FGR) is associated with an increased risk of hypertension, insulin resistance, obesity and cardiovascular disease in adulthood. Currently there are no effective treatments to reverse the course of FGR. This study used the eNOS knockout mouse (eNOS-/-), a model of FGR, to determine the ability of sildenafil, a potential new treatment for FGR, to improve cardiovascular and metabolic outcomes in adult offspring following a complicated pregnancy. Pregnant eNOS-/- and C57BL/6J control dams were randomised to sildenafil treatment (0.2 mg/ml in drinking water) or placebo at day 12.5 of gestation until birth. After weaning, male offspring were randomised to either a high fat (HFD; 45% kcal from fat) or normal chow diet (ND), and raised to either postnatal day 90 or 150. Growth and body composition, glucose tolerance, insulin resistance, systolic blood pressure and vascular function were analysed at both time-points. eNOS-/- offspring were significantly smaller than their C57BL/6J controls at weaning and P90 (p < 0.01); at P150 they were a similar weight. Total adipose tissue deposition at P90 was significantly increased only in eNOS-/- mice fed a HFD (p < 0.001). At P150 both C57BL/6J and eNOS-/- offspring fed a HFD demonstrated significant adipose tissue deposition (p < 0.01), regardless of maternal treatment. Both diet and maternal sildenafil treatment had a significant effect on glucose tolerance. Glucose tolerance was significantly impaired in eNOS-/- mice fed a HFD (p < 0.01); this was significant in offspring from both sildenafil and vehicle treated mothers at P90 and P150. Glucose tolerance was also impaired in C57BL/6J mice fed a HFD at both P90 and P150 (p < 0.01), but only in those also exposed to sildenafil. In these C57BL/6J mice, sildenafil was associated with impaired insulin sensitivity at P90 (p = 0.020) but increased insulin resistance at P150 (p = 0.019). Exposure to sildenafil was associated with a significant increase in systolic blood pressure in eNOS-/- mice compared with their C57BL/6J diet controls at P150 (p < 0.05). Exposure to sildenafil had differing effects on vascular function in mesenteric arteries; it increased vasodilation in response to ACh in C57BL/6J mice, but was associated with a more constrictive phenotype in eNOS-/- mice. eNOS-/- mice demonstrate a number of impaired outcomes consistent with programmed cardiometabolic disease, particularly when faced with the 'second hit' of a HFD. Exposure to sildenafil treatment during pregnancy did not increase fetal growth or significantly improve adult metabolic or cardiac outcomes. Maternal sildenafil treatment was, however, associated with small impairments in glucose handling and an increase in blood pressure. This study highlights the importance of understanding the long-term effects of treatment during pregnancy in offspring from both complicated and healthy control pregnancies.
Collapse
Affiliation(s)
- Valerie Mills
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand; Gravida: National Research Centre for Growth and Development, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Jasmine F Plows
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand; Gravida: National Research Centre for Growth and Development, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Huan Zhao
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand; Gravida: National Research Centre for Growth and Development, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Charlotte Oyston
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand; Gravida: National Research Centre for Growth and Development, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Mark H Vickers
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand; Gravida: National Research Centre for Growth and Development, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Philip N Baker
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand; Gravida: National Research Centre for Growth and Development, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand; College of Life Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Joanna L Stanley
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand; Gravida: National Research Centre for Growth and Development, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.
| |
Collapse
|
9
|
The transgenerational effect of maternal and paternal F1 low birth weight on bone health of second and third generation offspring. J Dev Orig Health Dis 2018; 10:144-153. [PMID: 29631641 DOI: 10.1017/s204017441800020x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Low birth weight programs diseases in adulthood, including adverse bone health. These diseases can have intergenerational and transgenerational origins, whereby transmission to subsequent generations occurs via both parental lines. Uteroplacental insufficiency surgery (Restricted) or sham surgery (Control) was performed on gestational day 18, in F0 Wistar-Kyoto rats. F1 Restricted males and females mated with breeders in order to generate F2 offspring of maternal and paternal lineages. F2 males and females were randomly selected for breeding to generate F3 offspring. F2 and F3 offspring did not have differences in birth weight irrespective of F1 low birth weight and parental line. Maternal line females had minor alterations to trabecular content and density at 6 months, these differences were not sustained at 12 months. Maternal line males had changes to trabecular content at 6 and 12 months; however, differences were no longer present at 16 months. Despite altered bone geometry at 12 and 16 months, bending strength remained unaffected at both ages. Bone health of paternal line females was not affected at 6 and 12 months. Paternal line males at 6 months had changes to trabecular and cortical content; cortical thickness, periosteal circumference and bending strength; however, these differences were no longer sustained at 12 and 16 months. Our data demonstrate that there is no transgenerational transmission of adverse bone health in F2 and F3 offspring, derived from low F1 birth weight females and males. Our results are novel, as bone health across generations and both parental lines has not been investigated in a model of low birth weight due to uteroplacental insufficiency.
Collapse
|
10
|
Corvino SB, Damasceno DC, Sinzato YK, Netto AO, Macedo NCD, Zambrano E, Volpato GT. Comparative analysis of two different models of swimming applied to pregnant rats born small for pregnant age. AN ACAD BRAS CIENC 2018; 89:223-230. [PMID: 28423082 DOI: 10.1590/0001-3765201720160285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/07/2016] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to compare two models of swimming applied to pregnant rats born small for pregnancy age (SPA). Diabetes was chemically induced in adult female rats to develop an inadequate intrauterine environment, leading to birth of a SPA offspring. In adulthood, the female SPA rats were mated and submitted to different swimming programs. The exercise program 1 (Ex1) consisted of swimming for 15 minutes, followed by 15 minutes of rest and another 15 minutes of swimming, 3 days a week before and during pregnancy. Another program (Ex2) was applied during 60 minutes uninterrupted a day, 6 days/week during pregnancy. The pregnant rats presented no interference on body weight and glycemia. The rats submitted to Ex2 model showed decreased insulin and blood glucose levels by oral glucose tolerance test, and reduction in area under curve values. The offspring from dams submitted to both exercise protocols presented an increased rate of newborns SPA. However, the offspring from Ex2 dams showed percentage twice higher of newborns SPA than Ex1 offspring. Our data suggests that continuous exercise of 60 min/day ameliorated the enhanced peripheral insulin sensitivity in growth-restricted females. However, this protocol employed at pregnancy leads to intrauterine growth restriction.
Collapse
Affiliation(s)
- Silvana B Corvino
- Laboratório de Pesquisa Experimental de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista/UNESP, Distrito de Rubião Jr, s/n, 18618-970 Botucatu, SP, Brazil
| | - Débora C Damasceno
- Laboratório de Pesquisa Experimental de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista/UNESP, Distrito de Rubião Jr, s/n, 18618-970 Botucatu, SP, Brazil
| | - Yuri K Sinzato
- Laboratório de Pesquisa Experimental de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista/UNESP, Distrito de Rubião Jr, s/n, 18618-970 Botucatu, SP, Brazil
| | - Aline O Netto
- Laboratório de Pesquisa Experimental de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista/UNESP, Distrito de Rubião Jr, s/n, 18618-970 Botucatu, SP, Brazil
| | - Nathália C D Macedo
- Laboratório de Pesquisa Experimental de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista/UNESP, Distrito de Rubião Jr, s/n, 18618-970 Botucatu, SP, Brazil
| | - Elena Zambrano
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Cidade do México, 14080 México
| | - Gustavo T Volpato
- Laboratório de Pesquisa Experimental de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista/UNESP, Distrito de Rubião Jr, s/n, 18618-970 Botucatu, SP, Brazil.,Laboratório de Fisiologia de Sistemas e Toxicologia Reprodutiva, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso/UFMT, Av. Valdon Varjão, 6390, 78600-000 Barra do Garças, MT, Brazil
| |
Collapse
|
11
|
Kou H, Shen L, Luo HW, Chen LB, Wu DF, Wang H. An intergenerational effect of neuroendocrine metabolic programming alteration induced by prenatal ethanol exposure in rats. Reprod Toxicol 2017; 74:85-93. [DOI: 10.1016/j.reprotox.2017.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 08/30/2017] [Accepted: 09/07/2017] [Indexed: 11/17/2022]
|
12
|
Xiao D, Kou H, Zhang L, Guo Y, Wang H. Prenatal Food Restriction with Postweaning High-fat Diet Alters Glucose Metabolic Function in Adult Rat Offspring. Arch Med Res 2017; 48:35-45. [PMID: 28577868 DOI: 10.1016/j.arcmed.2017.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 01/11/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS The present study was designed to investigate the effects of prenatal food restriction (PFR) with postweaning high-fat diet (HFD) on glucose metabolic function in adult offspring. METHODS Pregnant Wistar rats were given PFR treatment from gestational day 11 to spontaneous delivery. All pups were fed by HFD after weaning. Oral glucose tolerance test (OGTT) was conducted at postnatal week (PW) 20. Rats were decapitated in PW24 to collect liver and pancreas, and expression of hepatic insulin signaling genes were then quantified. RESULTS Body weight from PW4 to PW24 in PFR males was lower than those in control males, whereas there was no distinct difference between females. However, body weight gain rates were higher from PW16 to PW24 in PFR males and females. Fasting serum glucose presented no changes, whereas fasting serum insulin decreased in PW20 in PFR pups. Moreover, glucose intolerance only appeared in PFR males, whereas no changes were shown in PFR females in relative values. Serum insulin increased in both PFR groups after OGTT. Remarkable pathological changes were also found in islets from PFR rats. There was an increase in the hepatic mRNA expression of IR in PFR females and of Glut2 in PFR males. CONCLUSION PFR with postweaning HFD induced a catch-up growth in body weight, especially in PFR females. Serum insulin decreased in both PFR groups in fasting status. Insulin resistance after OGTT only existed in PFR males, whereas PFR females showed no obvious changes in glucose metabolism.
Collapse
Affiliation(s)
- Di Xiao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Hao Kou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Li Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, China
| |
Collapse
|
13
|
Harville EW, Jacobs MB, Qi L, Chen W, Bazzano LA. Multigenerational Cardiometabolic Risk as a Predictor of Birth Outcomes: The Bogalusa Heart Study. J Pediatr 2017; 181:154-162.e1. [PMID: 27832834 PMCID: PMC5274554 DOI: 10.1016/j.jpeds.2016.10.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/09/2016] [Accepted: 10/07/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To examine the relationship between generation 1 (grandmaternal) cardiometabolic risk factors and generation 3 (grandchild's) birthweight and gestational age. STUDY DESIGN Mother-daughter pairs in the Bogalusa Heart Study (1973-present) were linked to their children's birth certificates; women were also interviewed about their reproductive histories, creating a 3-generation linkage including 177 generation 1 (grandmothers), 210 generation 2 (mothers), and 424 generation 3 (children). Prepregnancy cardiometabolic risk factors (body mass index [BMI], lipids, glucose) or generation 1 (mean age 16.2 years) and 2 (mean age 11.1 years) were examined as predictors of generation 3 birthweight and gestational age using linear and logistic regression with adjustment for age, race, parity, and other confounders. RESULTS Generation 2 higher BMI was associated with higher birthweight (28 g per 1 unit, 95% CI 12-44) and gestational age (0.08 weeks, 95% CI 0.02-0.14) in generation 3, and generation 1 higher BMI was associated with higher birthweight (52 g, 95% CI 34-70) in the generation 2. Generation 1's higher glucose levels were associated with higher birthweight in generation 3 (adjusted beta 111 g, 95% CI 33-189), and triglycerides (adjusted beta -21, 95% CI -43-0) and low-density lipoprotein (adjusted beta -24, 95% CI -48-0) were associated with lower birthweight. CONCLUSIONS These results suggest the possibility of multigenerational developmental programming of birth outcomes, although mechanisms (whether biological or environmental) are undetermined.
Collapse
Affiliation(s)
- Emily W. Harville
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, Tidewater 2012, 1440 Canal St., New Orleans, LA,corresponding author: , Tel. 504-988-7327, Fax. 504-988-1568, Mailing address: Epidemiology #8318, 1440 CANAL ST STE 2000, NEW ORLEANS LA 70112
| | - Marni B. Jacobs
- Children’s National Health System, Division of Biostatistics and Study Methodology, Washington, DC
| | - Lu Qi
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, Tidewater 2012, 1440 Canal St., New Orleans, LA
| | - W Chen
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, Tidewater 2012, 1440 Canal St., New Orleans, LA
| | - Lydia A. Bazzano
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, Tidewater 2012, 1440 Canal St., New Orleans, LA
| |
Collapse
|
14
|
Huang LT, Chou HC, Lin CM, Chen CM. Uteroplacental Insufficiency Alters the Retinoid Pathway and Lung Development in Newborn Rats. Pediatr Neonatol 2016; 57:508-514. [PMID: 27118112 DOI: 10.1016/j.pedneo.2016.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/21/2016] [Accepted: 03/14/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Intrauterine growth retardation (IUGR) is associated with reduced lung function during infancy and perhaps throughout adulthood. The retinoic acid (RA) signaling pathway modulates pre- and postnatal lung development. This study was conducted to test our hypothesis that uteroplacental insufficiency alters the elements of the retinoid pathway in developing lungs. METHODS On Gestation Day 18, either uteroplacental insufficiency was induced through bilateral uterine vessel ligation (IUGR group) or sham surgery (control group) was performed. Lung tissues from the offspring were examined through Western blotting, immunohistochemistry, and morphometry on Postnatal Day 3 and Postnatal Day 7. RESULTS Compared with control rats, the IUGR rats exhibited significantly lower body weights on Postnatal Day 3 and Postnatal Day 7 and significantly lower lung weights on Postnatal Day 3. Uteroplacental insufficiency significantly increased RA receptor (RAR)-β protein expression on Postnatal Day 3. The expression of RAR-α, RAR-γ, cellular RA-binding protein-1, and cellular RA-binding protein-2 between the control and IUGR rats was comparable on Postnatal Day 3 and Postnatal Day 7. Compared with the control rats, the IUGR rats exhibited a significantly higher volume fraction of alveolar airspace on Postnatal Day 3 and Postnatal Day 7 and a significantly lower volume fraction of alveolar walls on Postnatal Day 3. CONCLUSION Uteroplacental insufficiency causes defective alveolarization and transient increases in RAR-β expression in the lungs of newborn rats. The retinoid pathway may be one of the probable pathways mediating lung abnormalities caused by uteroplacental insufficiency.
Collapse
Affiliation(s)
- Liang-Ti Huang
- Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Mao Lin
- Department of Biochemistry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
15
|
Cheong JN, Cuffe JSM, Jefferies AJ, Anevska K, Moritz KM, Wlodek ME. Sex-Specific Metabolic Outcomes in Offspring of Female Rats Born Small or Exposed to Stress During Pregnancy. Endocrinology 2016; 157:4104-4120. [PMID: 27571133 DOI: 10.1210/en.2016-1335] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Low birth weight increases adult metabolic disease risk in both the first (F1) and second (F2) generation. Physiological stress during pregnancy in F1 females that were born small induces F2 fetal growth restriction, but the long-term metabolic health of these F2 offspring is unknown. Uteroplacental insufficiency (restricted) or sham (control) surgery was performed in F0 rats. F1 females (control, restricted) were allocated to unstressed or stressed pregnancies. F2 offspring exposed to maternal stress in utero had reduced birth weight. At 6 months, F2 stressed males had elevated fasting glucose. In contrast, F2 restricted males had reduced pancreatic β-cell mass. Interestingly, these metabolic deficits were not present at 12 month. F2 males had increased adrenal mRNA expression of steroidogenic acute regulatory protein and IGF-1 receptor when their mothers were born small or exposed to stress during pregnancy. Stressed control F2 males had increased expression of adrenal genes that regulate androgen signaling at 6 months, whereas expression increased in restricted male and female offspring at 12 months. F2 females from stressed mothers had lower area under the glucose curve during glucose tolerance testing at 12 months compared with unstressed females but were otherwise unaffected. If F1 mothers were either born small or exposed to stress during her pregnancy, F2 offspring had impaired physiological outcomes in a sex- and age-specific manner. Importantly, stress during pregnancy did not exacerbate disease risk in F2 offspring of mothers born small, suggesting that they independently program disease in offspring through different mechanisms.
Collapse
Affiliation(s)
- Jean N Cheong
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - James S M Cuffe
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Andrew J Jefferies
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Kristina Anevska
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Karen M Moritz
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Mary E Wlodek
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
16
|
A review of fundamental principles for animal models of DOHaD research: an Australian perspective. J Dev Orig Health Dis 2016; 7:449-472. [DOI: 10.1017/s2040174416000477] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidemiology formed the basis of ‘the Barker hypothesis’, the concept of ‘developmental programming’ and today’s discipline of the Developmental Origins of Health and Disease (DOHaD). Animal experimentation provided proof of the underlying concepts, and continues to generate knowledge of underlying mechanisms. Interventions in humans, based on DOHaD principles, will be informed by experiments in animals. As knowledge in this discipline has accumulated, from studies of humans and other animals, the complexity of interactions between genome, environment and epigenetics, has been revealed. The vast nature of programming stimuli and breadth of effects is becoming known. As a result of our accumulating knowledge we now appreciate the impact of many variables that contribute to programmed outcomes. To guide further animal research in this field, the Australia and New Zealand DOHaD society (ANZ DOHaD) Animals Models of DOHaD Research Working Group convened at the 2nd Annual ANZ DOHaD Congress in Melbourne, Australia in April 2015. This review summarizes the contributions of animal research to the understanding of DOHaD, and makes recommendations for the design and conduct of animal experiments to maximize relevance, reproducibility and translation of knowledge into improving health and well-being.
Collapse
|
17
|
Cheong JN, Wlodek ME, Moritz KM, Cuffe JSM. Programming of maternal and offspring disease: impact of growth restriction, fetal sex and transmission across generations. J Physiol 2016; 594:4727-40. [PMID: 26970222 PMCID: PMC5009791 DOI: 10.1113/jp271745] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/16/2016] [Indexed: 12/16/2022] Open
Abstract
Babies born small are at an increased risk of developing myriad adult diseases. While growth restriction increases disease risk in all individuals, often a second hit is required to unmask 'programmed' impairments in physiology. Programmed disease outcomes are demonstrated more commonly in male offspring compared with females, with these sex-specific outcomes partly attributed to different placenta-regulated growth strategies of the male and female fetus. Pregnancy is known to be a major risk factor for unmasking a number of conditions and can be considered a 'second hit' for women who were born small. As such, female offspring often develop impairments of physiology for the first time during pregnancy that present as pregnancy complications. Numerous maternal stressors can further increase the risk of developing a maternal complication during pregnancy. Importantly, these maternal complications can have long-term consequences for both the mother after pregnancy and the developing fetus. Conditions such as preeclampsia, gestational diabetes and hypertension as well as thyroid, liver and kidney diseases are all conditions that can complicate pregnancy and have long-term consequences for maternal and offspring health. Babies born to mothers who develop these conditions are often at a greater risk of developing disease in adulthood. This has implications as a mechanism for transmission of disease across generations. In this review, we discuss the evidence surrounding long-term intergenerational implications of being born small and/or experiencing stress during pregnancy on programming outcomes.
Collapse
Affiliation(s)
- Jean N Cheong
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mary E Wlodek
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - James S M Cuffe
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
18
|
Tran M, Young ME, Jefferies AJ, Hryciw DH, Ward MM, Fletcher EL, Wlodek ME, Wadley GD. Uteroplacental insufficiency leads to hypertension, but not glucose intolerance or impaired skeletal muscle mitochondrial biogenesis, in 12-month-old rats. Physiol Rep 2015; 3:3/9/e12556. [PMID: 26416974 PMCID: PMC4600396 DOI: 10.14814/phy2.12556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Growth restriction impacts on offspring development and increases their risk of disease in adulthood which is exacerbated with “second hits.” The aim of this study was to investigate if blood pressure, glucose tolerance, and skeletal muscle mitochondrial biogenesis were altered in 12-month-old male and female offspring with prenatal or postnatal growth restriction. Bilateral uterine vessel ligation induced uteroplacental insufficiency and growth restriction in offspring (Restricted). A sham surgery was also performed during pregnancy (Control) and some litters from sham mothers had their litter size reduced (Reduced litter), which restricted postnatal growth. Growth-restricted females only developed hypertension at 12 months, which was not observed in males. In Restricted females only homeostasis model assessment for insulin resistance was decreased, indicating enhanced hepatic insulin sensitivity, which was not observed in males. Plasma leptin was increased only in the Reduced males at 12 months compared to Control and Restricted males, which was not observed in females. Compared to Controls, leptin, ghrelin, and adiponectin were unaltered in the Restricted males and females, suggesting that at 12 months of age the reduction in body weight in the Restricted offspring is not a consequence of circulating adipokines. Skeletal muscle PGC-1α levels were unaltered in 12-month-old male and female rats, which indicate improvements in lean muscle mass by 12 months of age. In summary, sex strongly impacts the cardiometabolic effects of growth restriction in 12-month-old rats and it is females who are at particular risk of developing long-term hypertension following growth restriction.
Collapse
Affiliation(s)
- Melanie Tran
- Departments of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Margaret E Young
- Departments of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew J Jefferies
- Departments of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Deanne H Hryciw
- Departments of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michelle M Ward
- Departments of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Erica L Fletcher
- Departments of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Mary E Wlodek
- Departments of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Glenn D Wadley
- Departments of Physiology, The University of Melbourne, Parkville, Victoria, Australia School of Exercise and Nutrition Sciences, Centre for Physical Activity and Nutrition Research, Deakin University, Burwood, Victoria, Australia
| |
Collapse
|
19
|
Intrauterine Growth Restricted Rats Exercised before and during Pregnancy: Maternal and Perinatal Repercussions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:294850. [PMID: 26345406 PMCID: PMC4540985 DOI: 10.1155/2015/294850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/08/2015] [Accepted: 07/12/2015] [Indexed: 01/12/2023]
Abstract
This study aimed at evaluating the effect of swimming before and during pregnancy on rats born with intrauterine growth restriction (IUGR) and their offspring. For this, nondiabetic and streptozotocin-induced severely diabetic (SD) pregnant rats were mated and generated offspring with appropriate (control, C) and small (IUGR) for pregnancy age, respectively. Following that, C and IUGR groups were further distributed into nonexercised control (C), exercised control (Cex), nonexercised IUGR (IUGR), and exercised IUGR (IUGRex). IUGR rats presented lower mating rate than control rats. Regardless of physical exercise IUGR rats presented decreased body weight from birth to lactation. At 90 days of life, IUGR rats presented glucose intolerance. Maternal organ weights were increased and relative adiposity of IUGRex rats was lower than Cex. IUGR and IUGRex offspring presented reduced body weight than C and Cex, respectively. IUGRex dams presented an increased rate of appropriate for pregnancy age newborns. IUGEex male and female offspring relative brain weight was increased compared with Cex. Therefore, swimming before and during pregnancy prevented glucose intolerance, reduced general adiposity, and increased maternal and offspring organ weight in rats, showing the benefit of physical exercise for IUGR rats.
Collapse
|
20
|
Master JS, Zimanyi MA, Yin KV, Moritz KM, Gallo LA, Tran M, Wlodek ME, Black MJ. Transgenerational left ventricular hypertrophy and hypertension in offspring after uteroplacental insufficiency in male rats. Clin Exp Pharmacol Physiol 2015; 41:884-90. [PMID: 25199478 DOI: 10.1111/1440-1681.12303] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 01/30/2023]
Abstract
Epidemiological studies have shown an association between low birthweight and adult disease development with transmission to subsequent generations. The aim of the present study was to examine the effect of intrauterine growth restriction in rats, induced by uteroplacental insufficiency, on cardiac structure, number, size, nuclearity, and adult blood pressure in first (F1) and second (F2) generation male offspring. Uteroplacental insufficiency or sham surgery was induced in F0 Wistar-Kyoto pregnant rats in late gestation giving rise to F1 restricted and control offspring, respectively. F1 control and restricted females were mated with normal males, resulting in F2 control and restricted offspring, respectively. F1 restricted male offspring were significantly lighter at birth (P < 0.05), but there were no differences in birthweight of F2 offspring. Left ventricular weights and volumes were significantly increased (P < 0.05) in F1 and F2 restricted offspring at day 35. Left ventricular cardiomyocyte number was not different in F1 and F2 restricted offspring. At 6 months-of-age, F1 and F2 restricted offspring had elevated blood pressure (8-15 mmHg, P < 0.05). Our findings demonstrate the emergence of left ventricular hypertrophy and hypertension, with no change in cardiomyocyte number, in F1 restricted male offspring, and this was transmitted to the F2 offspring. The findings support transgenerational programming effects.
Collapse
Affiliation(s)
- Jordanna S Master
- Department of Physiology, The University of Melbourne, Parkville, Vic., Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Master JS, Thouas GA, Harvey AJ, Sheedy JR, Hannan NJ, Gardner DK, Wlodek ME. Fathers that are born small program alterations in the next-generation preimplantation rat embryos. J Nutr 2015; 145:876-83. [PMID: 25809684 DOI: 10.3945/jn.114.205724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/28/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Low birth weight is associated with increased risk of adult cardiovascular and metabolic disease development, with recent studies highlighting transmission to subsequent generations via both maternal and paternal lines. However, the timing of parent-specific programming of disease risk to the next generation remains to be characterized. OBJECTIVE The aim of this study was to examine how paternal low birth weight affects the cellular and molecular physiology of the next-generation [second-generation (F2)] blastocysts, before uterine implantation. METHODS Uteroplacental insufficiency was surgically induced in Wistar Kyoto pregnant rats in late gestation, giving rise to first-generation restricted (born small) and sham-operated control (normal birth weight) male offspring, respectively. First-generation restricted and control male rats were naturally mated with normal females. RESULTS Resultant F2 blastocysts derived from restricted males displayed reduced expression of growth regulatory genes of the mammalian target of rapamycin pathway compared with F2 control blastocysts (9-74%; P < 0.05). No differences were found in F2 restricted blastocyst structural characteristics, cell number, or carbohydrate utilization at the time of blastocyst retrieval or after 24 h of in vitro culture. However, histidine, methionine, pyruvate, serine, and tryosine consumption and aspartate and leucine production were greater in F2 restricted outgrowth than in controls (P < 0.05). CONCLUSIONS The findings from this study clearly indicate that male rat offspring born small, arising from uteroplacental insufficiency, have physiologic alterations that manifest as modifications in gene expression levels and nutrient metabolism of F2 blastocysts, even in the absence of overt cellular growth differences. These data demonstrate that growth restriction and associated disease risk have the capacity to be transmitted to the next generation of offspring via the male germ line and is manifest as early as the blastocyst stage of development.
Collapse
Affiliation(s)
| | - George A Thouas
- Zoology, The University of Melbourne, Parkville, Australia; and
| | | | - John R Sheedy
- Zoology, The University of Melbourne, Parkville, Australia; and
| | - Natalie J Hannan
- Zoology, The University of Melbourne, Parkville, Australia; and Department of Obstetrics and Gynaecology, The University of Melbourne, Mercy Hospital, Heidelberg, Australia
| | - David K Gardner
- Zoology, The University of Melbourne, Parkville, Australia; and
| | | |
Collapse
|
22
|
Anevska K, Gallo LA, Tran M, Jefferies AJ, Wark JD, Wlodek ME, Romano T. Pregnant growth restricted female rats have bone gains during late gestation which contributes to second generation adolescent and adult offspring having normal bone health. Bone 2015; 74:199-207. [PMID: 25659207 DOI: 10.1016/j.bone.2015.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
Low birth weight, due to uteroplacental insufficiency, results in programmed bone deficits in the first generation (F1). These deficits may be passed onto subsequent generations. We characterized the effects of being born small on maternal bone health during pregnancy; and aimed to characterize the contribution of the maternal environment and germ line effects to bone health in F2 offspring from mothers born small. Bilateral uterine vessel ligation (or sham) surgery was performed on female F0 WKY rats on gestational day 18 (term 22days) to induce uteroplacental insufficiency and fetal growth restriction. Control and Restricted F1 female offspring were allocated to a non-pregnant or pregnant group. To generate F2 offspring, F1 females were allocated to either non-embryo or embryo transfer groups. Embryo transfer was performed on gestational day 1, where second generation (F2) embryos were gestated (donor-in-recipient) in either a Control (Control-in-Control, Restricted-in-Control) or Restricted (Control-in-Restricted, Restricted-in-Restricted) mother. Restricted F1 females were born 10-15% lighter than Controls. Restricted non-pregnant females had shorter femurs, reduced trabecular and cortical bone mineral contents, trabecular density and bone geometry measures determined by peripheral quantitative computed tomography (pQCT) compared to non-pregnant Controls. Pregnancy restored the bone deficits that were present in F1 Restricted females. F2 non-embryo transfer male and female offspring were born of normal weight, while F2 embryo transfer males and females gestated in a Control mother (Control-in-Control, Restricted-in-Control) were heavier at birth compared to offspring gestated in a Restricted mother (Restricted-in-Restricted, Control-in-Restricted). Male F2 Restricted embryo groups (Restricted-in-Control and Restricted-in-Restricted) had accelerated postnatal growth. There was no transmission of bone deficits present at 35days or 6months in F2 offspring. Embryo transfer procedure had confounding effects preventing the separation of maternal environment and germ line contribution to outcomes. Deficits present in F1 non-pregnant Restricted females were absent during late gestation, indicating that pregnant F1 Restricted females experienced gains in bone. These beneficial maternal pregnancy adaptations may have prevented transmission of bone deficits to F2 offspring.
Collapse
Affiliation(s)
- Kristina Anevska
- Department of Human Biosciences, La Trobe University, Bundoora 3086, Australia
| | - Linda A Gallo
- Department of Physiology, The University of Melbourne, Parkville 3010, Australia
| | - Melanie Tran
- Department of Physiology, The University of Melbourne, Parkville 3010, Australia
| | - Andrew J Jefferies
- Department of Physiology, The University of Melbourne, Parkville 3010, Australia
| | - John D Wark
- Department of Medicine, The University of Melbourne, Parkville 3050, Australia; Bone and Mineral Medicine, Royal Melbourne Hospital, Parkville 3050, Australia
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Parkville 3010, Australia
| | - Tania Romano
- Department of Human Biosciences, La Trobe University, Bundoora 3086, Australia.
| |
Collapse
|
23
|
Master JS, Thouas GA, Harvey AJ, Sheedy JR, Hannan NJ, Gardner DK, Wlodek ME. Low female birth weight and advanced maternal age programme alterations in next-generation blastocyst development. Reproduction 2015; 149:497-510. [PMID: 25667431 DOI: 10.1530/rep-14-0619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Low birth weight is associated with an increased risk for adult disease development with recent studies highlighting transmission to subsequent generations. However, the mechanisms and timing of programming of disease transmission to the next generation remain unknown. The aim of this study was to examine the effects of low birth weight and advanced maternal age on second-generation preimplantation blastocysts. Uteroplacental insufficiency or sham surgery was performed in late-gestation WKY pregnant rats, giving rise to first-generation (F1) restricted (born small) and control offspring respectively. F1 control and restricted females, at 4 or 12 months of age, were naturally mated with normal males. Second-generation (F2) blastocysts from restricted females displayed reduced expression of genes related to growth compared with F2 control (P<0.05). Following 24 h culture, F2 restricted blastocysts had accelerated development, with increased total cell number, a result of increased trophectoderm cells compared with control (P<0.05). There were alterations in carbohydrate and serine utilisation in F2 restricted blastocysts and F2 restricted outgrowths from 4-month-old females respectively (P<0.05). F2 blastocysts from aged restricted females were developmentally delayed at retrieval, with reduced total cell number attributable to reduced trophectoderm number with changes in carbohydrate utilisation (P<0.05). Advanced maternal age resulted in alterations in a number of amino acids in media obtained from F2 blastocyst outgrowths (P<0.05). These findings demonstrate that growth restriction and advanced maternal age can alter F2 preimplantation embryo physiology and the subsequent offspring growth.
Collapse
Affiliation(s)
- Jordanna S Master
- Department of PhysiologySchool of BioSciencesThe University of Melbourne, Parkville, Victoria 3010, AustraliaDepartment of Obstetrics and GynaecologyMercy Hospital, The University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - George A Thouas
- Department of PhysiologySchool of BioSciencesThe University of Melbourne, Parkville, Victoria 3010, AustraliaDepartment of Obstetrics and GynaecologyMercy Hospital, The University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Alexandra J Harvey
- Department of PhysiologySchool of BioSciencesThe University of Melbourne, Parkville, Victoria 3010, AustraliaDepartment of Obstetrics and GynaecologyMercy Hospital, The University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - John R Sheedy
- Department of PhysiologySchool of BioSciencesThe University of Melbourne, Parkville, Victoria 3010, AustraliaDepartment of Obstetrics and GynaecologyMercy Hospital, The University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Natalie J Hannan
- Department of PhysiologySchool of BioSciencesThe University of Melbourne, Parkville, Victoria 3010, AustraliaDepartment of Obstetrics and GynaecologyMercy Hospital, The University of Melbourne, Heidelberg, Victoria 3084, Australia Department of PhysiologySchool of BioSciencesThe University of Melbourne, Parkville, Victoria 3010, AustraliaDepartment of Obstetrics and GynaecologyMercy Hospital, The University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - David K Gardner
- Department of PhysiologySchool of BioSciencesThe University of Melbourne, Parkville, Victoria 3010, AustraliaDepartment of Obstetrics and GynaecologyMercy Hospital, The University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Mary E Wlodek
- Department of PhysiologySchool of BioSciencesThe University of Melbourne, Parkville, Victoria 3010, AustraliaDepartment of Obstetrics and GynaecologyMercy Hospital, The University of Melbourne, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
24
|
Goodspeed D, Seferovic MD, Holland W, Mcknight RA, Summers SA, Branch DW, Lane RH, Aagaard KM. Essential nutrient supplementation prevents heritable metabolic disease in multigenerational intrauterine growth-restricted rats. FASEB J 2014; 29:807-19. [PMID: 25395450 DOI: 10.1096/fj.14-259614] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intrauterine growth restriction (IUGR) confers heritable alterations in DNA methylation, rendering risk of adult metabolic syndrome (MetS). Because CpG methylation is coupled to intake of essential nutrients along the one-carbon pathway, we reasoned that essential nutrient supplementation (ENS) may abrogate IUGR-conferred multigenerational MetS. Pregnant Sprague-Dawley rats underwent bilateral uterine artery ligation causing IUGR in F1. Among the F2 generation, IUGR lineage rats were underweight at birth (6.7 vs. 8.0 g, P < 0.0001) and obese by adulthood (p160: 613 vs. 510 g; P < 0.0001). Dual energy X-ray absorptiometry studies revealed increased central fat mass (Δ+40 g), accompanied by dyslipidemic (>30% elevated, P < 0.05) serum triglycerides (139 mg/dl), very-LDLs (27.8 mg/dl), and fatty acids (632 µM). Hyperglycemic-euglycemic clamp studies and glucose tolerance testing revealed insulin resistance. Conversely, IUGR lineage ENS-fed rats did not manifest MetS, with significantly lower body weight (p160: 410 g), >5-fold less central fat mass, normal hepatic glucose efflux, and >70% reduced circulating triglycerides and very-LDLs compared with IUGR control-fed F2 offspring (P < 0.01). Moreover, increased methylation of the IGF-1 P2 transcriptional start site among IUGR lineage F2 offspring was reversed in ENS (P < 0.04). This is an initial demonstration that supplementation along the one-carbon pathway abrogates adult morbidity and associated epigenomic modifications of IGF-1 in a rodent model of multigenerational MetS.
Collapse
Affiliation(s)
- Danielle Goodspeed
- *Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA; Department of Internal Medicine, Department of Pediatrics, and Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah, USA; Program in Cardiovascular and Metabolic Diseases, Duke-National University of Singapore Graduate Medical School, Singapore; and Department of Pediatrics, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maxim D Seferovic
- *Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA; Department of Internal Medicine, Department of Pediatrics, and Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah, USA; Program in Cardiovascular and Metabolic Diseases, Duke-National University of Singapore Graduate Medical School, Singapore; and Department of Pediatrics, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - William Holland
- *Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA; Department of Internal Medicine, Department of Pediatrics, and Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah, USA; Program in Cardiovascular and Metabolic Diseases, Duke-National University of Singapore Graduate Medical School, Singapore; and Department of Pediatrics, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Robert A Mcknight
- *Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA; Department of Internal Medicine, Department of Pediatrics, and Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah, USA; Program in Cardiovascular and Metabolic Diseases, Duke-National University of Singapore Graduate Medical School, Singapore; and Department of Pediatrics, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Scott A Summers
- *Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA; Department of Internal Medicine, Department of Pediatrics, and Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah, USA; Program in Cardiovascular and Metabolic Diseases, Duke-National University of Singapore Graduate Medical School, Singapore; and Department of Pediatrics, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - D Ware Branch
- *Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA; Department of Internal Medicine, Department of Pediatrics, and Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah, USA; Program in Cardiovascular and Metabolic Diseases, Duke-National University of Singapore Graduate Medical School, Singapore; and Department of Pediatrics, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Robert H Lane
- *Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA; Department of Internal Medicine, Department of Pediatrics, and Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah, USA; Program in Cardiovascular and Metabolic Diseases, Duke-National University of Singapore Graduate Medical School, Singapore; and Department of Pediatrics, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kjersti M Aagaard
- *Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA; Department of Internal Medicine, Department of Pediatrics, and Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah, USA; Program in Cardiovascular and Metabolic Diseases, Duke-National University of Singapore Graduate Medical School, Singapore; and Department of Pediatrics, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
25
|
Gallo LA, Tran M, Moritz KM, Wlodek ME. Developmental programming: variations in early growth and adult disease. Clin Exp Pharmacol Physiol 2014; 40:795-802. [PMID: 23581813 DOI: 10.1111/1440-1681.12092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/02/2013] [Accepted: 04/07/2013] [Indexed: 12/11/2022]
Abstract
Suboptimal conditions in utero are associated with the development of adult-onset diseases in offspring. Uteroplacental insufficiency in rats is a well-established animal model used to mimic and study the effects of developmental insults relevant to countries of abundant nutrient supply. However, wide-ranging outcomes for the offspring are apparent between the different investigators that use this model and also between cohorts generated in our laboratory. We aimed to explore the reasons for variability in rat models of uteroplacental insufficiency between different investigators and also between our own animal cohorts. We suggest differences in growth and disease development reflect uniqueness in susceptibility and highlight the complexity of interactions between genetic potential and environmental exposures. The impact of adverse exposures in utero has been described as having far-reaching effects that extend well beyond the first, directly exposed generation. However, the resulting phenotypes are not consistent between generations. This suggests that programmed effects are established de novo in each generation and challenges the prediction of disease. Characterization of growth and disease in the numerous rat models has led to our understanding of the impact of early life experiences on adult health. In order to drive the development of preventative and/or treatment strategies, future studies should focus on identifying the initial cause(s) of uteroplacental insufficiency, including genetic origins and the influence of poor diets.
Collapse
Affiliation(s)
- Linda A Gallo
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia; Mater Medical Research Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | | | | | | |
Collapse
|
26
|
Gatford KL, Kaur G, Falcão-Tebas F, Wadley GD, Wlodek ME, Laker RC, Ebeling PR, McConell GK. Exercise as an intervention to improve metabolic outcomes after intrauterine growth restriction. Am J Physiol Endocrinol Metab 2014; 306:E999-1012. [PMID: 24619880 DOI: 10.1152/ajpendo.00456.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Individuals born after intrauterine growth restriction (IUGR) are at an increased risk of developing diabetes in their adult life. IUGR impairs β-cell function and reduces β-cell mass, thereby diminishing insulin secretion. IUGR also induces insulin resistance, with impaired insulin signaling in muscle in adult humans who were small for gestational age (SGA) and in rodent models of IUGR. There is epidemiological evidence in humans that exercise in adults can reduce the risk of metabolic disease following IUGR. However, it is not clear whether adult IUGR individuals benefit to the same extent from exercise as do normal-birth-weight individuals, as our rat studies suggest less of a benefit in those born IUGR. Importantly, however, there is some evidence from studies in rats that exercise in early life might be able to reverse or reprogram the long-term metabolic effects of IUGR. Studies are needed to address gaps in current knowledge, including determining the mechanisms involved in the reprogramming effects of early exercise in rats, whether exercise early in life or in adulthood has similar beneficial metabolic effects in larger animal models in which insulin resistance develops after IUGR. Human studies are also needed to determine whether exercise training improves insulin secretion and insulin sensitivity to the same extent in IUGR adults as in control populations. Such investigations will have implications for customizing the recommended level and timing of exercise to improve metabolic health after IUGR.
Collapse
Affiliation(s)
- Kathryn L Gatford
- Robinson Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Tran M, Gallo LA, Hanvey AN, Jefferies AJ, Westcott KT, Cullen-McEwen LA, Gardner DK, Moritz KM, Wlodek ME. Embryo transfer cannot delineate between the maternal pregnancy environment and germ line effects in the transgenerational transmission of disease in rats. Am J Physiol Regul Integr Comp Physiol 2014; 306:R607-18. [PMID: 24523338 DOI: 10.1152/ajpregu.00523.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adverse conditions in utero can have transgenerational effects, in the absence of a subsequent insult. We aimed to investigate the contribution of the maternal pregnancy environment vs. germ line effects in mediating alterations to cardiorenal and metabolic physiology in offspring from mothers born small. Uteroplacental insufficiency was induced by bilateral uterine artery and vein ligation (Restricted group) or sham surgery (Control group) in Wistar-Kyoto rats. Restricted and control female offspring (F1) were mated with either breeder males (embryo donor) or vasectomized males (embryo recipient). Embryo transfer was performed at embryonic day (E) 1, whereby second-generation (F2) embryos gestated (donor-in-recipient) in either a control (Cont-in-Cont, Rest-in-Cont) or restricted (Cont-in-Rest, Rest-in-Rest) mother. In male and female offspring, glomerular number and size were measured at postnatal day (PN) 35, and systolic blood pressure, glucose control, insulin sensitivity, and pancreatic β-cell mass were measured in separate sibling cohorts at 6 mo. Rest-in-Rest offspring were hypothesized to have similar characteristics (reduced growth, altered metabolic control, and hypertension) to non-embryo-transferred Rest, such that embryo transfer would not be a confounding experimental influence. However, embryo-transferred Rest-in-Rest offspring underwent accelerated growth during the peripubertal phase, followed by slowed growth between 2 and 3 mo of age compared with non-embryo-transferred Rest groups. Furthermore, renal function and insulin response to a glucose load were different to respective non-embryo-transferred groups. Our data demonstrate the long-term effects of in vitro embryo manipulation, which confounded the utility of this approach in delineating between the maternal pregnancy environment and germ line effects that drive transgenerational outcomes.
Collapse
Affiliation(s)
- Melanie Tran
- Department of Physiology, The University of Melbourne, Parkville, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Luo H, Deng Z, Liu L, Shen L, Kou H, He Z, Ping J, Xu D, Ma L, Chen L, Wang H. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats. Toxicol Appl Pharmacol 2013; 274:383-92. [PMID: 24321341 DOI: 10.1016/j.taap.2013.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/19/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic-pituitary-adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2.
Collapse
Affiliation(s)
- Hanwen Luo
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zixin Deng
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Lian Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Lang Shen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Hao Kou
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Zheng He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071, China
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071, China
| | - Lu Ma
- Department of Epidemiology & Health Statistics, Public Health School of Wuhan University, Wuhan 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071, China.
| |
Collapse
|