1
|
Yuan J, Dong X, Zhou S, Nao J. Pharmacological activities and therapeutic potential of Hyperoside in the treatment of Alzheimer's and Parkinson's diseases: A systemic review. Neuroscience 2024:S0306-4522(24)00565-7. [PMID: 39489478 DOI: 10.1016/j.neuroscience.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are neurodegenerative disorders that significantly impact well-being. Hyperoside (HYP), a flavonoid found in various plant species, particularly within the genus Hypericin, exhibits diverse pharmacological properties. However, the precise mechanisms underlying the anti-AD and anti-PD effects of HYP remain unclear. This systematic review consolidated existing preclinical research on HYP by conducting a comprehensive literature survey and analysis. The objective was to corroborate the therapeutic efficacy of HYP in AD and PD models and to synthesize its potential therapeutic mechanisms. Searches were conducted in the PubMed, CNKI, and Web of Science databases. Reliability assessment of the 17 included studies confirmed the credibility of the mechanisms of action of HYP against AD and PD. We systematically assessed the neuroprotective potential of HYP in in vivo and in vitro models of AD and PD. Our findings indicated that HYP can mitigate, intervene in, and treat AD and PD animal models and associated cells through various mechanisms, including anti-oxidative, anti-inflammatory, anti-apoptotic, anti-Aβ aggregation, and cholinesterase inhibitory activities. Therefore, HYP potentially exerts anti-AD and anti-PD effects through diverse mechanisms, making it a promising candidate for therapeutic intervention in both AD and PD.
Collapse
Affiliation(s)
- Jiayu Yuan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Siyu Zhou
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
2
|
Curcio AG, Ribeiro TIS, Gomes HF, Carvalho CSPD, Bussiere MCC, Dias AJB. Increased in vitro production of bovine embryos resulting from oocyte maturation in the presence of triciribine, a specific inhibitor of AKT. Theriogenology 2024; 231:222-227. [PMID: 39488152 DOI: 10.1016/j.theriogenology.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
The aim of this study was to evaluate the effect of different concentrations of triciribine, a selective Akt inhibitor, on various aspects of oocyte maturation and on the IVF of bovine embryos. Cumulus-oocyte complexes (COCs) were matured in vitro in medium supplemented with: 0 (control), 1, 5, 10, and 20 μM of triciribine. The nuclear maturation was assessed by staining with acetic orcein, while the cytoplasmic maturation was evaluated by mitochondrial (MitoTracker® Red CMXRos) and lipid droplets distribution (LipidTOX). COCs were fertilized in vitro and cultured for nine days. Cleavage rates, blastocyst production, and hatching rates were determined on days three, seven, and nine of in vitro culture, respectively. Oocytes from COCs treated with 1 μM of triciribine were stained at 3, 6, and 9 h of IVM to determine the inhibitor's involvement in germinal vesicle breakdown. Analysis of variance (ANOVA) of the data was performed and the means were compared using the SNK test at a 5 % significance level. Exposure of COCs to 1, 5, and 10 μM of triciribine did not alter the number of matured oocytes (P < 0.05), a concentration of 20 μM reduced the number of oocytes in MII with a consequent increase in oocytes in MI (P < 0.05). This concentration markedly reduced the number of oocytes with peripheral cortical granules and the rates of cleavage and blastocysts (P < 0.05). On the other hand, when COCs were matured in the presence of 1 μM, there was an increase in the blastocyst rate (P < 0.05), but without altering the timing of meiosis resumption (P < 0.05). It is concluded that the Akt pathway participates in the nuclear and cytoplasmic events of in vitro maturation of bovine oocytes, but through mechanisms that do not interfere with germinal vesicle breakdown. Modulation of Akt activity in bovine COCs during IVM with 1 μM of triciribine increases the in vitro production of bovine embryos.
Collapse
Affiliation(s)
- A G Curcio
- Laboratory of Animal Breeding and Genetic Improvement - Norte Fluminense State University, Brazil
| | - T I S Ribeiro
- Laboratory of Animal Breeding and Genetic Improvement - Norte Fluminense State University, Brazil
| | - H F Gomes
- Laboratory of Biochemistry and Cell Biology of Glycoconjugates, Department of Glycobiology - Federal University of Rio de Janeiro, Brazil
| | - C S Paes de Carvalho
- Laboratory of Animal Breeding and Genetic Improvement - Norte Fluminense State University, Brazil
| | - M C C Bussiere
- Laboratory of Animal Breeding and Genetic Improvement - Norte Fluminense State University, Brazil
| | - A J B Dias
- Laboratory of Animal Breeding and Genetic Improvement - Norte Fluminense State University, Brazil.
| |
Collapse
|
3
|
Fang YQ, Zhang HK, Wei QQ, Li YH. Brown adipose tissue-derived exosomes improve polycystic ovary syndrome in mice via STAT3/GPX4 signaling pathway. FASEB J 2024; 38:e70062. [PMID: 39305125 DOI: 10.1096/fj.202401346r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
Polycystic ovary syndrome (PCOS) is associated with impaired adipose tissue physiology. Elevated brown adipose tissue (BAT) mass or activity has shown potential in the treatment of PCOS. In this study, we aimed to investigate whether BAT-derived exosomes (BAT-Exos), as potential biomarkers of BAT activity, exert similar benefits as BAT in the treatment of PCOS. PCOS was induced in female C57BL/6J mice orally administered 1 mg/kg of letrozole for 21 days. Subsequently, the animals underwent transplantation with BAT or administered BAT-Exos (200 μg) isolated from young healthy mice via the tail vein; healthy female mice were used as controls. The results indicate that BAT-Exos treatment significantly reduced body weight and improved insulin resistance in PCOS mice. In addition, BAT-Exos improved ovulation function by reversing the acyclicity of the estrous cycle, decreasing circulating luteinizing hormone and testosterone, recovering ovarian performance, and improving oocyte quality, leading to a higher pregnancy rate and litter size. Furthermore, western blotting revealed reduced expression of signal transducer and activator of transcription 3 (STAT3) and increased expression of glutathione peroxidase 4 (GPX4) in the ovaries of mice in the BAT-Exos group. To further explore the role of the STAT3/GPX4 signaling pathway in PCOS mice, we treated the mice with an intraperitoneal injection of 5 mg/kg stattic, a STAT3 inhibitor. Consistent with BAT-Exos treatment, the administration of stattic rescued letrozole-induced PCOS phenotypes. These findings suggest that BAT-Exos treatment might be a potential therapeutic strategy for PCOS and that the STAT3/GPX4 signaling pathway is a critical therapeutic target for PCOS.
Collapse
Affiliation(s)
- Yu-Qing Fang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Han-Ke Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiong-Qiong Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan-Hui Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Harvey AJ, Willson BE, Surrey ES, Gardner DK. Ovarian stimulation protocols: impact on oocyte and endometrial quality and function. Fertil Steril 2024:S0015-0282(24)01973-3. [PMID: 39197516 DOI: 10.1016/j.fertnstert.2024.08.340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Ovarian stimulation (OS) truly is an art. There exists a myriad of protocols used to achieve the same goal: stimulating the ovaries to produce more than one mature oocyte to improve the chance of a live birth. However, considerable debate remains as to whether OS impacts oocyte and endometrial quality to affect in vitro fertilization outcomes. Although "more is better" has long been considered the best approach for oocyte retrieval, this review challenges that notion by examining the influence of stimulation on oocyte quality. Likewise, improved outcomes after frozen blastocyst transfer suggest that OS perturbs endometrial preparation and/or receptivity, although correlating changes with implantation success remains a challenge. Therefore, the focus of this review is to summarize our current understanding of perturbations in human oocyte quality and endometrial function induced by exogenous hormone administration. We highlight the need for further research to identify more appropriate markers of oocyte developmental competence as well as those that define the roles of the endometrium in the success of assisted reproductive technology.
Collapse
Affiliation(s)
- Alexandra J Harvey
- Melbourne IVF, East Melbourne, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Bryn E Willson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars Sinai, Los Angeles, California
| | - Eric S Surrey
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado
| | - David K Gardner
- Melbourne IVF, East Melbourne, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
5
|
Michaeli J, Ge N, Huszti E, Greenblatt EM. Is a day 7 blastocyst predictive of the reproductive potential of sibling day 5 and day 6 blastocysts? J Assist Reprod Genet 2024; 41:1835-1842. [PMID: 38730126 PMCID: PMC11263261 DOI: 10.1007/s10815-024-03129-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
PURPOSE To explore if a day 7 blastocyst is predictive of the reproductive potential of sibling day 5 or day 6 blastocysts? METHODS Retrospective cohort of autologous frozen embryo transfers (FET), February 2019 to April 2022. Cycles divided into groups 1 to 5, according to the day of embryo cryopreservation and the presence of a day 7 blastocyst sibling within the cohort: group 1/group 2-day 5 blastocyst without/with a day 7 sibling, group 3/group 4-day 6 blastocyst without/with a day 7 sibling, group 5-day 7 blastocyst. Clinical, ongoing pregnancy and miscarriage rates, cycle, and patient characteristics are reported. Multivariable generalized estimating equations (GEE) logistic regression analysis accounts for confounders and assesses the effect of a sibling day 7 blastocyst on ongoing pregnancy rates of day 5 or day 6 blastocyst FETs. RESULTS Ongoing pregnancy rates are 38.4%, 59.5%, 30.8%, 32.7%, and 4.4% in groups 1-5, respectively. When correcting for maternal age, number of oocytes retrieved and discarded per cohort, and ploidy, embryos cryopreserved on either day 6 or day 7 have reduced odds of ongoing pregnancy after FET compared to day 5 blastocysts (OR = 0.76, IQR [0.61-0.95], p-value = 0.01). However, the presence of a day 7 sibling does not significantly affect odds of ongoing pregnancy of day 5 or day 6 blastocysts compared to the same-day blastocyst without a day 7 sibling (p-value = 0.20 and 0.46, respectively). This finding is consistent within both the Preimplantation Genetic Testing for Aneuploidy (PGT-A) unscreened and screened (euploid) embryo subgroups. CONCLUSIONS Day of embryo cryopreservation significantly affects ongoing pregnancy rates. However, day 7 embryos within a cohort do not affect the reproductive potential of sibling day 5 and day 6 blastocysts, suggesting that slow embryo development is an embryo-specific trait.
Collapse
Affiliation(s)
- Jennia Michaeli
- Mount Sinai Fertility, Sinai Health System, 250 Dundas St. West, Suite 700, Toronto, ON, M5T 2Z5, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, 123 Edward St., Suite 1200, Toronto, ON, M5G 1E2, Canada.
| | - Natalie Ge
- Biostatistics Research Unit, University Health Network, Toronto, ON, Canada
| | - Ella Huszti
- Biostatistics Research Unit, University Health Network, Toronto, ON, Canada
| | - Ellen M Greenblatt
- Mount Sinai Fertility, Sinai Health System, 250 Dundas St. West, Suite 700, Toronto, ON, M5T 2Z5, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, 123 Edward St., Suite 1200, Toronto, ON, M5G 1E2, Canada
| |
Collapse
|
6
|
Mello DF, Perez L, Bergemann CM, Morton KS, Ryde IT, Meyer JN. Comprehensive characterization of mitochondrial bioenergetics at different larval stages reveals novel insights about the developmental metabolism of Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600841. [PMID: 38979262 PMCID: PMC11230424 DOI: 10.1101/2024.06.26.600841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondrial bioenergetic processes are fundamental to development, stress responses, and health. Caenorhabditis elegans is widely used to study developmental biology, mitochondrial disease, and mitochondrial toxicity. Oxidative phosphorylation generally increases during development in many species, and genetic and environmental factors may alter this normal trajectory. Altered mitochondrial function during development can lead to both drastic, short-term responses including arrested development and death, and subtle consequences that may persist throughout life and into subsequent generations. Understanding normal and altered developmental mitochondrial biology in C. elegans is currently constrained by incomplete and conflicting reports on how mitochondrial bioenergetic parameters change during development in this species. We used a Seahorse XFe24 Extracellular Flux (XF) Analyzer to carry out a comprehensive analysis of mitochondrial and non-mitochondrial oxygen consumption rates (OCR) throughout larval development in C. elegans. We optimized and describe conditions for analysis of basal OCR, basal mitochondrial OCR, ATP-linked OCR, spare and maximal respiratory capacity, proton leak, and non-mitochondrial OCR. A key consideration is normalization, and we present and discuss results as normalized per individual worm, protein content, worm volume, mitochondrial DNA (mtDNA) count, nuclear DNA (ncDNA) count, and mtDNA:ncDNA ratio. Which normalization process is best depends on the question being asked, and differences in normalization explain some of the discrepancies in previously reported developmental changes in OCR in C. elegans. Broadly, when normalized to worm number, our results agree with previous reports in showing dramatic increases in OCR throughout development. However, when normalized to total protein, worm volume, or ncDNA or mtDNA count, after a significant 2-3-fold increase from L1 to L2 stages, we found small or no changes in most OCR parameters from the L2 to the L4 stage, other than a marginal increase at L3 in spare and maximal respiratory capacity. Overall, our results indicate an earlier cellular shift to oxidative metabolism than suggested in most previous literature.
Collapse
Affiliation(s)
- Danielle F. Mello
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708-0328 United States of America
| | - Luiza Perez
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708-0328 United States of America
| | - Christina M. Bergemann
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708-0328 United States of America
| | - Katherine S. Morton
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708-0328 United States of America
| | - Ian T. Ryde
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708-0328 United States of America
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708-0328 United States of America
| |
Collapse
|
7
|
Nagy N, Hádinger N, Tóth O, Rácz GA, Pintér T, Gál Z, Urbán M, Gócza E, Hiripi L, Acsády L, Vértessy BG. Characterization of dUTPase expression in mouse postnatal development and adult neurogenesis. Sci Rep 2024; 14:13139. [PMID: 38849394 PMCID: PMC11161619 DOI: 10.1038/s41598-024-63405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
The enzyme dUTPase has an essential role in maintaining genomic integrity. In mouse, nuclear and mitochondrial isoforms of the enzyme have been described. Here we present the isoform-specific mRNA expression levels in different murine organs during development using RT-qPCR. In this study, we analyzed organs of 14.5-day embryos and of postnatal 2-, 4-, 10-week- and 13-month-old mice. We demonstrate organ-, sex- and developmental stage-specific differences in the mRNA expression levels of both isoforms. We found high mRNA expression level of the nuclear isoform in the embryo brain, and the expression level remained relatively high in the adult brain as well. This was surprising, since dUTPase is known to play an important role in proliferating cells, and mass production of neural cells is completed by adulthood. Thus, we investigated the pattern of the dUTPase protein expression specifically in the adult brain with immunostaining and found that dUTPase is present in the germinative zones, the subventricular and the subgranular zones, where neurogenesis occurs and in the rostral migratory stream where neuroblasts migrate to the olfactory bulb. These novel findings suggest that dUTPase may have a role in cell differentiation and indicate that accurate dTTP biosynthesis can be vital, especially in neurogenesis.
Collapse
Affiliation(s)
- Nikolett Nagy
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok körútja 2, 1117, Budapest, Hungary.
| | - Nóra Hádinger
- Laboratory of Thalamus Research, Institute of Experimental Medicine, HUN-REN, Szigony utca 43, 1083, Budapest, Hungary
| | - Otília Tóth
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Department of Applied Biotechnology and Food Sciences, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Gergely Attila Rácz
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Department of Applied Biotechnology and Food Sciences, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Tímea Pintér
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
| | - Zoltán Gál
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
| | - Martin Urbán
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
| | - Elen Gócza
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
| | - László Hiripi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
- Laboratory Animal Science Coordination Center, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - László Acsády
- Laboratory of Thalamus Research, Institute of Experimental Medicine, HUN-REN, Szigony utca 43, 1083, Budapest, Hungary
| | - Beáta G Vértessy
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok körútja 2, 1117, Budapest, Hungary.
- Department of Applied Biotechnology and Food Sciences, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary.
| |
Collapse
|
8
|
Zhang D, Deng W, Jiang T, Zhao Y, Bai D, Tian Y, Kong S, Zhang L, Wang H, Gao S, Lu Z. Maternal Ezh1/2 deficiency impairs the function of mitochondria in mouse oocytes and early embryos. J Cell Physiol 2024; 239:e31244. [PMID: 38529784 DOI: 10.1002/jcp.31244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
Maternal histone methyltransferase is critical for epigenetic regulation and development of mammalian embryos by regulating histone and DNA modifications. Here, we reported a novel mechanism by revealing the critical effects of maternal Ezh1/2 deletion on mitochondria in MII oocytes and early embryos in mice. We found that Ezh1/2 knockout in mouse MII oocytes impaired the structure of mitochondria and decreased its number, but membrane potential and respiratory function of mitochondrion were increased. The similar effects of Ezh1/2 deletion have been observed in 2-cell and morula embryos, indicating that the effects of maternal Ezh1/2 deficiency on mitochondrion extend to early embryos. However, the loss of maternal Ezh1/2 resulted in a severe defect of morula: the number, membrane potential, respiratory function, and ATP production of mitochondrion dropped significantly. Content of reactive oxygen species was raised in both MII oocytes and early embryos, suggesting maternal Ezh1/2 knockout induced oxidative stress. In addition, maternal Ezh1/2 ablation interfered the autophagy in morula and blastocyst embryos. Finally, maternal Ezh1/2 deletion led to cell apoptosis in blastocyst embryos in mice. By analyzing the gene expression profile, we revealed that maternal Ezh1/2 knockout affected the expression of mitochondrial related genes in MII oocytes and early embryos. The chromatin immunoprecipitation-polymerase chain reaction assay demonstrated that Ezh1/2 directly regulated the expression of genes Fxyd6, Adpgk, Aurkb, Zfp521, Ehd3, Sgms2, Pygl, Slc1a1, and Chst12 by H3K27me3 modification. In conclusion, our study revealed the critical effect of maternal Ezh1/2 on the structure and function of mitochondria in oocytes and early embryos, and suggested a novel mechanism underlying maternal epigenetic regulation on early embryonic development through the modulation of mitochondrial status.
Collapse
Affiliation(s)
- Dan Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ting Jiang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Yinan Zhao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Dandan Bai
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yingpu Tian
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Leilei Zhang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shaorong Gao
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
9
|
Aoki S, Inoue Y, Hamazaki M, Hara S, Noguchi T, Shirasuna K, Iwata H. miRNAs in Follicular and Oviductal Fluids Support Global DNA Demethylation in Early-Stage Embryos. Int J Mol Sci 2024; 25:5872. [PMID: 38892059 PMCID: PMC11172648 DOI: 10.3390/ijms25115872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Global methylation levels differ in in vitro- and in vivo-developed embryos. Follicular fluid (FF) contains extracellular vesicles (EVs) containing miRNAs that affect embryonic development. Here, we examined our hypothesis that components in FF affect global DNA methylation and embryonic development. Oocytes and FF were collected from bovine ovaries. Treatment of zygotes with a low concentration of FF induced global DNA demethylation, improved embryonic development, and reduced DNMT1/3A levels. We show that embryos take up EVs containing labeled miRNA secreted from granulosa cells and the treatment of zygotes with EVs derived from FF reduces global DNA methylation in embryos. Furthermore, the methylation levels of in vitro-developed blastocysts were higher than those of in their vivo counterparts. Based on small RNA-sequencing and in silico analysis, we predicted miR-29b, -199a-3p, and -148a to target DNMTs and to induce DNA demethylation, thereby improving embryonic development. Moreover, among FF from 30 cows, FF with a high content of these miRNAs demethylated more DNA in the embryos than FF with a lower miRNA content. Thus, miRNAs in FF play a role in early embryonic development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hisataka Iwata
- Department of Animal Science, Graduate School of Agriculture, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Kanagawa, Japan; (S.A.)
| |
Collapse
|
10
|
Kizasu S, Sato T, Inoue Y, Tasaki H, Shirasuna K, Okiishi Y, Iwata H. Effect of low ethanol concentration in maturation medium on developmental ability, mitochondria, and gene expression profile in mouse oocytes. Reprod Biol 2024; 24:100854. [PMID: 38772287 DOI: 10.1016/j.repbio.2023.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 05/23/2024]
Abstract
Ethanol affects pre-conceptional oocyte quality in women. In this study, we examined the effect of low ethanol concentrations on mouse oocytes. Oocytes were collected from the ovaries of 9-10 week old mice and allowed to mature in vitro in the presence of low concentrations of ethanol (0.1% and 0.2% v/v) for 24 h. Treatment of oocytes with ethanol (0.2%) during maturation decreased the mitochondrial DNA content and membrane potential compared to that in untreated ones, whereas the ATP content did not differ between the groups. Both 0.1% and 0.2% ethanol reduced the lipid content in the oocytes. In addition, immunostaining revealed that oocytes cultured in maturation medium containing ethanol (0.2%) had reduced levels of global DNA methylation and DNMT3A compared with untreated oocytes, and decreased rate of blastocyst development with low mitochondrial protein levels (TOMM40) in embryo. RNA-sequencing of the ethanol-treated (0.2%) and untreated oocytes revealed that mitochondria were a major target of ethanol. In conclusion, treatment of oocytes with low concentration of ethanol reduces the developmental rate to the blastocyst stage, with a lower total cell number and global DNA methylation. In addition, ethanol affected mitochondrial function and mitochondria-related gene expression.
Collapse
Affiliation(s)
- Susaki Kizasu
- Animal Science, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
| | - Takuya Sato
- Animal Science, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
| | - Yuki Inoue
- Animal Science, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
| | - Hidetaka Tasaki
- Assisted Reproductive Technology Center, Okayama University, Okayama, Japan
| | - Komei Shirasuna
- Animal Science, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
| | - Yuichi Okiishi
- Animal Science, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
| | - Hisataka Iwata
- Animal Science, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan.
| |
Collapse
|
11
|
Fujita T, Yoshizato T, Mitao H, Shimomura T, Kuramoto T, Obara H, Ide H, Koga F, Kojima K, Nomiyama M, Fukagawa M, Nagata Y, Tanaka A, Yuki H, Utsunomiya T, Matsubayashi H, Oka C, Yano K, Shiotani M, Fukuda M, Hirai H, Kakuma T, Ushijima K. Risk factors for placenta accreta spectrum in pregnancies conceived after frozen-thawed embryo transfer in a hormone replacement cycle. Eur J Obstet Gynecol Reprod Biol 2024; 296:194-199. [PMID: 38458035 DOI: 10.1016/j.ejogrb.2024.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/28/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE Assisted reproductive technology (ART), especially frozen-thawed embryo transfer (FET) in a hormone replacement cycle (HRC), is a risk factor for placenta accreta spectrum (PAS). This study aimed to clarify the risk factors for PAS related to the maternal background and ART techniques in pregnancies achieved after FET in an HRC. STUDY DESIGN We performed a case-control study in two tertiary perinatal centres in Japan. Among 14,028 patients who delivered at ≥24 weeks of gestation or were transferred after delivery to two tertiary perinatal centres between 2010 and 2021, 972 conceived with ART and 13,056 conceived without ART. PAS was diagnosed on the basis of the FIGO classification for the clinical diagnosis of PAS or retained products of conception after delivery at ≥24 weeks of gestation. We excluded women with fresh embryo transfer, FET with a spontaneous ovulatory cycle, a donor oocyte cycle, and missing details of the ART treatment. Finally, among women who conceived after FET in an HRC, 62 with PAS and 340 without PAS were included in this study. Multivariate logistic regression models were used for case-control comparisons, with adjustment for maternal age at delivery, parity, endometriosis or adenomyosis, the number of previous uterine surgeries of caesarean section, myomectomy, endometrial polypectomy or endometrial curettage, placenta previa, the stage of transferred embryos, and endometrial thickness at the initiation of progestin administration. RESULTS PAS was associated with ≥2 previous uterine surgeries (adjusted odds ratio, 3.57; 95 % confidence interval, 1.60-7.97) and the stage of embryo transfer (blastocysts: adjusted odds ratio, 2.89; 95 % confidence interval, 1.15-7.26). In patients with <2 previous uterine surgeries, PAS was associated with an endometrial thickness of <7.0 mm (adjusted odds ratio, 5.18; 95 % confidence interval, 1.10-24.44). CONCLUSION Multiple uterine surgeries and the transfer of blastocysts are risk factors for PAS in pregnancies conceived after FET in an HRC. In women with <2 previous uterine surgeries, a thin endometrium before FET is also a risk factor for PAS in these pregnancies.
Collapse
Affiliation(s)
- Tomoyuki Fujita
- Kurume University, Department of Obstetrics and Gynecology, School of Medicine, 67 Asahimachi, Kurume 830-0011, Japan
| | - Toshiyuki Yoshizato
- Kurume University, Department of Obstetrics and Gynecology, School of Medicine, 67 Asahimachi, Kurume 830-0011, Japan.
| | - Hiroshi Mitao
- Kurume University, Department of Obstetrics and Gynecology, School of Medicine, 67 Asahimachi, Kurume 830-0011, Japan
| | - Takuya Shimomura
- Department of Obstetrics and Gynecology, St. Mary's Hospital, 422 Tsubukuhonmachi, Kurume 830-8543, Japan
| | - Takeshi Kuramoto
- Kuramoto Women's Clinic, 1-1-19 Hakataeki-higashi, Hakata-ku, Fukuoka 812-0013, Japan
| | - Hitoshi Obara
- Department of Biostatistics, Kurume University, School of Medicine, 67 Asahimachi Kurume 830-0011, Japan
| | - Hiroshi Ide
- Ide Women's Clinic, 4-1 Tenjinmachi, Kurume 830-0033, Japan
| | - Fumitoshi Koga
- Koga Fumitoshi Women's Clinic, 2-3-24 Tenjin, Chuo-ku, Fukuoka 810-0001, Japan
| | - Kayoko Kojima
- Takagi Hospital, Department of Obstetrics and Gynecology, 141-11, Okawa 831-0016, Japan
| | - Mari Nomiyama
- Takagi Hospital, Department of Obstetrics and Gynecology, 141-11, Okawa 831-0016, Japan
| | - Mayumi Fukagawa
- Kurume University, Department of Obstetrics and Gynecology, School of Medicine, 67 Asahimachi, Kurume 830-0011, Japan
| | - Yumi Nagata
- IVF Nagata Clinic, 1-12-1 Tenjin, Chuo-ku, Fukuoka 810-0001, Japan
| | - Atsushi Tanaka
- Saint Mother Clinic, 4-9-12 Orio, Yahatanishi-ku, Kitakyushu 807-0825, Japan
| | - Hiroyuki Yuki
- Chuo Ladies Clinic, 2-4-38 Tenjin, Chuo-ku, Fukuoka 810-0001, Japan
| | | | | | - Chikahiro Oka
- Tokyo HART Clinic, 5-4-19 Minami-aoyama, Minato-ku, Tokyo 107-0062, Japan
| | - Kohji Yano
- Yano Maternity Clinic, 72-1 Showamachi, Matsuyama 790-0872, Japan
| | - Masahide Shiotani
- Hanabusa Women's Clinic, 1-1-2 Sannomiyacho, Chuo-ku, Kobe 650-0021, Japan
| | - Masaru Fukuda
- Fukuda Women's Clinic, 549-2 Shinanocho, Totsuka-ku, Yokohama 244-0801, Japan
| | - Hiromi Hirai
- Hirai Surgical Obstetrics and Gynecology Clinic, 3-8-7 Meigimachi, Omuta 836-0012, Japan
| | - Tatsuyuki Kakuma
- Department of Biostatistics, Kurume University, School of Medicine, 67 Asahimachi Kurume 830-0011, Japan
| | - Kimio Ushijima
- Kurume University, Department of Obstetrics and Gynecology, School of Medicine, 67 Asahimachi, Kurume 830-0011, Japan
| |
Collapse
|
12
|
Liu JC, Pan ZN, Ju JQ, Zou YJ, Pan MH, Wang Y, Wu X, Sun SC. Kinesin KIF3A regulates meiotic progression and spindle assembly in oocyte meiosis. Cell Mol Life Sci 2024; 81:168. [PMID: 38587639 PMCID: PMC11001723 DOI: 10.1007/s00018-024-05213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Jing-Cai Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
13
|
Winstanley YE, Liu J, Adhikari D, Gonzalez MB, Russell DL, Carroll J, Robker RL. Dynamics of Mitochondrial DNA Copy Number and Membrane Potential in Mouse Pre-Implantation Embryos: Responses to Diverse Types of Oxidative Stress. Genes (Basel) 2024; 15:367. [PMID: 38540426 PMCID: PMC10970549 DOI: 10.3390/genes15030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024] Open
Abstract
Mitochondria undergo a myriad of changes during pre-implantation embryo development, including shifts in activity levels and mitochondrial DNA (mtDNA) replication. However, how these distinct aspects of mitochondrial function are linked and their responsiveness to diverse stressors is not well understood. Here, we show that mtDNA content increased between 8-cell embryos and the blastocyst stage, with similar copy numbers per cell in the inner cell mass (ICM) and trophectoderm (TE). In contrast, mitochondrial membrane potential (MMP) was higher in TE than ICM. Culture in ambient oxygen (20% O2) altered both aspects of mitochondrial function: the mtDNA copy number was upregulated in ICM, while MMP was diminished in TE. Embryos cultured in 20% O2 also exhibited delayed development kinetics, impaired implantation, and reduced mtDNA levels in E18 fetal liver. A model of oocyte mitochondrial stress using rotenone showed only a modest effect on on-time development and did not alter the mtDNA copy number in ICM; however, following embryo transfer, mtDNA was higher in the fetal heart. Lastly, endogenous mitochondrial dysfunction, induced by maternal age and obesity, altered the blastocyst mtDNA copy number, but not within the ICM. These results demonstrate that mitochondrial activity and mtDNA content exhibit cell-specific changes and are differentially responsive to diverse types of oxidative stress during pre-implantation embryogenesis.
Collapse
Affiliation(s)
- Yasmyn E. Winstanley
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
| | - Jun Liu
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Deepak Adhikari
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Macarena B. Gonzalez
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
| | - Darryl L. Russell
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
| | - John Carroll
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Rebecca L. Robker
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
14
|
Sakkas D, Gulliford C, Ardestani G, Ocali O, Martins M, Talasila N, Shah JS, Penzias AS, Seidler EA, Sanchez T. Metabolic imaging of human embryos is predictive of ploidy status but is not associated with clinical pregnancy outcomes: a pilot trial. Hum Reprod 2024; 39:516-525. [PMID: 38195766 DOI: 10.1093/humrep/dead268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/28/2023] [Indexed: 01/11/2024] Open
Abstract
STUDY QUESTION Does fluorescence lifetime imaging microscopy (FLIM)-based metabolic imaging assessment of human blastocysts prior to frozen transfer correlate with pregnancy outcomes? SUMMARY ANSWER FLIM failed to distinguish consistent patterns in mitochondrial metabolism between blastocysts leading to pregnancy compared to those that did not. WHAT IS KNOWN ALREADY FLIM measurements provide quantitative information on NAD(P)H and flavin adenine dinucleotide (FAD+) concentrations. The metabolism of embryos has long been linked to their viability, suggesting the potential utility of metabolic measurements to aid in selection. STUDY DESIGN, SIZE, DURATION This was a pilot trial enrolling 121 IVF couples who consented to have their frozen blastocyst measured using non-invasive metabolic imaging. After being warmed, 105 couples' good-quality blastocysts underwent a 6-min scan in a controlled temperature and gas environment. FLIM-assessed blastocysts were then transferred without any intervention in management. PARTICIPANTS/MATERIALS, SETTING, METHODS Eight metabolic parameters were obtained from each blastocyst (4 for NAD(P)H and 4 for FAD): short and long fluorescence lifetime, fluorescence intensity, and fraction of the molecule engaged with enzyme. The redox ratio (intensity of NAD(P)H)/(intensity of FAD) was also calculated. FLIM data were combined with known metadata and analyzed to quantify the ability of metabolic imaging to differentiate embryos that resulted in pregnancy from embryos that did not. De-identified discarded aneuploid human embryos (n = 158) were also measured to quantify correlations with ploidy status and other factors. Statistical comparisons were performed using logistic regression and receiver operating characteristic (ROC) curves with 5-fold cross-validation averaged over 100 repeats with random sampling. AUC values were used to quantify the ability to distinguish between classes. MAIN RESULTS AND THE ROLE OF CHANCE No metabolic imaging parameters showed significant differences between good-quality blastocysts resulting in pregnancy versus those that did not. A logistic regression using metabolic data and metadata produced an ROC AUC of 0.58. In contrast, robust AUCs were obtained when classifying other factors such as comparison of Day 5 (n = 64) versus Day 6 (n = 41) blastocysts (AUC = 0.78), inner cell mass versus trophectoderm (n = 105: AUC = 0.88) and aneuploid (n = 158) versus euploid and positive pregnancy embryos (n = 108) (AUC = 0.82). LIMITATIONS, REASONS FOR CAUTION The study protocol did not select which embryo to transfer and the cohort of 105 included blastocysts were all high quality. The study was also limited in number of participants and study sites. Increased power and performing the trial in more sites may have provided a stronger conclusion regarding the merits of the use of FLIM clinically. WIDER IMPLICATIONS OF THE FINDINGS FLIM failed to distinguish consistent patterns in mitochondrial metabolism between good-quality blastocysts leading to pregnancy compared to those that did not. Blastocyst ploidy status was, however, highly distinguishable. In addition, embryo regions and embryo day were consistently revealed by FLIM. While metabolic imaging detects mitochondrial metabolic features in human blastocysts, this pilot trial indicates it does not have the potential to serve as an effective embryo viability detection tool. This may be because mitochondrial metabolism plays an alternative role post-implantation. STUDY FUNDING/COMPETING INTEREST(S) This study was sponsored by Optiva Fertility, Inc. Boston IVF contributed to the clinical site and services. Becker Hickl, GmbH, provided the FLIM system on loan. T.S. was the founder and held stock in Optiva Fertility, Inc., and D.S. and E.S. had options with Optiva Fertility, Inc., during this study. TRIAL REGISTRATION NUMBER The study was approved by WCG Connexus IRB (Study Number 1298156).
Collapse
Affiliation(s)
- Denny Sakkas
- Boston IVF, Research Department, Waltham, MA, USA
| | | | | | - Olcay Ocali
- Boston IVF, Research Department, Waltham, MA, USA
| | | | | | - Jaimin S Shah
- Boston IVF, Research Department, Waltham, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Alan S Penzias
- Boston IVF, Research Department, Waltham, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Emily A Seidler
- Boston IVF, Research Department, Waltham, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
15
|
Song J, Xiao L, Zhang Z, Wang Y, Kouis P, Rasmussen LJ, Dai F. Effects of reactive oxygen species and mitochondrial dysfunction on reproductive aging. Front Cell Dev Biol 2024; 12:1347286. [PMID: 38465288 PMCID: PMC10920300 DOI: 10.3389/fcell.2024.1347286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Mitochondria, the versatile organelles crucial for cellular and organismal viability, play a pivotal role in meeting the energy requirements of cells through the respiratory chain located in the inner mitochondrial membrane, concomitant with the generation of reactive oxygen species (ROS). A wealth of evidence derived from contemporary investigations on reproductive longevity strongly indicates that the aberrant elevation of ROS level constitutes a fundamental factor in hastening the aging process of reproductive systems which are responsible for transmission of DNA to future generations. Constant changes in redox status, with a pro-oxidant shift mainly through the mitochondrial generation of ROS, are linked to the modulation of physiological and pathological pathways in gametes and reproductive tissues. Furthermore, the quantity and quality of mitochondria essential to capacitation and fertilization are increasingly associated with reproductive aging. The article aims to provide current understanding of the contributions of ROS derived from mitochondrial respiration to the process of reproductive aging. Moreover, understanding the impact of mitochondrial dysfunction on both female and male fertility is conducive to finding therapeutic strategies to slow, prevent or reverse the process of gamete aging, and thereby increase reproductive longevity.
Collapse
Affiliation(s)
- Jiangbo Song
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Li Xiao
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Zhehao Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yujin Wang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Panayiotis Kouis
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Liu K, Zhang L, Xu X, Xiao L, Wen J, Zhang H, Zhao S, Qiao D, Bai J, Liu Y. The Antioxidant Salidroside Ameliorates the Quality of Postovulatory Aged Oocyte and Embryo Development in Mice. Antioxidants (Basel) 2024; 13:248. [PMID: 38397846 PMCID: PMC10886307 DOI: 10.3390/antiox13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Postovulatory aging is known to impair the oocyte quality and embryo development due to oxidative stress in many different animal models, which reduces the success rate or pregnancy rate in human assisted reproductive technology (ART) and livestock timed artificial insemination (TAI), respectively. Salidroside (SAL), a phenylpropanoid glycoside, has been shown to exert antioxidant and antitumor effects. This study aimed to investigate whether SAL supplementation could delay the postovulatory oocyte aging process by alleviating oxidative stress. Here, we show that SAL supplementation decreases the malformation rate and recovers mitochondrial dysfunction including mitochondrial distribution, mitochondrial membrane potential (ΔΨ) and ATP content in aged oocytes. In addition, SAL treatment alleviates postovulatory aging-caused oxidative stress such as higher reactive oxygen species (ROS) level, lower glutathione (GSH) content and a reduced expression of antioxidant-related genes. Moreover, the cytoplasmic calcium ([Ca2+]c) and mitochondrial calcium ([Ca2+]mt) of SAL-treated oocytes return to normal levels. Notably, SAL suppresses the aging-induced DNA damage, early apoptosis and improves spindle assembly in aged oocytes, ultimately elevating the embryo developmental rates and embryo quality. Finally, the RNA-seq and confirmatory experience showed that SAL promotes protective autophagy in aged oocytes by activating the MAPK pathway. Taken together, our research suggests that supplementing SAL is an effective and feasible method for preventing postovulatory aging and preserving the oocyte quality, which potentially contributes to improving the successful rate of ART or TAI.
Collapse
Affiliation(s)
- Kexiong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Luyao Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China;
| | - Xiaoling Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Linli Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Junhui Wen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Hanbing Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Shuxin Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Dongliang Qiao
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Jiahua Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| |
Collapse
|
17
|
Holani R, Littlejohn PT, Edwards K, Petersen C, Moon KM, Stacey RG, Bozorgmehr T, Gerbec ZJ, Serapio-Palacios A, Krekhno Z, Donald K, Foster LJ, Turvey SE, Finlay BB. A Murine Model of Maternal Micronutrient Deficiencies and Gut Inflammatory Host-microbe Interactions in the Offspring. Cell Mol Gastroenterol Hepatol 2024; 17:827-852. [PMID: 38307490 PMCID: PMC10973814 DOI: 10.1016/j.jcmgh.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND & AIMS Micronutrient deficiency (MND) (ie, lack of vitamins and minerals) during pregnancy is a major public health concern. Historically, studies have considered micronutrients in isolation; however, MNDs rarely occur alone. The impact of co-occurring MNDs on public health, mainly in shaping mucosal colonization by pathobionts from the Enterobacteriaceae family, remains undetermined due to lack of relevant animal models. METHODS To establish a maternal murine model of multiple MND (MMND), we customized a diet deficient in vitamins (A, B12, and B9) and minerals (iron and zinc) that most commonly affect children and women of reproductive age. Thereafter, mucosal adherence by Enterobacteriaceae, the associated inflammatory markers, and proteomic profile of intestines were determined in the offspring of MMND mothers (hereafter, low micronutrient [LM] pups) via bacterial plating, flow cytometry, and mass spectrometry, respectively. For human validation, Enterobacteriaceae abundance, assessed via 16s sequencing of 3-month-old infant fecal samples (n = 100), was correlated with micronutrient metabolites using Spearman's correlation in meconium of children from the CHILD birth cohort. RESULTS We developed an MMND model and reported an increase in colonic abundance of Enterobacteriaceae in LM pups at weaning. Findings from CHILD cohort confirmed a negative correlation between Enterobacteriaceae and micronutrient availability. Furthermore, pro-inflammatory cytokines and increased infiltration of lymphocyte antigen 6 complex high monocytes and M1-like macrophages were evident in the colons of LM pups. Mechanistically, mitochondrial dysfunction marked by reduced expression of nicotinamide adenine dinucleotide (NAD)H dehydrogenase and increased expression of NAD phosphate oxidase (Nox) 1 contributed to the Enterobacteriaceae bloom. CONCLUSION This study establishes an early life MMND link to intestinal pathobiont colonization and mucosal inflammation via damaged mitochondria in the offspring.
Collapse
Affiliation(s)
- Ravi Holani
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paula T Littlejohn
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karlie Edwards
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Charisse Petersen
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard G Stacey
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tahereh Bozorgmehr
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zachary J Gerbec
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Antonio Serapio-Palacios
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zakhar Krekhno
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stuart E Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada; Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
18
|
Uittenbogaard M, Gropman AL, Whitehead MT, Brantner CA, Gropman E, Chiaramello A. Dysfunctional Postnatal Mitochondrial Energy Metabolism in a Patient with Neurodevelopmental Defects Caused by Intrauterine Growth Restriction Due to Idiopathic Placental Insufficiency. Int J Mol Sci 2024; 25:1386. [PMID: 38338665 PMCID: PMC10855472 DOI: 10.3390/ijms25031386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
We report the case of a four-year-old male patient with a complex medical history born prematurely as the result of intrauterine growth restriction due to placental insufficiency. His clinical manifestations included severe neurodevelopmental deficits, global developmental delay, Pierre-Robin sequence, and intractable epilepsy with both generalized and focal features. The proband's low levels of citrulline and lactic acidosis provoked by administration of Depakoke were evocative of a mitochondrial etiology. The proband's genotype-phenotype correlation remained undefined in the absence of nuclear and mitochondrial pathogenic variants detected by deep sequencing of both genomes. However, live-cell mitochondrial metabolic investigations provided evidence of a deficient oxidative-phosphorylation pathway responsible for adenosine triphosphate (ATP) synthesis, leading to chronic energy crisis in the proband. In addition, our metabolic analysis revealed metabolic plasticity in favor of glycolysis for ATP synthesis. Our mitochondrial morphometric analysis by transmission electron microscopy confirmed the suspected mitochondrial etiology, as the proband's mitochondria exhibited an immature morphology with poorly developed and rare cristae. Thus, our results support the concept that suboptimal levels of intrauterine oxygen and nutrients alter fetal mitochondrial metabolic reprogramming toward oxidative phosphorylation (OXPHOS) leading to a deficient postnatal mitochondrial energy metabolism. In conclusion, our collective studies shed light on the long-term postnatal mitochondrial pathophysiology caused by intrauterine growth restriction due to idiopathic placental insufficiency and its negative impact on the energy-demanding development of the fetal and postnatal brain.
Collapse
Affiliation(s)
- Martine Uittenbogaard
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W., Washington, DC 20037, USA; (M.U.); (E.G.)
| | - Andrea L. Gropman
- Children’s National Medical Center, Division of Neurogenetics and Neurodevelopmental Pediatrics, Washington, DC 20010, USA;
| | - Matthew T. Whitehead
- Division on Neuroradiology, Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Christine A. Brantner
- Electron Microscopy Core Imaging Facility, School of Dentistry and School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA;
| | - Eliana Gropman
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W., Washington, DC 20037, USA; (M.U.); (E.G.)
| | - Anne Chiaramello
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W., Washington, DC 20037, USA; (M.U.); (E.G.)
| |
Collapse
|
19
|
Meulders B, Marei WFA, Xhonneux I, Bols PEJ, Leroy JLMR. Effect of lipotoxicity on mitochondrial function and epigenetic programming during bovine in vitro embryo production. Sci Rep 2023; 13:21664. [PMID: 38066095 PMCID: PMC10709407 DOI: 10.1038/s41598-023-49184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Maternal metabolic disorders may cause lipotoxic effects on the developing oocyte. Understanding the timing at which this might disrupt embryo epigenetic programming and how this is linked with mitochondrial dysfunction is crucial for improving assisted reproductive treatments, but has not been investigated before. Therefore, we used a bovine in vitro model to investigate if pathophysiological palmitic acid (PA) concentrations during in vitro oocyte maturation and in vitro embryo culture alter embryo epigenetic patterns (DNA methylation (5mC) and histone acetylation/methylation (H3K9ac/H3K9me2)) compared to control (CONT) and solvent control (SCONT), at the zygote and morula stage. Secondly, we investigated if these epigenetic alterations are associated with mitochondrial dysfunction and changes in ATP production rate, or altered expression of epigenetic regulatory genes. Compared to SCONT, H3K9ac and H3K9me2 levels were increased in PA-derived zygotes. Also, 5mC and H3K9me2 levels were increased in PA-exposed morulae compared to SCONT. This was associated with complete inhibition of glycolytic ATP production in oocytes, increased mitochondrial membrane potential and complete inhibition of glycolytic ATP production in 4-cell embryos and reduced SOD2 expression in PA-exposed zygotes and morulae. For the first time, epigenetic alterations in metabolically compromised zygotes and morulae have been observed in parallel with mitochondrial dysfunction in the same study.
Collapse
Affiliation(s)
- Ben Meulders
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium.
| | - Waleed F A Marei
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Inne Xhonneux
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Peter E J Bols
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Jo L M R Leroy
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
20
|
Toni M, Arena C, Cioni C, Tedeschi G. Temperature- and chemical-induced neurotoxicity in zebrafish. Front Physiol 2023; 14:1276941. [PMID: 37854466 PMCID: PMC10579595 DOI: 10.3389/fphys.2023.1276941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Throughout their lives, humans encounter a plethora of substances capable of inducing neurotoxic effects, including drugs, heavy metals and pesticides. Neurotoxicity manifests when exposure to these chemicals disrupts the normal functioning of the nervous system, and some neurotoxic agents have been linked to neurodegenerative pathologies such as Parkinson's and Alzheimer's disease. The growing concern surrounding the neurotoxic impacts of both naturally occurring and man-made toxic substances necessitates the identification of animal models for rapid testing across a wide spectrum of substances and concentrations, and the utilization of tools capable of detecting nervous system alterations spanning from the molecular level up to the behavioural one. Zebrafish (Danio rerio) is gaining prominence in the field of neuroscience due to its versatility. The possibility of analysing all developmental stages (embryo, larva and adult), applying the most common "omics" approaches (transcriptomics, proteomics, lipidomics, etc.) and conducting a wide range of behavioural tests makes zebrafish an excellent model for neurotoxicity studies. This review delves into the main experimental approaches adopted and the main markers analysed in neurotoxicity studies in zebrafish, showing that neurotoxic phenomena can be triggered not only by exposure to chemical substances but also by fluctuations in temperature. The findings presented here serve as a valuable resource for the study of neurotoxicity in zebrafish and define new scenarios in ecotoxicology suggesting that alterations in temperature can synergistically compound the neurotoxic effects of chemical substances, intensifying their detrimental impact on fish populations.
Collapse
Affiliation(s)
- Mattia Toni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Chiara Arena
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Carla Cioni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
- CRC “Innovation for Well-Being and Environment” (I-WE), Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
21
|
Ko CI, Biesiada J, Zablon HA, Zhang X, Medvedovic M, Puga A. The aryl hydrocarbon receptor directs the differentiation of murine progenitor blastomeres. Cell Biol Toxicol 2023; 39:1657-1676. [PMID: 36029422 PMCID: PMC10425484 DOI: 10.1007/s10565-022-09755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
Abstract
Key regulatory decisions during cleavage divisions in mammalian embryogenesis determine the fate of preimplantation embryonic cells. Single-cell RNA sequencing of early-stage-2-cell, 4-cell, and 8-cell-blastomeres show that the aryl hydrocarbon receptor (AHR), traditionally considered as an environmental sensor, directs blastomere differentiation. Disruption of AHR functions in Ahr knockout embryos or in embryos from dams exposed to dioxin, the prototypic xenobiotic AHR agonist, significantly impairs blastocyst formation, causing repression and loss of transcriptional heterogeneity of OCT4 and CDX2 and incidence of nonspecific downregulation of pluripotency. Trajectory-the path of differentiation-and gene variability analyses further confirm that deregulation of OCT4 functions and changes of transcriptional heterogeneity resulting from disruption of AHR functions restrict the emergence of differentiating blastomeres in 4-cell embryos. It appears that AHR directs the differentiation of progenitor blastomeres and that disruption of preimplantation AHR functions may significantly perturb embryogenesis leading to long-lasting conditions at the heart of disease in offspring's adulthood.
Collapse
Affiliation(s)
- Chia-I Ko
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Jacek Biesiada
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, 45267, USA
- Center for Biostatistics, 160 Panzeca Way, Cincinnati, OH, 45267, USA
| | - Hesbon A Zablon
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Xiang Zhang
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, 45267, USA
- Genomics, Epigenomics, and Sequencing Core, 160 Panzeca Way, Cincinnati, OH, 45267, USA
| | - Mario Medvedovic
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, 45267, USA
- Center for Biostatistics, 160 Panzeca Way, Cincinnati, OH, 45267, USA
| | - Alvaro Puga
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, 45267, USA
| |
Collapse
|
22
|
Uzum Z, Ershov D, Pavia MJ, Mallet A, Gorgette O, Plantard O, Sassera D, Stavru F. Three-dimensional images reveal the impact of the endosymbiont Midichloria mitochondrii on the host mitochondria. Nat Commun 2023; 14:4133. [PMID: 37438329 DOI: 10.1038/s41467-023-39758-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
The hard tick, Ixodes ricinus, a main Lyme disease vector, harbors an intracellular bacterial endosymbiont. Midichloria mitochondrii is maternally inherited and resides in the mitochondria of I. ricinus oocytes, but the consequences of this endosymbiosis are not well understood. Here, we provide 3D images of wild-type and aposymbiotic I. ricinus oocytes generated with focused ion beam-scanning electron microscopy. Quantitative image analyses of endosymbionts and oocyte mitochondria at different maturation stages show that the populations of both mitochondrion-associated bacteria and bacterium-hosting mitochondria increase upon vitellogenisation, and that mitochondria can host multiple bacteria in later stages. Three-dimensional reconstructions show symbiosis-dependent morphologies of mitochondria and demonstrate complete M. mitochondrii inclusion inside a mitochondrion. Cytoplasmic endosymbiont located close to mitochondria are not oriented towards the mitochondria, suggesting that bacterial recolonization is unlikely. We further demonstrate individual globular-shaped mitochondria in the wild type oocytes, while aposymbiotic oocytes only contain a mitochondrial network. In summary, our study suggests that M. mitochondrii modulates mitochondrial fragmentation in oogenesis possibly affecting organelle function and ensuring its presence over generations.
Collapse
Affiliation(s)
- Zerrin Uzum
- Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur; CNRS UMR2001, Paris, France.
| | - Dmitry Ershov
- Image Analysis Hub, Cell Biology and Infection Department, Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics HUB, Department of Computational Biology, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Michael J Pavia
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Adeline Mallet
- Ultrastructural BioImaging Core Facility, Institut Pasteur, Paris, France
| | - Olivier Gorgette
- Ultrastructural BioImaging Core Facility, Institut Pasteur, Paris, France
| | | | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Fabrizia Stavru
- Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur; CNRS UMR2001, Paris, France
| |
Collapse
|
23
|
Ham J, Song J, Song G, Lim W. Oryzalin impairs maternal-fetal interaction during early pregnancy via ROS-mediated P38 MAPK/AKT and OXPHOS downregulation. Food Chem Toxicol 2023; 174:113665. [PMID: 36775140 DOI: 10.1016/j.fct.2023.113665] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Oryzalin is a dinitroaniline pesticide for the control of weed growth via suppression of microtubule synthesis. There are studies about the deleterious effects of dinitroaniline pesticides on the reproductive system. Therefore, we attempted to demonstrate the toxic mechanisms of oryzalin on early pregnancy using porcine uterine epithelial cells (pLE) and trophectoderm (pTr) cells. According to our results, the viability and proliferation of pLE and pTr cells were suppressed in response to oryzalin exposure, and cell cycle progression was affected. Additionally, oryzalin induced apoptotic cell death and impaired mitochondrial membrane polarity in pLE and pTr cells. Moreover, we confirmed that oryzalin significantly downregulated adenosine triphosphate (ATP) production via the oxidative phosphorylation system and upregulated reactive oxygen species (ROS) generation in both pLE and pTr cells. The oryzalin-induced ROS generation was mitigated by N-acetylcysteine, a ROS scavenger, and further upregulation of phosphor-P38 MAPK/AKT/P70S6K protein expression was ameliorated in both pLE and pTr cells. We also confirmed that the suppression of migration and proliferation in oryzalin-treated pLE and pTr cells was restored upon oxidative stress mitigation. In summary, we revealed that the cytotoxic mechanisms of oryzalin-induced implantation failure were mediated by ROS-induced intracellular signaling regulation and migratory potential in pLE and pTr cells.
Collapse
Affiliation(s)
- Jiyeon Ham
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jisoo Song
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
24
|
Lee S, Kim HJ, Cho HB, Kim HR, Lee S, Park JI, Park KH. Melatonin loaded PLGA nanoparticles effectively ameliorate the in vitro maturation of deteriorated oocytes and the cryoprotective abilities during vitrification process. Biomater Sci 2023; 11:2912-2923. [PMID: 36883517 DOI: 10.1039/d2bm02054h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Almost all cells can be exposed to stress, but oocytes, which are female germ cells, are particularly vulnerable to damage. In this study, melatonin, a well-known antioxidant, was loaded into biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and delivered to damaged oocytes in order to improve their quality and restoration. Etoposide (ETP)-induced deteriorated oocytes show poor maturity, mitochondrial aggregation, and DNA damage. Treatment of NPs not only reduced DNA damage but also improved mitochondrial stability, as evidenced by increased ATP levels and mitochondrial homogeneity. When melatonin was added to the culture medium at the same concentration as that present in NPs, DNA and mitochondrial repair was insignificant due to the half-life of melatonin, whereas DNA repair in damaged oocytes upon multiple treatments with melatonin was similar to that observed with melatonin-loaded NPs. Next, we evaluated whether the oocytes treated with NPs could have cryoprotective abilities during vitrification/thawing. Vitrified-oocytes were stored at -196 °C for 0.25 h (T1) or 0.5 h (T2). After thawing, live oocytes were subjected to in vitro maturation. The NP-treated group showed maturity similar to the control group (77.8% in T1, 72.7% in T2) and the degree of DNA damage was reduced compared to the ETP-induced group (p < 0.05).
Collapse
Affiliation(s)
- Sujin Lee
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| | - Hye Jin Kim
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| | - Hui Bang Cho
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| | - Hye-Ryoung Kim
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| | - Sujeong Lee
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| | - Ji-In Park
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| | - Keun-Hong Park
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| |
Collapse
|
25
|
Wang CR, Ji HW, He SY, Liu RP, Wang XQ, Wang J, Huang CM, Xu YN, Li YH, Kim NH. Chrysoeriol Improves In Vitro Porcine Embryo Development by Reducing Oxidative Stress and Autophagy. Vet Sci 2023; 10:vetsci10020143. [PMID: 36851447 PMCID: PMC9958645 DOI: 10.3390/vetsci10020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Chrysoeriol (CHE) is a flavonoid substance that exists in many plants. It has various physiological and pharmacological effects, including anti-inflammatory, antioxidant, anti-tumor, and protective activity, especially for the cardiovascular system and liver. Among common livestock embryos, porcine embryos are often considered high-quality objects for studying the antioxidant mechanisms of oocytes. Because porcine embryos contain high levels of lipids, they are more vulnerable to external stimuli, which affect development. Our study explored the influence of CHE supplementation on oxidative stress in porcine oocytes and its possible mechanisms. Different concentrations of CHE (0, 0.1, 1, and 3 µM) were supplemented in the in vitro culture medium of the porcine oocytes. The results showed that supplementation with 1 µM CHE significantly increased the blastocyst rate and total cell number of embryos in vitro. After finding the beneficial effects of CHE, we measured reactive oxygen species (ROS), glutathione (GSH), and mitochondrial membrane potential (MMP) when the oocytes reached the 4-cell stage of development and determined the levels of apoptosis, cell proliferation, and autophagy at the blastocyst stage of development. The expression levels of some related genes were preliminarily detected by qRT-PCR. The results showed that the apoptosis of blastocysts in the CHE-treated culture also decreased compared with the untreated culture. Furthermore, CHE downregulated intracellular ROS and increased GSH in the embryos. CHE was also shown to improve the activity of mitochondria and inhibit the occurrence of autophagy. In addition, antioxidant-related genes (SOD1, SOD2, and CAT) and cell pluripotency-related genes (SOX2, OCT4, and NANOG) were upregulated. At the same time, apoptosis-related (Caspase 3) and autophagy-related (LC3B) genes showed a downward trend after supplementation with CHE. These results indicate that CHE improved the development of porcine embryos in vitro by reducing oxidative stress and autophagy levels.
Collapse
|
26
|
Chuang TH, Chen CY, Kuan CS, Lai HH, Hsieh CL, Lee MJ, Liang YT, Chang YJ, Chen CY, Chen SU. Reduced mitochondrial DNA content correlate with poor clinical outcomes in cryotransfers with day 6 single euploid embryos. Front Endocrinol (Lausanne) 2023; 13:1066530. [PMID: 36686452 PMCID: PMC9846089 DOI: 10.3389/fendo.2022.1066530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
Objective To investigate whether the mitochondrial DNA (mtDNA) content of a single biopsy at trophoblast correlates with the developmental potential and reproductive outcomes of blastocyst. Methods A retrospective analysis applied the dataset of 1,675 embryos with preimplantation genetic testing for aneuploidy (PGT-A) from 1,305 individuals, and 1,383 embryos involved cryotransfers of single euploid embryo between January 2015 and December 2019. The studied cohort was divided for algorithm establishment on the NGS platform (n=40), correlation of biological features (n=1,635), and correlation of reproductive outcomes (n=1,340). Of the algorithm derived from the NGS platform, the reliability and repeatability were validated via qPCR assay and inter-run controls, respectively. Of the correlation across biological features, stratification analyses were applied to evaluate the effect from a single contributor. Eventually, the correlation between the mtDNA ratios and reproductive outcomes was adjusted according to the significant effector(s). Results The mtDNA ratios showed statistically different between embryos with different days of blastocyst formation ([Day 5]: 1.06 vs. [Day 6]: 0.66, p=0.021), and between embryos with different expansion stages ([Expansion 5]: 1.05 vs. [Expansion 6]: 0.49, p=0.012). None or weakly correlated with the maternal age, morphology, ploidy, and gender. Analyzed by the different days of blastocyst formation with fixed expansion score as 5 in the euploid single embryo transfers (eSET), the day 6 eSET showed significantly lower reduced mtDNA ratio (n=139) in failure groups of fetal heartbeat (p=0.004), ongoing pregnancy (p=0.007), and live birth (p=0.01); however, no correlation between mtDNA ratios and pregnancy outcomes was observed in the day 5 eSET (n=1,201). Conclusions The study first demonstrated that mtDNA ratio was dependent on the days of blastocyst formation while expansion stage was fixed. Lower mtDNA ratios were observed in the day 6 eSET with adverse outcomes. The present stratification analyses reveal that the timeline of embryo is an important covariate to the mtDNA content.
Collapse
Affiliation(s)
- Tzu-Hsuan Chuang
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University and College of Medicine, Taipei, Taiwan
| | - Chih-Yen Chen
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Chin-Sheng Kuan
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Hsing-Hua Lai
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Chia-Lin Hsieh
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Meng-Ju Lee
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Yi-Ting Liang
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Yu-Jen Chang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Chien-Yu Chen
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Shee-Uan Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
27
|
Whatley EG, Truong TT, Harvey AJ, Gardner DK. Acetoacetate and β-hydroxybutyrate reduce mouse embryo viability via differential metabolic and epigenetic mechanisms. Reprod Biomed Online 2023; 46:20-33. [PMID: 36283935 DOI: 10.1016/j.rbmo.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023]
Abstract
RESEARCH QUESTION Does the ketone acetoacetate (AcAc) alone, or combined with β-hydroxybutyrate (βOHB), impact mouse embryo development, metabolism, histone acetylation and viability? DESIGN Pronucleate mouse oocytes were cultured in vitro in G1/G2 media supplemented with ketones (AcAc or AcAc + βOHB) at concentrations representing those in maternal serum during pregnancy (0.04 mmol/l AcAc, 0.1 mmol/l βOHB), standard diet consumption (0.1 mmol/l AcAc, 0.25 mmol/l βOHB), ketogenic diet consumption (0.8 mmol/l AcAc, 2 mmol/l βOHB) and diabetic ketoacidosis (2 mmol/l AcAc, 4 mmol/l βOHB). Day 5 blastocysts were assessed for cell allocation, glucose metabolism and histone acetylation. Day 4 blastocysts exposed to 0.8 mmol/l AcAc + 2 mmol/l βOHB were transferred to standard-fed recipient females, and E14.5 fetal and placental development assessed. RESULTS Exposure to 2 mmol/l AcAc or 0.8 mmol/l AcAc + 2 mmol/l βOHB did not impair blastocyst development, but significantly increased glucose consumption (P = 0.001 each), lowered glycolytic flux (P = 0.01, P < 0.001) and elevated trophectoderm (TE) histone 3 lysine 27 acetylation (H3K27ac; P < 0.001 each) compared with unexposed controls. Preimplantation AcAc + βOHB exposure reduced post-implantation fetal development by 25% (P = 0.037), and delayed female-specific fetal limb development (P = 0.019) and estimated fetal age (P = 0.019) compared with controls. CONCLUSION Preimplantation exposure to ketones affects underlying metabolism and histone acetylation in blastocysts that are associated with persistent, female-specific perturbations in fetal development. A periconceptional diet that elevates ketone concentrations may impair human embryonic viability.
Collapse
Affiliation(s)
- Emma G Whatley
- School of BioSciences, University of Melbourne, Parkville Victoria, Australia
| | - Thi T Truong
- School of BioSciences, University of Melbourne, Parkville Victoria, Australia
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville Victoria, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville Victoria, Australia.
| |
Collapse
|
28
|
Catalán J, Martínez-Rodero I, Yánez-Ortiz I, Mateo-Otero Y, Bragulat AF, Nolis P, Carluccio A, Yeste M, Miró J. Metabolic profiling of preovulatory follicular fluid in jennies. Res Vet Sci 2022; 153:127-136. [PMID: 36356420 DOI: 10.1016/j.rvsc.2022.10.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Follicular fluid is formed from the transudation of theca and granulosa cells in the growing follicular antrum. Its main function is to provide an optimal intrafollicular microenvironment to modulate oocyte maturation. The aim of this study was to determine the metabolomic profile of preovulatory follicular fluid (PFF) in jennies. For this purpose, PFF was collected from 10 follicles of five jennies in heat. Then, PFF samples were analysed by nuclear magnetic resonance (NMR) and heteronuclear single quantum correlation (2D 1H/13C HSQC). Our study revealed the presence of at least 27 metabolites in the PFF of jennies (including common amino acids, carboxylic acids, amino acid derivatives, alcohols, saccharides, fatty acids, and lactams): 3-hydroxybutyrate, acetate, alanine, betaine, citrate, creatine, creatine phosphate, creatinine, ethanol, formate, glucose, glutamine, glycerol, glycine, hippurate, isoleucine, lactate, leucine, lysine, methanol, phenylalanine, proline, pyruvate, threonine, tyrosine, valine, and τ-methylhistidine. The metabolites found here have an important role in the oocyte development and maturation, since the PFF surrounds the follicle and provides it with the needed nutrients. Our results indicate a unique metabolic profile of the jennies PFF, as it differs from those previously observed in the PFF of the mare, a phylogenetically close species that is taken as a reference for establishing reproductive biotechnology techniques in donkeys. The metabolites found here also differ from those described in the TCM-199 medium enriched with fetal bovine serum (FBS), which is the most used medium for in vitro oocyte maturation in equids. These differences would suggest that the established conditions for in vitro maturation used so far may not be suitable for donkeys. By providing the metabolic composition of jenny PFF, this study could help understand the physiology of oocyte maturation as a first step to establish in vitro reproductive techniques in this species.
Collapse
Affiliation(s)
- Jaime Catalán
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Barcelona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, IT-64100 Teramo, Italy
| | - Iris Martínez-Rodero
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Iván Yánez-Ortiz
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Barcelona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Ana Flores Bragulat
- Equine Production Laboratory, Faculty of Agronomy and Veterinary Medicine, National University of Río Cuarto, AR- X5800 Río Cuarto, Córdoba, Argentina
| | - Pau Nolis
- Nuclear Magnetic Resonance Facility, Autonomous University of Barcelona, Bellaterra, ES-08193 Cerdanyola del Vallès, Spain
| | - Augusto Carluccio
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, IT-64100 Teramo, Italy
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), ES-08010 Barcelona, Spain..
| | - Jordi Miró
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
29
|
El-Sherbiny HR, Abdelnaby EA, Samir H, Fathi M. Addition of autologous platelet rich plasma to semen extender enhances cryotolerance and fertilizing capacity of buffalo bull spermatozoa. Theriogenology 2022; 194:104-109. [DOI: 10.1016/j.theriogenology.2022.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/15/2022]
|
30
|
Zhang L, Wu LM, Xu WH, Tian YQ, Liu XL, Xia CY, Zhang L, Li SS, Jin Z, Wu XL, Shu J. Status of maternal serum B vitamins and pregnancy outcomes: New insights from in vitro fertilization and embryo transfer (IVF-ET) treatment. Front Nutr 2022; 9:962212. [PMID: 36438768 PMCID: PMC9691978 DOI: 10.3389/fnut.2022.962212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
The influence of B vitamins on human fertility and infertility treatments remains elusive. Therefore, this study investigated the association of most B vitamins with IVF-ET outcomes. A total of 216 subjects aged <35 year in their first oocyte retrieval cycle were recruited. Blood samples from the participants were collected before the oocyte pick-up procedure, and serum levels of riboflavin, niacin, pantothenic acid, vitamin B6 (including PA and PLP), folate, and methylmalonic acid (MMA) were detected using high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS). Endpoints were classified into three groups according to tertiles (lower, middle, and upper) of each vitamin index, and the association of the serum vitamin status with intermediate and clinical outcomes was analyzed using a generalized estimating equation model. Higher riboflavin levels were associated with elevated probabilities of high-quality embryos, as well as clinical pregnancy after embryo transfer. A greater likelihood of transferable embryos was found in the middle tertile of serum folate. Similarly, a negative correlation of serum MMA, a marker of vitamin B12 deficiency, with high-quality embryos was identified. No significance was observed for other vitamins in terms of all endpoints. Therefore, sufficient levels of pre-conception riboflavin, folate, and vitamin B12 are recommended for successful infertility treatment and pregnancy planning; further evidence is needed to confirm our conclusion.
Collapse
Affiliation(s)
- Ling Zhang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Li-mei Wu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wei-hai Xu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu-qing Tian
- Department of Postgraduate Education, Jinzhou Medical University, Jinzhou, China
| | - Xu-ling Liu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Provice, Hangzhou, China
- Calibra Lab, DIAN Diagnostics, Hangzhou, China
| | - Chen-yun Xia
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Provice, Hangzhou, China
- Calibra Lab, DIAN Diagnostics, Hangzhou, China
| | - Lin Zhang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shi-shi Li
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zhen Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiang-li Wu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Xiang-li Wu
| | - Jing Shu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- Jing Shu
| |
Collapse
|
31
|
Andrawus M, Sharvit L, Atzmon G. Epigenetics and Pregnancy: Conditional Snapshot or Rolling Event. Int J Mol Sci 2022; 23:12698. [PMID: 36293556 PMCID: PMC9603966 DOI: 10.3390/ijms232012698] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetics modification such as DNA methylation can affect maternal health during the gestation period. Furthermore, pregnancy can drive a range of physiological and molecular changes that have the potential to contribute to pathological conditions. Pregnancy-related risk factors include multiple environmental, behavioral, and hereditary factors that can impact maternal DNA methylation with long-lasting consequences. Identification of the epigenetic patterns linked to poor pregnancy outcomes is crucial since changes in DNA methylation patterns can have long-term effects. In this review, we provide an overview of the epigenetic changes that influence pregnancy-related molecular programming such as gestational diabetes, immune response, and pre-eclampsia, in an effort to close the gap in current understanding regarding interactions between the environment, the genetics of the fetus, and the pregnant woman.
Collapse
Affiliation(s)
| | | | - Gil Atzmon
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
32
|
Cheng S, Altmeppen G, So C, Welp LM, Penir S, Ruhwedel T, Menelaou K, Harasimov K, Stützer A, Blayney M, Elder K, Möbius W, Urlaub H, Schuh M. Mammalian oocytes store mRNAs in a mitochondria-associated membraneless compartment. Science 2022; 378:eabq4835. [PMID: 36264786 DOI: 10.1126/science.abq4835] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Full-grown oocytes are transcriptionally silent and must stably maintain the messenger RNAs (mRNAs) needed for oocyte meiotic maturation and early embryonic development. However, where and how mammalian oocytes store maternal mRNAs is unclear. Here, we report that mammalian oocytes accumulate mRNAs in a mitochondria-associated ribonucleoprotein domain (MARDO). MARDO assembly around mitochondria was promoted by the RNA-binding protein ZAR1 and directed by an increase in mitochondrial membrane potential during oocyte growth. MARDO foci coalesced into hydrogel-like matrices that clustered mitochondria. Maternal mRNAs stored in the MARDO were translationally repressed. Loss of ZAR1 disrupted the MARDO, dispersed mitochondria, and caused a premature loss of MARDO-localized mRNAs. Thus, a mitochondria-associated membraneless compartment controls mitochondrial distribution and regulates maternal mRNA storage, translation, and decay to ensure fertility in mammals.
Collapse
Affiliation(s)
- Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gerrit Altmeppen
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Chun So
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sarah Penir
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Torben Ruhwedel
- Electron Microscopy City Campus, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katerina Menelaou
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Bourn Hall Clinic, Cambridge, UK
| | - Katarina Harasimov
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandra Stützer
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | | | - Wiebke Möbius
- Electron Microscopy City Campus, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
33
|
Mohammadi A, Higazy R, Gauda EB. PGC-1α activity and mitochondrial dysfunction in preterm infants. Front Physiol 2022; 13:997619. [PMID: 36225305 PMCID: PMC9548560 DOI: 10.3389/fphys.2022.997619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Extremely low gestational age neonates (ELGANs) are born in a relatively hyperoxic environment with weak antioxidant defenses, placing them at high risk for mitochondrial dysfunction affecting multiple organ systems including the nervous, respiratory, ocular, and gastrointestinal systems. The brain and lungs are highly affected by mitochondrial dysfunction and dysregulation in the neonate, causing white matter injury (WMI) and bronchopulmonary dysplasia (BPD), respectively. Adequate mitochondrial function is important in providing sufficient energy for organ development as it relates to alveolarization and axonal myelination and decreasing oxidative stress via reactive oxygen species (ROS) and reactive nitrogen species (RNS) detoxification. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a master regulator of mitochondrial biogenesis and function. Since mitochondrial dysfunction is at the root of WMI and BPD pathobiology, exploring therapies that can regulate PGC-1α activity may be beneficial. This review article describes several promising therapeutic agents that can mitigate mitochondrial dysfunction through direct and indirect activation and upregulation of the PGC-1α pathway. Metformin, resveratrol, omega 3 fatty acids, montelukast, L-citrulline, and adiponectin are promising candidates that require further pre-clinical and clinical studies to understand their efficacy in decreasing the burden of disease from WMI and BPD in preterm infants.
Collapse
Affiliation(s)
- Atefeh Mohammadi
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Randa Higazy
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
| | - Estelle B. Gauda
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Estelle B. Gauda,
| |
Collapse
|
34
|
Zhou YT, Li R, Li SH, Ma X, Liu L, Niu D, Duan X. Perfluorooctanoic acid (PFOA) exposure affects early embryonic development and offspring oocyte quality via inducing mitochondrial dysfunction. ENVIRONMENT INTERNATIONAL 2022; 167:107413. [PMID: 35863238 DOI: 10.1016/j.envint.2022.107413] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a synthetic perfluorinated compound that is extensively used as an integral surfactant in commercial production. Owing to its hydrophilicity and persistence, PFOA can accumulate in living organisms and induce severe disease in animals and humans. It has been reported that PFOA exposure can affect ovarian function and induce reproductive toxicity; however, the effects and potential mechanism of PFOA exposure during gestation on early embryonic development and offspring remain unclear. This study found that PFOA exposure in vitro disrupted spindle assembly and chromosome alignment during the first cleavage of early mouse embryos, which impacted early embryonic cleavage and blastocyst formation. Moreover, PFOA exposure caused mitochondrial dysfunction and oxidative stress by inducing aberrant Ca2+ levels, liquid drops(LDs), and mitochondrial membrane potential in the 2-cell stage. Furthermore, we found that PFOA exposure resulted in DNA damage, autophagy, and apoptosis in 2-cell stage by inhibiting SOD2 function. Gestational exposure to PFOA significantly increased ovarian apoptosis and disrupted follicle development in F1 offspring. In addition, oocyte maturation competence was decreased in F1 offspring. Finally, single-cell transcriptome analysis revealed that PFOA-induced oocyte deterioration was caused by mitochondrial dysfunction and apoptosis in the F1 offspring. In summary, our results indicated that gestational exposure to PFOA had potential toxic effects on ovarian function and led to a higher incidence of meiotic defects in F1 female offspring.
Collapse
Affiliation(s)
- Yu-Ting Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Rui Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Si-Hong Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Lu Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
35
|
Zhuan Q, Li J, Du X, Zhang L, Meng L, Luo Y, Zhou D, Liu H, Wan P, Hou Y, Fu X. Antioxidant procyanidin B2 protects oocytes against cryoinjuries via mitochondria regulated cortical tension. J Anim Sci Biotechnol 2022; 13:95. [PMID: 35971139 PMCID: PMC9380387 DOI: 10.1186/s40104-022-00742-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Irreversible cryodamage caused by oocyte vitrification limited its wild application in female fertility preservation. Antioxidants were always used to antagonist the oxidative stress caused by vitrification. However, the comprehensive mechanism underlying the protective role of antioxidants has not been studied. Procyanidin B2 (PCB2) is a potent natural antioxidant and its functions in response to vitrification are still unknown. In this study, the effects of PCB2 on vitrified-thawed oocytes and subsequent embryo development were explored, and the mechanisms underlying the protective role of PCB2 were systematically elucidated. RESULTS Vitrification induced a marked decline in oocyte quality, while PCB2 could improve oocyte viability and further development after parthenogenetic activation. A subsequent study indicated that PCB2 effectively attenuated vitrification-induced oxidative stress, rescued mitochondrial dysfunction, and improved cell viability. Moreover, PCB2 also acts as a cortical tension regulator apart from strong antioxidant properties. Increased cortical tension caused by PCB2 would maintain normal spindle morphology and promote migration, ensure correct meiosis progression and finally reduce the aneuploidy rate in vitrified oocytes. Further study reveals that ATP biosynthesis plays a crucial role in cortical tension regulation, and PCB2 effectively increased the cortical tension through the electron transfer chain pathway. Additionally, PCB2 would elevate the cortical tension in embryo cells at morula and blastocyst stages and further improve blastocyst quality. What's more, targeted metabolomics shows that PCB2 has a beneficial effect on blastocyst formation by mediating saccharides and amino acids metabolism. CONCLUSIONS Antioxidant PCB2 exhibits multi-protective roles in response to vitrification stimuli through mitochondria-mediated cortical tension regulation.
Collapse
Affiliation(s)
- Qingrui Zhuan
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Jun Li
- grid.452458.aDepartment of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei China
| | - Xingzhu Du
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Luyao Zhang
- grid.22935.3f0000 0004 0530 8290State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Meng
- grid.22935.3f0000 0004 0530 8290State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuwen Luo
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Dan Zhou
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Hongyu Liu
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Pengcheng Wan
- grid.469620.f0000 0004 4678 3979State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihhotze, China
| | - Yunpeng Hou
- grid.22935.3f0000 0004 0530 8290State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China. .,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihhotze, China.
| |
Collapse
|
36
|
Ham J, Lim W, Song G. Ethalfluralin impairs implantation by aggravation of mitochondrial viability and function during early pregnancy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119495. [PMID: 35605831 DOI: 10.1016/j.envpol.2022.119495] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/27/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Ethalfluralin, a dinitroaniline-type herbicide, has been used for decades. As a result, its residues are detected on some farmlands. To determine the molecular mechanisms underlying the detrimental effects of ethalfluralin on early pregnancy, porcine luminal epithelium and trophectoderm cell lines were used. Ethalfluralin was found to inhibit the viability, proliferation, and migration of porcine luminal epithelial (pLE) and porcine trophectoderm (pTr) cells. Additionally, ethalfluralin induced apoptotic cell death by means of an imbalance in calcium homeostasis in both pLE and pTr cells. Ethalfluralin decreased mitochondrial membrane potential (ΔΨm) and impaired mitochondrial respiration by downregulating the mitochondrial respiratory complex-related genes. Ethalfluralin also activated endoplasmic reticulum stress signals and autophagy pathways, increased the phosphorylation of P38 MAPK and NF-κB, and suppressed the PI3K/AKT signaling pathway. Taken together, this study elucidated the molecular mechanisms by which ethalfluralin impedes the viability and mitochondrial function in fetal trophectoderm and maternal endometrial cells during early pregnancy.
Collapse
Affiliation(s)
- Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
37
|
Nolden KA, Egner JM, Collier JJ, Russell OM, Alston CL, Harwig MC, Widlansky ME, Sasorith S, Barbosa IA, Douglas AG, Baptista J, Walker M, Donnelly DE, Morris AA, Tan HJ, Kurian MA, Gorman K, Mordekar S, Deshpande C, Samanta R, McFarland R, Hill RB, Taylor RW, Oláhová M. Novel DNM1L variants impair mitochondrial dynamics through divergent mechanisms. Life Sci Alliance 2022; 5:e202101284. [PMID: 35914810 PMCID: PMC9354038 DOI: 10.26508/lsa.202101284] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Imbalances in mitochondrial and peroxisomal dynamics are associated with a spectrum of human neurological disorders. Mitochondrial and peroxisomal fission both involve dynamin-related protein 1 (DRP1) oligomerisation and membrane constriction, although the precise biophysical mechanisms by which distinct DRP1 variants affect the assembly and activity of different DRP1 domains remains largely unexplored. We analysed four unreported de novo heterozygous variants in the dynamin-1-like gene DNM1L affecting different highly conserved DRP1 domains, leading to developmental delay, seizures, hypotonia, and/or rare cardiac complications in infancy. Single-nucleotide DRP1 stalk domain variants were found to correlate with more severe clinical phenotypes, with in vitro recombinant human DRP1 mutants demonstrating greater impairments in protein oligomerisation, DRP1-peroxisomal recruitment, and both mitochondrial and peroxisomal hyperfusion compared to GTPase or GTPase-effector domain variants. Importantly, we identified a novel mechanism of pathogenesis, where a p.Arg710Gly variant uncouples DRP1 assembly from assembly-stimulated GTP hydrolysis, providing mechanistic insight into how assembly-state information is transmitted to the GTPase domain. Together, these data reveal that discrete, pathological DNM1L variants impair mitochondrial network maintenance by divergent mechanisms.
Collapse
Affiliation(s)
- Kelsey A Nolden
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John M Egner
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jack J Collier
- Wellcome Centre for Mitochondrial Research, Newcastle University, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Oliver M Russell
- Wellcome Centre for Mitochondrial Research, Newcastle University, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Newcastle University, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- The National Health Service (NHS) Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Megan C Harwig
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael E Widlansky
- Department of Medicine, Division of Cardiovascular Medicine and Department of Pharmacology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Souphatta Sasorith
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire and PhyMedExp, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Inês A Barbosa
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Andrew Gl Douglas
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Julia Baptista
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Mark Walker
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Deirdre E Donnelly
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast, UK
| | - Andrew A Morris
- Willink Metabolic Unit, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Hui Jeen Tan
- Department of Paediatric Neurology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Manju A Kurian
- Developmental Neurosciences Department, Zayed Centre for Research into Rare Diseases in Children, University College London Great Ormond Street Institute of Child Health, Faculty of Population Health Sciences, London, UK
| | - Kathleen Gorman
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Santosh Mordekar
- Department of Paediatric Neurology, Sheffield Children's Hospital, Sheffield, UK
| | - Charu Deshpande
- Clinical Genetics Unit, Guys and St. Thomas' NHS Foundation Trust, London, UK
| | - Rajib Samanta
- Department of Paediatric Neurology, University Hospitals Leicester NHS Trust, Leicester, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Newcastle University, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- The National Health Service (NHS) Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Newcastle University, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- The National Health Service (NHS) Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Newcastle University, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| |
Collapse
|
38
|
Kankanam Gamage US, Hashimoto S, Miyamoto Y, Nakano T, Yamanaka M, Koike A, Satoh M, Morimoto Y. Mitochondria Transfer from Adipose Stem Cells Improves the Developmental Potential of Cryopreserved Oocytes. Biomolecules 2022; 12:biom12071008. [PMID: 35883564 PMCID: PMC9313289 DOI: 10.3390/biom12071008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
Although it is not a well-established technology, oocyte cryopreservation is becoming prevalent in assisted reproductive technologies in response to the growing demands of patients’ sociological and pathological conditions. Oocyte cryopreservation can adversely affect the developmental potential of oocytes by causing an increase in intracellular oxidative stresses and damage to the mitochondrial structure. In this study, we studied whether autologous adipose stem cell (ASC) mitochondria supplementation with vitrified and warmed oocytes could restore post-fertilization development that decreased due to mitochondrial damage following cryopreservation. ASC mitochondria showed similar morphology to oocytes’ mitochondria and had a higher ATP production capacity. The vitrified-warmed oocytes from juvenile mice were supplemented with ASC mitochondria at the same time as intracellular sperm injection (ICSI), after which we compared their developmental capacity and the mitochondria quality of 2-cell embryos. We found that, compared to their counterpart, mitochondria supplementation significantly improved development from 2-cell embryos to blastocysts (56.8% vs. 38.2%) and ATP production in 2-cell embryos (905.6 & 561.1 pmol), while reactive oxygen species levels were comparable. With these results, we propose that ASC mitochondria supplementation could restore the quality of cryopreserved oocytes and enhance the embryo developmental capacity, signifying another possible approach for mitochondrial transplantation therapy.
Collapse
Affiliation(s)
- Udayanga Sanath Kankanam Gamage
- HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan; (Y.M.); (A.K.)
- Correspondence: (U.S.K.G.); (S.H.); (Y.M.); Tel.: +81-90-9823-8477 (U.S.K.G.); +81-6-6645-2121 (S.H.); +81-6-6377-8824 (Y.M.)
| | - Shu Hashimoto
- Reproductive Science Institute, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
- Correspondence: (U.S.K.G.); (S.H.); (Y.M.); Tel.: +81-90-9823-8477 (U.S.K.G.); +81-6-6645-2121 (S.H.); +81-6-6377-8824 (Y.M.)
| | - Yuki Miyamoto
- HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan; (Y.M.); (A.K.)
| | - Tatsuya Nakano
- IVF Namba Clinic, Osaka 550-0015, Japan; (T.N.); (M.Y.); (M.S.)
| | - Masaya Yamanaka
- IVF Namba Clinic, Osaka 550-0015, Japan; (T.N.); (M.Y.); (M.S.)
| | - Akiko Koike
- HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan; (Y.M.); (A.K.)
| | - Manabu Satoh
- IVF Namba Clinic, Osaka 550-0015, Japan; (T.N.); (M.Y.); (M.S.)
| | - Yoshiharu Morimoto
- HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan; (Y.M.); (A.K.)
- Correspondence: (U.S.K.G.); (S.H.); (Y.M.); Tel.: +81-90-9823-8477 (U.S.K.G.); +81-6-6645-2121 (S.H.); +81-6-6377-8824 (Y.M.)
| |
Collapse
|
39
|
Whatley EG, Truong TT, Wilhelm D, Harvey AJ, Gardner DK. β-hydroxybutyrate reduces blastocyst viability via trophectoderm-mediated metabolic aberrations in mice. Hum Reprod 2022; 37:1994-2011. [PMID: 35856159 PMCID: PMC9433850 DOI: 10.1093/humrep/deac153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/31/2022] [Indexed: 11/15/2022] Open
Abstract
STUDY QUESTION What is the effect of the ketone β-hydroxybutyrate (βOHB) on preimplantation mouse embryo development, metabolism, epigenetics and post-transfer viability? SUMMARY ANSWER In vitro βOHB exposure at ketogenic diet (KD)-relevant serum concentrations significantly impaired preimplantation mouse embryo development, induced aberrant glycolytic metabolism and reduced post-transfer fetal viability in a sex-specific manner. WHAT IS KNOWN ALREADY A maternal KD in humans elevates gamete and offspring βOHB exposure during conception and gestation, and in rodents is associated with an increased time to pregnancy, and altered offspring organogenesis, post-natal growth and behaviour, suggesting a developmental programming effect. In vitro exposure to βOHB at supraphysiological concentrations (8–80 mM) perturbs preimplantation mouse embryo development. STUDY DESIGN, SIZE, DURATION A mouse model of embryo development and viability was utilized for this laboratory-based study. Embryo culture media were supplemented with βOHB at KD-relevant concentrations, and the developmental competence, physiology, epigenetic state and post-transfer viability of in vitro cultured βOHB-exposed embryos was assessed. PARTICIPANTS/MATERIALS, SETTING, METHODS Mouse embryos were cultured in vitro with or without βOHB at concentrations representing serum levels during pregnancy (0.1 mM), standard diet consumption (0.25 mM), KD consumption (2 mM) and diabetic ketoacidosis (4 mM). The impact of βOHB exposure on embryo development (blastocyst formation rate, morphokinetics and blastocyst total, inner cell mass and trophectoderm (TE) cell number), physiology (redox state, βOHB metabolism, glycolytic metabolism), epigenetic state (histone 3 lysine 27 β-hydroxybutyrylation, H3K27bhb) and post-transfer viability (implantation rate, fetal and placental development) was assessed. MAIN RESULTS AND THE ROLE OF CHANCE All βOHB concentrations tested slowed embryo development (P < 0.05), and βOHB at KD-relevant serum levels (2 mM) delayed morphokinetic development, beginning at syngamy (P < 0.05). Compared with unexposed controls, βOHB exposure reduced blastocyst total and TE cell number (≥0.25 mM; P < 0.05), reduced blastocyst glucose consumption (2 mM; P < 0.01) and increased lactate production (0.25 mM; P < 0.05) and glycolytic flux (0.25 and 2 mM; P < 0.01). Consumption of βOHB by embryos, mediated via monocarboxylate transporters, was detected throughout preimplantation development. Supraphysiological (20 mM; P < 0.001), but not physiological (0.25–4 mM) βOHB elevated H3K27bhb levels. Preimplantation βOHB exposure at serum KD levels (2 mM) reduced post-transfer viability. Implantation and fetal development rates of βOHB-treated embryos were 50% lower than controls (P < 0.05), and resultant fetuses had a shorter crown-rump length (P < 0.01) and placental diameter (P < 0.05). A strong sex-specific effect of βOHB was detected, whereby female fetuses from βOHB-treated embryos weighed less (P < 0.05), had a shorter crown-rump length (P < 0.05), and tended to have accelerated ear development (P < 0.08) compared with female control fetuses. LIMITATIONS, REASONS FOR CAUTION This study only assessed embryo development, physiology and viability in a mouse model utilizing in vitro βOHB exposure; the impact of in vivo exposure was not assessed. The concentrations of βOHB utilized were modelled on blood/serum levels as the true oviduct and uterine concentrations are currently unknown. WIDER IMPLICATIONS OF THE FINDINGS These findings indicate that the development, physiology and viability of mouse embryos is detrimentally impacted by preimplantation exposure to βOHB within a physiological range. Maternal diets which increase βOHB levels, such as a KD, may affect preimplantation embryo development and may therefore impair subsequent viability and long-term health. Consequently, our initial observations warrant follow-up studies in larger human populations. Furthermore, analysis of βOHB concentrations within human and rodent oviduct and uterine fluid under different nutritional states is also required. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the University of Melbourne and the Norma Hilda Schuster (nee Swift) Scholarship. The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Emma G Whatley
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Thi T Truong
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Dagmar Wilhelm
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia.,Melbourne IVF, East Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Chen X, Liu F, Li B, Wang Y, Yuan L, Yin A, Chen Q, Hu W, Yao Y, Zhang M, Wu Y, Chen K. Neuropathy-associated Fars2 deficiency affects neuronal development and potentiates neuronal apoptosis by impairing mitochondrial function. Cell Biosci 2022; 12:103. [PMID: 35794642 PMCID: PMC9258231 DOI: 10.1186/s13578-022-00838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
Background Neurodegenerative diseases encompass an extensive and heterogeneous group of nervous system disorders which are characterized by progressive degeneration and death of neurons. Many lines of evidence suggest the participation of mitochondria dysfunction in these diseases. Mitochondrial phenylalanyl-tRNA synthetase, encoded by FARS2, catalyzes the transfer of phenylalanine to its cognate tRNA for protein synthesis. As a member of mt-aaRSs genes, FARS2 missense homozygous mutation c.424G > T (p.D142Y) found in a Chinese consanguineous family first built the relationship between pure hereditary spastic paraplegia (HSP) and FARS2 gene. More FARS2 variations were subsequently found to cause heterogeneous group of neurologic disorders presenting three main phenotypic manifestations: infantile-onset epileptic mitochondrial encephalopathy, later-onset spastic paraplegia and juvenile onset refractory epilepsy. Studies showed that aminoacylation activity is frequently disrupt in cases with FARS2 mutations, indicating a loss-of-function mechanism. However, the underlying pathogenesis of neuropathy-associated Fars2 deficiency is still largely unknown. Results Early gestation lethality of global Fars2 knockout mice was observed prior to neurogenesis. The conditional Fars2 knockout-mouse model delayed lethality to late-gestation, resulting in a thinner cortex and an enlarged ventricle which is consist with the MRI results revealing cortical atrophy and reduced cerebral white matter volume in FARS2-deficient patients. Delayed development of neurite outgrowth followed by neuronal apoptosis was confirmed in Fars2-knockdown mouse primary cultured neurons. Zebrafish, in which fars2 was knocked down, exhibited aberrant motor neuron function including reduced locomotor capacity which well restored the spastic paraplegia phenotype of FARS2-deficient patients. Altered mitochondrial protein synthesis and reduced levels of oxidative phosphorylation complexes were detected in Fars2-deficient samples. And thus, reduced ATP, total NAD levels and mitochondrial membrane potential, together with increased ROS production, revealed mitochondrial dysfunction both in vitro and in vivo. Dctn3 is a potential downstream molecule in responds to Fars2 deficient in neurons, which may provide some evidence for the development of pathogenesis study and therapeutic schedule. Conclusions The Fars2 deficiency genetic models developed in this study cover the typical clinical manifestations in FARS2 patients, and help clarify how neuropathy-associated Fars2 deficiency, by damaging the mitochondrial respiratory chain and impairing mitochondrial function, affects neuronal development and potentiates neuronal cell apoptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00838-y.
Collapse
Affiliation(s)
- Xihui Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Fangfang Liu
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Bowen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yufeng Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Medical Genetics, Yan'an University, Yan'an, Shaanxi, People's Republic of China
| | - Lijuan Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Anan Yin
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Department of Plastic surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Qi Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Weihong Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Medical Genetics, Yan'an University, Yan'an, Shaanxi, People's Republic of China
| | - Yan Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Medical Genetics, Yan'an University, Yan'an, Shaanxi, People's Republic of China
| | - Mengjie Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Medical Genetics, Yan'an University, Yan'an, Shaanxi, People's Republic of China
| | - YuanMing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China. .,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.
| | - Kun Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
41
|
Park A, Oh HJ, Ji K, Choi EM, Kim D, Kim E, Kim MK. Effect of Passage Number of Conditioned Medium Collected from Equine Amniotic Fluid Mesenchymal Stem Cells: Porcine Oocyte Maturation and Embryo Development. Int J Mol Sci 2022; 23:ijms23126569. [PMID: 35743012 PMCID: PMC9224282 DOI: 10.3390/ijms23126569] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Oocyte in vitro maturation (IVM) is the most important first step in in vitro embryo production. One prerequisite for the success of IVM in oocytes is to provide a rich culture microenvironment that meets the nutritional needs of developing oocytes. We applied different equine amniotic fluid mesenchymal stem cell conditioned medium (eAFMSC-CM) from passages 7, 18, and 27 to porcine oocytes during IVM to determine its effects on oocyte development and subsequent embryo development, specifically. The eAFMSC-CM from passage 7 (eAFMSC-CMp7) has a considerable impact on 9 genes: BAX, BCL2, SOD2, NRF2, TNFAIP6, PTGS2, HAS2, Cx37, and Cx43, which are associated with cumulus cell mediated oocyte maturation. GSH levels and distribution of mitochondrial and cortical granules were significantly increased in oocytes incubated with eAFMSC-CMp7. In addition, catalase and superoxide dismutase activities were high after IVM 44 h with eAFMSC-CMp7. After in vitro fertilization, blastocyst quality was significantly increased in the eAFMSC-CMp7 group compared to control. Lastly, the antioxidant effect of eAFMSC-CMp7 substantially regulated the expression of apoptosis, pluripotency related genes and decreased autophagy activity in blastocysts. Taken together, this study demonstrated that the eAFMSC-CMp7 enhanced the cytoplasmic maturation of oocytes and subsequent embryonic development by generating high antioxidant activity.
Collapse
Affiliation(s)
- Ahyoung Park
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (A.P.); (H.J.O.); (K.J.); (E.M.C.); (D.K.)
| | - Hyun Ju Oh
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (A.P.); (H.J.O.); (K.J.); (E.M.C.); (D.K.)
| | - Kukbin Ji
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (A.P.); (H.J.O.); (K.J.); (E.M.C.); (D.K.)
| | - Eunha Miri Choi
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (A.P.); (H.J.O.); (K.J.); (E.M.C.); (D.K.)
| | - Dongern Kim
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (A.P.); (H.J.O.); (K.J.); (E.M.C.); (D.K.)
| | - Eunyoung Kim
- MK Biotech Inc., 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
| | - Min Kyu Kim
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (A.P.); (H.J.O.); (K.J.); (E.M.C.); (D.K.)
- MK Biotech Inc., 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
- Correspondence: ; Tel.: +82-042-821-5773
| |
Collapse
|
42
|
Abstract
The metaphase II (MII) oocyte is the mature female gamete, produced from a complex maturation process called oogenesis that starts in the first weeks of embryogenesis in the female embryo tract, continues during puberty, and is completed at fertilization with the spermatozoon. Oogenesis is closely related to folliculogenesis. In assisted reproduction techniques, oocytes are retrieved in cumulus-oocyte complexes after ovarian stimulation. Before being used for in vitro fertilization or cryopreservation, the metaphase (MII) oocytes can be classified according to different morphological traits and by the presence/absence of the meiotic spindle. Except for a few and rare morphological characteristics that make the oocyte discarded, none of the morphological characteristics is predictive of oocyte competence in giving a viable embryo. On the other side, specific key performance indicators based on MII oocytes test the efficacy of in vitro treatments. Molecular, cellular, or genetic abnormalities in the oocytes have observable consequences on the embryo development dynamics and its genetic content. Besides what can be seen in vitro, several intrinsic and extrinsic factors related to the patient are responsible for the oocyte quality. The clinician and the patient herself must be aware of these factors to preserve the reproductive functions as much as possible. In the present review, we have revised oogenesis and the role of mature oocytes in supporting the fertilization process and early embryo development; we have also listed the oocyte morphological traits and key performance indicators related to the oocyte quality and studied the intrinsic and extrinsic factors that irreversibly impact female fertility.
Collapse
Affiliation(s)
- Sandrine Chamayou
- Unit of Reproductive Medicine, HERA Center, Sant'Agata Li Battiati, Catania, Italy -
| |
Collapse
|
43
|
Aberrant Expression of Mitochondrial SAM Transporter SLC25A26 Impairs Oocyte Maturation and Early Development in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1681623. [PMID: 35464759 PMCID: PMC9020962 DOI: 10.1155/2022/1681623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 12/06/2022]
Abstract
The immature germinal vesicle (GV) oocytes proceed through metaphase I (MI) division, extrude the first polar body, and become mature metaphase II (MII) oocytes for fertilization which is followed by preimplantation and postimplantation development until birth. Slc25a26 is the gene encoding S-adenosylmethionine carrier (SAMC), a member of the mitochondrial carrier family. Its major function is to catalyze the uptake of S-adenosylmethionine (SAM) from cytosol into mitochondria, which is the only known mitochondrial SAM transporter. In the present study, we demonstrated that excessive SLC25A26 accumulation in mouse oocytes mimicked naturally aged oocytes and resulted in lower oocyte quality with decreased maturation rate and increased reactive oxygen species (ROS) by impairing mitochondrial function. Increased level of Slc25a26 gene impacted gene expression in mouse oocytes such as mt-Cytb which regulates mitochondrial respiratory chain. Furthermore, increased level of Slc25a26 gene in fertilized oocytes slightly compromised blastocyst formation, and Slc25a26 knockout mice displayed embryonic lethality around 10.5 dpc. Taken together, our results showed that Slc25a26 gene plays a critical role in oocyte maturation and early mouse development.
Collapse
|
44
|
Li XY, Pan JX, Zhu H, Ding GL, Huang HF. Environmental epigenetic interaction of gametes and early embryos. Biol Reprod 2022; 107:196-204. [PMID: 35323884 DOI: 10.1093/biolre/ioac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/14/2022] Open
Abstract
In recent years, the developmental origins of diseases have been increasingly recognized and accepted. As such, it has been suggested that most adulthood chronic diseases such as diabetes, obesity, cardiovascular disease, and even tumors may develop at a very early stage. In addition to intrauterine environmental exposure, germ cells carry an important inheritance role as the primary link between the two generations. Adverse external influences during differentiation and development can cause damage to germ cells, which may then increase the risk of chronic disease development later in life. Here, we further elucidate and clarify the concept of gamete and embryo origins of adult diseases by focusing on the environmental insults on germ cells, from differentiation to maturation and fertilization.
Collapse
Affiliation(s)
- Xin-Yuan Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences
| | - Jie-Xue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences
| | - Hong Zhu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences
| | - Guo-Lian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - He-Feng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| |
Collapse
|
45
|
Shi XY, Jin XH, Lin JY, Sun LZ, Liu X, Zhang TY, Wang MR, Yue SL, Zhou JB. Idebenone relieves the damage of heat stress on the maturation and developmental competence of porcine oocytes. Reprod Domest Anim 2022; 57:418-428. [PMID: 35014107 DOI: 10.1111/rda.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 12/01/2022]
Abstract
The reproductive function of animals is often affected by climatic conditions. High-temperature conditions can cause damage to oocyte maturation and embryonic development in a variety of ways. The purpose of this study was to prove that supplementation idebenone (IDB) to the maturation medium can improve the maturation and development of porcine oocytes after heat stress (HS). Porcine cumulus-oocyte complexes (COCs) were cultured in the maturation medium with different concentrations of IDB (0, 0.1, 1 and 10 μM) for 44 hr at either 38.5°C or under the HS conditions. The cumulus oophorus expansion, nuclear maturation and blastocyst rate after parthenogenetic activation (PA) were measured. We found that HS (in vitro maturation 20-24 hr, 42°C) exposure significantly reduced cumulus expansion index and maturation rate of oocytes and the blastocyst rate of PA embryos, while IDB supplementation significantly improved oocyte maturation and development to the blastocysts stage after PA. Moreover, the addition of IDB decreased the intracellular level of ROS and increased GSH content, hence enhancing the antioxidant capacity of oocytes under HS. Meanwhile, IDB treatment also obviously improved the mitochondrial membrane potential and ATP synthesis of oocytes under HS conditions. Furthermore, IDB treatment increased the expression of GDF9 and BMP15 in IVM oocytes which attribute to improve the quality and outcome of IVM oocytes and the development competence of PA embryos in pigs. In summary, we demonstrated that IDB supplementation into the maturation medium exerted protective effects and improved the ability of maturation and developmental competence of porcine oocytes exposed to HS.
Collapse
Affiliation(s)
- Xue-Ying Shi
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Xiao-Hu Jin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jing-Yi Lin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Liang-Zhen Sun
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Xue Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Tian-Yu Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Mo-Ran Wang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Shun-Li Yue
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jia-Bo Zhou
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
46
|
Venturas M, Shah JS, Yang X, Sanchez TH, Conway W, Sakkas D, Needleman DJ. Metabolic state of human blastocysts measured by fluorescence lifetime imaging microscopy. Hum Reprod 2022; 37:411-427. [PMID: 34999823 DOI: 10.1093/humrep/deab283] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/27/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Can non-invasive metabolic imaging via fluorescence lifetime imaging microscopy (FLIM) detect variations in metabolic profiles between discarded human blastocysts? SUMMARY ANSWER FLIM revealed extensive variations in the metabolic state of discarded human blastocysts associated with blastocyst development over 36 h, the day after fertilization and blastocyst developmental stage, as well as metabolic heterogeneity within individual blastocysts. WHAT IS KNOWN ALREADY Mammalian embryos undergo large changes in metabolism over the course of preimplantation development. Embryo metabolism has long been linked to embryo viability, suggesting its potential utility in ART to aid in selecting high quality embryos. However, the metabolism of human embryos remains poorly characterized due to a lack of non-invasive methods to measure their metabolic state. STUDY DESIGN, SIZE, DURATION We conducted a prospective observational study. We used 215 morphologically normal human embryos from 137 patients that were discarded and donated for research under an approved institutional review board protocol. These embryos were imaged using metabolic imaging via FLIM to measure the autofluorescence of two central coenzymes, nicotinamide adenine (phosphate) dinucleotide (NAD(P)H) and flavine adenine dinucleotide (FAD+), which are essential for cellular respiration and glycolysis. PARTICIPANTS/MATERIALS, SETTING, METHODS Here, we used non-invasive FLIM to measure the metabolic state of human blastocysts. We first studied spatial patterns in the metabolic state within human blastocysts and the association of the metabolic state of the whole blastocysts with stage of expansion, day of development since fertilization and morphology. We explored the sensitivity of this technique in detecting metabolic variations between blastocysts from the same patient and between patients. Next, we explored whether FLIM can quantitatively measure metabolic changes through human blastocyst expansion and hatching via time-lapse imaging. For all test conditions, the level of significance was set at P < 0.05 after correction for multiple comparisons using Benjamini-Hochberg's false discovery rate. MAIN RESULTS AND THE ROLE OF CHANCE We found that FLIM is sensitive enough to detect significant metabolic differences between blastocysts. We found that metabolic variations between blastocyst are partially explained by both the time since fertilization and their developmental expansion stage (P < 0.05), but not their morphological grade. Substantial metabolic variations between blastocysts from the same patients remain, even after controlling for these factors. We also observe significant metabolic heterogeneity within individual blastocysts, including between the inner cell mass and the trophectoderm, and between the portions of hatching blastocysts within and without the zona pellucida (P < 0.05). And finally, we observed that the metabolic state of human blastocysts continuously varies over time. LIMITATIONS, REASONS FOR CAUTION Although we observed significant variations in metabolic parameters, our data are taken from human blastocysts that were discarded and donated for research and we do not know their clinical outcome. Moreover, the embryos used in this study are a mixture of aneuploid, euploid and embryos of unknown ploidy. WIDER IMPLICATIONS OF THE FINDINGS This work reveals novel aspects of the metabolism of human blastocysts and suggests that FLIM is a promising approach to assess embryo viability through non-invasive, quantitative measurements of their metabolism. These results further demonstrate that FLIM can provide biologically relevant information that may be valuable for the assessment of embryo quality. STUDY FUNDING/COMPETING INTEREST(S) Supported by the Blavatnik Biomedical Accelerator Grant at Harvard University. Becker and Hickl GmbH and Boston Electronics sponsored research with the loaning of equipment for FLIM. D.J.N. is an inventor on patent US20170039415A1. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Marta Venturas
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - Jaimin S Shah
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Boston IVF, Waltham, MA, USA
| | - Xingbo Yang
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - William Conway
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Physics Department, Harvard University, Cambridge, MA, USA
| | | | - Dan J Needleman
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Physics Department, Harvard University, Cambridge, MA, USA.,Center for Computational Biology, Flatiron Institute, New York, NY, USA
| |
Collapse
|
47
|
Peng J, Ramatchandirin B, Pearah A, Maheshwari A, He L. Development and Functions of Mitochondria in Early Life. NEWBORN (CLARKSVILLE, MD.) 2022; 1:131-141. [PMID: 37206110 PMCID: PMC10193534 DOI: 10.5005/jp-journals-11002-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitochondria are highly dynamic organelles of bacterial origin in eukaryotic cells. These play a central role in metabolism and adenosine triphosphate (ATP) synthesis and in the production and regulation of reactive oxygen species (ROS). In addition to the generation of energy, mitochondria perform numerous other functions to support key developmental events such as fertilization during reproduction, oocyte maturation, and the development of the embryo. During embryonic and neonatal development, mitochondria may have important effects on metabolic, energetic, and epigenetic regulation, which may have significant short- and long-term effects on embryonic and offspring health. Hence, the environment, epigenome, and early-life regulation are all linked by mitochondrial integrity, communication, and metabolism.
Collapse
Affiliation(s)
- Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Balamurugan Ramatchandirin
- Department of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alexia Pearah
- Department of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Akhil Maheshwari
- Global Newborn Society, Clarksville, Maryland, United States of America
| | - Ling He
- Department of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
48
|
Bastos NM, Ferst JG, Goulart RS, Coelho da Silveira J. The role of the oviduct and extracellular vesicles during early embryo development in bovine. Anim Reprod 2022; 19:e20220015. [PMID: 35493787 PMCID: PMC9037602 DOI: 10.1590/1984-3143-ar2022-0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
The oviduct is an important reproductive structure that connects the ovary to the uterus and takes place to important events such as oocyte final maturation, fertilization and early embryonic development. Thus, gametes and embryo can be directly influenced by the oviductal microenvironment composed by epithelial cells such secretory and ciliated cells and oviductal fluid. The oviduct composition is anatomically dynamic and is under ovarian hormones control. The oviductal fluid provides protection, nourishment and transport to gametes and embryo and allows interaction to oviductal epithelial cells. All these functions together allows the oviduct to provides the ideal environment to the early reproductive events. Extracellular vesicles (EVs) are biological nanoparticles that mediates cell communication and are present at oviductal fluid and plays an important role in gametes/embryo - oviductal cells communication. This review will present the ability of the oviducts based on its dynamic and systemic changes during reproductive events, as well as the contribution of EVs in this process.
Collapse
|
49
|
Wang L, Sang Q. MOS is a novel genetic marker for human early embryonic arrest and fragmentation. EMBO Mol Med 2021; 13:e15323. [PMID: 34806827 PMCID: PMC8649885 DOI: 10.15252/emmm.202115323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Early embryonic arrest and fragmentation (EEAF) is a common phenotype observed in in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) cycles. The phenotype causes female infertility and recurrent failed IVF/ICSI attempts. However, the molecular mechanisms behind EEAF remain largely unknown. In this issue of EMBO Molecular Medicine, Zhang et al (2021) present the novel causative gene MOS in patients with the EEAF phenotype. The relationship between MOS variants and human EEAF is comprehensively established through a series of in vitro and in vivo experiments, thus clarifying the role of MOS during human oocyte maturation and early embryo development. These findings suggest that MOS is a new diagnostic marker of EEAF and is a potential therapeutic target for treatment of EEAF patients.
Collapse
Affiliation(s)
- Lei Wang
- Institute of PediatricsChildren’s Hospital of Fudan Universitythe Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiChina
| | - Qing Sang
- Institute of PediatricsChildren’s Hospital of Fudan Universitythe Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiChina
| |
Collapse
|
50
|
Amino Acid Transport and Metabolism Regulate Early Embryo Development: Species Differences, Clinical Significance, and Evolutionary Implications. Cells 2021; 10:cells10113154. [PMID: 34831375 PMCID: PMC8618253 DOI: 10.3390/cells10113154] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
In this review we discuss the beneficial effects of amino acid transport and metabolism on pre- and peri-implantation embryo development, and we consider how disturbances in these processes lead to undesirable health outcomes in adults. Proline, glutamine, glycine, and methionine transport each foster cleavage-stage development, whereas leucine uptake by blastocysts via transport system B0,+ promotes the development of trophoblast motility and the penetration of the uterine epithelium in mammalian species exhibiting invasive implantation. (Amino acid transport systems and transporters, such as B0,+, are often oddly named. The reader is urged to focus on the transporters’ functions, not their names.) B0,+ also accumulates leucine and other amino acids in oocytes of species with noninvasive implantation, thus helping them to produce proteins to support later development. This difference in the timing of the expression of system B0,+ is termed heterochrony—a process employed in evolution. Disturbances in leucine uptake via system B0,+ in blastocysts appear to alter the subsequent development of embryos, fetuses, and placentae, with undesirable consequences for offspring. These consequences may include greater adiposity, cardiovascular dysfunction, hypertension, neural abnormalities, and altered bone growth in adults. Similarly, alterations in amino acid transport and metabolism in pluripotent cells in the blastocyst inner cell mass likely lead to epigenetic DNA and histone modifications that produce unwanted transgenerational health outcomes. Such outcomes might be avoided if we learn more about the mechanisms of these effects.
Collapse
|