1
|
Weigel Muñoz M, Cohen DJ, Da Ros VG, González SN, Rebagliati Cid A, Sulzyk V, Cuasnicu PS. Physiological and pathological aspects of epididymal sperm maturation. Mol Aspects Med 2024; 100:101321. [PMID: 39340983 DOI: 10.1016/j.mam.2024.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
In mammals, sperm that leave the testes are nonfunctional and require a complex post-testicular maturation process to acquire their ability to recognize and fertilize the egg. The crucial maturation changes that provide sperm their fertilizing capability occur while passing through the epididymis. Due to the widespread use of assisted reproductive technologies to address male infertility, there has been a significant decrease in research focusing on the mechanisms underlying the maturation process over the past decades. Considering that up to 40% of male infertility is idiopathic and could be reflecting sperm maturation defects, the study of post-testicular sperm maturation will clearly contribute to a better understanding of the causes of male infertility and to the development of both new approaches to maturing sperm in vitro and safer male contraceptive methods. Based on this, the present review focuses on the physiopathology of the epididymis as well as on current approaches under investigation to improve research in sperm maturation and as potential therapeutic options for male infertility.
Collapse
Affiliation(s)
- Mariana Weigel Muñoz
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Débora J Cohen
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Vanina G Da Ros
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Soledad N González
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Abril Rebagliati Cid
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Valeria Sulzyk
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Patricia S Cuasnicu
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Battistone MA, Elizagaray ML, Barrachina F, Ottino K, Mendelsohn AC, Breton S. Immunoregulatory mechanisms between epithelial clear cells and mononuclear phagocytes in the epididymis. Andrology 2024; 12:949-963. [PMID: 37572347 PMCID: PMC10859549 DOI: 10.1111/andr.13509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
INTRODUCTION One of the most intriguing aspects of male reproductive physiology is the ability of the epididymis to prevent the mounting of immune responses against the onslaught of foreign antigens carried by spermatozoa while initiating very efficient immune responses versus stressors. Epithelial clear cells are strategically positioned to work in a concerted manner with region-specific heterogeneous subsets of mononuclear phagocytes to survey the epididymal barrier and regulate the balance between inflammation and immune tolerance in the post-testicular environment. OBJECTIVE This review aims to describe how clear cells communicate with mononuclear phagocytes to contribute to the unique immune environment in which sperm mature and are stored in the epididymis. MATERIALS/METHODS A comprehensive systematic review was performed. PubMed was searched for articles specific to clear cells, mononuclear phagocytes, and epididymis. Articles that did not specifically address the target material were excluded. RESULTS In this review, we discuss the unexpected roles of clear cells, including the transfer of new proteins to spermatozoa via extracellular vesicles and nanotubes as they transit along the epididymal tubule; and we summarize the immune phenotype, morphology, and antigen capturing, processing, and presenting abilities of mononuclear phagocytes. Moreover, we present the current knowledge of immunoregulatory mechanisms by which clear cells and mononuclear phagocytes may contribute to the immune-privileged environment optimal for sperm maturation and storage. DISCUSSION AND CONCLUSION Notably, we provide an in-depth characterization of clear cell-mononuclear phagocyte communication networks in the steady-state epididymis and in the presence of injury. This review highlights crucial concepts of mucosal immunology and cellcell interactions, all of which are critical but understudied facets of human male reproductive health.
Collapse
Affiliation(s)
- MA Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - ML Elizagaray
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - F Barrachina
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - K Ottino
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - AC Mendelsohn
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - S Breton
- Centre Hospitalier Universitaire de Québec-Research Center, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec (Québec), Canada
| |
Collapse
|
3
|
Wijayarathna R, Hedger MP. New aspects of activin biology in epididymal function and immunopathology. Andrology 2024; 12:964-972. [PMID: 37644728 DOI: 10.1111/andr.13523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The activins (A and B) and their binding protein, follistatin, play crucial roles in development, immunoregulation and inflammation throughout the body. In the male reproductive tract of the mouse, activin A and B production is largely confined to the initial segment and proximal caput of the epididymis and the efferent ducts, under normal conditions, with very low expression in the corpus, cauda and vas deferens. However, activin A protein is present throughout the epididymis and vas deferens and is largely associated with the epithelium and interstitial macrophages. Conversely, the activin-binding protein follistatin is produced in the distal epididymis, with very high expression in the vas deferens. Activin activity in the distal tract is inhibited by follistatin, and the activin-follistatin balance is important for regulating coiling of the duct during epididymal development. In further experiments, as described in this report, in situ hybridisation was used to localise activin A mRNA principally to cells in the periductal zone and interstitium in the efferent ducts and proximal caput. Activin B mRNA, on the other hand, was localised to periductal cells in the efferent ducts and proximal epididymis and, most notably, to epithelial cells in the initial segment. Activin A is implicated in the regulation of mononuclear phagocyte function and immune responses in the caput and stimulates the expression of the key immunoregulatory protein, indoleamine 2,3-dioxygenase in this region. Activin A production in the corpus and cauda increases dramatically during bacterial epididymitis in mice, promoting inflammation and fibrosis and causing damage to the epithelium and obstruction of the epididymal duct. Consequently, it appears that the activin-follistatin axis is crucial for maintaining normal epididymal structure and function, but disruption of this balance during inflammation has deleterious effects on male fertility. Follistatin has therapeutic potential in ameliorating the proinflammatory and profibrotic effects of activins.
Collapse
Affiliation(s)
- Rukmali Wijayarathna
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Melbourne, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Melbourne, Australia
| | - Mark P Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Melbourne, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Melbourne, Australia
| |
Collapse
|
4
|
Sutovsky P, Hamilton LE, Zigo M, Ortiz D’Avila Assumpção ME, Jones A, Tirpak F, Agca Y, Kerns K, Sutovsky M. Biomarker-based human and animal sperm phenotyping: the good, the bad and the ugly†. Biol Reprod 2024; 110:1135-1156. [PMID: 38640912 PMCID: PMC11180624 DOI: 10.1093/biolre/ioae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Conventional, brightfield-microscopic semen analysis provides important baseline information about sperm quality of an individual; however, it falls short of identifying subtle subcellular and molecular defects in cohorts of "bad," defective human and animal spermatozoa with seemingly normal phenotypes. To bridge this gap, it is desirable to increase the precision of andrological evaluation in humans and livestock animals by pursuing advanced biomarker-based imaging methods. This review, spiced up with occasional classic movie references but seriously scholastic at the same time, focuses mainly on the biomarkers of altered male germ cell proteostasis resulting in post-testicular carryovers of proteins associated with ubiquitin-proteasome system. Also addressed are sperm redox homeostasis, epididymal sperm maturation, sperm-seminal plasma interactions, and sperm surface glycosylation. Zinc ion homeostasis-associated biomarkers and sperm-borne components, including the elements of neurodegenerative pathways such as Huntington and Alzheimer disease, are discussed. Such spectrum of biomarkers, imaged by highly specific vital fluorescent molecular probes, lectins, and antibodies, reveals both obvious and subtle defects of sperm chromatin, deoxyribonucleic acid, and accessory structures of the sperm head and tail. Introduction of next-generation image-based flow cytometry into research and clinical andrology will soon enable the incorporation of machine and deep learning algorithms with the end point of developing simple, label-free methods for clinical diagnostics and high-throughput phenotyping of spermatozoa in humans and economically important livestock animals.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia MO, USA
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Mayra E Ortiz D’Avila Assumpção
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Alexis Jones
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Karl Kerns
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| |
Collapse
|
5
|
Carvelli L, Hermo L, O’Flaherty C, Oko R, Pshezhetsky AV, Morales CR. Effects of Heparan sulfate acetyl-CoA: Alpha-glucosaminide N-acetyltransferase (HGSNAT) inactivation on the structure and function of epithelial and immune cells of the testis and epididymis and sperm parameters in adult mice. PLoS One 2023; 18:e0292157. [PMID: 37756356 PMCID: PMC10529547 DOI: 10.1371/journal.pone.0292157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Heparan sulfate (HS), an abundant component of the apical cell surface and basement membrane, belongs to the glycosaminoglycan family of carbohydrates covalently linked to proteins called heparan sulfate proteoglycans. After endocytosis, HS is degraded in the lysosome by several enzymes, including heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT), and in its absence causes Mucopolysaccharidosis III type C (Sanfilippo type C). Since endocytosis occurs in epithelial cells of the testis and epididymis, we examined the morphological effects of Hgsnat inactivation in these organs. In the testis, Hgsnat knockout (Hgsnat-Geo) mice revealed statistically significant decrease in tubule and epithelial profile area of seminiferous tubules. Electron microscopy (EM) analysis revealed cross-sectional tubule profiles with normal and moderately to severely altered appearances. Abnormalities in Sertoli cells and blood-testis barrier and the absence of germ cells in some tubules were noted along with altered morphology of sperm, sperm motility parameters and a reduction in fertilization rates in vitro. Along with quantitatively increased epithelial and tubular profile areas in the epididymis, EM demonstrated significant accumulations of electrolucent lysosomes in the caput-cauda regions that were reactive for cathepsin D and prosaposin antibodies. Lysosomes with similar storage materials were also found in basal, clear and myoid cells. In the mid/basal region of the epithelium of caput-cauda regions of KO mice, large vacuolated cells, unreactive for cytokeratin 5, a basal cell marker, were identified morphologically as epididymal mononuclear phagocytes (eMPs). The cytoplasm of the eMPs was occupied by a gigantic lysosome suggesting an active role of these cells in removing debris from the epithelium. Some eMPs were found in proximity to T-lymphocytes, a feature of dendritic cells. Taken together, our results reveal that upon Hgsnat inactivation, morphological alterations occur to the testis affecting sperm morphology and motility parameters and abnormal lysosomes in epididymal epithelial cells, indicative of a lysosomal storage disease.
Collapse
Affiliation(s)
- Lorena Carvelli
- IHEM-CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Cristian O’Flaherty
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Department of Surgery (Urology Division), McGill University, Montréal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Alexey V. Pshezhetsky
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Barrachina F, Ottino K, Elizagaray ML, Gervasi MG, Tu LJ, Markoulaki S, Spallanzani RG, Capen D, Brown D, Battistone MA. Regulatory T cells play a crucial role in maintaining sperm tolerance and male fertility. Proc Natl Acad Sci U S A 2023; 120:e2306797120. [PMID: 37676910 PMCID: PMC10500189 DOI: 10.1073/pnas.2306797120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Regulatory T cells (Tregs) modulate tissue homeostatic processes and immune responses. Understanding tissue-Treg biology will contribute to developing precision-targeting treatment strategies. Here, we show that Tregs maintain the tolerogenic state of the testis and epididymis, where sperm are produced and mature. We found that Treg depletion induces severe autoimmune orchitis and epididymitis, manifested by an exacerbated immune cell infiltration [CD4 T cells, monocytes, and mononuclear phagocytes (MPs)] and the development of antisperm antibodies (ASA). In Treg-depleted mice, MPs increased projections toward the epididymal lumen as well as invading the lumen. ASA-bound sperm enhance sperm agglutination and might facilitate sperm phagocytosis. Tolerance breakdown impaired epididymal epithelial function and altered extracellular vesicle cargo, both of which play crucial roles in the acquisition of sperm fertilizing ability and subsequent embryo development. The affected mice had reduced sperm number and motility and severe fertility defects. Deciphering these immunoregulatory mechanisms may help to design new strategies to treat male infertility, as well as to identify potential targets for immunocontraception.
Collapse
Affiliation(s)
- Ferran Barrachina
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Kiera Ottino
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Maia Lina Elizagaray
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Maria Gracia Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA01003
- Genetically Engineered Models Center, Whitehead Institute of Biomedical Research, Cambridge, MA02142
| | - Leona J. Tu
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Styliani Markoulaki
- Genetically Engineered Models Center, Whitehead Institute of Biomedical Research, Cambridge, MA02142
| | - Raul G. Spallanzani
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA02115
| | - Diane Capen
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Dennis Brown
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Maria Agustina Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| |
Collapse
|
7
|
Zhuang J, Li X, Yao J, Sun X, Liu J, Nie H, Hu Y, Tu X, Liu H, Qin W, Xie Y. Single-cell RNA sequencing reveals the local cell landscape in mouse epididymal initial segment during aging. Immun Ageing 2023; 20:21. [PMID: 37170325 PMCID: PMC10173474 DOI: 10.1186/s12979-023-00345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Morphological and functional alterations in aging reproductive organs result in decreased male fertility. The epididymis functions as the transition region for post-testicular sperm maturation. And we have previously demonstrated that the epididymal initial segment (IS), a region of the reproductive tract essential for sperm maturation and capacitation, undergoes considerable histological changes and chronic immune activation in mice during aging. However, the local aging-associated cellular and molecular changes in the aged epididymal IS are poorly understood. RESULTS We conducted single-cell RNA sequencing analysis on the epididymal IS of young (3-month-old) and old (21-month-old) mice. In total, 10,027 cells from the epididymal IS tissues of young and old mice were obtained and annotated. The cell composition, including the expansion of a principal cell subtype and Ms4a4bHiMs4a6bHi T cells, changed with age. Aged principal cells displayed multiple functional gene expression changes associated with acrosome reaction and sperm maturation, suggesting an asynchronous process of sperm activation and maturation during epididymal transit. Meanwhile, aging-related altered pathways in immune cells, especially the "cell chemotaxis" in Cx3cr1Hi epididymal dendritic cells (eDCs), were identified. The monocyte-specific expression of chemokine Ccl8 increased with age in eDCs. And the aged epididymal IS showed increased inflammatory cell infiltration and cytokine secretion. Furthermore, cell-cell communication analysis indicated that age increased inflammatory signaling in the epididymal IS. CONCLUSION Contrary to the general pattern of lower immune responses in the male proximal genital tract, we revealed an inflammaging status in mouse epididymal initial segment. These findings will allow future studies to enable the delay of male reproductive aging via immune regulation.
Collapse
Affiliation(s)
- Jintao Zhuang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiangping Li
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Jiahui Yao
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiangzhou Sun
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Hua Nie
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Human Sperm Bank of Guangdong Province, Guangzhou, 510600, China
| | - Yang Hu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Human Sperm Bank of Guangdong Province, Guangzhou, 510600, China
| | - Xiangan Tu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huang Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Human Sperm Bank of Guangdong Province, Guangzhou, 510600, China.
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Human Sperm Bank of Guangdong Province, Guangzhou, 510600, China.
| | - Yun Xie
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Liu JC, Wang P, Zeng QX, Yang C, Lyu M, Li Y, Yeung WSB, Chiu PCN, Haidl G, Allam JP, Duan YG. Myd88 Signaling Is Involved in the Inflammatory Response in LPS-Induced Mouse Epididymitis and Bone-Marrow-Derived Dendritic Cells. Int J Mol Sci 2023; 24:ijms24097838. [PMID: 37175545 PMCID: PMC10178089 DOI: 10.3390/ijms24097838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Epididymitis is an epididymal inflammation that may lead to male infertility. Dendritic cells (DCs) and myeloid differentiation primary response gene 88 (Myd88) were associated with epididymitis in rodents. However, the functions of Myd88 on epididymal DCs remain unclear. This study investigated the role of Myd88 in DCs for epididymitis. The Myd88 signaling pathway, phenotypes of DC subsets, and cytokines were investigated in lipopolysaccharide (LPS)-induced epididymitis in mice. CRISPR-Cas9 was used to knockout Myd88 in bone-marrow-derived dendritic cells (BMDCs) and immortalized mouse epididymal (DC2) cell line. In the vivo experiments, levels of the proinflammatory cytokines IL-1α, IL-6, IL-17A, TNF-α, IL-1β, MCP-1, and GM-CSF, mRNA for MyD88 related genes, and the percentages of monocyte-derived DCs (Mo-DCs) were significantly elevated in mice with epididymitis. In the vitro experiments, LPS significantly promoted the apoptosis of BMDCs. In addition, the concentration of inflammatory cytokines in BMDCs and DC2s were increased in the LPS group, while decreasing after the knockout of Myd88. These findings indicate that Myd88 on DCs is involved in the inflammation of epididymitis in mice, which may be a potential target for better strategies regarding the treatment of immunological male infertility.
Collapse
Affiliation(s)
- Jin-Chuan Liu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Peng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qun-Xiong Zeng
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chen Yang
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Minmin Lyu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Yanfeng Li
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - William Shu-Biu Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Philip Chi-Ngong Chiu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Gerhard Haidl
- Department of Andrology, Bonn University Hospital, Campus-Venusberg 1, 53127 Bonn, Germany
| | - Jean-Pierre Allam
- Department of Andrology, Bonn University Hospital, Campus-Venusberg 1, 53127 Bonn, Germany
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
9
|
Barrachina F, Ottino K, Tu LJ, Soberman RJ, Brown D, Breton S, Battistone MA. CX3CR1 deficiency leads to impairment of immune surveillance in the epididymis. Cell Mol Life Sci 2022; 80:15. [PMID: 36550225 PMCID: PMC9948740 DOI: 10.1007/s00018-022-04664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/09/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Mononuclear phagocytes (MPs) play an active role in the immunological homeostasis of the urogenital tract. In the epididymis, a finely tuned balance between tolerance to antigenic sperm and immune activation is required to maintain epididymal function while protecting sperm against pathogens and stressors. We previously characterized a subset of resident MPs that express the CX3CR1 receptor, emphasizing their role in antigen sampling and processing during sperm maturation and storage in the murine epididymis. Bacteria-associated epididymitis is the most common cause of intrascrotal inflammation and frequently leads to reproductive complications. Here, we examined whether the lack of functional CX3CR1 in homozygous mice (CX3CR1EGFP/EGFP, KO) alters the ability of MPs to initiate immune responses during epididymitis induced by LPS intravasal-epididymal injection. Confocal microscopy revealed that CX3CR1-deficient MPs located in the initial segments of the epididymis displayed fewer luminal-reaching membrane projections and impaired antigen capture activity. Moreover, flow cytometry showed a reduction of epididymal KO MPs with a monocytic phenotype under physiological conditions. In contrast, flow cytometry revealed an increase in the abundance of MPs with a monocytic signature in the distal epididymal segments after an LPS challenge. This was accompanied by the accumulation of CD103+ cells in the interstitium, and the prevention or attenuation of epithelial damage in the KO epididymis during epididymitis. Additionally, CX3CR1 deletion induced downregulation of Gja1 (connexin 43) expression in KO MPs. Together, our study provides evidence that MPs are gatekeepers of the immunological blood-epididymis barrier and reveal the role of the CX3CR1 receptor in epididymal mucosal homeostasis by inducing MP luminal protrusions and by regulating the monocyte population in the epididymis at steady state as well as upon infection. We also uncover the interaction between MPs and CD103+ dendritic cells, presumably through connexin 43, that enhance immune responses during epididymitis. Our study may lead to new diagnostics and therapies for male infertility and epididymitis by identifying immune mechanisms in the epididymis.
Collapse
Affiliation(s)
- F Barrachina
- Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - K Ottino
- Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - L J Tu
- Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - R J Soberman
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - D Brown
- Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - S Breton
- Centre Hospitalier Universitaire de Québec-Research Center, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - M A Battistone
- Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
10
|
The Role of Mononuclear Phagocytes in the Testes and Epididymis. Int J Mol Sci 2022; 24:ijms24010053. [PMID: 36613494 PMCID: PMC9820352 DOI: 10.3390/ijms24010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The mononuclear phagocytic system (MPS) is the primary innate immune cell group in male reproductive tissues, maintaining the balance of pro-inflammatory and immune tolerance. This article aims to outline the role of mononuclear macrophages in the immune balance of the testes and epididymis, and to understand the inner immune regulation mechanism. A review of pertinent publications was performed using the PubMed and Google Scholar databases on all articles published prior to January 2021. Search terms were based on the following keywords: 'MPS', 'mononuclear phagocytes', 'testes', 'epididymis', 'macrophage', 'Mφ', 'dendritic cell', 'DC', 'TLR', 'immune', 'inflammation', and 'polarization'. Additionally, reference lists of primary and review articles were reviewed for other publications of relevance. This review concluded that MPS exhibits a precise balance in the male reproductive system. In the testes, MPS cells are mainly suppressed subtypes (M2 and cDC2) under physiological conditions, which maintain the local immune tolerance. Under pathological conditions, MPS cells will transform into M1 and cDC1, producing various cytokines, and will activate T cell specific immunity as defense to foreign pathogens or self-antigens. In the epididymis, MPS cells vary in the different segments, which express immune tolerance in the caput and pro-inflammatory condition in the cauda. Collectively, MPS is the control point for maintaining the immune tolerance of the testes and epididymis as well as for eliminating pathogens.
Collapse
|
11
|
Pleuger C, Ai D, Hoppe ML, Winter LT, Bohnert D, Karl D, Guenther S, Epelman S, Kantores C, Fijak M, Ravens S, Middendorff R, Mayer JU, Loveland KL, Hedger M, Bhushan S, Meinhardt A. The regional distribution of resident immune cells shapes distinct immunological environments along the murine epididymis. eLife 2022; 11:e82193. [PMID: 36515584 PMCID: PMC9750176 DOI: 10.7554/elife.82193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The epididymis functions as transition zone for post-testicular sperm maturation and storage and faces contrasting immunological challenges, i.e. tolerance towards spermatozoa vs. reactivity against pathogens. Thus, normal organ function and integrity relies heavily on a tightly controlled immune balance. Previous studies described inflammation-associated tissue damage solely in the distal regions (corpus, cauda), but not in the proximal regions (initial segment, caput). To understand the observed region-specific immunity along the epididymal duct, we have used an acute bacterial epididymitis mouse model and analyzed the disease progression. Whole transcriptome analysis using RNAseq 10 days post infection showed a pro-inflammatory environment within the cauda, while the caput exhibited only minor transcriptional changes. High-dimensional flow cytometry analyses revealed drastic changes in the immune cell composition upon infection with uropathogenic Escherichia coli. A massive influx of neutrophils and monocytes was observed exclusively in distal regions and was associated with bacterial appearance and tissue alterations. In order to clarify the reasons for the region-specific differences in the intensity of immune responses, we investigated the heterogeneity of resident immune cell populations under physiological conditions by scRNASeq analysis of extravascular CD45+ cells. Twelve distinct immune cell subsets were identified, displaying substantial differences in distribution along the epididymis as further assessed by flow cytometry and immunofluorescence staining. Macrophages constituted the majority of resident immune cells and were further separated in distinct subgroups based on their transcriptional profile, tissue location and monocyte-dependence. Crucially, the proximal and distal regions showed striking differences in their immunological landscapes. These findings indicate that resident immune cells are strategically positioned along the epididymal duct, potentially providing different immunological environments required for addressing the contrasting immunological challenges and thus, preserving tissue integrity and organ function.
Collapse
Affiliation(s)
- Christiane Pleuger
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
- Hessian Center of Reproductive Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Dingding Ai
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
- Hessian Center of Reproductive Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Minea L Hoppe
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
- Hessian Center of Reproductive Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Laura T Winter
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
- Hessian Center of Reproductive Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Daniel Bohnert
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
- Hessian Center of Reproductive Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Dominik Karl
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
- Hessian Center of Reproductive Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Stefan Guenther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Slava Epelman
- Ted Rogers Center of Heart Research, Peter Munk Cardiac Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Crystal Kantores
- Ted Rogers Center of Heart Research, Peter Munk Cardiac Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Monika Fijak
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
- Hessian Center of Reproductive Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hanover, Germany
| | - Ralf Middendorff
- Hessian Center of Reproductive Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
- Institute of Anatomy and Cell Biology, Unit of Signal Transduction, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Johannes U Mayer
- Department of Dermatology and Allergology, Philipps-University of Marburg, Marburg, Germany
| | - Kate L Loveland
- Centre of Reproductive Health, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, Australia
| | - Mark Hedger
- Centre of Reproductive Health, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, Australia
| | - Sudhanshu Bhushan
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
- Hessian Center of Reproductive Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
- Hessian Center of Reproductive Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
- Centre of Reproductive Health, Hudson Institute of Medical Research, Clayton, Australia
| |
Collapse
|
12
|
Tung KSK, Han D, Duan YG. Editorial: The immunology of the male genital tract. Front Immunol 2022; 13:1042468. [DOI: 10.3389/fimmu.2022.1042468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
|
13
|
Drevet JR, Hallak J, Nasr-Esfahani MH, Aitken RJ. Reactive Oxygen Species and Their Consequences on the Structure and Function of Mammalian Spermatozoa. Antioxid Redox Signal 2022; 37:481-500. [PMID: 34913729 DOI: 10.1089/ars.2021.0235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Significance: Among the 200 or so cell types that comprise mammals, spermatozoa have an ambiguous relationship with the reactive oxygen species (ROS) inherent in the consumption of oxygen that supports aerobic metabolism. Recent Advances: In this review, we shall see that spermatozoa need the action of ROS to reach their structural and functional maturity, but that due to intrinsic unique characteristics, they are, perhaps more than any other cell type, susceptible to oxidative damage. Recent studies have improved our knowledge of how oxidative damage affects sperm structures and functions. The focus of this review will be on how genetic and epigenetic oxidative alterations to spermatozoa can have dramatic unintended consequences in terms of both the support and the suppression of sperm function. Critical Issues: Oxidative stress can have dramatic consequences not only for the spermatozoon itself, but also, and above all, on its primary objective, which is to carry out fertilization and to ensure, in part, that the embryonic development program should lead to a healthy progeny. Future Directions: Sperm oxidative DNA damage largely affects the integrity of the paternal genetic material to such an extent that the oocyte may have difficulties in correcting it. Diagnostic and therapeutic actions should be considered more systematically, especially in men with difficulties to conceive. Research is underway to determine whether the epigenetic information carried by spermatozoa is also subject to changes mediated by pro-oxidative situations. Antioxid. Redox Signal. 37, 481-500.
Collapse
Affiliation(s)
- Joël R Drevet
- Faculty of Medicine, GReD Institute, INSERM U1103-CNRS UMR6293-Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jorge Hallak
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, São Paulo, Brazil.,Division of Urology, University of São Paulo, São Paulo, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo, Brazil.,Reproductive Toxicology Unit, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Mohammad-Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Isfahan Fertility and Infertility Center, Isfahan, Iran
| | - Robert J Aitken
- Faculty of Science and Priority Research Center for Reproductive Sciences, The University of Newcastle, Callaghan, Australia.,Faculty of Health and Medicine, Priority Research Center for Reproductive Sciences, The University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| |
Collapse
|
14
|
Cyr DG, Pinel L. Emerging organoid models to study the epididymis in male reproductive toxicology. Reprod Toxicol 2022; 112:88-99. [PMID: 35810924 DOI: 10.1016/j.reprotox.2022.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
The importance of the epididymis on sperm maturation and consequently male fertility has been well documented. The pseudostratified epithelium of the epididymis is comprised of multiple cell types, including principal cells, which are the most abundant, and basal cells. The role of basal cells has been unclear and has been a source of discussion in the literature. However, the recent demonstration that these cells are multipotent or adult stem cells has opened new areas of research in epididymal biology. One such avenue is to understand the regulation of these stem cells, and to exploit their properties to develop tools for toxicological studies to elucidate the effects of chemicals on cell differentiation and epididymal function in vitro. Studies in both rat and mouse have shown that purified single epididymal basal cells cultured under 3D conditions can proliferate and differentiate to form organoids, or mini organs. Furthermore, these epididymal basal stem cells can self-renew and differentiate into other epididymal cell types. It is known that during epididymal development, basal cells are derived from undifferentiated columnar cells, which have been reported to share common properties to stem cells. Like basal cells, these undifferentiated columnar cells can also form organoids under 3D culture conditions and can differentiate into basal, principal and clear cells. Organoids derived from either basal cells or columnar cells offer unique models for toxicology studies and represent an exciting and emerging approach to understand the epididymis.
Collapse
Affiliation(s)
- Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada; Department of Obstetrics, Gynecology, and Reproduction, Laval University, Québec, QC, Canada.
| | - Laurie Pinel
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| |
Collapse
|
15
|
Khastgir J. Advances in the antibiotic management of epididymitis. Expert Opin Pharmacother 2022; 23:1103-1113. [PMID: 35380486 DOI: 10.1080/14656566.2022.2062228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Acute epididymitis is commonly encountered and typically presents acutely within a wide clinical spectrum. Most cases of acute epididymitis are caused by bacterial infection, most often by sexually transmitted organisms and urinary pathogens. Current treatment regimens remain empirical, although recent advances using modern diagnostic techniques support a change in the management paradigm. AREAS COVERED The choice of the initial antibiotic regimen is empirical and based on the most likely causative pathogen, whether sexually transmitted, enteric or other. Adherence of clinical practice remains short of available guidance, which may be improved by thorough clinical and microbiologic assessment, supported by a knowledge of the commonly associated pathogenic organisms, and the appropriate choice of tests required for their identification. Use of advanced microbiology techniques and studies of current practice provide new insights that have challenged traditional management paradigms. The authors discuss these points in and provide their expert perspectives on its treatment and future developments. EXPERT OPINION Relatively sparse direct trial data exists on antimicrobial treatments for acute epididymitis. Much of the presently available guidance is derived from previous guidance recommendations, knowledge of antimicrobial activities of specific agents, and treatment outcomes in uncomplicated infections. Identification of specific pathogens and prescribing accuracy is dependent on the extent to which cases are investigated and is therefore variable.
Collapse
Affiliation(s)
- Jay Khastgir
- Princess of Wales Hospital, Cwm Taff Bro Morgannwg NHS University Health Board & Swansea University School of Medicine, Swansea
| |
Collapse
|
16
|
Chen H, Scott-Boyer MP, Droit A, Robert C, Belleannée C. Sperm Heterogeneity Accounts for Sperm DNA Methylation Variations Observed in the Caput Epididymis, Independently From DNMT/TET Activities. Front Cell Dev Biol 2022; 10:834519. [PMID: 35392175 PMCID: PMC8981467 DOI: 10.3389/fcell.2022.834519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
Following their production in the testis, spermatozoa enter the epididymis where they gain their motility and fertilizing abilities. This post-testicular maturation coincides with sperm epigenetic profile changes that influence progeny outcome. While recent studies highlighted the dynamics of small non-coding RNAs in maturing spermatozoa, little is known regarding sperm methylation changes and their impact at the post-fertilization level. Fluorescence-activated cell sorting (FACS) was used to purify spermatozoa from the testis and different epididymal segments (i.e., caput, corpus and cauda) of CAG/su9-DsRed2; Acr3-EGFP transgenic mice in order to map out sperm methylome dynamics. Reduced representation bisulfite sequencing (RRBS-Seq) performed on DNA from these respective sperm populations indicated that high methylation changes were observed between spermatozoa from the caput vs. testis with 5,546 entries meeting our threshold values (q value <0.01, methylation difference above 25%). Most of these changes were transitory during epididymal sperm maturation according to the low number of entries identified between spermatozoa from cauda vs. testis. According to enzymatic and sperm/epididymal fluid co-incubation assays, (de)methylases were not found responsible for these sperm methylation changes. Instead, we identified that a subpopulation of caput spermatozoa displayed distinct methylation marks that were susceptible to sperm DNAse treatment and accounted for the DNA methylation profile changes observed in the proximal epididymis. Our results support the paradigm that a fraction of caput spermatozoa has a higher propensity to bind extracellular DNA, a phenomenon responsible for the sperm methylome variations observed at the post-testicular level. Further investigating the degree of conservation of this sperm heterogeneity in human will eventually provide new considerations regarding sperm selection procedures used in fertility clinics.
Collapse
Affiliation(s)
- Hong Chen
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Center for Research in Reproduction, Development and Intergenerational Health, Quebec, QC, Canada
| | | | - Arnaud Droit
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Claude Robert
- Center for Research in Reproduction, Development and Intergenerational Health, Quebec, QC, Canada
- Faculty of Animal Sciences, Université Laval, Quebec, QC, Canada
| | - Clémence Belleannée
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Center for Research in Reproduction, Development and Intergenerational Health, Quebec, QC, Canada
- *Correspondence: Clémence Belleannée,
| |
Collapse
|
17
|
Shum W, Zhang BL, Cao AS, Zhou X, Shi SM, Zhang ZY, Gu LY, Shi S. Calcium Homeostasis in the Epididymal Microenvironment: Is Extracellular Calcium a Cofactor for Matrix Gla Protein-Dependent Scavenging Regulated by Vitamins. Front Cell Dev Biol 2022; 10:827940. [PMID: 35252193 PMCID: PMC8893953 DOI: 10.3389/fcell.2022.827940] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/19/2022] [Indexed: 12/23/2022] Open
Abstract
In the male reproductive tract, the epididymis is an essential organ for sperm maturation, in which sperm cells acquire mobility and the ability to fertilize oocytes while being stored in a protective microenvironment. Epididymal function involves a specialized luminal microenvironment established by the epithelial cells of epididymal mucosa. Low-calcium concentration is a unique feature of this epididymal luminal microenvironment, its relevance and regulation are, however, incompletely understood. In the rat epididymis, the vitamin D-related calcium-dependent TRPV6-TMEM16A channel-coupler has been shown to be involved in fluid transport, and, in a spatially complementary manner, vitamin K2-related γ-glutamyl carboxylase (GGCX)-dependent carboxylation of matrix Gla protein (MGP) plays an essential role in promoting calcium-dependent protein aggregation. An SNP in the human GGCX gene has been associated with asthenozoospermia. In addition, bioinformatic analysis also suggests the involvement of a vitamin B6-axis in calcium-dependent MGP-mediated protein aggregation. These findings suggest that vitamins interact with calcium homeostasis in the epididymis to ensure proper sperm maturation and male fertility. This review article discusses the regulation mechanisms of calcium homeostasis in the epididymis, and the potential role of vitamin interactions on epididymal calcium homeostasis, especially the role of matrix calcium in the epididymal lumen as a cofactor for the carboxylated MGP-mediated scavenging function.
Collapse
Affiliation(s)
- Winnie Shum
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Winnie Shum,
| | - Bao Li Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Reproduction and Development Institution, Fudan University, Shanghai, China
| | - Albert Shang Cao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xin Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Su Meng Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ze Yang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lou Yi Gu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuo Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
18
|
Chen H, Alves MBR, Belleannée C. Contribution of epididymal epithelial cell functions to sperm epigenetic changes and the health of progeny. Hum Reprod Update 2021; 28:51-66. [PMID: 34618012 DOI: 10.1093/humupd/dmab029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Spermatozoa acquire their motility and fertilizing abilities during their maturation through the epididymis. This process is controlled by epididymal epithelial cells that possess features adapted to sense and respond to their surrounding environment and to communicate with spermatozoa. During the past decade, new intercellular communication processes have been discovered, including the secretion and transport of molecules from the epithelium to spermatozoa via extracellular vesicles (EVs), as well as sensing of the intraluminal milieu by cellular extensions. OBJECTIVE AND RATIONALE This review addresses recent findings regarding epididymal epithelial cell features and interactions between spermatozoa and the epididymal epithelium as well as epigenetic modifications undergone by spermatozoa during transit through the epididymal microenvironment. SEARCH METHODS A systematic search was conducted in Pubmed with the keyword 'epididymis'. Results were filtered on original research articles published from 2009 to 2021 and written in the English language. One hundred fifteen original articles presenting recent advancements on the epididymis contribution to sperm maturation were selected. Some additional papers cited in the primary reference were also included. A special focus was given to higher mammalian species, particularly rodents, bovines and humans, that are the most studied in this field. OUTCOMES This review provides novel insights into the contribution of epididymal epithelium and EVs to post-testicular sperm maturation. First, new immune cell populations have been described in the epididymis, where they are proposed to play a role in protecting the environment surrounding sperm against infections or autoimmune responses. Second, novel epididymal cell extensions, including dendrites, axopodia and primary cilia, have been identified as sensors of the environment surrounding sperm. Third, new functions have been outlined for epididymal EVs, which modify the sperm epigenetic profile and participate in transgenerational epigenetic inheritance of paternal traits. WIDER IMPLICATIONS Although the majority of these findings result from studies in rodents, this fundamental research will ultimately improve our knowledge of human reproductive physiopathologies. Recent discoveries linking sperm epigenetic modifications with paternal environmental exposure and progeny outcome further stress the importance of advancing fundamental research on the epididymis. From this, new therapeutic options for infertile couples and better counseling strategies may arise to increase positive health outcomes in children conceived either naturally or with ART.
Collapse
Affiliation(s)
- Hong Chen
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Quebec, Canada
| | | | - Clémence Belleannée
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Quebec, Canada
| |
Collapse
|
19
|
Wijayarathna R, Genovese R, Meinhardt A, Loveland KL, Groome NP, Hinton BT, Hedger MP. Examination of testicular lumicrine regulation of activins and immunoregulatory genes in the epididymal caput. Andrology 2021; 10:190-201. [PMID: 34415685 DOI: 10.1111/andr.13099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Immunoregulatory genes encoding activin A (Inhba) and B (Inhbb), and indolamine 2,3-dioxygenase-1 (Ido1) are highly expressed in the murine caput epididymidis, which also has a network of intraepithelial mononuclear phagocytes. This environment is postulated to promote immunological tolerance to epididymal sperm. The factors regulating the immunoregulatory agents in the epididymal caput are poorly understood. OBJECTIVES This study aimed to investigate the potential role of testicular lumicrine factors in regulating activin and other immune-related genes in the caput epididymidis. MATERIALS AND METHODS The efferent ducts in adult C57/Bl6 mice were exposed and ligated bilaterally. Serum and tissues were collected seven days later. Animals with bilateral sham ligation and animals with no ligations (collectively referred to as the "intact" group) were used as controls. RESULTS Pressure-induced seminiferous epithelial damage due to intratubular fluid accumulation was observed in all ligated testes. Testicular inhibin was significantly increased and testosterone was elevated in some animals following bilateral ligation, but serum testosterone, serum LH, and serum inhibin were normal. Ligation caused epithelial regression in the initial segment, with similar but less severe effects in other caput segments. Activin A staining by immunohistochemistry in the epithelium was reduced in bilateral ligation, particularly in the initial segment, with moderately reduced staining intensity in the rest of the caput. Inhba expression within the caput was not significantly affected by bilateral ligation, but Inhbb was reduced by more than 60%. Transcripts encoding the macrophage-specific receptor Cx3cr1 were significantly reduced following bilateral ligation, but other immune cell markers, Ido1, and inflammatory genes were unaffected. CONCLUSION These data indicate that testicular lumicrine secretion regulates several genes that are preferentially expressed in the initial segment, but has marginal effects on genes such as those encoding activin A and IDO1, which are expressed more widely in the caput.
Collapse
Affiliation(s)
- Rukmali Wijayarathna
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | | | - Andreas Meinhardt
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Institute of Anatomy and Cell Biology, Justus-Liebig University, Giessen, Germany
| | - Kate L Loveland
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | | | - Barry T Hinton
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Mark P Hedger
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
20
|
Liu WH, Wang F, Yu XQ, Wu H, Gong ML, Chen R, Zhang WJ, Han RQ, Liu AJ, Chen YM, Han DS. Damaged male germ cells induce epididymitis in mice. Asian J Androl 2021; 22:472-480. [PMID: 31696835 PMCID: PMC7523604 DOI: 10.4103/aja.aja_116_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epididymitis can be caused by infectious and noninfectious etiological factors. While microbial infections are responsible for infectious epididymitis, the etiological factors contributing to noninfectious epididymitis remain to be defined. The present study demonstrated that damaged male germ cells (DMGCs) induce epididymitis in mice. Intraperitoneal injection of the alkylating agent busulfan damaged murine male germ cells. Epididymitis was observed in mice 4 weeks after the injection of busulfan and was characterized by massive macrophage infiltration. Epididymitis was coincident with an accumulation of DMGCs in the epididymis. In contrast, busulfan injection into mice lacking male germ cells did not induce epididymitis. DMGCs induced innate immune responses in epididymal epithelial cells (EECs), thereby upregulating the pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), as well as the chemokines such as monocyte chemotactic protein-1 (MCP-1), monocyte chemotactic protein-5 (MCP-5), and chemokine ligand-10 (CXCL10). These results suggest that male germ cell damage may induce noninfectious epididymitis through the induction of innate immune responses in EECs. These findings provide novel insights into the mechanisms underlying noninfectious epididymitis, which might aid in the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Wei-Hua Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Fei Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xiao-Qin Yu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Han Wu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Mao-Lei Gong
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Ran Chen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Wen-Jing Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Rui-Qin Han
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Ai-Jie Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yong-Mei Chen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Dai-Shu Han
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
21
|
Shi J, Fok KL, Dai P, Qiao F, Zhang M, Liu H, Sang M, Ye M, Liu Y, Zhou Y, Wang C, Sun F, Xie G, Chen H. Spatio-temporal landscape of mouse epididymal cells and specific mitochondria-rich segments defined by large-scale single-cell RNA-seq. Cell Discov 2021; 7:34. [PMID: 34001862 PMCID: PMC8129088 DOI: 10.1038/s41421-021-00260-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/08/2021] [Indexed: 02/03/2023] Open
Abstract
Spermatozoa acquire their fertilizing ability and forward motility during epididymal transit, suggesting the importance of the epididymis. Although the cell atlas of the epididymis was reported recently, the heterogeneity of the cells and the gene expression profile in the epididymal tube are still largely unknown. Considering single-cell RNA sequencing results, we thoroughly studied the cell composition, spatio-temporal differences in differentially expressed genes (DEGs) in epididymal segments and mitochondria throughout the epididymis with sufficient cell numbers. In total, 40,623 cells were detected and further clustered into 8 identified cell populations. Focused analyses revealed the subpopulations of principal cells, basal cells, clear/narrow cells, and halo/T cells. Notably, two subtypes of principal cells, the Prc7 and Prc8 subpopulations were enriched as stereocilia-like cells according to GO analysis. Further analysis demonstrated the spatially specific pattern of the DEGs in each cell cluster. Unexpectedly, the abundance of mitochondria and mitochondrial transcription (MT) was found to be higher in the corpus and cauda epididymis than in the caput epididymis by scRNA-seq, immunostaining, and qPCR validation. In addition, the spatio-temporal profile of the DEGs from the P42 and P56 epididymis, including transiting spermatozoa, was depicted. Overall, our study presented the single-cell transcriptome atlas of the mouse epididymis and revealed the novel distribution pattern of mitochondria and key genes that may be linked to sperm functionalities in the first wave and subsequent wave of sperm, providing a roadmap to be emulated in efforts to achieve sperm maturation regulation in the epididymis.
Collapse
Affiliation(s)
- Jianwu Shi
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Kin Lam Fok
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Pengyuan Dai
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Feng Qiao
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Mengya Zhang
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Huage Liu
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Mengmeng Sang
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Mei Ye
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Yang Liu
- grid.16821.3c0000 0004 0368 8293Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yiwen Zhou
- grid.16821.3c0000 0004 0368 8293Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chengniu Wang
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Fei Sun
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Gangcai Xie
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Hao Chen
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| |
Collapse
|
22
|
Castration causes an increase in lysosomal size and upregulation of cathepsin D expression in principal cells along with increased secretion of procathepsin D and prosaposin oligomers in adult rat epididymis. PLoS One 2021; 16:e0250454. [PMID: 33914781 PMCID: PMC8084160 DOI: 10.1371/journal.pone.0250454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
In the epididymis, lysosomal proteins of the epithelial cells are normally targeted from the Golgi apparatus to lysosomes for degradation, although their secretion into the epididymal lumen has been documented and associated with sperm maturation. In this study, cathepsin D (CatD) and prosaposin (PSAP) were examined in adult epididymis of control, and 2-day castrated rats without (Ct) and with testosterone replacement (Ct+T) to evaluate their expression and regulation within epididymal epithelial cells. By light microscope-immunocytochemistry, a quantitative increase in size of lysosomes in principal cells of Ct animals was noted from the distal initial segment to the proximal cauda. Androgen replacement did not restore the size of lysosomes to control levels. Western blot analysis revealed a significant increase in CatD expression in the epididymis of Ct animals, which suggested an upregulation of its expression in principal cells; androgens restored levels of CatD to that of controls. In contrast, PSAP expression in Ct animals was not altered from controls. Additionally, an increase in procathepsin D levels was noted from samples of the epididymal fluid of Ct compared to control animals, accompanied by an increased complex formation with PSAP. Moreover, an increased oligomerization of prosaposin was observed in the epididymal lumen of Ct rats, with changes reverted to controls in Ct+T animals. Taken together these data suggest castration causes an increased uptake of substrates that are acted upon by CatD in lysosomes of principal cells and in the lumen by procathepsin D. These substrates may be derived from apoptotic cells noted in the lumen of proximal regions and possibly by degenerating sperm in distal regions of the epididymis of Ct animals. Exploring the mechanisms by which lysosomal enzymes are synthesized and secreted by the epididymis may help resolve some of the issues originating from epididymal dysfunctions with relevance to sperm maturation.
Collapse
|
23
|
Sheng Z, Gao N, Fan D, Wu N, Zhang Y, Han D, Zhang Y, Tan W, Wang P, An J. Zika virus disrupts the barrier structure and Absorption/Secretion functions of the epididymis in mice. PLoS Negl Trop Dis 2021; 15:e0009211. [PMID: 33667230 PMCID: PMC7968736 DOI: 10.1371/journal.pntd.0009211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 03/17/2021] [Accepted: 02/07/2021] [Indexed: 11/25/2022] Open
Abstract
Several studies have demonstrated that Zika virus (ZIKV) damages testis and leads to infertility in mice; however, the infection in the epididymis, another important organ of male reproductive health, has gained less attention. Previously, we detected lesions in the epididymis in interferon type I and II receptor knockout male mice during ZIKV infection. Herein, the pathogenesis of ZIKV in the epididymis was further assessed in the infected mice after footpad inoculation. ZIKV efficiently replicated in the epididymis, and principal cells were susceptible to ZIKV. ZIKV infection disrupted the histomorphology of the epididymis, and the effects were characterized by a decrease in the thickness of the epithelial layer and an increase in the luminal diameter, especially at the proximal end. Significant inflammatory cell infiltration was observed in the epididymis accompanied by an increase in the levels of interleukin (IL)-6 and IL-28. The expression of tight junction proteins was downregulated and associated with disordered arrangement of the junctions. Importantly, the expression levels of aquaporin 1 and lipocalin 8, indicators of the absorption and secretion functions of the epididymis, were markedly reduced, and the proteins were redistributed. These events synergistically altered the microenvironment for sperm maturation, disturbed sperm transport downstream, and may impact male reproductive health. Overall, these results provide new insights into the pathogenesis of the male reproductive damage caused by ZIKV infection and the possible contribution of epididymal injury into this process. Therefore, male fertility of the population in areas of ZIKV epidemic requires additional attention. Unlike other mosquito-transmitted flaviviruses, ZIKV can persistently replicate in the male reproductive system and is sexually transmitted. ZIKV infection was reported to damage testis. However, ZIKV-induced epididymal injury was not investigated in detail. Clinically, epididymitis is closely associated with male infertility. In this study, a mouse model was used to demonstrate that ZIKV causes histomorphological and functional changes in the epididymis, which may alter the microenvironment of sperm maturation and movement and finally lead to male infertility. Therefore, long-term investigation of male reproductive health may be needed in the areas of ZIKV epidemic.
Collapse
Affiliation(s)
- Ziyang Sheng
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Na Gao
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dongying Fan
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Na Wu
- Laboratory Animal Center, Capital Medical University, Beijing, China
| | - Yingying Zhang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Daishu Han
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yun Zhang
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, Jiangsu, China
| | - Weilong Tan
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, Jiangsu, China
| | - Peigang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- * E-mail: (PW); (JA)
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
- * E-mail: (PW); (JA)
| |
Collapse
|
24
|
Zheng W, Zhang S, Chen X, Jiang S, Li Z, Li M. Case Report: Dendritic Cells and Macrophages Capture Sperm in Chronically Inflamed Human Epididymis. Front Immunol 2021; 12:629680. [PMID: 33708220 PMCID: PMC7942197 DOI: 10.3389/fimmu.2021.629680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic inflammation of the male genital tract is thought to be a primary etiological factor of male infertility. The abundance and activation of macrophages and dendritic cells in patients with chronic inflammation of genital tract were closely associated with oligozoospermia and asthenospermia. Chronic epididymitis appears to be more important than seminal vesiculitis or prostatitis due to the direct interaction between spermatozoa and epididymal inflammatory cells. In this study, we present a case report of a 41-year-old male with oligoasthenospermia and chronic epididymitis. Hematoxylin-eosin staining and immunofluorescence analyses showed that antigen presenting cells including macrophages and dendritic cells were found capturing spermatozoa in the lumen of cauda epididymis. To our knowledge, this is the first case report that directly observed dendritic cells capturing spermatozoa in the lumen of an inflamed epididymis. This finding directly explains chronic epididymitis as the possible cause of oligospermia in patients.
Collapse
Affiliation(s)
- Wenzhong Zheng
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shiqiang Zhang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaobao Chen
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaoqin Jiang
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhihao Li
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mengqiang Li
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
25
|
Battistone MA, Mendelsohn AC, Spallanzani RG, Brown D, Nair AV, Breton S. Region-specific transcriptomic and functional signatures of mononuclear phagocytes in the epididymis. Mol Hum Reprod 2021; 26:14-29. [PMID: 31778536 DOI: 10.1093/molehr/gaz059] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
In the epididymis, prevention of autoimmune responses against spermatozoa and simultaneous protection against pathogens is important for male fertility. We have previously shown that mononuclear phagocytes (MPs) are located either in the epididymal interstitium or in close proximity to the epithelium. In the initial segments (IS), these 'intraepithelial' MPs extend slender luminal-reaching projections between epithelial cells. In this study, we performed an in-depth characterisation of MPs isolated from IS, caput-corpus and cauda epididymis of CX3CR1EGFP+/- mice that express EGFP in these cells. Flow cytometry analysis revealed region-specific subsets of MPs that express combinations of markers traditionally described in 'dendritic cells' or 'macrophages'. RNA sequencing identified distinct transcriptomic signatures in MPs from each region and revealed specific genes involved in inflammatory and anti-inflammatory responses, phagosomal activity and antigen processing and presentation. Functional fluorescent in vivo labelling assays showed that higher percentages of CX3CR1+ MPs that captured and processed antigens were detected in the IS compared to other regions. Confocal microscopy showed that in the IS, caput and corpus, circulatory antigens were internalised and processed by interstitial and intraepithelial MPs. However, in the cauda only interstitial MPs internalised and processed antigens, while intraepithelial MPs did not take up antigens, indicating that all antigens have been captured before they reached the epithelial lining. Cauda MPs may thus confer a stronger protection against blood-borne pathogens compared to proximal regions. By identifying immunoregulatory mechanisms in the epididymis, our study may lead to new therapies for male infertility and epididymitis and identify potential targets for immunocontraception.
Collapse
Affiliation(s)
- Maria A Battistone
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Alexandra C Mendelsohn
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Raul German Spallanzani
- Division of Immunology, Department of Microbiology an Immunobiology, Harvard Medical School, Evergrande Center for Immunologic Diseases, and Brigham and Women's Hospital, Boston, MA, USA
| | - Dennis Brown
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anil V Nair
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sylvie Breton
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Park YJ, Pang WK, Ryu DY, Adegoke EO, Rahman MS, Pang MG. Bisphenol A exposure increases epididymal susceptibility to infection in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111476. [PMID: 33091778 DOI: 10.1016/j.ecoenv.2020.111476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Male fertility is linked with several well-orchestrated events including spermatogenesis, epididymal maturation, capacitation, the acrosome reaction, fertilization, and beyond. However, the detrimental effects of bisphenol A (BPA) on sperm maturation compared to spermatogenesis and sperm cells remain unclear. Therefore, this study was to investigate whether pubertal exposure to BPA induces male infertility via interruption of the immune response in the epididymis. CD-1 male mice (5 weeks old) were treated daily with vehicle (corn oil) and 50 mg BPA/kg-BW for 6 weeks by oral gavage. Following BPA exposure, we observed decreased intraepithelial projection of basal cells, indicative of changes to the luminal environment. We also observed decreased projection of macrophages and protrusion of apoptotic cells into the lumen induced by incomplete phagocytosis of apoptotic cells in the caput epididymis. Exposure to BPA also reduced the anti- and pro-inflammatory cytokines IL-10, IL-6, IFN-γ, and IL-7 in the epididymis, while the chemotaxis-associated cytokines CCL12, CCL17, CXCL16, and MCP-1 increased. This study suggests two possible mechanisms for BPA induction of male infertility. First, exposure to BPA may induce an imbalance of immune homeostasis by disrupting the ability of basal cells to perceive environmental changes. Second, exposure to BPA may lead to collapse of macrophage phagocytosis via downregulation of intraepithelial projection and inflammatory-related cytokines. In conclusion, the observed potential pathways can lead to autoimmune disorders such epididymitis and orchitis.
Collapse
Affiliation(s)
- Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
27
|
Pleuger C, Silva EJR, Pilatz A, Bhushan S, Meinhardt A. Differential Immune Response to Infection and Acute Inflammation Along the Epididymis. Front Immunol 2020; 11:599594. [PMID: 33329594 PMCID: PMC7729520 DOI: 10.3389/fimmu.2020.599594] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
The epididymis is a tubular structure connecting the vas deferens to the testis. This organ consists of three main regions—caput, corpus, and cauda—that face opposing immunological tasks. A means of combating invading pathogens is required in the distally located cauda, where there is a risk of ascending bacterial infections originating from the urethra. Meanwhile, immune tolerance is necessary at the caput, where spermatozoa with immunogenic neo-antigens originate from the testis. Consistently, when challenged with live bacteria or inflammatory stimuli, the cauda elicits a much stronger immune response and inflammatory-inflicted damage than the caput. At the cellular level, a role for diverse and strategically positioned mononuclear phagocytes is emerging. At the mechanistic level, differential expression of immunoprotective and immunomodulatory mediators has been detected between the three main regions of the epididymis. In this review, we summarize the current state of knowledge about region-specific immunological characteristics and unveil possible underlying mechanisms on cellular and molecular levels. Improved understanding of the different immunological microenvironments is the basis for an improved therapy and counseling of patients with epididymal infections.
Collapse
Affiliation(s)
- Christiane Pleuger
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany.,Hessian Centre of Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Erick José Ramo Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Adrian Pilatz
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany.,Department of Urology, Pediatric Urology and Andrology, University Hospital, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sudhanshu Bhushan
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany.,Hessian Centre of Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany.,Hessian Centre of Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
28
|
Lustig L, Guazzone VA, Theas MS, Pleuger C, Jacobo P, Pérez CV, Meinhardt A, Fijak M. Pathomechanisms of Autoimmune Based Testicular Inflammation. Front Immunol 2020; 11:583135. [PMID: 33101310 PMCID: PMC7546798 DOI: 10.3389/fimmu.2020.583135] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
Infection and inflammation of the male reproductive tract are relevant causes of infertility. Inflammatory damage occurs in the special immunosuppressive microenvironment of the testis, a hallmark termed testicular immune privilege, which allows tolerance to neo-antigens from developing germ cells appearing at puberty, long after the establishment of systemic immune tolerance. Experimental autoimmune orchitis (EAO) is a well-established rodent model of chronic testicular inflammation and organ specific autoimmunity that offers a valuable in vivo tool to investigate the pathological and molecular mechanisms leading to the breakdown of the testicular immune privilege. The disease is characterized by the infiltration of the interstitium by immune cells (mainly macrophages, dendritic cells, and T cells), formation of autoantibodies against testicular antigens, production of pro-inflammatory mediators such as NO, MCP1, TNFα, IL6, or activins and dysregulation of steroidogenesis with reduced levels of serum testosterone. EAO leads to sloughing of germ cells, atrophic seminiferous tubules and fibrotic remodeling, parameters all found similarly to changes in human biopsies from infertile patients with inflammatory infiltrates. Interestingly, testosterone supplementation during the course of EAO leads to expansion of the regulatory T cell population and inhibition of disease development. Knowledge of EAO pathogenesis aims to contribute to a better understanding of human testicular autoimmune disease as an essential prerequisite for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Livia Lustig
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Tècnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Vanesa A Guazzone
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Tècnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - María S Theas
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Tècnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Christiane Pleuger
- Department of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany.,Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Patricia Jacobo
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Tècnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Cecilia V Pérez
- Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Tècnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany.,Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany.,Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
29
|
Zhao H, Yu C, He C, Mei C, Liao A, Huang D. The Immune Characteristics of the Epididymis and the Immune Pathway of the Epididymitis Caused by Different Pathogens. Front Immunol 2020; 11:2115. [PMID: 33117332 PMCID: PMC7561410 DOI: 10.3389/fimmu.2020.02115] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/05/2020] [Indexed: 01/26/2023] Open
Abstract
The epididymis is an important male accessory sex organ where sperm motility and fertilization ability develop. When spermatozoa carrying foreign antigens enter the epididymis, the epididymis shows "immune privilege" to tolerate them. It is well-known that a tolerogenic environment exists in the caput epididymis, while pro-inflammatory circumstances prefer the cauda epididymis. This meticulously regulated immune environment not only protects spermatozoa from autoimmunity but also defends spermatozoa against pathogenic damage. Epididymitis is one of the common causes of male infertility. Up to 40% of patients suffer from permanent oligospermia or azoospermia. This is related to the immune characteristics of the epididymis itself. Moreover, epididymitis induced by different pathogenic microbial infections has different characteristics. This article elaborates on the distribution and immune response characteristics of epididymis immune cells, the role of epididymis epithelial cells (EECs), and the epididymis defense against different pathogenic infections (such as uropathogenic Escherichia coli, Chlamydia trachomatis, and viruses to provide therapeutic approaches for epididymitis and its subsequent fertility problems.
Collapse
Affiliation(s)
- Hu Zhao
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caiqian Yu
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu He
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunlei Mei
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aihua Liao
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghui Huang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Mendelsohn AC, Sanmarco LM, Spallanzani RG, Brown D, Quintana FJ, Breton S, Battistone MA. From initial segment to cauda: a regional characterization of mouse epididymal CD11c + mononuclear phagocytes based on immune phenotype and function. Am J Physiol Cell Physiol 2020; 319:C997-C1010. [PMID: 32991210 DOI: 10.1152/ajpcell.00392.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Successful sperm maturation and storage rely on a unique immunological balance that protects the male reproductive organs from invading pathogens and spermatozoa from a destructive autoimmune response. We previously characterized one subset of mononuclear phagocytes (MPs) in the murine epididymis, CX3CR1+ cells, emphasizing their different functional properties. This population partially overlaps with another subset of understudied heterogeneous MPs, the CD11c+ cells. In the present study, we analyzed the CD11c+ MPs for their immune phenotype, morphology, and antigen capturing and presenting abilities. Epididymides from CD11c-EYFP mice, which express enhanced yellow fluorescent protein (EYFP) in CD11c+ MPs, were divided into initial segment (IS), caput/corpus, and cauda regions. Flow cytometry analysis showed that CD11c+ MPs with a macrophage phenotype (CD64+ and F4/80+) were the most abundant in the IS, whereas those with a dendritic cell signature [CD64- major histocompatibility complex class II (MHCII)+] were more frequent in the cauda. Immunofluorescence revealed morphological and phenotypic differences between CD11c+ MPs in the regions examined. To assess the ability of CD11c+ cells to take up antigens, CD11c-EYFP mice were injected intravenously with ovalbumin. In the IS, MPs expressing macrophage markers were most active in taking up the antigens. A functional antigen-presenting coculture study was performed, whereby CD4+ T cells were activated after ovalbumin presentation by CD11c+ epididymal MPs. The results demonstrated that CD11c+ MPs in all regions were capable of capturing and presenting antigens. Together, this study defines a marked regional variation in epididymal antigen-presenting cells that could help us understand fertility and contraception but also has larger implications in inflammation and disease pathology.
Collapse
Affiliation(s)
- A C Mendelsohn
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - L M Sanmarco
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - R G Spallanzani
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - D Brown
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - F J Quintana
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - S Breton
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Obstetrics, Gynecology and Reproduction, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec, Canada
| | - M A Battistone
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Feng X, Ma BF, Liu B, Ding P, Wei JH, Cheng P, Li SY, Chen DX, Sun ZJ, Li Z. The Involvement of the Chemokine RANTES in Regulating Luminal Acidification in Rat Epididymis. Front Immunol 2020; 11:583274. [PMID: 33072131 PMCID: PMC7544837 DOI: 10.3389/fimmu.2020.583274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/07/2020] [Indexed: 12/03/2022] Open
Abstract
Background A complex interplay between different cell types in the epithelium leads to activation of the luminal acidifying capacity of the epididymis, a process that is crucial for sperm maturation and storage. Basal cells sense the luminal angiotensin II (ANG II) and stimulate proton secretion in clear cells through nitric oxide (NO). Our previous study has shown the chemokine regulated upon activation normal T-cell expressed and secreted (RANTES) was expressed in the F4/80 positive macrophages of human epididymis. The objective of this study was to explore the involvement of RANTES in regulating the luminal acidification in the rat epididymis. Methods The role of RANTES was investigated by in vivo perfusion with recombinant RANTES, Met-RANTES, and PBS of different pH values. Furthermore, rats vasectomy was performed to alter the epididymal luminal pH. RIA was used to measure the tissue homogenate ANG II concentration. Real time-PCR and western blot were employed to examine the expression levels of AGTR2, RANTES, CCR1, CCR5, and iNOS in epididymis. Results RANTES was restricted to the basal macrophages of epididymal ducts and co-localized with its receptors CCR1 and CCR5. Both V-ATPase and iNOS were up-regulated in the cauda epididymis after perfused with recombinant RANTES, while the antagonist Met-RANTES perfusion led to a complete abrogation of the increased expression of V-ATPase in the apical membrane of clear cells and iNOS in macrophages. Upon alkaline perfusion, RANTES expression was significantly increased and the apical accumulation of V-ATPase in the clear cells was induced in the cauda epididymis. The luminal pH in the cauda epididymis increased after vasectomy. The concentration of the ANG II and the expression levels of AGTR2, RANTES, CCR1, CCR5, and iNOS dropped in the cauda epididymis following vasectomy. Conclusion Upon the activation of basal cells, RANTES might induce the NO release from macrophages by interacting with its receptors, which increases proton secretion by adjacent clear cells. Thus, RANTES is possible to participate in the crosstalk among basal cells, macrophages and clear cells for the fine control of an optimum acidic luminal environment that is critical for male fertility.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Bin-Fang Ma
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Bo Liu
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Peng Ding
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Jin-Hua Wei
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Pang Cheng
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Sheng-Yu Li
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Dong-Xu Chen
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Zhi-Jian Sun
- The General Hospital of Northern Theater Command, Shenyang, China
| | - Zhen Li
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
32
|
Indumathy S, Pueschl D, Klein B, Fietz D, Bergmann M, Schuppe HC, Da Silva N, Loveland BE, Hickey MJ, Hedger MP, Loveland KL. Testicular immune cell populations and macrophage polarisation in adult male mice and the influence of altered activin A levels. J Reprod Immunol 2020; 142:103204. [PMID: 33130539 DOI: 10.1016/j.jri.2020.103204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/28/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Detailed morphological characterization of testicular leukocytes in the adult CX3CR1 gfp/+ transgenic mouse identified two distinct CX3CR1 + mononuclear phagocyte (macrophage and dendritic cell) populations: stellate/dendriform cells opposed to the seminiferous tubules (peritubular), and polygonal cells associated with Leydig cells (interstitial). Using confocal microscopy combined with stereological enumeration of CX3CR1gfp/+ cells established that there were twice as many interstitial cells (68%) as peritubular cells (32%). Flow cytometric analyses of interstitial cells from mechanically-dissociated testes identified multiple mononuclear phagocyte subsets based on surface marker expression (CX3CR1, F4/80, CD11c). These cells comprised 80% of total intratesticular leukocytes, as identified by CD45 expression. The remaining leukocytes were CD3+ (T lymphocytes) and NK1.1+ (natural killer cells). Functional phenotype assessment using CD206 (an anti-inflammatory/M2 marker) and MHC class II (an activation marker) identified a potentially tolerogenic CD206+MHCII+ sub-population (12% of total CD45+ cells). Rare testicular subsets of CX3CR1 +CD11c+F4/80+ (4.3%) mononuclear phagocytes and CD3+NK1.1+ (3.1%) lymphocytes were also identified for the first time. In order to examine the potential for the immunoregulatory cytokine, activin A to modulate testicular immune cell populations, testes from adult mice with reduced activin A (Inhba+/-) or elevated activin A (Inha+/-) were assessed using flow cytometry. Although the proportion of F4/80+CD11b+ leukocytes (macrophages) was not affected, the frequency of CD206+MHCII+cells was significantly lower and CD206+MHCII- correspondingly higher in Inha+/- testes. This shift in expression of MHCII in CD206+ macrophages indicates that changes in circulating and/or local activin A influence resident macrophage activation and phenotype and, therefore, the immunological environment of the testis.
Collapse
Affiliation(s)
- S Indumathy
- Centre for Reproductive Health, Hudson Institute of Medical Research, Victoria, Australia; Department of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University, Giessen, Germany; Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Victoria, Australia.
| | - D Pueschl
- Centre for Reproductive Health, Hudson Institute of Medical Research, Victoria, Australia; Department of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University, Giessen, Germany; Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Victoria, Australia
| | - B Klein
- Centre for Reproductive Health, Hudson Institute of Medical Research, Victoria, Australia; Department of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University, Giessen, Germany
| | - D Fietz
- Department of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University, Giessen, Germany
| | - M Bergmann
- Department of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University, Giessen, Germany
| | - H-C Schuppe
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - N Da Silva
- Ohana Biosciences, Cambridge, Massachusetts, United States
| | | | - M J Hickey
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Victoria, Australia
| | - M P Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Victoria, Australia; Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Victoria, Australia
| | - K L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Victoria, Australia; Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Victoria, Australia.
| |
Collapse
|
33
|
Voisin A, Saez F, Drevet JR, Guiton R. The epididymal immune balance: a key to preserving male fertility. Asian J Androl 2020; 21:531-539. [PMID: 30924450 PMCID: PMC6859654 DOI: 10.4103/aja.aja_11_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Up to 15% of male infertility has an immunological origin, either due to repetitive infections or to autoimmune responses mainly affecting the epididymis, prostate, and testis. Clinical observations and epidemiological data clearly contradict the idea that the testis confers immune protection to the whole male genital tract. As a consequence, the epididymis, in which posttesticular spermatozoa mature and are stored, has raised some interest in recent years when it comes to its immune mechanisms. Indeed, sperm cells are produced at puberty, long after the establishment of self-tolerance, and they possess unique surface proteins that cannot be recognized as self. These are potential targets of the immune system, with the risk of inducing autoantibodies and consequently male infertility. Epididymal immunity is based on a finely tuned equilibrium between efficient immune responses to pathogens and strong tolerance to sperm cells. These processes rely on incompletely described molecules and cell types. This review compiles recent studies focusing on the immune cell types populating the epididymis, and proposes hypothetical models of the organization of epididymal immunity with a special emphasis on the immune response, while also discussing important aspects of the epididymal immune regulation such as tolerance and tumour control.
Collapse
Affiliation(s)
- Allison Voisin
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Fabrice Saez
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Joël R Drevet
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Rachel Guiton
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| |
Collapse
|
34
|
Wijayarathna R, Pasalic A, Nicolas N, Biniwale S, Ravinthiran R, Genovese R, Muir JA, Loveland KL, Meinhardt A, Fijak M, Hedger MP. Region-specific immune responses to autoimmune epididymitis in the murine reproductive tract. Cell Tissue Res 2020; 381:351-360. [PMID: 32383098 DOI: 10.1007/s00441-020-03215-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
Abstract
Epididymitis is a common pathology of the male reproductive tract, potentially leading to infertility. Studies on bacterial epididymitis indicate that the cauda epididymis is more susceptible to inflammatory damage than the caput. These regional differences in immunoregulation are further investigated using an experimental autoimmune epididymo-orchitis model. Adult mice were immunized against testicular antigens and tissues were collected at 30 and 50 days following the first immunization. Epididymitis developed progressively; 70% of the mice developed disease at 30 days after the initial immunization and 93% at 50 days. Epididymitis was characterized by epithelial damage, immune cell infiltrates and fibrosis in the cauda, with minimal changes in the corpus, while the caput was unaffected. The incidence of epididymitis was greater than that of orchitis but similar to vasitis. The severity of epididymitis was positively correlated with the orchitis severity. Expression of key genes implicated in epididymal immunoregulation, inflammation and fibrosis, such as Ido1, Tnf, Tgfb1, Ccl2, Il1b, Il10, Cx3cl1 and Col1a1, was unchanged in the caput but increased in proportion to damage severity in the cauda at 50 days. Activin receptor mRNA expression in the cauda was negatively correlated with disease severity. These data suggest that the cauda is highly susceptible to inflammatory damage following an autoimmune challenge but the caput is minimally affected. This may be because the cauda is required to combat ascending infections through a robust inflammatory response, while the caput provides a more tolerogenic environment in order to protect the auto-antigenic sperm released from the testis.
Collapse
Affiliation(s)
- Rukmali Wijayarathna
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia. .,Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.
| | - Alen Pasalic
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Nour Nicolas
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Institute of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany
| | - Sneha Biniwale
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Rama Ravinthiran
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Rosemary Genovese
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Julie A Muir
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Kate L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Andreas Meinhardt
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Institute of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany
| | - Monika Fijak
- Institute of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany
| | - Mark P Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
35
|
Werneck-Gomes H, Campolina-Silva GH, Maria BT, Barata MC, Mahecha GAB, Hess RA, Oliveira CA. Tumor-Associated Macrophages (TAM) are recruited to the aging prostate epithelial lesions and become intermingled with basal cells. Andrology 2020; 8:1375-1386. [PMID: 32157817 DOI: 10.1111/andr.12783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/13/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prostate cancer remains one of the most common cancers in men. Macrophages are thought to be important regulators in cancers, and their potential involvement in prostate cancer should not be overlooked. Therefore, the association between macrophages and the pre-tumorous changes in prostate epithelium during aging deserves further investigation. OBJECTIVES We sought to investigate whether macrophages would be recruited into the prostate epithelium that display pathological lesions commonly found during aging. MATERIALS AND METHODS Prostates of aging rats, with and without treatment with a combination of testosterone and estradiol, were examined for premalignant and malignant epithelial lesions. For comparison, prostates of castrated rats were also investigated. RESULTS Intraepithelial macrophages were found restricted to areas of premalignant and malignant lesions. An unprecedented interaction between macrophages and basal cells was observed in the aging pathological lesions. The intraepithelial macrophages were associated with autophagy, in contrast to those found after castration. In prostate lesions, the intraepithelial macrophages had TAM phenotype (CD68+/iNOS+/CD206+/ARG+), denoting a possible involvement in cancer progression. However, M2 macrophages (CD68+/CD163+) were recruited into the epithelium after castration, possibly to phagocytize cells undergoing apoptosis. DISCUSSION AND CONCLUSION In conclusion, macrophages were recruited into the prostate epithelium and presented diverse phenotypes and morphology, consistent with changes reflected in the hormonal environment. Macrophages with the TAM phenotype were found restricted to areas of premalignant and malignant lesions in aging prostates, denoting a possible involvement in cancer progression. In contrast, M2 macrophages were found in the regressed epithelium after castration.
Collapse
Affiliation(s)
- Hipácia Werneck-Gomes
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Bruna T Maria
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria C Barata
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Germán A B Mahecha
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rex A Hess
- Department of Comparative Biosciences, University of Illinois, Urbana, IL, USA
| | - Cleida A Oliveira
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
36
|
Le Tortorec A, Matusali G, Mahé D, Aubry F, Mazaud-Guittot S, Houzet L, Dejucq-Rainsford N. From Ancient to Emerging Infections: The Odyssey of Viruses in the Male Genital Tract. Physiol Rev 2020; 100:1349-1414. [PMID: 32031468 DOI: 10.1152/physrev.00021.2019] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The male genital tract (MGT) is the target of a number of viral infections that can have deleterious consequences at the individual, offspring, and population levels. These consequences include infertility, cancers of male organs, transmission to the embryo/fetal development abnormalities, and sexual dissemination of major viral pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus. Lately, two emerging viruses, Zika and Ebola, have additionally revealed that the human MGT can constitute a reservoir for viruses cleared from peripheral circulation by the immune system, leading to their sexual transmission by cured men. This represents a concern for future epidemics and further underlines the need for a better understanding of the interplay between viruses and the MGT. We review here how viruses, from ancient viruses that integrated the germline during evolution through old viruses (e.g., papillomaviruses originating from Neanderthals) and more modern sexually transmitted infections (e.g., simian zoonotic HIV) to emerging viruses (e.g., Ebola and Zika) take advantage of genital tract colonization for horizontal dissemination, viral persistence, vertical transmission, and endogenization. The MGT immune responses to viruses and the impact of these infections are discussed. We summarize the latest data regarding the sources of viruses in semen and the complex role of this body fluid in sexual transmission. Finally, we introduce key animal findings that are relevant for our understanding of viral infection and persistence in the human MGT and suggest future research directions.
Collapse
Affiliation(s)
- Anna Le Tortorec
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Giulia Matusali
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Dominique Mahé
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Florence Aubry
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Séverine Mazaud-Guittot
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Laurent Houzet
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| |
Collapse
|
37
|
Gregory M, Cyr DG. Effects of prostaglandin E2 on gap junction protein alpha 1 in the rat epididymis. Biol Reprod 2020; 100:123-132. [PMID: 30060123 DOI: 10.1093/biolre/ioy171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Gap junctions are responsible for intercellular communication. In the adult mammalian epididymis, gap junction protein alpha 1 (GJA1) is localized between basal and either principal or clear cells. GJA1 levels and localization change during the differentiation of basal cells. The present objective was to determine the role of basal cells and prostaglandin E2 (PGE2) on GJA1 in the rat epididymis. Prior to basal cell differentiation, GJA1 is colocalized with TJP1 at the apical lateral margins between adjacent epithelial cells. When basal cells are present, GJA1 becomes associated between basal and principal cells, where it is primarily immunolocalized until adulthood. Basal cells express TP63, differentiate from epithelial cells, and produce prostaglandin-endoperoxide synthase 1 by 21 days of age. Prior to day 21, GJA1and TP63 are not strongly associated at the apical region. However, by day 28, TP63-positive basal cells migrate to the base of the epithelium, and also express GJA1. To assess effects of PGE2 on GJA1, rat caput epididymal (RCE) cells were exposed to PGE2 (50 μM) for 3 h. PGE2 increased levels of Gja1 mRNA in RCE cells, while levels of Gjb1, Gjb2, Gjb4, and GjB5 were unaltered. Furthermore, PGE2 increased protein levels of GJA1, phospho-GJA1, phospho-AKT, CTNNB1, and phospho-CTNNB1. Total AKT and the tight junction protein claudin1 were also not altered by PGE2. Data suggest that development of the epididymal epithelium and differentiation of epididymal basal cells regulate the targeting of GJA1, and that this appears to be mediated by PGE2.
Collapse
Affiliation(s)
- Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, University of Quebec, Laval, Quebec, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, University of Quebec, Laval, Quebec, Canada
| |
Collapse
|
38
|
Battistone MA, Spallanzani RG, Mendelsohn AC, Capen D, Nair AV, Brown D, Breton S. Novel role of proton-secreting epithelial cells in sperm maturation and mucosal immunity. J Cell Sci 2019; 133:jcs.233239. [PMID: 31636115 DOI: 10.1242/jcs.233239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
Epithelial cells are immune sensors and mediators that constitute the first line of defense against infections. Using the epididymis, a model for studying tubular organs, we uncovered a novel and unexpected role for professional proton-secreting 'clear cells' in sperm maturation and immune defense. The epididymal epithelium participates in the maturation of spermatozoa via the establishment of an acidic milieu and transfer of proteins to sperm cells, a poorly characterized process. We show that proton-secreting clear cells express mRNA transcripts and proteins that are acquired by maturing sperm, and that they establish close interactions with luminal spermatozoa via newly described 'nanotubes'. Mechanistic studies show that injection of bacterial antigens in vivo induces chemokine expression in clear cells, followed by macrophage recruitment into the organ. Injection of an inflammatory intermediate mediator (IFN-γ) increased Cxcl10 expression in clear cells, revealing their participation as sensors and mediators of inflammation. The functional diversity adopted by clear cells might represent a generalized phenomenon by which similar epithelial cells decode signals, communicate with neighbors and mediate mucosal immunity, depending on their precise location within an organ.
Collapse
Affiliation(s)
- Maria A Battistone
- Program in Membrane Biology, Center for Systems Biology and Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Raul German Spallanzani
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alexandra C Mendelsohn
- Program in Membrane Biology, Center for Systems Biology and Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Diane Capen
- Program in Membrane Biology, Center for Systems Biology and Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Anil V Nair
- Program in Membrane Biology, Center for Systems Biology and Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Dennis Brown
- Program in Membrane Biology, Center for Systems Biology and Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Sylvie Breton
- Program in Membrane Biology, Center for Systems Biology and Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
39
|
Archana SS, Selvaraju S, Binsila BK, Arangasamy A, Krawetz SA. Immune regulatory molecules as modifiers of semen and fertility: A review. Mol Reprod Dev 2019; 86:1485-1504. [DOI: 10.1002/mrd.23263] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Affiliation(s)
- S. Siddalingappa Archana
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
- Department of BiochemistryJain University Bengaluru India
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
| | - B. Krishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
| | - Stephen A. Krawetz
- Department of Obstetrics and GynecologyWayne State University School of Medicine Detroit Michigan
- Center for Molecular Medicine and GeneticsC.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine Detroit Michigan
| |
Collapse
|
40
|
Breton S, Nair AV, Battistone MA. Epithelial dynamics in the epididymis: role in the maturation, protection, and storage of spermatozoa. Andrology 2019; 7:631-643. [PMID: 31044554 PMCID: PMC6688936 DOI: 10.1111/andr.12632] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/07/2019] [Accepted: 03/29/2019] [Indexed: 01/10/2023]
Abstract
Epithelial cells line the lumen of tubular organs and are key players in their respective functions. They establish a unique luminal environment by providing a protective barrier and by performing vectorial transport of ions, nutrients, solutes, proteins, and water. Complex intercellular communication networks, specific for each organ, ensure their interaction with adjacent epithelial and non-epithelial cells, allowing them to respond to and modulate their immediate environment. In the epididymis, several epithelial cell types work in a concerted manner to establish a luminal acidic milieu that is essential for the post-testicular maturation and storage of spermatozoa. The epididymis also prevents autoimmune responses against auto-antigenic spermatozoa, while ensuring protection against ascending and blood pathogens. This is achieved by a network of immune cells that are in close contact and interact with epithelial cells. This review highlights the coordinated interactions between spermatozoa, basal cells, principal cells, narrow cells, clear cells, and immune cells that contribute to the maturation, protection, selection, and storage of spermatozoa in the lumen of the epididymis.
Collapse
Affiliation(s)
- S Breton
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Harvard Medical School, Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - A V Nair
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Harvard Medical School, Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - M A Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Harvard Medical School, Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
41
|
Wijayarathna R, Hedger MP. Activins, follistatin and immunoregulation in the epididymis. Andrology 2019; 7:703-711. [DOI: 10.1111/andr.12682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022]
Affiliation(s)
- R. Wijayarathna
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Vic. Australia
- Department of Molecular and Translational Sciences School of Clinical Sciences Monash University Clayton Vic. Australia
| | - M. P. Hedger
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Vic. Australia
- Department of Molecular and Translational Sciences School of Clinical Sciences Monash University Clayton Vic. Australia
| |
Collapse
|
42
|
Guiton R, Voisin A, Henry-Berger J, Saez F, Drevet JR. Of vessels and cells: the spatial organization of the epididymal immune system. Andrology 2019; 7:712-718. [PMID: 31106984 DOI: 10.1111/andr.12637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/14/2019] [Accepted: 04/01/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND One third of infertility cases in couples worldwide has an exclusive male origin and immune disorders, essentially due to repetitive infections, are emerging an cause of male infertility. As the place of sperm maturation, epididymis must be preserved from excessive immune responses that may arise following infections of the male genital tract. At the same time, epididymis must set and maintain a tolerogenic environment in order not to destroy sperm cells that enter the tissue at puberty, long after the immune system has been taught to recognize self pathogens. The immune cells that populate the epididymis have raised growing interest over the last thirty years but they may be not sufficient to understand the immune balance existing in this organ, between immune response to pathogens and tolerance to spermatozoa. Indeed, immune cells are the most motile cells in the organism and need blood and lymphatic vessels to traffic between lymphoid organs and sites of infection to induce efficient responses. OBJECTIVES To review the literature on the blood and lymphatic vessels, and on the immune cells present at steady state in the rodent epididymis (rat and mouse). MATERIALS AND METHODS PubMed database was searched for studies reporting on the spatial organization of the rodent epididymal vasculature and immune cell types at steady state. This search was combined with recent findings from our team. RESULTS At steady state, the rodent epididymis presents with dense blood and lymphatic networks, and a large panel of immune cells distributed across the interstitum and epithelium along the organ. CONCLUSIONS The immune system of the rodent epididymis is highly organized. Exploring its functions, especially in an infectious context, is the essential coming step before any transposition to human.
Collapse
Affiliation(s)
- R Guiton
- GReD laboratory, CNRS, UMR 6293 - INSERM U1103 - Clermont Auvergne University, Clermont-Ferrand, France
| | - A Voisin
- GReD laboratory, CNRS, UMR 6293 - INSERM U1103 - Clermont Auvergne University, Clermont-Ferrand, France
| | - J Henry-Berger
- GReD laboratory, CNRS, UMR 6293 - INSERM U1103 - Clermont Auvergne University, Clermont-Ferrand, France
| | - F Saez
- GReD laboratory, CNRS, UMR 6293 - INSERM U1103 - Clermont Auvergne University, Clermont-Ferrand, France
| | - J R Drevet
- GReD laboratory, CNRS, UMR 6293 - INSERM U1103 - Clermont Auvergne University, Clermont-Ferrand, France
| |
Collapse
|
43
|
Pinel L, Mandon M, Cyr DG. Tissue regeneration and the epididymal stem cell. Andrology 2019; 7:618-630. [PMID: 31033244 DOI: 10.1111/andr.12635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/24/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND In most pseudostratified epithelia, basal cells represent a multipotent adult stem cell population. These cells generally remain in a quiescent state, until they are stimulated to respond to tissue damage by initiating epithelial regeneration. In the epididymis, cell proliferation occurs at a relatively slow rate under normal physiological conditions. Epididymal basal cells have been shown to share common properties with multipotent adult stem cells. The development of organoids from stem cells represents a novel approach for understanding cellular differentiation and characterization of stem cells. OBJECTIVE To review the literature on tissue regeneration in the epididymis and demonstrate the presence of an epididymal stem cell population. METHODS PubMed database was searched for studies reporting on cell proliferation, regeneration, and stem cells in the epididymis. Three-dimensional cell culture of epididymal cells was used to determine whether these can develop into organoids in a similar fashion to stem cells from other tissues. RESULTS The epididymal epithelium can rapidly regenerate following orchidectomy or efferent duct ligation, in order to maintain epithelial integrity. Studies have isolated a highly purified fraction of rat epididymal basal cells and reported that these cells displayed properties similar to those of multipotent adult stem cells. In two-dimensional cell culture conditions, these cells differentiated into cells which expressed connexin 26, a marker of columnar cells, and cytokeratin 8. Furthermore, three-dimensional cell culture of epididymal cells resulted in the formation of organoids, a phenomenon associated with the proliferation and differentiation of stem cells in vitro. CONCLUSIONS The rapid proliferation and tissue regeneration of the epididymal epithelium to preserve its integrity following tissue damage as well as the ability of cells to differentiate into organoids in vitro support the notion of a resident progenitor/stem cell population in the adult epididymis.
Collapse
Affiliation(s)
- L Pinel
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | - M Mandon
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | - D G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| |
Collapse
|
44
|
Guazzone VA. Exploring the role of antigen presenting cells in male genital tract. Andrologia 2018; 50:e13120. [DOI: 10.1111/and.13120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/25/2018] [Accepted: 07/12/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Vanesa A. Guazzone
- Universidad de Buenos Aires; Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II.; Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires; Instituto de Investigaciones Biomédicas (INBIOMED); Buenos Aires Argentina
| |
Collapse
|
45
|
Oliveira R, Hermo L, Pshezhetsky AV, Morales CR. Presence of aberrant epididymal tubules revealing undifferentiated epithelial cells and absence of spermatozoa in a combined neuraminidase-3 and -4 deficient adult mouse model. PLoS One 2018; 13:e0206173. [PMID: 30359429 PMCID: PMC6201937 DOI: 10.1371/journal.pone.0206173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/08/2018] [Indexed: 11/28/2022] Open
Abstract
Mammalian neuraminidases are responsible for the removal of sialic acids from glycoproteins and glycolipids and function in a variety of biological phenomena such as lysosomal catabolism and control of cell differentiation and growth. Disruption of Neu3 and Neu4 genes has led to the generation of a mouse model revealing severe neurological disorders. In this study a morphological analysis was performed on the epididymis of 3 month-old neu3-/-neu4-/- mice as compared with wild type animals. In neu3-/-neu4-/- mice the majority of tubules of the main epididymal duct were large and lined by differentiated epithelial cells, but revealing lysosomal abnormalities in principal and basally located cells. Of particular note was the presence of aberrant epididymal tubules (ATs) juxtaposed next to the main tubules. ATs were small and of different shapes. Layers of myoid cells encased ATs, which they shared with those of the main tubules, but no interstitial space existed between the two. While some ATs were a dense mass of cells, others revealed a distinct lumen devoid of spermatozoa. The latter revealed an undifferentiated epithelium consisting of cuboidal cells and basal cells, with junctional complexes evident at the luminal front. The absence of spermatozoa from the lumen of the ATs suggests that they were not in contact with the main duct, as also implied by the undifferentiated appearance of the epithelium suggesting lack of lumicrine factors. Despite the presence of ATs, the main duct contained ample spermatozoa, as the neu3-/-neu4-/- mice were fertile. Taken together the data suggest that absence of Neu3 and Neu4 leads to defects in cell adhesion and differentiation of epithelial cells resulting in aberrant tubular offshoots that fail to remain connected with the main duct. Hence Neu3 and Neu 4 play an essential role in the guidance of epithelial cells during early embryonic formation.
Collapse
Affiliation(s)
- Regiana Oliveira
- Department of Anatomy and Cell Biology, McGill University–Montreal, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University–Montreal, Canada
| | - Alexey V. Pshezhetsky
- Division of Medical Genetics, Centre Hospitalière Universitaire Sainte-Justine, University of Montréal—Montreal, Canada
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University–Montreal, Canada
- * E-mail:
| |
Collapse
|
46
|
Pierucci-Alves F, Midura-Kiela MT, Fleming SD, Schultz BD, Kiela PR. Transforming Growth Factor Beta Signaling in Dendritic Cells Is Required for Immunotolerance to Sperm in the Epididymis. Front Immunol 2018; 9:1882. [PMID: 30166986 PMCID: PMC6105693 DOI: 10.3389/fimmu.2018.01882] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 07/30/2018] [Indexed: 01/16/2023] Open
Abstract
The epididymis exhibits a less restrictive physical blood–tissue barrier than the testis and, while numerous immunosuppressive factors have been identified in the latter, no mechanisms for epididymal immunotolerance have been identified to date. Therefore, data are currently insufficient to explain how the immune system tolerates the extremely large load of novel antigens expressed on sperm, which become present in the male body after puberty, i.e., long after central tolerance was established. This study tested the hypothesis that transforming growth factor beta (TGFβ) signaling in dendritic cells (DCs) is required for immunotolerance to sperm located in the epididymis, and that male mice lacking TGFβ signaling in DCs would develop severe epididymal inflammation. To test this, we employed adult Tgfbr2ΔDC males, which exhibit a significant reduction of Tgfbr2 expression and TGFβ signaling in DCs, as reported previously. Results show that Tgfbr2ΔDC males exhibit sperm-specific immune response and severe epididymal leukocytosis. This phenotype is consistent with epididymal loss of immunotolerance to sperm and suggests that TGFβ signaling in DCs is a factor required for a non-inflammatory steady state in the epididymis, and therefore for male tract homeostasis and function.
Collapse
Affiliation(s)
| | | | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Bruce D Schultz
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - Pawel R Kiela
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
47
|
Fijak M, Pilatz A, Hedger MP, Nicolas N, Bhushan S, Michel V, Tung KSK, Schuppe HC, Meinhardt A. Infectious, inflammatory and 'autoimmune' male factor infertility: how do rodent models inform clinical practice? Hum Reprod Update 2018; 24:416-441. [PMID: 29648649 PMCID: PMC6016649 DOI: 10.1093/humupd/dmy009] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/02/2018] [Accepted: 03/10/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Infection and inflammation of the reproductive tract are significant causes of male factor infertility. Ascending infections caused by sexually transmitted bacteria or urinary tract pathogens represent the most frequent aetiology of epididymo-orchitis, but viral, haematogenous dissemination is also a contributory factor. Limitations in adequate diagnosis and therapy reflect an obvious need for further understanding of human epididymal and testicular immunopathologies and their contribution to infertility. A major obstacle for advancing our knowledge is the limited access to suitable tissue samples. Similarly, the key events in the inflammatory or autoimmune pathologies affecting human male fertility are poorly amenable to close examination. Moreover, the disease processes generally have occurred long before the patient attends the clinic for fertility assessment. In this regard, data obtained from experimental animal models and respective comparative analyses have shown promise to overcome these restrictions in humans. OBJECTIVE AND RATIONALE This narrative review will focus on male fertility disturbances caused by infection and inflammation, and the usefulness of the most frequently applied animal models to study these conditions. SEARCH METHODS An extensive search in Medline database was performed without restrictions until January 2018 using the following search terms: 'infection' and/or 'inflammation' and 'testis' and/or 'epididymis', 'infection' and/or 'inflammation' and 'male genital tract', 'male infertility', 'orchitis', 'epididymitis', 'experimental autoimmune' and 'orchitis' or 'epididymitis' or 'epididymo-orchitis', antisperm antibodies', 'vasectomy'. In addition to that, reference lists of primary and review articles were reviewed for additional publications independently by each author. Selected articles were verified by each two separate authors and discrepancies discussed within the team. OUTCOMES There is clear evidence that models mimicking testicular and/or epididymal inflammation and infection have been instructive in a better understanding of the mechanisms of disease initiation and progression. In this regard, rodent models of acute bacterial epididymitis best reflect the clinical situation in terms of mimicking the infection pathway, pathogens selected and the damage, such as fibrotic transformation, observed. Similarly, animal models of acute testicular and epididymal inflammation using lipopolysaccharides show impairment of reproduction, endocrine function and histological tissue architecture, also seen in men. Autoimmune responses can be studied in models of experimental autoimmune orchitis (EAO) and vasectomy. In particular, the early stages of EAO development showing inflammatory responses in the form of peritubular lymphocytic infiltrates, thickening of the lamina propria of affected tubules, production of autoantibodies against testicular antigens or secretion of pro-inflammatory mediators, replicate observations in testicular sperm extraction samples of patients with 'mixed atrophy' of spermatogenesis. Vasectomy, in the form of sperm antibodies and chronic inflammation, can also be studied in animal models, providing valuable insights into the human response. WIDER IMPLICATIONS This is the first comprehensive review of rodent models of both infectious and autoimmune disease of testis/epididymis, and their clinical implications, i.e. their importance in understanding male infertility related to infectious and non-infectious/autoimmune disease of the reproductive organs.
Collapse
Affiliation(s)
- Monika Fijak
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
| | - Adrian Pilatz
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig University of Giessen, Germany
| | - Mark P Hedger
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, Australia
| | - Nour Nicolas
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, Australia
| | - Sudhanshu Bhushan
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
| | - Vera Michel
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
| | - Kenneth S K Tung
- Departments of Pathology and Microbiology, Beirne Carter Center for Immunology Research, University of Virginia, 345 Crispell Drive, Charlottesville, VA, USA
| | - Hans-Christian Schuppe
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig University of Giessen, Germany
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, Australia
| |
Collapse
|
48
|
Chauvigné F, Parhi J, Ducat C, Ollé J, Finn RN, Cerdà J. The cellular localization and redistribution of multiple aquaporin paralogs in the spermatic duct epithelium of a maturing marine teleost. J Anat 2018; 233:177-192. [PMID: 29806093 DOI: 10.1111/joa.12829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2018] [Indexed: 12/15/2022] Open
Abstract
Aquaporin-mediated fluid transport in the mammalian efferent duct and epididymis is believed to play a role in sperm maturation and concentration. In fish, such as the marine teleost gilthead seabream (Sparus aurata), the control of fluid homeostasis in the spermatic duct seems also to be crucial for male fertility, but no information exists on the expression and distribution of aquaporins. In this study, reverse transcriptase-polymerase chain reaction and immunoblotting analyses, employing available and newly raised paralog-specific antibodies for seabream aquaporins, indicate that up to nine functional aquaporins, Aqp0a, -1aa, -1ab, -3a, -4a, -7, -8bb, -9b and -10b, are expressed in the spermatic duct. Immunolocalization of the channels in the resting spermatic duct reveals that Aqp0a, -1aa, -4a, -7 and -10b are expressed in the monolayered luminal epithelium, Aqp8b and -9b in smooth muscle fibers, and Aqp1ab and -3a in different interstitial lamina cells. In the epithelial cells, Aqp0a and -1aa are localized in the short apical microvilli, and Aqp4a and -10b show apical and basolateral staining, whereas Aqp7 is solely detected in vesicular compartments. Upon spermiation, an elongation of the epithelial cells sterocilia, as well as the folding of the epithelium, is observed. At this stage, single- and double-immunostaining, using two aquaporin paralogs or the Na+ /K+ -ATPase membrane marker, indicate that Aqp1ab, -3a, -7, -8bb and -9b staining remains unchanged, whereas in epithelial cells Aqp1aa translation is supressed, Aqp4a internalizes, and Aqp0a and -10b accumulate in the apical, lateral and basal plasma membrane. These findings uncover a cell type- and region-specific distribution of multiple aquaporins in the piscine spermatic duct, which shares conserved features of the mammalian system. The data therefore suggest that aquaporins may play different roles in the regulation of fluid homeostasis and sperm maturation in the male reproductive tract of fish.
Collapse
Affiliation(s)
- François Chauvigné
- Group of Comparative Molecular Physiology, IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Janmejay Parhi
- Fish Genetics and Reproduction Department, College of Fisheries, Central Agricultural University, Lembucherra, Tripura, India
| | - Carla Ducat
- Group of Comparative Molecular Physiology, IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Judith Ollé
- Group of Comparative Molecular Physiology, IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Roderick Nigel Finn
- Group of Comparative Molecular Physiology, IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Department of Biological Sciences, Bergen High Technology Centre, University of Bergen, Bergen, Norway
| | - Joan Cerdà
- Group of Comparative Molecular Physiology, IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
49
|
Voisin A, Whitfield M, Damon-Soubeyrand C, Goubely C, Henry-Berger J, Saez F, Kocer A, Drevet JR, Guiton R. Comprehensive overview of murine epididymal mononuclear phagocytes and lymphocytes: Unexpected populations arise. J Reprod Immunol 2018; 126:11-17. [PMID: 29421624 DOI: 10.1016/j.jri.2018.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 12/19/2017] [Accepted: 01/16/2018] [Indexed: 12/01/2022]
Abstract
Despite increasing evidence that epididymal immune disorders can lead to infertility, the cells and mechanisms underlying epididymal immunity remain poorly understood. In this study, we propose a rather exhaustive overview of innate and adaptive immune cells present in the murine caput and cauda epididymis. Using flow cytometry and a wide set of markers, we screened the broadest panel of immune cells ever, in this organ. For the first time, we unequivocally quantified the innate populations of monocytes, macrophages, and dendritic cells subtypes. We also revealed the presence of B cells, gamma delta T cells, and double negative T cells in the murine epididymis. They were localized by immunofluorescence stainings, and appeared to be all present in the interstitium and epithelium along the organ, but with respective preferential regional distribution. Altogether, these findings provide new insights on the actors and potential mechanisms involved in the immune responses against genital tract ascending pathogens and in the setting and maintenance of tolerance toward the sperm cells.
Collapse
Affiliation(s)
- Allison Voisin
- GReD laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France
| | - Marjorie Whitfield
- GReD laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France
| | | | - Chantal Goubely
- GReD laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France
| | - Joëlle Henry-Berger
- GReD laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France
| | - Fabrice Saez
- GReD laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ayhan Kocer
- GReD laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France
| | - Joël R Drevet
- GReD laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Rachel Guiton
- GReD laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
50
|
Zhang BL, Gao DY, Zhang XX, Shi S, Shum W. Whole-cell Patch-clamp Recordings of Isolated Primary Epithelial Cells from the Epididymis. J Vis Exp 2017. [PMID: 28809845 DOI: 10.3791/55700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The epididymis is an essential organ for sperm maturation and reproductive health. The epididymal epithelium consists of intricately connected cell types that are distinct not only in molecular and morphological features but also in physiological properties. These differences reflect their diverse functions, which together establish the necessary microenvironment for the post-testicular sperm development in the epididymal lumen. The understanding of the biophysical properties of the epididymal epithelial cells is critical for revealing their functions in sperm and reproductive health, under both physiological and pathophysiological conditions. While their functional properties have yet to be fully elucidated, the epididymal epithelial cells can be studied using the patch-clamp technique, a tool for measuring the cellular events and the membrane properties of single cells. Here, we describe the methods of cell isolation and whole-cell patch-clamp recording to measure the electrical properties of primary dissociated epithelial cells from the rat cauda epididymides.
Collapse
Affiliation(s)
- Bao Li Zhang
- School of Life Science and Technology, ShanghaiTech University; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of Chinese Academy of Sciences
| | - Da Yuan Gao
- School of Life Science and Technology, ShanghaiTech University; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of Chinese Academy of Sciences
| | - Xiao Xu Zhang
- School of Life Science and Technology, ShanghaiTech University; University of Chinese Academy of Sciences
| | - Shuo Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University
| | - Winnie Shum
- School of Life Science and Technology, ShanghaiTech University;
| |
Collapse
|