1
|
Yingyue Q, Sugawara K, Takahashi H, Yokoi N, Ohbayashi K, Iwasaki Y, Seino S, Ogawa W. Stimulatory effect of imeglimin on incretin secretion. J Diabetes Investig 2023; 14:746-755. [PMID: 36977210 DOI: 10.1111/jdi.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 03/30/2023] Open
Abstract
AIMS/INTRODUCTION Imeglimin is a new antidiabetic drug structurally related to metformin. Despite this structural similarity, only imeglimin augments glucose-stimulated insulin secretion (GSIS), with the mechanism underlying this effect remaining unclear. Given that glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) also enhance GSIS, we examined whether these incretin hormones might contribute to the pharmacological actions of imeglimin. MATERIALS AND METHODS Blood glucose and plasma insulin, GIP, and GLP-1 concentrations were measured during an oral glucose tolerance test (OGTT) performed in C57BL/6JJcl (C57BL/6) or KK-Ay/TaJcl (KK-Ay) mice after administration of a single dose of imeglimin with or without the dipeptidyl peptidase-4 inhibitor sitagliptin or the GLP-1 receptor antagonist exendin-9. The effects of imeglimin, with or without GIP or GLP-1, on GSIS were examined in C57BL/6 mouse islets. RESULTS Imeglimin lowered blood glucose and increased plasma insulin levels during an OGTT in both C57BL/6 and KK-Ay mice, whereas it also increased the plasma levels of GIP and GLP-1 in KK-Ay mice and the GLP-1 levels in C57BL/6 mice. The combination of imeglimin and sitagliptin increased plasma insulin and GLP-1 levels during the OGTT in KK-Ay mice to a markedly greater extent than did either drug alone. Imeglimin enhanced GSIS in an additive manner with GLP-1, but not with GIP, in mouse islets. Exendin-9 had only a minor inhibitory effect on the glucose-lowering action of imeglimin during the OGTT in KK-Ay mice. CONCLUSIONS Our data suggest that the imeglimin-induced increase in plasma GLP-1 levels likely contributes at least in part to its stimulatory effect on insulin secretion.
Collapse
Affiliation(s)
- Quan Yingyue
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Sugawara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Ma Y, Lee E, Yoshikawa H, Noda T, Miyamoto J, Kimura I, Hatano R, Miki T. Phloretin suppresses carbohydrate-induced GLP-1 secretion via inhibiting short chain fatty acid release from gut microbiome. Biochem Biophys Res Commun 2022; 621:176-182. [DOI: 10.1016/j.bbrc.2022.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
|
3
|
Liu M, Wang Y, Ma Y, Zhang X, Zhang L, Nie L, Guo W, Zhao D, Zhang J, Yuan D, Yue L. Activation of SGLT3a in endometrial epithelial cells induces paracrine stromal cell decidualization. J Cell Physiol 2021; 237:1532-1546. [PMID: 34755904 DOI: 10.1002/jcp.30629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/11/2022]
Abstract
Endometrial epithelial cells (EECs) and stromal cells (ESCs) have a close functional association. During the peri-implantation period, EECs with enhanced functional activities secrete a variety of paracrine factors to promote the decidualization of ESCs. However, little is known about the specific process by which EECs secrete paracrine factors to induce the decidualization of ESCs. Some evidence suggests that the activation of sodium-glucose cotransporter 3a (SGLT3a) induces the depolarization of ESCs to affect their function. Therefore, SGLT3a acts as a sensor molecule in certain cell types. In this study, the expression of SGLT3a was investigated in EECs to determine whether its levels increased during the peri-implantation period in female mice. The activation of SGLT3a in mouse EECs induced Na+ -dependent depolarization of the cell membrane and an influx of extracellular Ca2+ , which further promoted the expression and release of the paracrine factors prostaglandin E2 (PGE2) and F2-alpha (PGF2α) by upregulating the expression of cyclooxygenase-2. In turn, PGE2 and PGF2α induced the decidualization of ESCs. Importantly, we identified SGLT3a as a key molecule involved in the cross-talk between EECs and ESCs during the process of uterine decidualization.
Collapse
Affiliation(s)
- Min Liu
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yicheng Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yongdan Ma
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xueqin Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Lixue Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Li Nie
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenjing Guo
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Dan Zhao
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jinhu Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Dongzhi Yuan
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Limin Yue
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Lee E, Zhang X, Noda T, Miyamoto J, Kimura I, Tanaka T, Sakurai K, Hatano R, Miki T. Lecithin Inclusion by α-Cyclodextrin Activates SREBP2 Signaling in the Gut and Ameliorates Postprandial Hyperglycemia. Int J Mol Sci 2021; 22:ijms221910796. [PMID: 34639136 PMCID: PMC8509185 DOI: 10.3390/ijms221910796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND α-cyclodextrin (α-CD) is one of the dietary fibers that may have a beneficial effect on cholesterol and/or glucose metabolism, but its efficacy and mode of action remain unclear. METHODS In the present study, we examined the anti-hyperglycemic effect of α-CD after oral loading of glucose and liquid meal in mice. RESULTS Administration of 2 g/kg α-CD suppressed hyperglycemia after glucose loading, which was associated with increased glucagon-like peptide 1 (GLP-1) secretion and enhanced hepatic glucose sequestration. By contrast, 1 g/kg α-CD similarly suppressed hyperglycemia, but without increasing secretions of GLP-1 and insulin. Furthermore, oral α-CD administration disrupts lipid micelle formation through its inclusion of lecithin in the gut luminal fluid. Importantly, prior inclusion of α-CD with lecithin in vitro nullified the anti-hyperglycemic effect of α-CD in vivo, which was associated with increased intestinal mRNA expressions of SREBP2-target genes (Ldlr, Hmgcr, Pcsk9, and Srebp2). CONCLUSIONS α-CD elicits its anti-hyperglycemic effect after glucose loading by inducing lecithin inclusion in the gut lumen and activating SREBP2, which is known to induce cholecystokinin secretion to suppress hepatic glucose production via a gut/brain/liver axis.
Collapse
Affiliation(s)
- Eunyoung Lee
- Department of Medical Physiology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (E.L.); (X.Z.); (T.N.); (R.H.)
| | - Xilin Zhang
- Department of Medical Physiology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (E.L.); (X.Z.); (T.N.); (R.H.)
| | - Tomoe Noda
- Department of Medical Physiology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (E.L.); (X.Z.); (T.N.); (R.H.)
| | - Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan;
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan;
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Kenichi Sakurai
- Center for Preventive Medical Sciences, Chiba University, Chiba 263-8522, Japan;
| | - Ryo Hatano
- Department of Medical Physiology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (E.L.); (X.Z.); (T.N.); (R.H.)
| | - Takashi Miki
- Department of Medical Physiology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (E.L.); (X.Z.); (T.N.); (R.H.)
- Correspondence: ; Tel.: +81-43-226-2029
| |
Collapse
|
5
|
Fan L, Yang L, Li X, Teng T, Xiang Y, Liu X, Jiang Y, Zhu Y, Zhou X, Xie P. Proteomic and metabolomic characterization of amygdala in chronic social defeat stress rats. Behav Brain Res 2021; 412:113407. [PMID: 34111472 DOI: 10.1016/j.bbr.2021.113407] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Depression is a leading cause of disability worldwide. There is increasing evidence showing that depression is associated with the pathophysiology in amygdala; however, the underlying mechanism remains poorly understood. METHOD We established a rat model of chronic social defeat stress (CSDS) and conducted a series of behavior tests to observe behavioral changes. Then liquid chromatography mass spectrometry (LC-MS)-based metabolomics and isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics were employed to detect metabolomes and proteomes in the amygdala, respectively. Ingenuity pathway analysis (IPA) and other bioinformatic analyses were used to analyze differentially expressed metabolites and proteins. RESULTS The significantly lower sucrose preference index in the sucrose preference test and longer immobile time in the forced swim test were observed in the CSDS rats compared with control rats. In the multi-omics analysis, thirty-seven significantly differentially expressed metabolites and 123 significant proteins were identified. Integrated analysis of differentially expressed metabolites and proteins by IPA revealed molecular changes mainly associated with synaptic plasticity, phospholipase c signaling, and glutamine degradation I. We compared the metabolites in the amygdala with those in the hippocampus and prefrontal cortex from our previous studies and found two common metabolites: arachidonic acid and N-acetyl-l-aspartic acid among these three brain regions. CONCLUSION Our study revealed the presence of depressive-like behaviors and molecular changes of amygdala in the CSDS rat model, which may provide further insights into the pathogenesis of depression, and help to identify potential targets for antidepressants.
Collapse
Affiliation(s)
- Li Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lining Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Teng Teng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yajie Xiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xueer Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuanliang Jiang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yinglin Zhu
- School of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, Joplin, MO, 64801, United States
| | - Xinyu Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Wang H, Shen Y, Zhao L, Ye Y. 1-Deoxynojirimycin and its Derivatives: A Mini Review of the Literature. Curr Med Chem 2021; 28:628-643. [PMID: 31942844 DOI: 10.2174/0929867327666200114112728] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/17/2019] [Accepted: 12/22/2019] [Indexed: 11/22/2022]
Abstract
1-Deoxynojirimycin (1-DNJ) is a naturally occurring sugar analogue with unique bioactivities. It is found in mulberry leaves and silkworms, as well as in the metabolites of certain microorganisms, including Streptomyces and Bacillus. 1-DNJ is a potent α-glucosidase inhibitor and it possesses anti-hyperglycemic, anti-obese, anti-viral and anti-tumor properties. Some derivatives of 1-DNJ, like miglitol, miglustat and migalastat, were applied clinically to treat diseases such as diabetes and lysosomal storage disorders. The present review focused on the extraction, determination, pharmacokinetics and bioactivity of 1-DNJ, as well as the clinical application of 1-DNJ derivatives.
Collapse
Affiliation(s)
- Haijun Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yin Shen
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youfan Ye
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Soták M, Casselbrant A, Rath E, Zietek T, Strömstedt M, Adingupu DD, Karlsson D, Fritsch Fredin M, Ergang P, Pácha J, Batorsky A, Alpers CE, Börgeson E, Hansen PBL, Ericsson A, Björnson Granqvist A, Wallenius V, Fändriks L, Unwin RJ. Intestinal sodium/glucose cotransporter 3 expression is epithelial and downregulated in obesity. Life Sci 2020; 267:118974. [PMID: 33385407 DOI: 10.1016/j.lfs.2020.118974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/11/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
AIM We aimed to determine whether the sodium/glucose cotransporter family member SGLT3, a proposed glucose sensor, is expressed in the intestine and/or kidney, and if its expression is altered in mouse models of obesity and in humans before and after weight-loss surgery. MAIN METHODS We used in-situ hybridization and quantitative PCR to determine whether the Sglt3 isoforms 3a and 3b were expressed in the intestine and kidney of C57, leptin-deficient ob/ob, and diabetic BTBR ob/ob mice. Western blotting and immunohistochemistry were also used to assess SGLT3 protein levels in jejunal biopsies from obese patients before and after weight-loss Roux-en-Y gastric bypass surgery (RYGB), and in lean healthy controls. KEY FINDINGS Sglt3a/3b mRNA was detected in the small intestine (duodenum, jejunum and ileum), but not in the large intestine or kidneys of mice. Both isoforms were detected in epithelial cells (confirmed using intestinal organoids). Expression of Sglt3a/3b mRNA in duodenum and jejunum was significantly lower in ob/ob and BTBR ob/ob mice than in normal-weight littermates. Jejunal SGLT3 protein levels in aged obese patients before RYGB were lower than in lean individuals, but substantially upregulated 6 months post-RYGB. SIGNIFICANCE Our study shows that Sglt3a/3b is expressed primarily in epithelial cells of the small intestine in mice. Furthermore, we observed an association between intestinal mRNA Sglt3a/3b expression and obesity in mice, and between jejunal SGLT3 protein levels and obesity in humans. Further studies are required to determine the possible role of SGLT3 in obesity.
Collapse
Affiliation(s)
- Matúš Soták
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.
| | - Anna Casselbrant
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Tamara Zietek
- Department of Nutritional Physiology, Technische Universität München, Freising, Germany
| | - Maria Strömstedt
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Damilola D Adingupu
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Karlsson
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Fritsch Fredin
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Ergang
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Pácha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Batorsky
- Department of Pathology, University of Washington School of Medicine, Seattle, USA
| | - Charles E Alpers
- Department of Pathology, University of Washington School of Medicine, Seattle, USA
| | - Emma Börgeson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden; Department of Clinical Physiology, Sahlgrenska University Hospital, Sweden
| | - Pernille B L Hansen
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Anette Ericsson
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Björnson Granqvist
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ville Wallenius
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Fändriks
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robert J Unwin
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Renal Medicine, Division of Medicine, University College London, UK
| |
Collapse
|
8
|
Abdullah MA, Lee YR, Mastuki SN, Leong SW, Wan Ibrahim WN, Mohammad Latif MA, Ramli ANM, Mohd Aluwi MFF, Mohd Faudzi SM, Kim CH. Development of diarylpentadienone analogues as alpha-glucosidase inhibitor: Synthesis, in vitro biological and in vivo toxicity evaluations, and molecular docking analysis. Bioorg Chem 2020; 104:104277. [PMID: 32971414 DOI: 10.1016/j.bioorg.2020.104277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/31/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
Abstract
A series of aminated- (1-9) and sulfonamide-containing diarylpentadienones (10-18) were synthesized, structurally characterized, and evaluated for their in vitro anti-diabetic potential on α-glucosidase and DPP-4 enzymes. It was found that all the new molecules were non-associated PAINS compounds. The sulfonamide-containing series (compounds 10-18) selectively inhibited α-glucosidase over DPP-4, in which compound 18 demonstrated the highest activity with an IC50 value of 5.69 ± 0.5 µM through a competitive inhibition mechanism. Structure-activity relationship (SAR) studies concluded that the introduction of the trifluoromethylbenzene sulfonamide moiety was essential for the suppression of α-glucosidase. The most active compound 18, was then further tested for in vivo toxicities using the zebrafish animal model, with no toxic effects detected in the normal embryonic development, blood vessel formation, and apoptosis of zebrafish. Docking simulation studies were also carried out to better understand the binding interactions of compound 18 towards the homology modeled α -glucosidase and the human lysosomal α -glucosidase enzymes. The overall results suggest that the new sulfonamide-containing diarylpentadienones, compound 18, could be a promising candidate in the search for a new α-glucosidase inhibitor, and can serve as a basis for further studies involving hit-to-lead optimization, in vivo efficacy and safety assessment in an animal model and mechanism of action for the treatment of T2DM patients.
Collapse
Affiliation(s)
- Maryam Aisyah Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yu-Ri Lee
- Department of Biology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Siti Nurulhuda Mastuki
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sze Wei Leong
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wan Norhamidah Wan Ibrahim
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Muhammad Alif Mohammad Latif
- Department of Chemistry, Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Aizi Nor Mazila Ramli
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, 26300 Pahang, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, 26300 Pahang, Malaysia
| | - Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea.
| |
Collapse
|
9
|
Ajebli M, Eddouks M. The Promising Role of Plant Tannins as Bioactive Antidiabetic Agents. Curr Med Chem 2019; 26:4852-4884. [PMID: 29874989 DOI: 10.2174/0929867325666180605124256] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/16/2018] [Accepted: 05/30/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Plant tannins are polyphenolic substances with various molecular weights and a variable complexity. Due to the beneficial effects for controlling chronic disorders particularly diabetes mellitus, this class of secondary metabolites has gained more interest in the recent years. OBJECTIVE We aimed through this review to collect, analyze and discuss all available information related to the antidiabetic effect of isolated tannins (including both condensed and hydrolysable varieties) and tannin-rich plants as well as the possible mechanisms of action involved in this antidiabetic activity. METHODS AND RESULTS Our bibliographic research was conducted to gather more than 41 medicinal plants containing tannins and 19 isolated tannins and tannin-rich crud extracts which were revealed to possess glucose lowering effect according to pharmacological studies. CONCLUSION Hence, according to findings of the present review, tannins could be useful for prevention and management of diabetes mellitus and its associated complications and these natural products could be promising compounds for the discovery of new hypoglycemic agents.
Collapse
Affiliation(s)
- Mohammed Ajebli
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, Errachidia, 52000, Morocco
| | - Mohamed Eddouks
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, Errachidia, 52000, Morocco
| |
Collapse
|
10
|
Rathish D, Agampodi S, Jayasumana C. In vivo, ex vivo and in vitro evidence for atropine-mediated attenuation of glucagon-like peptide-1 secretion: findings from a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29597-29605. [PMID: 31446595 DOI: 10.1007/s11356-019-06227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is involved in postprandial glucose homeostasis. Secretion of which involves a cholinergic pathway. Anticholinergic agent like atropine could act as a competitive antagonist of acetylcholine at muscarinic receptors. This review explores studies that assess the role of atropine in GLP-1 secretion. We selected published original articles from PubMed, Science Direct, The Cochrane Library, Trip, Google and the reference lists of the selected articles. Reporting was done according to the PRISMA statement. Relevant standard and previously published tools were used to assess the risk of bias of the selected articles. Twelve articles out of 185 search results fulfilled the review criteria. Eight were in vivo studies (six animal and two human studies), three were ex vivo studies and one was an in vitro study. Animal studies had rats, mice, pigs and monkeys as the subjects. Human studies involved healthy men and women. Majority of the studies reported an atropine-mediated attenuation of GLP-1 secretion and postprandial secretion of GLP-1 was mainly affected. However, atropine failed to significantly affect GLP-1 secretion when dipeptidyl peptidase-4 (DPP-4) enzyme was inhibited.
Collapse
Affiliation(s)
- Devarajan Rathish
- Department of Pharmacology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka.
| | - Suneth Agampodi
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - Channa Jayasumana
- Department of Pharmacology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| |
Collapse
|
11
|
Lee E, Miedzybrodzka EL, Zhang X, Hatano R, Miyamoto J, Kimura I, Fujimoto K, Uematsu S, Rodriguez-Cuenca S, Vidal-Puig A, Gribble FM, Reimann F, Miki T. Diet-Induced Obese Mice and Leptin-Deficient Lepob/ob Mice Exhibit Increased Circulating GIP Levels Produced by Different Mechanisms. Int J Mol Sci 2019; 20:ijms20184448. [PMID: 31509948 PMCID: PMC6769670 DOI: 10.3390/ijms20184448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/23/2022] Open
Abstract
As glucose-dependent insulinotropic polypeptide (GIP) possesses pro-adipogenic action, the suppression of the GIP hypersecretion seen in obesity might represent a novel therapeutic approach to the treatment of obesity. However, the mechanism of GIP hypersecretion remains largely unknown. In the present study, we investigated GIP secretion in two mouse models of obesity: High-fat diet-induced obese (DIO) mice and leptin-deficient Lepob/ob mice. In DIO mice, plasma GIP was increased along with an increase in GIP mRNA expression in the lower small intestine. Despite the robust alteration in the gut microbiome in DIO mice, co-administration of maltose and the α-glucosidase inhibitor (α-GI) miglitol induced the microbiome-mediated suppression of GIP secretion. The plasma GIP levels of Lepob/ob mice were also elevated and were suppressed by fat transplantation. The GIP mRNA expression in fat tissue was not increased in Lepob/ob mice, while the expression of an interleukin-1 receptor antagonist (IL-1Ra) was increased. Fat transplantation suppressed the expression of IL-1Ra. The plasma IL-1Ra levels were positively correlated with the plasma GIP levels. Accordingly, although circulating GIP levels are increased in both DIO and Lepob/ob mice, the underlying mechanisms differ, and the anti-obesity actions of α-GIs and leptin sensitizers may be mediated partly by the suppression of GIP secretion.
Collapse
Affiliation(s)
- Eunyoung Lee
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan.
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Emily L Miedzybrodzka
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Xilin Zhang
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan.
| | - Ryo Hatano
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan.
| | - Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan.
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan.
| | - Kosuke Fujimoto
- Department of Immunology and Genomics, Osaka City University School of Medicine, Osaka 545-8585, Japan.
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku 108-8639, Japan.
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Osaka City University School of Medicine, Osaka 545-8585, Japan.
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku 108-8639, Japan.
| | - Sergio Rodriguez-Cuenca
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Fiona M Gribble
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Frank Reimann
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Takashi Miki
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan.
| |
Collapse
|
12
|
Fujiwara Y, Eguchi S, Murayama H, Takahashi Y, Toda M, Imai K, Tsuda K. Relationship between diet/exercise and pharmacotherapy to enhance the GLP-1 levels in type 2 diabetes. Endocrinol Diabetes Metab 2019; 2:e00068. [PMID: 31294084 PMCID: PMC6613229 DOI: 10.1002/edm2.68] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
The rapid rise in the prevalence of type 2 diabetes mellitus (T2DM) poses a huge healthcare burden across the world. Although there are several antihyperglycaemic agents (AHAs) available including addition of new drug classes to the treatment algorithm, more than 50% of patients with T2DM do not achieve glycaemic targets, suggesting an urgent need for treatment strategies focusing on prevention and progression of T2DM and its long-term complications. Lifestyle changes including implementation of healthy diet and physical activity are cornerstones for the management of T2DM. The positive effects of diet and exercise on incretin hormones such as glucagon-like peptide-1 (GLP-1) have been reported. We hypothesize an IDEP concept (Interaction between Diet/Exercise and Pharmacotherapy) aimed at modifying the diet and lifestyle, along with pharmacotherapy to enhance the GLP-1 levels, would result in good glycaemic control in patients with T2DM. Consuming protein-rich food, avoiding saturated fatty acids and making small changes in eating habits such as eating slowly with longer mastication time can have a positive impact on the GLP-1 secretion and insulin levels. Further the type of physical activity (aerobic/resistance training), intensity of exercise, duration, time and frequency of exercise have shown to improve GLP-1 levels. Apart from AHAs, a few antihypertensive drugs and lipid-lowering drugs have also shown to increase endogenous GLP-1 levels, however, due to quick degradation of GLP-1 by dipeptidyl peptidase-4 (DPP-4) enzyme, treatment with DPP-4 inhibitors would protect GLP-1 from degradation and prolong its activity. Thus, IDEP concept can be a promising treatment strategy, which positively influences the GLP-1 levels and provide additive benefits in terms of improving metabolic parameters in patients with T2DM and slowing the progression of T2DM and its associated complications.
Collapse
Affiliation(s)
- Yuki Fujiwara
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Shunsuke Eguchi
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Hiroki Murayama
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Yuri Takahashi
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Mitsutoshi Toda
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Kota Imai
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Kinsuke Tsuda
- Faculty of Human SciencesTezukayama Gakuin UniversityOsakaJapan
| |
Collapse
|
13
|
Dominguez Rieg JA, Rieg T. What does sodium-glucose co-transporter 1 inhibition add: Prospects for dual inhibition. Diabetes Obes Metab 2019; 21 Suppl 2:43-52. [PMID: 31081587 PMCID: PMC6516085 DOI: 10.1111/dom.13630] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/26/2018] [Accepted: 01/02/2019] [Indexed: 12/25/2022]
Abstract
Epithelial glucose transport is accomplished by Na+ -glucose co-transporters, SGLT1 and SGLT2. In the intestine, uptake of dietary glucose is for its majority mediated by SGLT1, and humans with mutations in the SGLT1 gene show glucose/galactose malabsorption. In the kidney, both transporters, SGLT1 and SGLT2, are expressed and recent studies identified that SGLT2 mediates up to 97% of glucose reabsorption. Humans with mutations in the SGLT2 gene show familial renal glucosuria. In the last three decades, significant progress was made in understanding the physiology of these transporters and their potential as therapeutic targets. Based on the structure of phlorizin, a natural compound acting as a SGLT1/2 inhibitor, initially several SGLT2, and later SGLT1 and dual SGLT1/2 inhibitors have been developed. Interestingly, SGLT2 knockout or treatment with SGLT2 selective inhibitors only causes a fractional glucose excretion in the magnitude of ∼60%, an effect mediated by up-regulation of renal SGLT1. Based on these findings the hypothesis was brought forward that dual SGLT1/2 inhibition might further improve glycaemic control via targeting two distinct organs that express SGLT1: the intestine and the kidney. Of note, SGLT1/2 double knockout mice completely lack renal glucose reabsorption. This review will address the rationale for the development of SGLT1 and dual SGLT1/2 inhibitors and potential benefits compared to sole SGLT2 inhibition.
Collapse
Affiliation(s)
- Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| |
Collapse
|
14
|
Cefalo CMA, Cinti F, Moffa S, Impronta F, Sorice GP, Mezza T, Pontecorvi A, Giaccari A. Sotagliflozin, the first dual SGLT inhibitor: current outlook and perspectives. Cardiovasc Diabetol 2019; 18:20. [PMID: 30819210 PMCID: PMC6393994 DOI: 10.1186/s12933-019-0828-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Sotagliflozin is a dual sodium-glucose co-transporter-2 and 1 (SGLT2/1) inhibitor for the treatment of both type 1 (T1D) and type 2 diabetes (T2D). Sotagliflozin inhibits renal sodium-glucose co-transporter 2 (determining significant excretion of glucose in the urine, in the same way as other, already available SGLT-2 selective inhibitors) and intestinal SGLT-1, delaying glucose absorption and therefore reducing post prandial glucose. Well-designed clinical trials, have shown that sotagliflozin (as monotherapy or add-on therapy to other anti-hyperglycemic agents) improves glycated hemoglobin in adults with T2D, with beneficial effects on bodyweight and blood pressure. Similar results have been obtained in adults with T1D treated with either continuous subcutaneous insulin infusion or multiple daily insulin injections, even after insulin optimization. A still ongoing phase 3 study is currently evaluating the effect of sotagliflozin on cardiovascular outcomes (ClinicalTrials.gov NCT03315143). In this review we illustrate the advantages and disadvantages of dual SGLT 2/1 inhibition, in order to better characterize and investigate its mechanisms of action and potentialities.
Collapse
Affiliation(s)
- Chiara Maria Assunta Cefalo
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Istituto di Patologia Speciale Medica e Semeiotica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Cinti
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Istituto di Patologia Speciale Medica e Semeiotica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simona Moffa
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Istituto di Patologia Speciale Medica e Semeiotica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Flavia Impronta
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Istituto di Patologia Speciale Medica e Semeiotica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gian Pio Sorice
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Istituto di Patologia Speciale Medica e Semeiotica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Teresa Mezza
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Istituto di Patologia Speciale Medica e Semeiotica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alfredo Pontecorvi
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Istituto di Patologia Speciale Medica e Semeiotica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giaccari
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy. .,Istituto di Patologia Speciale Medica e Semeiotica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
15
|
Takebayashi K, Hara K, Terasawa T, Naruse R, Suetsugu M, Tsuchiya T, Inukai T. Effect of canagliflozin on circulating active GLP-1 levels in patients with type 2 diabetes: a randomized trial. Endocr J 2017; 64:923-931. [PMID: 28824041 DOI: 10.1507/endocrj.ej17-0065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Canagliflozin has a robust inhibitory effect on sodium glucose transporter (SGLT)-2 and a mild inhibitory effect on SGLT1. The main purpose of this study was to investigate the effect of canagliflozin on circulating active glucagon-like peptide 1 (GLP-1) levels in patients with type 2 diabetes. Patients were randomly divided into a control group (n =15) and a canagliflozin-treated group (n =15). After hospitalization, the canagliflozin-treated group took 100 mg/day canagliflozin for the entire study, and after 3 days both groups took 20 mg/day teneligliptin for an additional 3 days. In a meal test, canagliflozin significantly decreased the area under curve (AUC) (0-120 min) for plasma glucose (PG) after 3 days when compared with that at baseline, and addition of teneligliptin to the canagliflozin-treated group further decreased it. A significant decrease in the AUC (0-120 min) for serum insulin by canagliflozin was obtained, but the addition of teneligliptin elevated the AUC, and thus abolished the significant difference from baseline. A significant increase in the AUC (0-120 min) of plasma active GLP-1 by canagliflozin-treatment compared with that at baseline was observed, and the addition of teneligliptin resulted in a further increase. However, canagliflozin-treatment did not change the AUC (0-120 min) of plasma active glucose-dependent insulinotropic peptide (GIP). In conclusions, canagliflozin-administration before meals decreased PG and serum insulin, and increased plasma active GLP-1 levels in patients with type 2 diabetes. Canagliflozin did not greatly influence plasma active GIP levels.
Collapse
Affiliation(s)
- Kohzo Takebayashi
- Department of Internal Medicine, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Japan
| | - Kenji Hara
- Department of Internal Medicine, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Japan
| | - Tomoko Terasawa
- Department of Internal Medicine, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Japan
| | - Rika Naruse
- Department of Internal Medicine, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Japan
| | - Mariko Suetsugu
- Department of Internal Medicine, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Japan
| | - Takafumi Tsuchiya
- Department of Internal Medicine, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Japan
| | - Toshihiko Inukai
- Department of Internal Medicine, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Japan
| |
Collapse
|
16
|
Miki T, Lee EY, Eguchi A, Sakurai K, Sawabe Y, Yoshida T, Saito K, Yokoh H, Ishikawa K, Yokote K, Kuzuya T, Miki E, Mori C, Nomura F. Accelerated oligosaccharide absorption and altered serum metabolites during oral glucose tolerance test in young Japanese with impaired glucose tolerance. J Diabetes Investig 2017; 9:512-521. [PMID: 28766917 PMCID: PMC5934248 DOI: 10.1111/jdi.12719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/03/2017] [Accepted: 07/27/2017] [Indexed: 12/13/2022] Open
Abstract
AIMS/INTRODUCTION Impaired glucose tolerance (IGT) is a subtype of prediabetes, a condition having high risk for development to diabetes mellitus, but its pathophysiology is not fully understood. In the present study, we examined metabolic changes in IGT by using two types (D-glucose [Glc] and partial hydrolysate of starch [PHS]) of oral glucose tolerance tests (OGTTs), with emphasis on serum incretins and metabolites. MATERIALS AND METHODS We carried out the two types of OGTT (Glc/OGTT and PHS/OGTT) in 99 young Japanese individuals who had tested either positive (GU+ ; n = 48) or negative (GU- ; n = 51) for glycosuria. After OGTT, they were sub-grouped into five categories: normal glucose tolerance (NGT) in the GU- group (GU- /NGT; n = 49), NGT in the GU+ group (GU+ /NGT; n = 28), IGT (n = 12), diabetes mellitus (n = 1) and renal glycosuria (n = 9). Serum incretin and metabolites of GU- /NGT and IGT were then measured. RESULTS When the serum insulin level at each time-point during PHS/OGTT was expressed as its ratio relative to Glc/OGTT, it was increased time-dependently in GU- /NGT, but not in IGT. Such an increase in the ratio was also detected of serum incretin levels in GU- /NGT, but not in IGT, suggesting a lack of deceleration of oligosaccharide absorption in IGT. Metabolome analysis showed a difference in the serum levels of two metabolites of unknown function in mammals, methylcysteine and sedoheptulose 1,7-bisphosphate, between GU- /NGT and IGT. CONCLUSIONS Comparison of PHS/OGTT and Glc/OGTT showed that oligosaccharide absorption was accelerated in IGT. Methylcysteine and sedoheptulose 1,7-bisphosphate could be novel markers for dysregulated glucose metabolism.
Collapse
Affiliation(s)
- Takashi Miki
- Department of Medical PhysiologyGraduate School of MedicineChiba UniversityChibaJapan
- Division of Endocrinology and MetabolismChiba University HospitalChibaJapan
| | - Eun Young Lee
- Department of Medical PhysiologyGraduate School of MedicineChiba UniversityChibaJapan
| | - Akifumi Eguchi
- Center for Preventive Medical SciencesChiba UniversityChibaJapan
| | - Kenichi Sakurai
- Center for Preventive Medical SciencesChiba UniversityChibaJapan
| | - Yuji Sawabe
- Division of Laboratory MedicineChiba University HospitalChibaJapan
| | - Tomohiko Yoshida
- Division of Endocrinology and MetabolismChiba University HospitalChibaJapan
- Safety and Health OrganizationChiba UniversityChibaJapan
| | - Keiko Saito
- Safety and Health OrganizationChiba UniversityChibaJapan
| | - Hidetaka Yokoh
- Division of Endocrinology and MetabolismChiba University HospitalChibaJapan
- Department of Clinical Cell Biology and MedicineGraduate School of MedicineChiba UniversityChibaJapan
| | - Ko Ishikawa
- Division of Endocrinology and MetabolismChiba University HospitalChibaJapan
- Department of Clinical Cell Biology and MedicineGraduate School of MedicineChiba UniversityChibaJapan
| | - Koutaro Yokote
- Division of Endocrinology and MetabolismChiba University HospitalChibaJapan
- Department of Clinical Cell Biology and MedicineGraduate School of MedicineChiba UniversityChibaJapan
| | - Takeshi Kuzuya
- Division of Endocrinology and MetabolismDepartment of Internal MedicineSchool of MedicineJichi Medical UniversityShimotsukeJapan
| | - Eishi Miki
- Shikata Memorial InstituteMiki ClinicChibaJapan
| | - Chisato Mori
- Center for Preventive Medical SciencesChiba UniversityChibaJapan
| | - Fumio Nomura
- Division of Laboratory MedicineChiba University HospitalChibaJapan
- Department of Molecular DiagnosisGraduate School of MedicineChiba UniversityChibaJapan
| |
Collapse
|
17
|
Li S, Li S, Huang Y, Liu C, Chen L, Zhang Y. Ionic-liquid-based ultrasound-assisted extraction of isoflavones from Belamcanda chinensis
and subsequent screening and isolation of potential α-glucosidase inhibitors by ultrafiltration and semipreparative high-performance liquid chromatography. J Sep Sci 2017; 40:2565-2574. [DOI: 10.1002/jssc.201700258] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/09/2017] [Accepted: 04/18/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Senlin Li
- Central Laboratory; Changchun Normal University; Changchun China
| | - Sainan Li
- Central Laboratory; Changchun Normal University; Changchun China
| | - Yu Huang
- Central Laboratory; Changchun Normal University; Changchun China
| | - Chunming Liu
- Central Laboratory; Changchun Normal University; Changchun China
| | - Lina Chen
- Central Laboratory; Changchun Normal University; Changchun China
| | - Yuchi Zhang
- Central Laboratory; Changchun Normal University; Changchun China
| |
Collapse
|
18
|
Inhibition of α-Amylases by Condensed and Hydrolysable Tannins: Focus on Kinetics and Hypoglycemic Actions. Enzyme Res 2017; 2017:5724902. [PMID: 28589038 PMCID: PMC5446891 DOI: 10.1155/2017/5724902] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to compare the in vitro inhibitory effects on the salivary and pancreatic α-amylases and the in vivo hypoglycemic actions of the hydrolysable tannin from Chinese natural gall and the condensed tannin from Acacia mearnsii. The human salivary α-amylase was more strongly inhibited by the hydrolysable than by the condensed tannin, with the concentrations for 50% inhibition (IC50) being 47.0 and 285.4 μM, respectively. The inhibitory capacities of both tannins on the pancreatic α-amylase were also different, with IC50 values being 141.1 μM for the hydrolysable tannin and 248.1 μM for the condensed tannin. The kinetics of the inhibition presented complex patterns in that for both inhibitors more than one molecule can bind simultaneously to either the free enzyme of the substrate-complexed enzyme (parabolic mixed inhibition). Both tannins were able to inhibit the intestinal starch absorption. Inhibition by the hydrolysable tannin was concentration-dependent, with 53% inhibition at the dose of 58.8 μmol/kg and 88% inhibition at the dose of 294 μmol/kg. For the condensed tannin, inhibition was not substantially different for doses between 124.4 μmol/kg (49%) and 620 μmol/kg (57%). It can be concluded that both tannins, but especially the hydrolysable one, could be useful in controlling the postprandial glycemic levels in diabetes.
Collapse
|
19
|
The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol Ther 2017; 170:148-165. [DOI: 10.1016/j.pharmthera.2016.10.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Soták M, Marks J, Unwin RJ. Putative tissue location and function of the SLC5 family member SGLT3. Exp Physiol 2017; 102:5-13. [DOI: 10.1113/ep086042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/08/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Matúš Soták
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Mölndal Sweden
| | - Joanne Marks
- Department of Neuroscience; Physiology and Pharmacology; University College London; London UK
| | - Robert J. Unwin
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Mölndal Sweden
- Department of Neuroscience; Physiology and Pharmacology; University College London; London UK
- Department of Physiology and Neuroscience; University of Gothenburg; Gothenburg Sweden
- Centre for Nephrology; University College London; London UK
| |
Collapse
|
21
|
|
22
|
Morimoto M, Lee EY, Zhang X, Inaba Y, Inoue H, Ogawa M, Shirasawa T, Yokosuka O, Miki T. Eicosapentaenoic acid ameliorates hyperglycemia in high-fat diet-sensitive diabetes mice in conjunction with restoration of hypoadiponectinemia. Nutr Diabetes 2016; 6:e213. [PMID: 27348201 PMCID: PMC4931313 DOI: 10.1038/nutd.2016.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/11/2016] [Accepted: 05/24/2016] [Indexed: 01/22/2023] Open
Abstract
Background/Objective: Eicosapentaenoic acid (EPA) exerts pleiotropic effects on metabolic disorders such as atherosclerosis and dyslipidemia, but its effectiveness in the treatment of type 2 diabetes mellitus remains controversial. Methods: We examined the antidiabetic effect of EPA in insulin receptor mutant (InsrP1195L/+) mice that exhibit high-fat diet (HFD)-dependent hyperglycemia. Results: EPA supplementation was found to alleviate hyperglycemia of InsrP1195L/+ mice fed HFD (InsrP1195L/+/HFD mice), which was accompanied by amelioration of increased gluconeogenesis and impaired insulin signaling, as assessed by glucose-6-phosphatase (G6pc) expression on refeeding and insulin-induced phosphorylation of Akt in the liver, respectively. We found that serum levels of adiponectin, the antidiabetic adipokine, were decreased by HFD along with the body weight gain in InsrP1195L/+ mice but not in wild-type mice, suggesting that InsrP1195L/+ mice are prone to hypoadiponectinemia in response to obesity. Interestingly, the blood glucose levels of InsrP1195L/+ mice were in reverse proportion to their serum adiponectin levels and EPA supplementation ameliorated their hyperglycemia in conjunction with the restoration of hypoadiponectinemia. Conclusions: EPA exerts an antidiabetic effect in InsrP1195L/+/HFD mice, an HFD-sensitive, insulin-resistant animal model, possibly through its action against hypoadiponectinemia.
Collapse
Affiliation(s)
- M Morimoto
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba, Japan.,Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - E-Y Lee
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - X Zhang
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Y Inaba
- Metabolism and Nutrition Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - H Inoue
- Metabolism and Nutrition Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - M Ogawa
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - T Shirasawa
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - O Yokosuka
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - T Miki
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
23
|
Altenhofen D, da Luz G, Frederico MJS, Venzke D, Brich M, Vigil S, Fröde TS, Linares CEB, Pizzolatti MG, Silva FRMB. Bis-Pyrano Prenyl Isoflavone Improves Glucose Homeostasis by Inhibiting Dipeptidyl Peptidase-4 in Hyperglycemic Rats. J Cell Biochem 2016; 118:92-103. [PMID: 27238050 DOI: 10.1002/jcb.25614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/26/2016] [Indexed: 12/25/2022]
Abstract
Isoflavones widely distributed in plants prevent diabetes. This study investigated the in vivo and in vitro effect of 3',4'-dihydroxy-6″,6″,6″',6″'-tetramethylbis(pyrano[2″,3″:5,6::2″',3″':7,8]isoflavone (bis-pyrano prenyl isoflavone) on glucose homeostasis in hyperglycemic rats. The ethyl acetate fraction from aerial parts of Polygala molluginifolia that contain isoflavones was assayed on glucose tolerance, on in vitro maltase activity and on protein glycation. The isoflavone bis-pyrano prenyl isolated from this fraction was investigated on glucose homeostasis. The in vivo action of the isoflavone exhibits an anti-hyperglycemic effect by improving glucose tolerance, augmenting the liver glycogen, inhibiting maltase activity, and stimulating glucagon-like peptide-1 (GLP-1) and insulin secretion. The in vitro isoflavone inhibits dipeptidyl peptidase-4 (DPP-4) activity since the glucose tolerance was improved in the presence of the isoflavone as much as sitagliptin, an inhibitor of DPP-4. However, the co-incubation with isoflavone and sitagliptin exhibited an additive anti-hyperglycemic action. The isoflavone increased the GLP-1 faster than the positive hyperglycemic group, which shows that the intestine is a potential target. Thus, to clarify the main site of action in which isoflavone improves glucose balance, the in vitro mechanism of action of this compound was tested in intestine using calcium influx as a trigger for the signal pathways for GLP-1 secretion. The isoflavone stimulates calcium influx in intestine and its mechanism involves voltage-dependent calcium channels, phospholipase C, protein kinase C, and stored calcium contributing for GLP-1 secretion. In conclusion, the isoflavone regulates glycaemia by acting mainly in a serum target, the DPP-4 inhibitor. Furthermore, the long-term effect of isoflavone prevents protein glycation. J. Cell. Biochem. 118: 92-103, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Delsi Altenhofen
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Cx. Postal 5069, CEP: 88040-970, Florianópolis, Santa Catarina, Brazil
| | - Gabrielle da Luz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Cx. Postal 5069, CEP: 88040-970, Florianópolis, Santa Catarina, Brazil
| | - Marisa Jádna Silva Frederico
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Cx. Postal 5069, CEP: 88040-970, Florianópolis, Santa Catarina, Brazil
| | - Dalila Venzke
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Mayara Brich
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Cx. Postal 5069, CEP: 88040-970, Florianópolis, Santa Catarina, Brazil
| | - Silvana Vigil
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Tania Silvia Fröde
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Carlos Eduardo Blanco Linares
- Departamento de Ciências da Saúde, Centro de Ciências da Saúde, Universidade Regional Integrada do Alto Uruguai e da Missões, Campus Frederico Westphalen, Frederico Westphalen, Rio Grande do Sul, Brazil
| | - Moacir Geraldo Pizzolatti
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Cx. Postal 5069, CEP: 88040-970, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
24
|
Chichger H, Cleasby ME, Srai SK, Unwin RJ, Debnam ES, Marks J. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane. Exp Physiol 2016; 101:731-42. [DOI: 10.1113/ep085670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Havovi Chichger
- Biomedical Research Group, Department of Biomedical and Forensic Sciences; Anglia Ruskin University; Cambridge UK
| | - Mark E. Cleasby
- Department of Veterinary Basic Sciences; Royal Veterinary College; London UK
| | - Surjit K. Srai
- Institute of Structural and Molecular Biology; University College London; London UK
| | - Robert J. Unwin
- London Epithelial Group, Department of Neuroscience, Physiology & Pharmacology; University College London; London UK
- Centre for Nephrology; University College London; London UK
| | - Edward S. Debnam
- London Epithelial Group, Department of Neuroscience, Physiology & Pharmacology; University College London; London UK
| | - Joanne Marks
- London Epithelial Group, Department of Neuroscience, Physiology & Pharmacology; University College London; London UK
| |
Collapse
|
25
|
Seino Y, Maekawa R, Ogata H, Hayashi Y. Carbohydrate-induced secretion of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1. J Diabetes Investig 2016; 7 Suppl 1:27-32. [PMID: 27186352 PMCID: PMC4854501 DOI: 10.1111/jdi.12449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/11/2015] [Indexed: 12/25/2022] Open
Abstract
Glucose‐dependent insulinotropic polypeptide (GIP) and glucagon‐like peptide‐1 (GLP‐1) are the incretin hormones secreted from enteroendocrine K‐cells and L‐cells, respectively, by oral ingestion of various nutrients including glucose. K‐cells, L‐cells and pancreatic β‐cells are glucose‐responsive cells with similar glucose‐sensing machinery including glucokinase and an adenosine triphosphate‐sensitive K+ channel comprising KIR6.2 and sulfonylurea receptor 1. However, the physiological role of the adenosine triphosphate‐sensitive K+ channel in GIP secretion in K‐cells and GLP‐1 secretion in L‐cells is not elucidated. Recently, it was reported that GIP and GLP‐1‐producing cells are present also in pancreatic islets, and islet‐derived GIP and GLP‐1 contribute to glucose‐induced insulin secretion from pancreatic β‐cells. In this short review, we focus on GIP and GLP‐1 secretion by monosaccharides, such as glucose or fructose, and the role of the adenosine triphosphate‐sensitive K+ channel in GIP and GLP‐1 secretion.
Collapse
Affiliation(s)
- Yusuke Seino
- Department of Endocrinology and Diabetes Nagoya University Graduate School of Medicine Nagoya Japan
| | - Ryuya Maekawa
- Department of Endocrinology and Diabetes Nagoya University Graduate School of Medicine Nagoya Japan
| | - Hidetada Ogata
- Department of Endocrinology and Diabetes Nagoya University Graduate School of Medicine Nagoya Japan
| | - Yoshitaka Hayashi
- Department of Genetics, Division of Stress Adaptation and Recognition, Research Institute of Environmental Medicine Nagoya University Nagoya Japan
| |
Collapse
|
26
|
Hirono S, Lee EY, Kuribayashi S, Fukuda T, Saeki N, Minokoshi Y, Iwanaga T, Miki T. Importance of Adult Dmbx1 in Long-Lasting Orexigenic Effect of Agouti-Related Peptide. Endocrinology 2016; 157:245-57. [PMID: 26505115 DOI: 10.1210/en.2015-1560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dmbx1 is a brain-specific homeodomain transcription factor expressed primarily during embryogenesis, and its systemic disruption (Dmbx1(-/-)) in the ICR mouse strain resulted in leanness associated with impaired long-lasting orexigenic effect of agouti-related peptide (AgRP). Because spatial and temporal expression patterns of Dmbx1 change dramatically during embryogenesis, it remains unknown when and where Dmbx1 plays a critical role in energy homeostasis. In the present study, the physiological roles of Dmbx1 were examined by its conditional disruption (Dmbx1(loxP/loxP)) in the C57BL/6 mouse strain. Although Dmbx1 disruption in fetal brain resulted in neonatal lethality, its disruption by synapsin promoter-driven Cre recombinase, which eliminated Dmbx1 expression postnatally, exempted the mice (Syn-Cre;Dmbx1(loxP/loxP) mice) from lethality. Syn-Cre;Dmbx1(loxP/loxP) mice show mild leanness and impaired long-lasting orexigenic action of AgRP, demonstrating the physiological relevance of Dmbx1 in the adult. Visualization of Dmbx1-expressing neurons in adult brain using the mice harboring tamoxifen-inducible Cre recombinase in the Dmbx1 locus (Dmbx1(CreERT2/+) mice) revealed Dmbx1 expression in small numbers of neurons in restricted regions, including the lateral parabrachial nucleus (LPB). Notably, c-Fos expression in LPB was increased at 48 hours after AgRP administration in Dmbx1(loxP/loxP) mice but not in Syn-Cre;Dmbx1(loxP/loxP) mice. These c-Fos-positive neurons in LPB did not coincide with neurons expressing Dmbx1 or melanocortin 4 receptor but did coincide with those expressing calcitonin gene-related peptide. Accordingly, Dmbx1 in the adult LPB is required for the long-lasting orexigenic effect of AgRP via the neural circuitry involving calcitonin gene-related peptide neurons.
Collapse
Affiliation(s)
- Seiichiro Hirono
- Departments of Medical Physiology (S.H., E.Y.L., S.K., T.M.) and Neurological Surgery (S.H., N.S.), Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-0856, Japan; Division of Neuropathology (T.F.), Department of Pathology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-0003, Japan; Department of Developmental Physiology (Y.M.), National Institute for Physiological Sciences, Myoudaijicho, Okazaki-City, 444-8585, Japan; and Laboratory of Histology and Cytology (T.I.), Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Eun Young Lee
- Departments of Medical Physiology (S.H., E.Y.L., S.K., T.M.) and Neurological Surgery (S.H., N.S.), Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-0856, Japan; Division of Neuropathology (T.F.), Department of Pathology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-0003, Japan; Department of Developmental Physiology (Y.M.), National Institute for Physiological Sciences, Myoudaijicho, Okazaki-City, 444-8585, Japan; and Laboratory of Histology and Cytology (T.I.), Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Shunsuke Kuribayashi
- Departments of Medical Physiology (S.H., E.Y.L., S.K., T.M.) and Neurological Surgery (S.H., N.S.), Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-0856, Japan; Division of Neuropathology (T.F.), Department of Pathology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-0003, Japan; Department of Developmental Physiology (Y.M.), National Institute for Physiological Sciences, Myoudaijicho, Okazaki-City, 444-8585, Japan; and Laboratory of Histology and Cytology (T.I.), Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Takahiro Fukuda
- Departments of Medical Physiology (S.H., E.Y.L., S.K., T.M.) and Neurological Surgery (S.H., N.S.), Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-0856, Japan; Division of Neuropathology (T.F.), Department of Pathology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-0003, Japan; Department of Developmental Physiology (Y.M.), National Institute for Physiological Sciences, Myoudaijicho, Okazaki-City, 444-8585, Japan; and Laboratory of Histology and Cytology (T.I.), Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Naokatsu Saeki
- Departments of Medical Physiology (S.H., E.Y.L., S.K., T.M.) and Neurological Surgery (S.H., N.S.), Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-0856, Japan; Division of Neuropathology (T.F.), Department of Pathology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-0003, Japan; Department of Developmental Physiology (Y.M.), National Institute for Physiological Sciences, Myoudaijicho, Okazaki-City, 444-8585, Japan; and Laboratory of Histology and Cytology (T.I.), Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Yasuhiko Minokoshi
- Departments of Medical Physiology (S.H., E.Y.L., S.K., T.M.) and Neurological Surgery (S.H., N.S.), Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-0856, Japan; Division of Neuropathology (T.F.), Department of Pathology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-0003, Japan; Department of Developmental Physiology (Y.M.), National Institute for Physiological Sciences, Myoudaijicho, Okazaki-City, 444-8585, Japan; and Laboratory of Histology and Cytology (T.I.), Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Toshihiko Iwanaga
- Departments of Medical Physiology (S.H., E.Y.L., S.K., T.M.) and Neurological Surgery (S.H., N.S.), Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-0856, Japan; Division of Neuropathology (T.F.), Department of Pathology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-0003, Japan; Department of Developmental Physiology (Y.M.), National Institute for Physiological Sciences, Myoudaijicho, Okazaki-City, 444-8585, Japan; and Laboratory of Histology and Cytology (T.I.), Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Takashi Miki
- Departments of Medical Physiology (S.H., E.Y.L., S.K., T.M.) and Neurological Surgery (S.H., N.S.), Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-0856, Japan; Division of Neuropathology (T.F.), Department of Pathology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-0003, Japan; Department of Developmental Physiology (Y.M.), National Institute for Physiological Sciences, Myoudaijicho, Okazaki-City, 444-8585, Japan; and Laboratory of Histology and Cytology (T.I.), Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
27
|
Ferrannini E, DeFronzo RA. Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes. Eur Heart J 2015; 36:2288-96. [PMID: 26063450 DOI: 10.1093/eurheartj/ehv239] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/16/2015] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by multiple pathophysiologic abnormalities. With time, multiple glucose-lowering medications are commonly required to reduce and maintain plasma glucose concentrations within the normal range. Type 2 diabetes mellitus individuals also are at a very high risk for microvascular complications and the incidence of heart attack and stroke is increased two- to three-fold compared with non-diabetic individuals. Therefore, when selecting medications to normalize glucose levels in T2DM patients, it is important that the agent not aggravate, and ideally even improve, cardiovascular risk factors (CVRFs) and reduce cardiovascular morbidity and mortality. In this review, we examine the effect of oral (metformin, sulfonylureas, meglitinides, thiazolidinediones, DPP4 inhibitors, SGLT2 inhibitors, and α-glucosidase inhibitors) and injectable (glucagon-like peptide-1 receptor agonists and insulin) glucose-lowering drugs on established CVRFs and long-term studies of cardiovascular outcomes. Firm evidence that in T2DM cardiovascular disease can be reversed or prevented by improving glycaemic control is still incomplete and must await large, long-term clinical trials in patients at low risk using modern treatment strategies, i.e., drug combinations designed to maximize HbA1c reduction while minimizing hypoglycaemia and excessive weight gain.
Collapse
Affiliation(s)
- Ele Ferrannini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Ralph A DeFronzo
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
28
|
Ueno H, Tsuchimochi W, Wang HW, Yamashita E, Tsubouchi C, Nagamine K, Sakoda H, Nakazato M. Effects of Miglitol, Acarbose, and Sitagliptin on Plasma Insulin and Gut Peptides in Type 2 Diabetes Mellitus: A Crossover Study. Diabetes Ther 2015; 6:187-96. [PMID: 26055217 PMCID: PMC4478179 DOI: 10.1007/s13300-015-0113-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Both dipeptidyl peptidase-4 inhibitors and α-glucosidase inhibitors (α-GI) have been reported to change the incretin and insulin secretion. To examine the effects of acarbose, miglitol, and sitagliptin on glucose metabolism and secretion of gut peptides, we conducted a crossover study in patients with type 2 diabetes mellitus (T2DM). METHODS Eleven Japanese patients with T2DM underwent four meal tolerance tests with single administration of acarbose, miglitol, sitagliptin, or nothing. Fasting and postprandial plasma levels of glucose, insulin, glucagon, active glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), ghrelin, and des-acyl ghrelin were measured. RESULTS Early-phase insulin secretion was reduced following acarbose and miglitol, and the areas under the curve (AUC) of insulin at 180 min following acarbose and miglitol were significantly lower than sitagliptin. AUC of plasma glucose at 180 min after acarbose, miglitol, and sitagliptin tended to be lower than in controls, and plasma glucose levels at 30-60 min following miglitol were significantly lower than in controls. Plasma glucagon, ghrelin, and des-acyl ghrelin levels did not differ among the four conditions. Postprandial plasma active GLP-1 levels and AUC of GLP-1 increased significantly in both the sitagliptin and miglitol groups compared to control. Postprandial plasma total GIP levels increased following sitagliptin but decreased after acarbose and miglitol. Changes in incretin levels tended to be greater with miglitol than acarbose. CONCLUSION These results showed that sitagliptin and α-GIs, miglitol more so than acarbose, improved hyperglycemia in patients with T2DM after single administration, and had different effects on insulin and incretin secretion. TRIAL REGISTRATION UMIN-CTR number, UMIN000009981.
Collapse
Affiliation(s)
- Hiroaki Ueno
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Wakaba Tsuchimochi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hong-Wei Wang
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Endocrinology and Metabolism, The Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Eiichiro Yamashita
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Chikako Tsubouchi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazuhiro Nagamine
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideyuki Sakoda
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
29
|
Wang X, Liu H, Chen J, Li Y, Qu S. Multiple Factors Related to the Secretion of Glucagon-Like Peptide-1. Int J Endocrinol 2015; 2015:651757. [PMID: 26366173 PMCID: PMC4558455 DOI: 10.1155/2015/651757] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 12/15/2022] Open
Abstract
The glucagon-like peptide-1 is secreted by intestinal L cells in response to nutrient ingestion. It regulates the secretion and sensitivity of insulin while suppressing glucagon secretion and decreasing postprandial glucose levels. It also improves beta-cell proliferation and prevents beta-cell apoptosis induced by cytotoxic agents. Additionally, glucagon-like peptide-1 delays gastric emptying and suppresses appetite. The impaired secretion of glucagon-like peptide-1 has negative influence on diabetes, hyperlipidemia, and insulin resistance related diseases. Thus, glucagon-like peptide-1-based therapies (glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors) are now well accepted in the management of type 2 diabetes. The levels of glucagon-like peptide-1 are influenced by multiple factors including a variety of nutrients. The component of a meal acts as potent stimulants of glucagon-like peptide-1 secretion. The levels of its secretion change with the intake of different nutrients. Some drugs also have influence on GLP-1 secretion. Bariatric surgery may improve metabolism through the action on GLP-1 levels. In recent years, there has been a great interest in developing effective methods to regulate glucagon-like peptide-1 secretion. This review summarizes the literature on glucagon-like peptide-1 and related factors affecting its levels.
Collapse
Affiliation(s)
- XingChun Wang
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China
| | - Huan Liu
- Department of Urology, Zhenjiang First People's Hospital, Zhenjiang, Jiangsu 212002, China
| | - Jiaqi Chen
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China
- Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yan Li
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China
- Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China
- Nanjing Medical University, Nanjing, Jiangsu 210029, China
- *Shen Qu:
| |
Collapse
|