1
|
Tatomir A, Vlaicu S, Nguyen V, Luzina IG, Atamas SP, Drachenberg C, Papadimitriou J, Badea TC, Rus HG, Rus V. RGC-32 mediates proinflammatory and profibrotic pathways in immune-mediated kidney disease. Clin Immunol 2024; 265:110279. [PMID: 38878807 DOI: 10.1016/j.clim.2024.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Systemic lupus erythematosus is an autoimmune disease that results in immune-mediated damage to kidneys and other organs. We investigated the role of response gene to complement-32 (RGC-32), a proinflammatory and profibrotic mediator induced by TGFβ and C5b-9, in nephrotoxic nephritis (NTN), an experimental model that mimics human lupus nephritis. Proteinuria, loss of renal function and kidney histopathology were attenuated in RGC-32 KO NTN mice. RGC-32 KO NTN mice displayed downregulation of the CCL20/CCR6 and CXCL9/CXCR3 ligand/receptor pairs resulting in decreased renal recruitment of IL-17+ and IFNγ+ cells and subsequent decrease in the influx of innate immune cells. RGC-32 deficiency attenuated renal fibrosis as demonstrated by decreased deposition of collagen I, III and fibronectin. Thus, RGC-32 is a unique mediator shared by the Th17 and Th1 dependent proinflammatory and profibrotic pathways and a potential novel therapeutic target in the treatment of immune complex mediated glomerulonephritis such as lupus nephritis.
Collapse
Affiliation(s)
- Alexandru Tatomir
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA; Neurology Service, Veterans Administration Medical Health Care Center, Baltimore, MD, USA
| | - Sonia Vlaicu
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Internal Medicine, Medical Clinic nr. 1, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vinh Nguyen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Irina G Luzina
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sergei P Atamas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Tudor C Badea
- Research and Development Institute, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
| | - Horea G Rus
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA; Neurology Service, Veterans Administration Medical Health Care Center, Baltimore, MD, USA
| | - Violeta Rus
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Cheng S, Wan X, Yang L, Qin Y, Chen S, Liu Y, Sun Y, Qiu Y, Huang L, Qin Q, Cui X, Wu M, Liu M. RGCC-mediated PLK1 activity drives breast cancer lung metastasis by phosphorylating AMPKα2 to activate oxidative phosphorylation and fatty acid oxidation. J Exp Clin Cancer Res 2023; 42:342. [PMID: 38102722 PMCID: PMC10722681 DOI: 10.1186/s13046-023-02928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND More than 90% of the mortality of triple-negative breast cancer (TNBC) patients is attributed to cancer metastasis with organotropism. The lung is a frequent site of TNBC metastasis. However, the precise molecular mechanism for lung-specific metastasis of TNBC is not well understood. METHODS RNA sequencing was performed to identify patterns of gene expression associated with lung metastatic behavior using 4T1-LM3, MBA-MB-231-LM3, and their parental cells (4T1-P, MBA-MB-231-P). Expressions of RGCC, called regulator of cell cycle or response gene to complement 32 protein, were detected in TNBC cells and tissues by qRT-PCR, western blotting, and immunohistochemistry. Kinase activity assay was performed to evaluate PLK1 kinase activity. The amount of phosphorylated AMP-activated protein kinase α2 (AMPKα2) was detected by immunoblotting. RGCC-mediated metabolism was determined by UHPLC system. Oxidative phosphorylation was evaluated by JC-1 staining and oxygen consumption rate (OCR) assay. Fatty acid oxidation assay was conducted to measure the status of RGCC-mediated fatty acid oxidation. NADPH and ROS levels were detected by well-established assays. The chemical sensitivity of cells was evaluated by CCK8 assay. RESULTS RGCC is aberrantly upregulated in pulmonary metastatic cells. High level of RGCC is significantly related with lung metastasis in comparison with other organ metastases. RGCC can effectively promote kinase activity of PLK1, and the activated PLK1 phosphorylates AMPKα2 to facilitate TNBC lung metastasis. Mechanistically, the RGCC/PLK1/AMPKα2 signal axis increases oxidative phosphorylation of mitochondria to generate more energy, and promotes fatty acid oxidation to produce abundant NADPH. These metabolic changes contribute to sustaining redox homeostasis and preventing excessive accumulation of potentially detrimental ROS in metastatic tumor cells, thereby supporting TNBC cell survival and colonization during metastases. Importantly, targeting RGCC in combination with paclitaxel/carboplatin effectively suppresses pulmonary TNBC lung metastasis in a mouse model. CONCLUSIONS RGCC overexpression is significantly associated with lung-specific metastasis of TNBC. RGCC activates AMPKα2 and downstream signaling through RGCC-driven PLK1 activity to facilitate TNBC lung metastasis. The study provides implications for RGCC-driven OXPHOS and fatty acid oxidation as important therapeutic targets for TNBC treatment.
Collapse
Affiliation(s)
- Shaojie Cheng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Liping Yang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yilu Qin
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Shanchun Chen
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Yongcan Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Yan Sun
- Department of Cell Biology and Medical Genetics, Basic Medical School, Chongqing Medical University, Chongqing, 400016, China
| | - Yuxiang Qiu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Luyi Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Qizhong Qin
- Experimental Teaching Center of Basic Medicine Science, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojiang Cui
- Department of Surgery, Department of Obstetrics and Gynecology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 91006, USA
| | - Mingjun Wu
- Institute of Life Science, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China.
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China.
| |
Collapse
|
3
|
Tikhonova I, Dyukina A, Shaykhutdinova E, Safronova V. Modified Signaling of Membrane Formyl Peptide Receptors in NADPH-Oxidase Regulation in Obesity-Resistant Mice. MEMBRANES 2023; 13:306. [PMID: 36984693 PMCID: PMC10058262 DOI: 10.3390/membranes13030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The signaling of membrane receptors is modified in obesity characterized by low-grade inflammation. The obesity-resistant state of organisms is poorly understood. We analyzed the generation of reactive oxygen species (ROS) initiated though membrane formyl peptide receptors (Fpr1, Fpr2) in bone-marrow granulocytes of obesity-resistant mice (ORM). A chemiluminescence assay was used to assess NADPH-oxidase-related intensity of ROS generation. ORM were chosen from animals that received high-fat diets and had metric body parameters as controls (standard diet). High spontaneous ROS production was observed in ORM cells. The EC50 for responses to bacterial or mitochondrial peptide N-formyl-MLF was higher in ORM with and without inflammation vs. the same control groups, indicating an insignificant role of high-affinity Fpr1. Increased responses to synthetic peptide WKYMVM (Fpr2 agonist) were observed in controls with acute inflammation, but they were similar in other groups. Fpr2 was possibly partially inactivated in ORM owing to the inflammatory state. Weakened Fpr1 and Fpr2 signaling via MAPKs was revealed in ORM using specific inhibitors for p38, ERK1/2, and JNK. P38 signaling via Fpr2 was lower in ORM with inflammation. Thus, a high-fat diet modified FPRs' role and suppressed MAPK signaling in NADPH-oxidase regulation in ORM. This result can be useful to understand the immunological features of obesity resistance.
Collapse
Affiliation(s)
- Irina Tikhonova
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia
| | - Alsu Dyukina
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia
| | - Elvira Shaykhutdinova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospect Nauki, 6, 142290 Pushchino, Russia
| | - Valentina Safronova
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia
| |
Collapse
|
4
|
Mareco EA, de la Serrana DG, de Paula TG, Zanella BTT, da Silva Duran BO, Salomão RAS, de Almeida Fantinatti BE, de Oliveira VHG, Dos Santos VB, Carvalho RF, Dal-Pai-Silva M. Transcriptomic insight into the hybridization mechanism of the Tambacu, a hybrid from Colossoma macropomum (Tambaqui) and Piaractus mesopotamicus (Pacu). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101041. [PMID: 36442404 DOI: 10.1016/j.cbd.2022.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/02/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Interspecific hybrids are highly complex organisms, especially considering aspects related to the organization of genetic material. The diversity of possibilities created by the genetic combination between different species makes it difficult to establish a large-scale analysis methodology. An example of this complexity is Tambacu, an interspecific hybrid of Colossoma macropomum (Tambaqui) and Piaractus mesopotamicus (Pacu). Either genotype represents an essential role in South American aquaculture. However, despite this importance, the genetic information for these genotypes is still highly scarce in specialized databases. Using RNA-Seq analysis, we characterized the transcriptome of white muscle from Pacu, Tambaqui, and their interspecific hybrid (Tambacu). The sequencing process allowed us to obtain a significant number of reads (approximately 53 billion short reads). A total of annotated contigs were 37,285, 96,738, and 158,709 for Pacu, Tambaqui, and Tambacu. After that, we performed a comparative analysis of the transcriptome of the three genotypes, where we evaluated the differential expression (Tambacu vs Pacu = 11,156, and Tambacu vs Tambaqui = 876) profile of the transcript and the degree of similarity between the nucleotide sequences between the genotypes. We assessed the intensity and pattern of expression across genotypes using differential expression information. Clusterization analysis showed a closer relationship between Tambaqui and Tambacu. Furthermore, digital differential expression analysis selected some target genes related to essential cellular processes to evaluate and validate the expression through the RT-qPCR. The RT-qPCR analysis demonstrated significantly (p < 0.05) elevated expression of the mafbx, foxo1a, and rgcc genes in the hybrid compared to the parents. Likewise, we can observe genes significantly more expressed in Pacu (mtco1 and mylpfa) and mtco2 in Tambaqui. Our results showed that the phenotype presented by Tambacu might be associated with changes in the gene expression profile and not necessarily with an increase in gene variability. Thus, the molecular mechanisms underlying these "hybrid effects" may be related to additive and, in some cases, dominant regulatory interactions between parental alleles that act directly on gene regulation in the hybrid transcripts.
Collapse
Affiliation(s)
- Edson Assunção Mareco
- Environment and Regional Development Graduate Program, University of Western São Paulo, Presidente Prudente, São Paulo, Brazil; Biology Department, University of Western São Paulo, Presidente Prudente, São Paulo, Brazil.
| | - Daniel Garcia de la Serrana
- Cell Biology, Physiology, and Immunology Department, School of Biology, University of Barcelona, 643 08028 Barcelona, Catalonia, Spain
| | - Tassiana Gutierrez de Paula
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Bruno Oliveira da Silva Duran
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | | | - Victor Hugo Garcia de Oliveira
- Environment and Regional Development Graduate Program, University of Western São Paulo, Presidente Prudente, São Paulo, Brazil
| | | | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| |
Collapse
|
5
|
Liu Z, Qin T, Yuan X, Yang J, Shi W, Zhang X, Jia Y, Liu S, Wang J, Li K. Anlotinib Downregulates RGC32 Which Provoked by Bevacizumab. Front Oncol 2022; 12:875888. [PMID: 35664796 PMCID: PMC9158131 DOI: 10.3389/fonc.2022.875888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Bevacizumab is the representative drug in antiangiogenic therapy for lung cancer. However, it induced resistance in some neoplasm. Anlotinib, a novel multi-target tyrosine kinase inhibitor which has an inhibitory action on both angiogenesis and malignancy, is possible to reverse the resistance. Methods Transwell migration and invasion experiments of bevacizumab with or without anlotinib were conducted to verify the activated/inhibited ability of lung adenocarcinoma cells. We sequenced A549 cells with enhanced migration and invasion abilities after bevacizumab treatment, screened out the differentially expressed gene and further confirmed by western blot and q-PCR assays. We also investigated immunohistochemical staining of tumor tissue in mice and human lung adenocarcinoma. Results Bevacizumab facilitated migration and invasion of lung adenocarcinoma cells. Differentially expressed gene RGC32 was screened out. Bevacizumab upregulated the expression of RGC32, N-cadherin, and MMP2 through ERK-MAPK and PI3K-AKT pathways. Anlotinib downregulated their expression and reversed the effect of bevacizumab on A549 cells. In vivo experiments confirmed that higher-dose bevacizumab facilitated metastasis in tumor-bearing nude mice and upregulated the expression of RGC32, N-cadherin, and MMP2, whereas anlotinib abrogated its effect. Expression of both RGC32 and N-cadherin positively correlated with lymph node metastasis and stage in lung adenocarcinoma was found. Survival analysis revealed that higher expressions of RGC32 and N-cadherin were associated with poor progression-free survival and overall survival. Conclusions Bevacizumab may promote invasion and metastasis of lung adenocarcinoma cells by upregulating RGC32 through ERK-MAPK and PI3K-AKT pathways to promote epithelial-mesenchymal transition, whereas anlotinib reverses the effect. RGC32 and N-cadherin are independent prognostic factors in lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhujun Liu
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Tingting Qin
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaohan Yuan
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.,Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jie Yang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.,Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China.,National Key Discipline of Pediatrics (Capital Medical University), Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wei Shi
- Research and Development Department, Jiangsu Chia-Tai Tian Qing Pharmaceutical Co., Ltd., Nanjing, China
| | - Xiaoling Zhang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yanan Jia
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Shaochuan Liu
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jing Wang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Kai Li
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Luzina IG, Rus V, Lockatell V, Courneya JP, Hampton BS, Fishelevich R, Misharin AV, Todd NW, Badea TC, Rus H, Atamas SP. Regulator of Cell Cycle Protein (RGCC/RGC-32) Protects against Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2022; 66:146-157. [PMID: 34668840 PMCID: PMC8845131 DOI: 10.1165/rcmb.2021-0022oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Some previous studies in tissue fibrosis have suggested a profibrotic contribution from elevated expression of a protein termed either RGCC (regulator of cell cycle) or RGC-32 (response gene to complement 32 protein). Our analysis of public gene expression datasets, by contrast, revealed a consistent decrease in RGCC mRNA levels in association with pulmonary fibrosis. Consistent with this observation, we found that stimulating primary adult human lung fibroblasts with transforming growth factor (TGF)-β in cell cultures elevated collagen expression and simultaneously attenuated RGCC mRNA and protein levels. Moreover, overexpression of RGCC in cultured lung fibroblasts attenuated the stimulating effect of TGF-β on collagen levels. Similar to humans with pulmonary fibrosis, the levels of RGCC were also decreased in vivo in lung tissues of wild-type mice challenged with bleomycin in both acute and chronic models. Mice with constitutive RGCC gene deletion accumulated more collagen in their lungs in response to chronic bleomycin challenge than did wild-type mice. RNA-Seq analyses of lung fibroblasts revealed that RGCC overexpression alone had a modest transcriptomic effect, but in combination with TGF-β stimulation, induced notable transcriptomic changes that negated the effects of TGF-β, including on extracellular matrix-related genes. At the level of intracellular signaling, RGCC overexpression delayed early TGF-β-induced Smad2/3 phosphorylation, elevated the expression of total and phosphorylated antifibrotic mediator STAT1, and attenuated the expression of a profibrotic mediator STAT3. We conclude that RGCC plays a protective role in pulmonary fibrosis and that its decline permits collagen accumulation. Restoration of RGCC expression may have therapeutic potential in pulmonary fibrosis.
Collapse
Affiliation(s)
- Irina G. Luzina
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| | - Violeta Rus
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| | - Virginia Lockatell
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| | - Jean-Paul Courneya
- Health Sciences and Human Services Library, University of Maryland–Baltimore, Baltimore, Maryland
| | | | - Rita Fishelevich
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| | - Alexander V. Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Nevins W. Todd
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| | - Tudor C. Badea
- Retinal Circuits Development and Genetics Unit, National Eye Institute, Bethesda, Maryland; and,Faculty of Medicine, Research and Development Institute, Transilvania University of Brașov, Brașov, Romania
| | - Horea Rus
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| | - Sergei P. Atamas
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| |
Collapse
|
7
|
McDonough CM, Guo DJ, Guo TL. Developmental toxicity of bisphenol S in Caenorhabditis elegans and NODEF mice. Neurotoxicology 2021; 87:156-166. [PMID: 34597708 DOI: 10.1016/j.neuro.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 01/25/2023]
Abstract
The growing concern surrounding bisphenol A (BPA) has led to increased industrial production and application of its analog bisphenol S (BPS). The goals of this study were: (1) To examine the generational effects in the nematode C. elegans for up to three generations following developmental exposure to BPS (0.1, 1.0, 5.0 and 10.0 μM), and (2) To examine the neurotoxicity and metabolic toxicity in NODEF mouse offspring exposed to BPS (3 μg/kg BW) in utero throughout gestation once/day via oral pipette. First, worms were exposed to BPS developmentally for a single period of 48 hours and then propagated for 2 additional generations. Exposure to 0.1 and 1.0 μM BPS decreased lifespan and the number of progeny with an ability to recover in subsequent generations. In contrast, worms exposed to 5.0 or 10.0 μM BPS exhibited a continuous effect in the second generation, e.g., decreased lifespan and reduced number of progeny. Only worms exposed to 10.0 μM BPS continued to have a significant long-term effect (e.g., decreased lifespan) through the third generation. In addition, worms developmentally exposed to BPS at 5.0 μM and 10.0 μM also showed decreases in body bends. In contrast, worms exposed to 0.1 μM BPS exhibited a significant increase in head thrashes. When the multigenerational effects were examined by exposing worms to BPS for 48 hours developmentally at each generation for three generations, an accumulative effect was observed in worms treated with 0.1 or 1.0 μM BPS for two generations, but not for three generations, suggesting a threshold existed. Worms exposed to either 5.0 or 10.0 μM BPS demonstrated accumulative effects through two and three generations. When the developmental effects of BPS were studied in NODEF mice, offspring exposed gestationally exhibited behavioral deficits at 12, but not at 3, weeks of age. Specifically, female offspring had decreases in working and short-term memories while male offspring showed increases in hyperactivity and anxiety-like behaviors. In summary, this study demonstrates the sex-related effects of BPS in NODEF mouse offspring exposed in utero, along with the generational effects observed in C. elegans.
Collapse
Affiliation(s)
- Callie M McDonough
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Tai L Guo
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
8
|
Guo Z, Chen M, Chao Y, Cai C, Liu L, Zhao L, Li L, Bai QR, Xu Y, Niu W, Shi L, Bi Y, Ren D, Yuan F, Shi S, Zeng Q, Han K, Shi Y, Bian S, He G. RGCC balances self-renewal and neuronal differentiation of neural stem cells in the developing mammalian neocortex. EMBO Rep 2021; 22:e51781. [PMID: 34323349 DOI: 10.15252/embr.202051781] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/09/2022] Open
Abstract
During neocortical development, neural stem cells (NSCs) divide symmetrically to self-renew at the early stage and then divide asymmetrically to generate post-mitotic neurons. The molecular mechanisms regulating the balance between NSC self-renewal and neurogenesis are not fully understood. Using mouse in utero electroporation (IUE) technique and in vitro human NSC differentiation models including cerebral organoids (hCOs), we show here that regulator of cell cycle (RGCC) modulates NSC self-renewal and neuronal differentiation by affecting cell cycle regulation and spindle orientation. RGCC deficiency hampers normal cell cycle process and dysregulates the mitotic spindle, thus driving more cells to divide asymmetrically. These modulations diminish the NSC population and cause NSC pre-differentiation that eventually leads to brain developmental malformation in hCOs. We further show that RGCC might regulate NSC spindle orientation by affecting the organization of centrosome and microtubules. Our results demonstrate that RGCC is essential to maintain the NSC pool during cortical development and suggest that RGCC defects could have etiological roles in human brain malformations.
Collapse
Affiliation(s)
- Zhenming Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mengxia Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yiming Chao
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chunhai Cai
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liangjie Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Li Zhao
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Linbo Li
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qing-Ran Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanxin Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weibo Niu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Decheng Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyue Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qian Zeng
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ke Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Bian
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
McDonough CM, Xu J, Guo TL. Behavioral changes and hyperglycemia in NODEF mice following bisphenol S exposure are affected by diets. Neurotoxicology 2021; 85:209-221. [PMID: 34097938 DOI: 10.1016/j.neuro.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Bisphenol S (BPS), an analogue of the controversial bisphenol A (BPA) that is found in epoxy resins and plastics, is a potential endocrine-disrupting chemical that can mimic endogenous hormone signaling. However, little is known about the behavioral or immunologic effects of BPS. The purpose of this study was to examine the impact of diets in BPS-treated mice in relation to hyperglycemia, development of type 1 diabetes, immunomodulation, and behavioral changes. Adult male and female nonobese diabetic excluded flora (NODEF) mice were exposed to environmentally relevant doses of BPS (VH, 30, or 300 μg/kg BW) and fed either a soy-based diet, a phytoestrogen-free diet, or a Western diet. NODEF male mice fed a soy-based diet exhibited a decreased curiosity/desire to explore, and possibly increased anxiety-like behavior and decreased short-term memory when exposed to BPS (300 μg/kg BW). In addition, these mice had significant increases in non-fasting blood glucose levels along with increased insulin sensitivity, impaired glucose tolerance, resistance to fasting and proinflammation. Although BPS had little effect on the glucose parameters in NODEF male mice fed a Western diet, there were decreases in %CD24+CD5+ and %B220+CD40L-cell populations and increases in distance traveled during the novel object test, suggesting hyperactivity. NODEF females fed a phytoestrogen-free diet exhibited slight decreases in time spent immobile during the tail suspension test in both the 30 and 300 μg/kg BW dose groups along with increases in %CD4+CD8+ and %Mac3+CD45R+ cell populations, signifying increased hyperactivity and anxiety-like behavior. In conclusion, BPS-exposed NODEF mice exhibited sex and diet-related changes in hyperglycemia, behaviors and immune endpoints.
Collapse
Affiliation(s)
- Callie M McDonough
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Joella Xu
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tai L Guo
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
10
|
Edelman HE, McClymont SA, Tucker TR, Pineda S, Beer RL, McCallion AS, Parsons MJ. SOX9 modulates cancer biomarker and cilia genes in pancreatic cancer. Hum Mol Genet 2021; 30:485-499. [PMID: 33693707 DOI: 10.1093/hmg/ddab064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/02/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive form of cancer with high mortality. The cellular origins of PDAC are largely unknown; however, ductal cells, especially centroacinar cells (CACs), have several characteristics in common with PDAC, such as expression of SOX9 and components of the Notch-signaling pathway. Mutations in KRAS and alterations to Notch signaling are common in PDAC, and both these pathways regulate the transcription factor SOX9. To identify genes regulated by SOX9, we performed siRNA knockdown of SOX9 followed by RNA-seq in PANC-1s, a human PDAC cell line. We report 93 differentially expressed (DE) genes, with convergence on alterations to Notch-signaling pathways and ciliogenesis. These results point to SOX9 and Notch activity being in a positive feedback loop and SOX9 regulating cilia production in PDAC. We additionally performed ChIP-seq in PANC-1s to identify direct targets of SOX9 binding and integrated these results with our DE gene list. Nine of the top 10 downregulated genes have evidence of direct SOX9 binding at their promoter regions. One of these targets was the cancer stem cell marker EpCAM. Using whole-mount in situ hybridization to detect epcam transcript in zebrafish larvae, we demonstrated that epcam is a CAC marker and that Sox9 regulation of epcam expression is conserved in zebrafish. Additionally, we generated an epcam null mutant and observed pronounced defects in ciliogenesis during development. Our results provide a link between SOX9, EpCAM and ciliary repression that can be exploited in improving our understanding of the cellular origins and mechanisms of PDAC.
Collapse
Affiliation(s)
- Hannah E Edelman
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Sarah A McClymont
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Tori R Tucker
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, CA 92697, USA
| | - Santiago Pineda
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, CA 92697, USA
| | - Rebecca L Beer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Andrew S McCallion
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Michael J Parsons
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA.,Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, CA 92697, USA
| |
Collapse
|
11
|
Cui XB, Fei J, Chen S, Edwards GL, Chen SY. ADAR1 deficiency protects against high-fat diet-induced obesity and insulin resistance in mice. Am J Physiol Endocrinol Metab 2021; 320:E131-E138. [PMID: 33252250 PMCID: PMC8194408 DOI: 10.1152/ajpendo.00175.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022]
Abstract
Obesity is an important independent risk factor for type 2 diabetes, cardiovascular diseases, and many other chronic diseases. The objective of this study was to determine the role of adenosine deaminase acting on RNA 1 (ADAR1) in the development of obesity and insulin resistance. Wild-type (WT) and heterozygous ADAR1-deficient (Adar1+/-) mice were fed normal chow or a high-fat diet (HFD) for 12 wk. Adar1+/- mice fed with HFD exhibited a lean phenotype with reduced fat mass compared with WT controls, although no difference was found under chow diet conditions. Blood biochemical analysis and insulin tolerance test showed that Adar1+/- improved HFD-induced dyslipidemia and insulin resistance. Metabolic studies showed that food intake was decreased in Adar1+/- mice compared with the WT mice under HFD conditions. Paired feeding studies further demonstrated that Adar1+/- protected mice from HFD-induced obesity through decreased food intake. Furthermore, Adar1+/- restored the increased ghrelin expression in the stomach and the decreased serum peptide YY levels under HFD conditions. These data indicate that ADAR1 may contribute to diet-induced obesity, at least partially, through modulating the ghrelin and peptide YY expression and secretion.NEW & NOTEWORTHY This study identifies adenosine deaminase acting on RNA 1 as a novel factor promoting high-fat diet-induced obesity, at least partially, through modulating appetite-related genes ghrelin and PYY.
Collapse
Affiliation(s)
- Xiao-Bing Cui
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia
| | - Jia Fei
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia
| | - Sisi Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia
| | - Gaylen L Edwards
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia
| | - Shi-You Chen
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
12
|
Berg von Linde M, Johansson K, Kruse R, Helenius G, Samano N, Friberg Ö, Frøbert AM, Fröbert O. Expression of Paracrine Effectors in Human Adipose-Derived Mesenchymal Stem Cells Treated With Plasma From Brown Bears (Ursus arctos). Clin Transl Sci 2020; 14:317-325. [PMID: 32949228 PMCID: PMC7877842 DOI: 10.1111/cts.12872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/30/2020] [Indexed: 11/28/2022] Open
Abstract
Adipose‐derived mesenchymal stem cells (ADSCs) are promising candidates for novel cell therapeutic applications. Hibernating brown bears sustain tissue integrity and function via unknown mechanisms, which might be plasma borne. We hypothesized that plasma from hibernating bears may increase the expression of favorable factors from human ADSCs. In an experimental study, ADSCs from patients with ischemic heart disease were treated with interventional media containing plasma from hibernating and active bears, respectively, and with control medium. Extracted RNA from the ADSCs was sequenced using next generation sequencing. Statistical analyses of differentially expressed genes were performed using fold change analysis, pathway analysis, and gene ontology. As a result, we found that genes associated with inflammation, such as IGF1, PGF, IL11, and TGFA, were downregulated by > 10‐fold in ADSCs treated with winter plasma compared with control. Genes important for cardiovascular development, ADM, ANGPTL4, and APOL3, were upregulated in ADSCs when treated with winter plasma compared with summer plasma. ADSCs treated with bear plasma, regardless if it was from hibernating or active bears, showed downregulation of IGF1, PGF, IL11, INHBA, IER3, and HMOX1 compared with control, suggesting reduced cell growth and differentiation. This can be summarized in the conclusion that plasma from hibernating bears suppresses inflammatory genes and activates genes associated with cardiovascular development in human ADSCs. Identifying the involved regulator(s) holds therapeutic potential.
Collapse
Affiliation(s)
| | - Karin Johansson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Robert Kruse
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Gisela Helenius
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ninos Samano
- Department of Cardiothoracic and Vascular Surgery, Faculty of Medicine and Health, University Health Care Research Center, Örebro University, Örebro, Sweden
| | - Örjan Friberg
- Department of Cardiothoracic and Vascular Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Anne Mette Frøbert
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| | - Ole Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
| |
Collapse
|
13
|
Yang ZH, Li J, Chen WZ, Kong FS. Oncogenic gene RGC-32 is a direct target of miR-26b and facilitates tongue squamous cell carcinoma aggressiveness through EMT and PI3K/AKT signalling. Cell Biochem Funct 2020; 38:943-954. [PMID: 32325539 DOI: 10.1002/cbf.3520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 11/12/2022]
Abstract
Growing data have recognized the significance of Response Gene to Complement (RGC)-32 in numerous tumour developments. Notwithstanding, the functional role and underlying mechanism of it in tongue squamous cell carcinoma (TSCC) remain enigmatic. Here, to identify the impact of RGC-32 in TSCC, its expression in multiple TSCC cells was measured and loss-of-function experiments in cell lines were performed to illuminate the function of it induced TSCC progression, via si-RNA knockdown, CCK-8, colony formation, wound-healing, transwell, flow cytometry and western blot assays. To clarify potential mechanism, expressions of hallmarks in epithelial-mesenchymal transition (EMT) process and PI3K/AKT signalling were assessed, and the upstream miR regulator of RGC-32 was predicted and verified by applying bioinformatic approaches and dual-luciferase reporter assay, respectively. Finally, the rescue experiments were applied to better elucidate the effect of miR-26b/RGC-32 axis in TSCC behaviours. As a result, RGC-32 was upregulated in TSCC cells and knocking down of it abrogated cell proliferation, trans-migration and invasion, whilst promoted apoptosis in TSCC, which was regulated through repressing EMT and inactivation of PI3K/AKT signalling. Subsequently, miR-26b was predicted and identified as an upstream regulator of RGC-32, and the pro-tumorigenic effect of RGC-32 was reversed by miR-26b overexpression. Collectively, our results demonstrated that RGC-32 facilitated TSCC progression, which was modulated by activations of PI3K/AKT pathway and EMT process, and reduction of its negative regulator of miR-26b. These findings highlight a novel role of miR-26b/RGC-32 axis in TSCC and underlying mechanism, encouraging a potent usage in TSCC treatment. SIGNIFICANCE OF THE STUDY: We first uncovered that Response Gene to Complement-32 played a significantly pro-tumorigenic role in tongue squamous cell carcinoma (TSCC), which was closely regulated by downregulation of miR-26b and activations of epithelial-mesenchymal transition process and PI3K/AKT signalling. These findings contribute to better understand the molecular mechanism in carcinogenesis of TSCC, and shed some light on promising strategy for TSCC therapeutics.
Collapse
Affiliation(s)
- Zhong-Heng Yang
- Department of Stomatology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Juan Li
- Department of Pathology, The Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Wei-Zhi Chen
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Fan-Shuang Kong
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
14
|
Saleh J, Al-Maqbali M, Abdel-Hadi D. Role of Complement and Complement-Related Adipokines in Regulation of Energy Metabolism and Fat Storage. Compr Physiol 2019; 9:1411-1429. [PMID: 31688967 DOI: 10.1002/cphy.c170037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Adipose tissue releases many cytokines and inflammatory factors described as adipokines. In obesity, adipokines released from expanding adipose tissue are implicated in disease progression and metabolic dysfunction. However, mechanisms controlling the progression of adiposity and metabolic complications are not fully understood. It has been suggested that expanding fat mass and sustained release of inflammatory adipokines in adipose tissue lead to hypoxia, oxidative stress, apoptosis, and cellular damage. These changes trigger an immune response involving infiltration of adipose tissue with immune cells, complement activation and generation of factors involved in opsonization and clearance of damaged cells. Abundant evidence now indicates that adipose tissue is an active secretory source of complement and complement-related adipokines that, in addition to their inflammatory role, contribute to the regulation of metabolic function. This article highlights advances in knowledge regarding the role of these adipokines in energy regulation of adipose tissue through modulating lipogenic and lipolytic pathways. Several adipokines will be discussed including adipsin, Factor H, properdin, C3a, Acylation-Stimulating Protein, C1q/TNF-related proteins, and response gene to complement-32 (RGC-32). Interactions between these factors will be described considering their immune-metabolic roles in the adipose tissue microenvironment and their potential contribution to progression of adiposity and metabolic dysfunction. The differential expression and the role of complement factors in gender-related fat partitioning will also be addressed. Identifying lipogenic adipokines and their specific autocrine/paracrine roles may provide means for adipose-tissue-targeted therapeutic interventions that may disrupt the vicious circle of adiposity and disease progression. © 2019 American Physiological Society. Compr Physiol 9:1411-1429, 2019.
Collapse
Affiliation(s)
- Jumana Saleh
- Biochemistry Department, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Muna Al-Maqbali
- Biochemistry Department, College of Medicine, Sultan Qaboos University, Muscat, Oman
| | | |
Collapse
|
15
|
Brocard M, Khasnis S, Wood CD, Shannon-Lowe C, West MJ. Pumilio directs deadenylation-associated translational repression of the cyclin-dependent kinase 1 activator RGC-32. Nucleic Acids Res 2019; 46:3707-3725. [PMID: 29385536 PMCID: PMC5909466 DOI: 10.1093/nar/gky038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
Response gene to complement-32 (RGC-32) activates cyclin-dependent kinase 1, regulates the cell cycle and is deregulated in many human tumours. We previously showed that RGC-32 expression is upregulated by the cancer-associated Epstein-Barr virus (EBV) in latently infected B cells through the relief of translational repression. We now show that EBV infection of naïve primary B cells also induces RGC-32 protein translation. In EBV-immortalised cell lines, we found that RGC-32 depletion resulted in cell death, indicating a key role in B cell survival. Studying RGC-32 translational control in EBV-infected cells, we found that the RGC-32 3′untranslated region (3′UTR) mediates translational repression. Repression was dependent on a single Pumilio binding element (PBE) adjacent to the polyadenylation signal. Mutation of this PBE did not affect mRNA cleavage, but resulted in increased polyA tail length. Consistent with Pumilio-dependent recruitment of deadenylases, we found that depletion of Pumilio in EBV-infected cells increased RGC-32 protein expression and polyA tail length. The extent of Pumilio binding to the endogenous RGC-32 mRNA in EBV-infected cell lines also correlated with RGC-32 protein expression. Our data demonstrate the importance of RGC-32 for the survival of EBV-immortalised B cells and identify Pumilio as a key regulator of RGC-32 translation.
Collapse
Affiliation(s)
- Michèle Brocard
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Sarika Khasnis
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - C David Wood
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Claire Shannon-Lowe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Michelle J West
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
16
|
Vlaicu SI, Tatomir A, Anselmo F, Boodhoo D, Chira R, Rus V, Rus H. RGC-32 and diseases: the first 20 years. Immunol Res 2019; 67:267-279. [DOI: 10.1007/s12026-019-09080-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Bisphenol S Modulates Type 1 Diabetes Development in Non-Obese Diabetic (NOD) Mice with Diet- and Sex-Related Effects. TOXICS 2019; 7:toxics7020035. [PMID: 31234578 PMCID: PMC6630337 DOI: 10.3390/toxics7020035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022]
Abstract
Bisphenol S (BPS) is a common replacement for bisphenol A (BPA) in plastics, which has resulted in widespread human exposure. Type 1 diabetes (T1D) is an autoimmune disease resulting from pancreatic β-cell destruction and has been increasing in incidence globally. Because of the similarities (e.g., endocrine disrupting) between BPS and BPA, and the fact that BPA was previously shown to accelerate T1D development in female non-obese diabetic (NOD) mice, it was hypothesized that BPS could contribute to the increasing T1D incidence by altering immunity with sex-biased responses. Adult female non-obese diabetic (NOD) mice were orally administered BPS at environmentally relevant doses (3, 30, 150 and 300 μg/kg), and males were given 0 or 300 μg/kg BPS. Females following 30 μg/kg BPS treatment on a soy-based diet had significantly delayed T1D development at the end of the study and decreased non-fasting blood glucose levels (BGLs) during the study. In contrast, BPS-exposed males on a soy-based diet showed an increased insulin resistance and varied BGLs. This might be a mixture effect with phytoestrogens, since males on a phytoestrogen-free diet showed improved glucose tolerance and decreased insulin resistance and CD25+ T cells. Additionally, while BPS altered BGLs in soy-based diet mice, minimal effects were observed concerning their immunotoxicity. Thus, BPS had sex- and diet-dependent effects on T1D and glucose homeostasis, which were likely caused by other mechanisms in addition to immunomodulation.
Collapse
|
18
|
Xu J, Huang G, Nagy T, Teng Q, Guo TL. Sex-dependent effects of bisphenol A on type 1 diabetes development in non-obese diabetic (NOD) mice. Arch Toxicol 2019; 93:997-1008. [PMID: 30600366 PMCID: PMC6511313 DOI: 10.1007/s00204-018-2379-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by immune-mediated pancreatic β-cell destruction. The endocrine disrupting chemical bisphenol A (BPA) has widespread human exposure and can modulate immune function and the gut microbiome (GMB), which may contribute to the increasing T1D incidence worldwide. It was hypothesized that BPA had sex-dependent effects on T1D by modulating immune homeostasis and GMB. Adult female and male non-obese diabetic (NOD) mice were orally administered BPA at environmentally relevant doses (30 or 300 µg/kg). Antibiotic-treated adult NOD females were exposed to 0 or 30 µg/kg BPA. BPA accelerated T1D development in females, but delayed males from T1D. Consistently, females had a shift towards pro-inflammation (e.g., increased macrophages and Bacteroidetes), while males had increases in anti-inflammatory immune factors and a decrease in both anti- and pro-inflammatory GMB. Although bacteria altered during sub-acute BPA exposure differed from bacteria altered from chronic BPA exposure in both sexes, the GMB profile was consistently pro-inflammatory in females, while males had a general decrease of both anti- and pro-inflammatory gut microbes. However, treatment of females with the antibiotic vancomycin failed to prevent BPA-induced glucose intolerance, suggesting changes in Gram-positive bacteria were not a primary mechanism. In conclusion, BPA exposure was found to have sex dimorphic effects on T1D with detrimental effects in females, and immunomodulation was identified as the primary mechanism.
Collapse
Affiliation(s)
- Joella Xu
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Guannan Huang
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Tamas Nagy
- Department of Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Quincy Teng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, 30602, USA
| | - Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
19
|
Bisphenol A alteration of type 1 diabetes in non-obese diabetic (NOD) female mice is dependent on window of exposure. Arch Toxicol 2019; 93:1083-1093. [PMID: 30826855 DOI: 10.1007/s00204-019-02419-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic β-cell destruction can be mediated by dysbiosis, infiltration of pro-inflammatory immune cells, and cytokines/chemokines. Exposure to bisphenol A (BPA), an endocrine disruptor (ED), can lead to aberrant immunity and gut microbiota. We determined whether BPA had age-dependent effects on T1D by modulating immune homeostasis following various windows of exposure in non-obese diabetic (NOD) mice. Juvenile NOD females were orally exposed to 0 or 30 µg BPA/kg BW from postnatal day (PND) 28 to PND56. Adult NOD females were exposed to 0 or 300 µg BPA/kg BW. Female and male NOD offspring were exposed to 0 or 300 µg BPA/kg BW perinatally from gestation day 5 to PND28 by dosing the dams. It was found that BPA increased T1D risk in juvenile females with gut microbiota shifted towards pro-inflammation (e.g. increased Jeotgalicoccus). In agreement with our previous study, adult females had a trend of increased T1D and a general increase in immune responses. However, female offspring had a reduced T1D development. Consistently, female offspring had a shift towards anti-inflammation (e.g. decreased pro-inflammatory F4/80+Gr1+ cells). In contrast, BPA had minimal effects on immunity and T1D in male offspring. Thus, it was concluded that BPA had age- and sex-dependent effects on T1D with the alteration of gut microbiota and inflammation being the primary mechanisms for T1D exacerbation in juvenile exposure and decreases of inflammation being responsible for attenuated T1D in perinatally exposed females.
Collapse
|
20
|
Liao WL, Lin JM, Liu SP, Chen SY, Lin HJ, Wang YH, Lei YJ, Huang YC, Tsai FJ. Loss of Response Gene to Complement 32 (RGC-32) in Diabetic Mouse Retina Is Involved in Retinopathy Development. Int J Mol Sci 2018; 19:ijms19113629. [PMID: 30453650 PMCID: PMC6275084 DOI: 10.3390/ijms19113629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is a severe and recurrent microvascular complication in diabetes. The multifunctional response gene to complement 32 (RGC-32) is involved in the regulation of cell cycle, proliferation, and apoptosis. To investigate the role of RGC-32 in the development of DR, we used human retinal microvascular endothelial cells under high-glucose conditions and type 2 diabetes (T2D) mice (+Leprdb/ + Leprdb, db/db). The results showed that RGC-32 expression increased moderately in human retinal endothelial cells under hyperglycemic conditions. Histopathology and RGC-32 expression showed no significant changes between T2D and control mice retina at 16 and 24 weeks of age. However, RGC-32 expression was significantly decreased in T2D mouse retina compared to the control group at 32 weeks of age, which develop features of the early clinical stages of DR, namely reduced retinal thickness and increased ganglion cell death. Moreover, immunohistochemistry showed that RGC-32 was predominantly expressed in the photoreceptor inner segments of control mice, while the expression was dramatically lowered in the T2D retinas. Furthermore, we found that the level of anti-apoptotic protein Bcl-2 was decreased (approximately 2-fold) with a concomitant increase in cleaved caspase-3 (approximately 3-fold) in T2D retina compared to control. In summary, RGC-32 may lose its expression in T2D retina with features of DR, suggesting that it plays a critical role in DR pathogenesis.
Collapse
Affiliation(s)
- Wen-Ling Liao
- Center for Personalized Medicine, China Medical University Hospital and Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan.
| | - Jane-Ming Lin
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Ophthalmology, China Medical University Hospital, Taichung 404, Taiwan.
| | - Shih-Ping Liu
- Center for Translational Medicine, China Medical University Hospital and Graduate Institute of Biomedical Science, China Medical University, Taichung 404, Taiwan and Department of Social Work, Asia University, Taichung 413, Taiwan.
| | - Shih-Yin Chen
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
| | - Hui-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Ophthalmology, China Medical University Hospital, Taichung 404, Taiwan.
| | - Yeh-Han Wang
- Department of Anatomical Pathology, Taipei Institute of Pathology, Taipei 103, Taiwan and Institute of Public Health, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yu-Jie Lei
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
| | - Yu-Chuen Huang
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
- Department of Medical Genetics, China Medical University Hospital and Children's Hospital of China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
21
|
Cui XB, Chen SY. Response Gene to Complement 32 in Vascular Diseases. Front Cardiovasc Med 2018; 5:128. [PMID: 30280101 PMCID: PMC6153333 DOI: 10.3389/fcvm.2018.00128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022] Open
Abstract
Response gene to complement 32 (RGC32) is a protein that was identified in rat oligodendrocytes after complement activation. It is expressed in most of the organs and tissues, such as brain, placenta, heart, and the liver. Functionally, RGC32 is involved in various physiological and pathological processes, including cell proliferation, differentiation, fibrosis, metabolic disease, and cancer. Emerging evidences support the roles of RGC32 in vascular diseases. RGC32 promotes injury-induced vascular neointima formation by mediating smooth muscle cell (SMC) proliferation and migration. Moreover, RGC32 mediates endothelial cell activation and facilitates atherosclerosis development. Its involvement in macrophage phagocytosis and activation as well as T-lymphocyte cell cycle activation also suggests that RGC32 is important for the development and progression of inflammatory vascular diseases. In this mini-review, we provide an overview on the roles of RGC32 in regulating functions of SMCs, endothelial cells, and immune cells, and discuss their contributions to vascular diseases.
Collapse
Affiliation(s)
- Xiao-Bing Cui
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, United States
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, United States
| |
Collapse
|
22
|
Watanabe A, Marumo T, Kawarazaki W, Nishimoto M, Ayuzawa N, Ueda K, Hirohama D, Tanaka T, Yagi S, Ota S, Nagae G, Aburatani H, Kumagai H, Fujita T. Aberrant DNA methylation of pregnane X receptor underlies metabolic gene alterations in the diabetic kidney. Am J Physiol Renal Physiol 2018; 314:F551-F560. [DOI: 10.1152/ajprenal.00390.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epigenetic abnormalities have been suggested to mediate metabolic memory observed in diabetic complications. We have shown that epigenetic alterations may induce persistent phenotypic changes in the proximal tubules of the diabetic kidneys. In this study, we show that pregnane X receptor (PXR), a xenobiotic nuclear receptor, is epigenetically altered and upregulated and may have a possible function in the diabetic kidney. PXR has been shown to play a critical role in metabolic changes in obesity and diabetes; however, its distribution and function in the kidney are unknown. In the normal kidney, Pxr was selectively expressed in the proximal tubular cells with demethylation in the promoter DNA. In db/db mice, significant increases in Pxr mRNA, further demethylation of DNA, and stimulatory histone marks in the promoter were observed. Epigenetic changes are likely to play a causative role in PXR induction, since a DNA methyltransferase inhibitor increased PXR mRNA in cultured human proximal tubular cells. Administration of a PXR agonist increased mRNA levels of solute carrier organic anion transporter family member 2B1 ( Slco2b1), a xenobiotic transporter; response gene to complement 32 ( Rgc32), a molecule known to exert fibrotic effects in the kidney; and phosphoenolpyruvate carboxykinase 1 ( Pck1), a gluconeogenic enzyme in the kidney. The expressions of these genes were inhibited by PXR small interfering RNA in cultured proximal tubular cells. Increased mRNA levels of Slco2b1, Rgc32, and Pck1 were also observed in the kidney of db/db mice. These data indicate that PXR is upregulated in the diabetic kidney with aberrant epigenetic modifications and may modulate the course of diabetic kidney disease through the activation of these genes.
Collapse
Affiliation(s)
- Atsushi Watanabe
- Division of Clinical Epigenetics, The University of Tokyo, Tokyo, Japan
- Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan
| | - Takeshi Marumo
- Division of Clinical Epigenetics, The University of Tokyo, Tokyo, Japan
| | - Wakako Kawarazaki
- Division of Clinical Epigenetics, The University of Tokyo, Tokyo, Japan
| | | | - Nobuhiro Ayuzawa
- Division of Clinical Epigenetics, The University of Tokyo, Tokyo, Japan
| | - Kohei Ueda
- Division of Clinical Epigenetics, The University of Tokyo, Tokyo, Japan
| | - Daigoro Hirohama
- Division of Clinical Epigenetics, The University of Tokyo, Tokyo, Japan
| | - Toshiya Tanaka
- Laboratory for Systems Biology and Medicine, The University of Tokyo, Tokyo, Japan
| | - Shintaro Yagi
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ota
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroo Kumagai
- Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Chen S, Mei X, Yin A, Yin H, Cui XB, Chen SY. Response gene to complement 32 suppresses adipose tissue thermogenic genes through inhibiting β3-adrenergic receptor/mTORC1 signaling. FASEB J 2018; 32:4836-4847. [PMID: 29579398 DOI: 10.1096/fj.201701508r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our previous studies have shown that response gene to complement (RGC)-32 deficiency (Rgc32-/-) protects mice from diet-induced obesity and increases thermogenic gene expression in adipose tissues. However, the underlying mechanisms by which RGC-32 regulates thermogenic gene expression remain to be determined. In the present study, RGC-32 expression in white adipose tissue (WAT) was suppressed during cold exposure-induced WAT browning. Rgc32-/- significantly increased thermogenic gene expression in the differentiated stromal vascular fraction (SVF) of inguinal (i)WAT and interscapular brown adipose tissue (BAT). Rgc32-/- and cold exposure regulated a common set of genes in iWAT, as shown by RNA sequencing data. Pathway enrichment analyses showed that Rgc32-/- down-regulated PI3K/Akt signaling-related genes. Akt phosphorylation was also consistently decreased in Rgc32-/- iWAT, which led to an increase in β3-adrenergic receptor (β3-AR) expression and subsequent activation of mammalian target of rapamycin complex (mTORC)-1. β3-AR antagonist SR 59230A and mTORC1 inhibitor rapamycin blocked Rgc32-/--induced thermogenic gene expression in both iWAT and interscapular BAT. These results indicate that RGC-32 suppresses adipose tissue thermogenic gene expression through down-regulation of β3-AR expression and mTORC1 activity via a PI3K/Akt-dependent mechanism.-Chen, S., Mei, X., Yin, A., Yin, H., Cui, X.-B., Chen, S.-Y. Response gene to complement 32 suppresses adipose tissue thermogenic genes through inhibiting β3-adrenergic receptor/mTORC1 signaling.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia, USA.,Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaohan Mei
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia, USA
| | - Amelia Yin
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA; and.,Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
| | - Hang Yin
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA; and.,Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
| | - Xiao-Bing Cui
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia, USA
| | - Shi-You Chen
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia, USA.,Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
24
|
New insights into the roles of RGC-32. Cell Mol Immunol 2018; 15:803-804. [PMID: 29503443 DOI: 10.1038/cmi.2017.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022] Open
|
25
|
Cui XB, Luan JN, Dong K, Chen S, Wang Y, Watford WT, Chen SY. RGC-32 (Response Gene to Complement 32) Deficiency Protects Endothelial Cells From Inflammation and Attenuates Atherosclerosis. Arterioscler Thromb Vasc Biol 2018; 38:e36-e47. [PMID: 29449334 DOI: 10.1161/atvbaha.117.310656] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 02/05/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The objective of this study is to determine the role and underlying mechanisms of RGC-32 (response gene to complement 32 protein) in atherogenesis. APPROACH AND RESULTS RGC-32 was mainly expressed in endothelial cells of atherosclerotic lesions in both ApoE-/- (apolipoprotein E deficient) mice and human patients. Rgc-32 deficiency (Rgc32-/-) attenuated the high-fat diet-induced and spontaneously developed atherosclerotic lesions in ApoE-/- mice without affecting serum cholesterol concentration. Rgc32-/- seemed to decrease the macrophage content without altering collagen and smooth muscle contents or lesional macrophage proliferation in the lesions. Transplantation of WT (wild type) mouse bone marrow to lethally irradiated Rgc32-/- mice did not alter Rgc32-/--caused reduction of lesion formation and macrophage accumulation, suggesting that RGC-32 in resident vascular cells, but not the macrophages, plays a critical role in the atherogenesis. Of importance, Rgc32-/- decreased the expression of ICAM-1 (intercellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1) in endothelial cells both in vivo and in vitro, resulting in a decrease in TNF-α (tumor necrosis factor-α)-induced monocyte-endothelial cell interaction. Mechanistically, RGC-32 mediated the ICAM-1 and VCAM-1 expression, at least partially, through NF (nuclear factor)-κB signaling pathway. RGC-32 directly interacted with NF-κB and facilitated its nuclear translocation and enhanced TNF-α-induced NF-κB binding to ICAM-1 and VCAM-1 promoters. CONCLUSIONS RGC-32 mediates atherogenesis by facilitating monocyte-endothelial cell interaction via the induction of endothelial ICAM-1 and VCAM-1 expression, at least partially, through NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiao-Bing Cui
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Jun-Na Luan
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Kun Dong
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Sisi Chen
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Yongyi Wang
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Wendy T Watford
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.).
| |
Collapse
|
26
|
Vlaicu SI, Tatomir A, Boodhoo D, Vesa S, Mircea PA, Rus H. The role of complement system in adipose tissue-related inflammation. Immunol Res 2017; 64:653-64. [PMID: 26754764 DOI: 10.1007/s12026-015-8783-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As the common factor linking adipose tissue to the metabolic context of obesity, insulin resistance and atherosclerosis are associated with a low-grade chronic inflammatory status, to which the complement system is an important contributor. Adipose tissue synthesizes complement proteins and is a target of complement activation. C3a-desArg/acylation-stimulating protein stimulates lipogenesis and affects lipid metabolism. The C3a receptor and C5aR are involved in the development of adipocytes' insulin resistance through macrophage infiltration and the activation of adipose tissue. The terminal complement pathway has been found to be instrumental in promoting hyperglycemia-associated tissue damage, which is characteristic of the major vascular complications of diabetes mellitus and diabetic ketoacidosis. As a mediator of the effects of the terminal complement complex C5b-9, RGC-32 has an impact on energy expenditure as well as lipid and glucose metabolic homeostasis. All of this evidence, taken together, indicates an important role for complement activation in metabolic diseases.
Collapse
Affiliation(s)
- Sonia I Vlaicu
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA.,Department of Internal Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA.,Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
| | - Stefan Vesa
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Petru A Mircea
- Department of Internal Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA. .,Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA. .,Veterans Administration Multiple Sclerosis Center of Excellence, Baltimore, MD, USA.
| |
Collapse
|
27
|
Huang G, Xu J, Lefever DE, Glenn TC, Nagy T, Guo TL. Genistein prevention of hyperglycemia and improvement of glucose tolerance in adult non-obese diabetic mice are associated with alterations of gut microbiome and immune homeostasis. Toxicol Appl Pharmacol 2017; 332:138-148. [PMID: 28412308 PMCID: PMC5592136 DOI: 10.1016/j.taap.2017.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/25/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022]
Abstract
Although studies have linked soy phytoestrogen 4,7,4-trihydroxyisoflavone genistein (GEN) to reduced type 1 diabetes (T1D) risk, the mechanism of dietary GEN on T1D remains unknown. In our studies, adult non-obese diabetic (NOD) mouse model was employed to investigate the effects of GEN exposure on blood glucose level (BGL), glucose tolerance, gut microbiome, and immune responses. Adult male and female NOD mice were fed with either soy-based or casein-based diet, and received GEN at 20mg/kg body weight by gavage daily. The BGL and immune responses (represented by serum antibodies, cytokines and chemokines, and histopathology) were monitored, while the fecal gut microbiome was sequenced for 16S ribosomal RNA to reveal any alterations in gut microbial communities. A significantly reduced BGL was found in NOD males fed with soy-based diet on day 98 after initial dosing, and an improved glucose tolerance was observed on both diets. In addition, an anti-inflammatory response (suggested by reduced IgG2b and cytokine/chemokine levels, and alterations in the microbial taxonomy) was accompanied by an altered β-diversity in gut microbial species. Among the NOD females exposed to GEN, a later onset of T1D was observed. However, the profiles of gut microbiome, antibodies and cytokines/chemokines were all indicative of pro-inflammation. This study demonstrated an association among GEN exposure, gut microbiome alteration, and immune homeostasis in NOD males. Although the mechanisms underlying the protective effects of GEN in NOD mice need to be explored further, the current study suggested a GEN-induced sex-specific effect in inflammatory status and gut microbiome.
Collapse
Affiliation(s)
- Guannan Huang
- Department of Environmental Health Sciences, College of Public Health, United States
| | - Joella Xu
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, United States
| | - Daniel E Lefever
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, United States
| | - Travis C Glenn
- Department of Environmental Health Sciences, College of Public Health, United States
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, United States.
| |
Collapse
|
28
|
Affiliation(s)
- Xiao-Bing Cui
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
29
|
Counts SE, Mufson EJ. Regulator of Cell Cycle (RGCC) Expression During the Progression of Alzheimer's Disease. Cell Transplant 2016; 26:693-702. [PMID: 27938491 DOI: 10.3727/096368916x694184] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Unscheduled cell cycle reentry of postmitotic neurons has been described in cases of mild cognitive impairment (MCI) and Alzheimer's disease (AD) and may form a basis for selective neuronal vulnerability during disease progression. In this regard, the multifunctional protein regulator of cell cycle (RGCC) has been implicated in driving G1/S and G2/M phase transitions through its interactions with cdc/cyclin-dependent kinase 1 (cdk1) and is induced by p53, which mediates apoptosis in neurons. We tested whether RGCC levels were dysregulated in frontal cortex samples obtained postmortem from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), MCI, or AD. RGCC mRNA and protein levels were upregulated by ∼50%-60% in MCI and AD compared to NCI, and RGCC protein levels were associated with poorer antemortem global cognitive performance in the subjects examined. To test whether RGCC might regulate neuronal cell cycle reentry and apoptosis, we differentiated neuronotypic PC12 cultures with nerve growth factor (NGF) followed by NGF withdrawal to induce abortive cell cycle activation and cell death. Experimental reduction of RGCC levels increased cell survival and reduced levels of the cdk1 target cyclin B1. RGCC may be a candidate cell cycle target for neuroprotection during the onset of AD.
Collapse
|
30
|
Harris RA, Alcott CE, Sullivan EL, Takahashi D, McCurdy CE, Comstock S, Baquero K, Blundell P, Frias AE, Kahr M, Suter M, Wesolowski S, Friedman JE, Grove KL, Aagaard KM. Genomic Variants Associated with Resistance to High Fat Diet Induced Obesity in a Primate Model. Sci Rep 2016; 6:36123. [PMID: 27811965 PMCID: PMC5095882 DOI: 10.1038/srep36123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/07/2016] [Indexed: 12/28/2022] Open
Abstract
Maternal obesity contributes to an increased risk of lifelong morbidity and mortality for both the mother and her offspring. In order to better understand the molecular mechanisms underlying these risks, we previously established and extensively characterized a primate model in Macaca fuscata (Japanese macaque). In prior studies we have demonstrated that a high fat, caloric dense maternal diet structures the offspring’s epigenome, metabolome, and intestinal microbiome. During the course of this work we have consistently observed that a 36% fat diet leads to obesity in the majority, but not all, of exposed dams. In the current study, we sought to identify the genomic loci rendering resistance to obesity despite chronic consumption of a high fat diet in macaque dams. Through extensive phenotyping together with exon capture array and targeted resequencing, we identified three novel single nucleotide polymorphisms (SNPs), two in apolipoprotein B (APOB) and one in phospholipase A2 (PLA2G4A) that significantly associated with persistent weight stability and insulin sensitivity in lean macaques. By application of explicit orthogonal modeling (NOIA), we estimated the polygenic and interactive nature of these loci against multiple metabolic traits and their measures (i.e., serum LDL levels) which collectively render an obesity resistant phenotype in our adult female dams.
Collapse
Affiliation(s)
- R Alan Harris
- Department of Obstetrics &Gynecology, Division of Maternal-Fetal Medicine at Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.,Department of Molecular and Human Genetics at Baylor College of Medicine, Houston, TX, USA
| | - Callison E Alcott
- Developmental Biology Interdisciplinary Program at Baylor College of Medicine, Houston, TX, USA
| | - Elinor L Sullivan
- Oregon National Primate Research Center, Oregon Health &Science University (OHSU), Beaverton, OR, USA.,Department of Biology, University of Portland, USA
| | - Diana Takahashi
- Oregon National Primate Research Center, Oregon Health &Science University (OHSU), Beaverton, OR, USA
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Sarah Comstock
- Department of Biology, Corban University, Salem, OR, USA
| | - Karalee Baquero
- Oregon National Primate Research Center, Oregon Health &Science University (OHSU), Beaverton, OR, USA
| | - Peter Blundell
- Oregon National Primate Research Center, Oregon Health &Science University (OHSU), Beaverton, OR, USA
| | - Antonio E Frias
- Oregon National Primate Research Center, Oregon Health &Science University (OHSU), Beaverton, OR, USA.,Department of Obstetrics &Gynecology, Division of Maternal-Fetal Medicine, OHSU, Portland, OR, USA
| | - Maike Kahr
- Department of Obstetrics &Gynecology, Division of Maternal-Fetal Medicine at Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Melissa Suter
- Department of Obstetrics &Gynecology, Division of Maternal-Fetal Medicine at Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Stephanie Wesolowski
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob E Friedman
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kevin L Grove
- Oregon National Primate Research Center, Oregon Health &Science University (OHSU), Beaverton, OR, USA
| | - Kjersti M Aagaard
- Department of Obstetrics &Gynecology, Division of Maternal-Fetal Medicine at Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.,Department of Molecular and Human Genetics at Baylor College of Medicine, Houston, TX, USA.,Developmental Biology Interdisciplinary Program at Baylor College of Medicine, Houston, TX, USA.,Oregon National Primate Research Center, Oregon Health &Science University (OHSU), Beaverton, OR, USA.,Department of Molecular and Cell Biology at Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
31
|
Vlaicu SI, Tatomir A, Boodhoo D, Ito T, Fosbrink M, Cudrici C, Mekala AP, Ciriello J, Crişan D, Boţan E, Rus V, Rus H. RGC-32 is expressed in the human atherosclerotic arterial wall: Role in C5b-9-induced cell proliferation and migration. Exp Mol Pathol 2016; 101:221-230. [DOI: 10.1016/j.yexmp.2016.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 01/21/2023]
|
32
|
Cui XB, Luan JN, Chen SY. RGC-32 Deficiency Protects against Hepatic Steatosis by Reducing Lipogenesis. J Biol Chem 2015; 290:20387-95. [PMID: 26134570 DOI: 10.1074/jbc.m114.630186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 12/20/2022] Open
Abstract
Hepatic steatosis is associated with insulin resistance and metabolic syndrome because of increased hepatic triglyceride content. We have reported previously that deficiency of response gene to complement 32 (RGC-32) prevents high-fat diet (HFD)-induced obesity and insulin resistance in mice. This study was conducted to determine the role of RGC-32 in the regulation of hepatic steatosis. We observed that hepatic RGC-32 was induced dramatically by both HFD challenge and ethanol administration. RGC-32 knockout (RGC32(-/-)) mice were resistant to HFD- and ethanol-induced hepatic steatosis. The hepatic triglyceride content of RGC32(-/-) mice was decreased significantly compared with WT controls even under normal chow conditions. Moreover, RGC-32 deficiency decreased the expression of lipogenesis-related genes, sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthase, and stearoyl-CoA desaturase 1 (SCD1). RGC-32 deficiency also decreased SCD1 activity, as indicated by decreased desaturase indices of the liver and serum. Mechanistically, insulin and ethanol induced RGC-32 expression through the NF-κB signaling pathway, which, in turn, increased SCD1 expression in a SREBP-1c-dependent manner. RGC-32 also promoted SREBP-1c expression through activating liver X receptor. These results demonstrate that RGC-32 contributes to the development of hepatic steatosis by facilitating de novo lipogenesis through activating liver X receptor, leading to the induction of SREBP-1c and its target genes. Therefore, RGC-32 may be a potential novel drug target for the treatment of hepatic steatosis and its related diseases.
Collapse
Affiliation(s)
- Xiao-Bing Cui
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602 and
| | - Jun-Na Luan
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602 and
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602 and the Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei Medical University, Shiyan, 442000 Hubei, China
| |
Collapse
|