1
|
Fahad M, Tariq L, Muhammad S, Wu L. Underground communication: Long non-coding RNA signaling in the plant rhizosphere. PLANT COMMUNICATIONS 2024; 5:100927. [PMID: 38679911 PMCID: PMC11287177 DOI: 10.1016/j.xplc.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as integral gene-expression regulators underlying plant growth, development, and adaptation. To adapt to the heterogeneous and dynamic rhizosphere, plants use interconnected regulatory mechanisms to optimally fine-tune gene-expression-governing interactions with soil biota, as well as nutrient acquisition and heavy metal tolerance. Recently, high-throughput sequencing has enabled the identification of plant lncRNAs responsive to rhizosphere biotic and abiotic cues. Here, we examine lncRNA biogenesis, classification, and mode of action, highlighting the functions of lncRNAs in mediating plant adaptation to diverse rhizosphere factors. We then discuss studies that reveal the significance and target genes of lncRNAs during developmental plasticity and stress responses at the rhizobium interface. A comprehensive understanding of specific lncRNAs, their regulatory targets, and the intricacies of their functional interaction networks will provide crucial insights into how these transcriptomic switches fine-tune responses to shifting rhizosphere signals. Looking ahead, we foresee that single-cell dissection of cell-type-specific lncRNA regulatory dynamics will enhance our understanding of the precise developmental modulation mechanisms that enable plant rhizosphere adaptation. Overcoming future challenges through multi-omics and genetic approaches will more fully reveal the integral roles of lncRNAs in governing plant adaptation to the belowground environment.
Collapse
Affiliation(s)
- Muhammad Fahad
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Leeza Tariq
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Sajid Muhammad
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liang Wu
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
2
|
Prasetyaningrum P, Litthauer S, Vegliani F, Battle MW, Wood MW, Liu X, Dickson C, Jones MA. Inhibition of RNA degradation integrates the metabolic signals induced by osmotic stress into the Arabidopsis circadian system. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5805-5819. [PMID: 37453132 PMCID: PMC10540740 DOI: 10.1093/jxb/erad274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The circadian clock system acts as an endogenous timing reference that coordinates many metabolic and physiological processes in plants. Previous studies have shown that the application of osmotic stress delays circadian rhythms via 3'-phospho-adenosine 5'-phosphate (PAP), a retrograde signalling metabolite that is produced in response to redox stress within organelles. PAP accumulation leads to the inhibition of exoribonucleases (XRNs), which are responsible for RNA degradation. Interestingly, we are now able to demonstrate that post-transcriptional processing is crucial for the circadian response to osmotic stress. Our data show that osmotic stress increases the stability of specific circadian RNAs, suggesting that RNA metabolism plays a vital role in circadian clock coordination during drought. Inactivation of XRN4 is sufficient to extend circadian rhythms as part of this response, with PRR7 and LWD1 identified as transcripts that are post-transcriptionally regulated to delay circadian progression.
Collapse
Affiliation(s)
| | | | - Franco Vegliani
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | - Xinmeng Liu
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cathryn Dickson
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Matthew Alan Jones
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Zhou S, Zhao F, Zhu D, Zhang Q, Dai Z, Wu Z. Coupling of co-transcriptional splicing and 3' end Pol II pausing during termination in Arabidopsis. Genome Biol 2023; 24:206. [PMID: 37697420 PMCID: PMC10496290 DOI: 10.1186/s13059-023-03050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND In Arabidopsis, RNA Polymerase II (Pol II) often pauses within a few hundred base pairs downstream of the polyadenylation site, reflecting efficient transcriptional termination, but how such pausing is regulated remains largely elusive. RESULT Here, we analyze Pol II dynamics at 3' ends by combining comprehensive experiments with mathematical modelling. We generate high-resolution serine 2 phosphorylated (Ser2P) Pol II positioning data specifically enriched at 3' ends and define a 3' end pause index (3'PI). The position but not the extent of the 3' end pause correlates with the termination window size. The 3'PI is not decreased but even mildly increased in the termination deficient mutant xrn3, indicating 3' end pause is a regulatory step early during the termination and before XRN3-mediated RNA decay that releases Pol II. Unexpectedly, 3'PI is closely associated with gene exon numbers and co-transcriptional splicing efficiency. Multiple exons genes often display stronger 3' end pauses and more efficient on-chromatin splicing than genes with fewer exons. Chemical inhibition of splicing strongly reduces the 3'PI and disrupts its correlation with exon numbers but does not globally impact 3' end readthrough levels. These results are further confirmed by fitting Pol II positioning data with a mathematical model, which enables the estimation of parameters that define Pol II dynamics. CONCLUSION Our work highlights that the number of exons via co-transcriptional splicing is a major determinant of Pol II pausing levels at the 3' end of genes in plants.
Collapse
Affiliation(s)
- Sixian Zhou
- Harbin Institute of Technology, Harbin, 150001, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fengli Zhao
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Danling Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiqi Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ziwei Dai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zhe Wu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Bazin J, Elvira-Matelot E, Blein T, Jauvion V, Bouteiller N, Cao J, Crespi MD, Vaucheret H. Synergistic action of the Arabidopsis spliceosome components PRP39a and SmD1b in promoting posttranscriptional transgene silencing. THE PLANT CELL 2023; 35:1917-1935. [PMID: 36970782 PMCID: PMC10226559 DOI: 10.1093/plcell/koad091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 05/30/2023]
Abstract
Besides regulating splicing, the conserved spliceosome component SmD1 (Small nuclear ribonucleoprotein D1)b promotes posttranscriptional silencing of sense transgenes (S-PTGS [post-transcriptional genesilencing]). Here, we show that the conserved spliceosome component PRP39 (Pre-mRNA-processing factor 39)a also plays a role in S-PTGS in Arabidopsis thaliana. However, PRP39a and SmD1b actions appear distinct in both splicing and S-PTGS. Indeed, RNAseq-based analysis of expression level and alternative splicing in prp39a and smd1b mutants identified different sets of deregulated transcripts and noncoding RNAs. Moreover, double mutant analyses involving prp39a or smd1b and RNA quality control (RQC) mutants revealed distinct genetic interactions for SmD1b and PRP39a with nuclear RQC machineries, suggesting nonredundant roles in the RQC/PTGS interplay. Supporting this hypothesis, a prp39a smd1b double mutant exhibited enhanced suppression of S-PTGS compared to the single mutants. Because the prp39a and smd1b mutants (i) showed no major changes in the expression of PTGS or RQC components or in small RNA production and (ii) do not alter PTGS triggered by inverted-repeat transgenes directly producing dsRNA (IR-PTGS), PRP39a, and SmD1b appear to synergistically promote a step specific to S-PTGS. We propose that, independently from their specific roles in splicing, PRP39a and SmD1b limit 3'-to-5' and/or 5'-to-3' degradation of transgene-derived aberrant RNAs in the nucleus, thus favoring the export of aberrant RNAs to the cytoplasm where their conversion into double-stranded RNA (dsRNA) initiates S-PTGS.
Collapse
Affiliation(s)
- Jérémie Bazin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Universités Paris-Sud, Evry, Paris-Diderot, Sorbonne Paris-Cité, Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Emilie Elvira-Matelot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Thomas Blein
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Universités Paris-Sud, Evry, Paris-Diderot, Sorbonne Paris-Cité, Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Vincent Jauvion
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Nathalie Bouteiller
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Jun Cao
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Martin D Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Universités Paris-Sud, Evry, Paris-Diderot, Sorbonne Paris-Cité, Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Hervé Vaucheret
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| |
Collapse
|
5
|
Han WY, Hou BH, Lee WC, Chan TC, Lin TH, Chen HM. Arabidopsis mRNA decay landscape shaped by XRN 5'-3' exoribonucleases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:895-913. [PMID: 36987558 DOI: 10.1111/tpj.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 05/27/2023]
Abstract
5'-3' exoribonucleases (XRNs) play crucial roles in the control of RNA processing, quality, and quantity in eukaryotes. Although genome-wide profiling of RNA decay fragments is now feasible, how XRNs shape the plant mRNA degradome remains elusive. Here, we profiled and analyzed the RNA degradomes of Arabidopsis wild-type and mutant plants with defects in XRN activity. Deficiency of nuclear XRN3 or cytoplasmic XRN4 activity but not nuclear XRN2 activity greatly altered Arabidopsis mRNA decay profiles. Short excised linear introns and cleaved pre-mRNA fragments downstream of polyadenylation sites were polyadenylated and stabilized in the xrn3 mutant, demonstrating the unique function of XRN3 in the removal of cleavage remnants from pre-mRNA processing. Further analysis of stabilized XRN3 substrates confirmed that pre-mRNA 3' end cleavage frequently occurs after adenosine. The most abundant decay intermediates in wild-type plants include not only the primary substrates of XRN4 but also the products of XRN4-mediated cytoplasmic decay. An increase in decay intermediates with 5' ends upstream of a consensus motif in the xrn4 mutant suggests that there is an endonucleolytic cleavage mechanism targeting the 3' untranslated regions of many Arabidopsis mRNAs. However, analysis of decay fragments in the xrn4 mutant indicated that, except for microRNA-directed slicing, endonucleolytic cleavage events in the coding sequence rarely result in major decay intermediates. Together, these findings reveal the major substrates and products of nuclear and cytoplasmic XRNs along Arabidopsis transcripts and provide a basis for precise interpretation of RNA degradome data.
Collapse
Affiliation(s)
- Wan-Yin Han
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University, Taichung 40227, Taiwan, and Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Bo-Han Hou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Chi Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tze-Ching Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzu-Hsiang Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Ho-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University, Taichung 40227, Taiwan, and Academia Sinica, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
6
|
Wilson B, Su Z, Kumar P, Dutta A. XRN2 suppresses aberrant entry of tRNA trailers into argonaute in humans and Arabidopsis. PLoS Genet 2023; 19:e1010755. [PMID: 37146074 PMCID: PMC10191329 DOI: 10.1371/journal.pgen.1010755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/17/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023] Open
Abstract
MicroRNAs (miRNAs) are a well-characterized class of small RNAs (sRNAs) that regulate gene expression post-transcriptionally. miRNAs function within a complex milieu of other sRNAs of similar size and abundance, with the best characterized being tRNA fragments or tRFs. The mechanism by which the RNA-induced silencing complex (RISC) selects for specific sRNAs over others is not entirely understood in human cells. Several highly expressed tRNA trailers (tRF-1s) are strikingly similar to microRNAs in length but are generally excluded from the microRNA effector pathway. This exclusion provides a paradigm for identifying mechanisms of RISC selectivity. Here, we show that 5' to 3' exoribonuclease XRN2 contributes to human RISC selectivity. Although highly abundant, tRF-1s are highly unstable and degraded by XRN2 which blocks tRF-1 accumulation in RISC. We also find that XRN mediated degradation of tRF-1s and subsequent exclusion from RISC is conserved in plants. Our findings reveal a conserved mechanism that prevents aberrant entry of a class of highly produced sRNAs into Ago2.
Collapse
Affiliation(s)
- Briana Wilson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Zhangli Su
- Department of Genetics, University of Alabama, Birmingham, Alabama, United States of America
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Department of Genetics, University of Alabama, Birmingham, Alabama, United States of America
| |
Collapse
|
7
|
Wang T, Ye W, Zhang J, Li H, Zeng W, Zhu S, Ji G, Wu X, Ma L. Alternative 3'-untranslated regions regulate high-salt tolerance of Spartina alterniflora. PLANT PHYSIOLOGY 2023; 191:2570-2587. [PMID: 36682816 PMCID: PMC10069910 DOI: 10.1093/plphys/kiad030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 05/15/2023]
Abstract
High-salt stress continues to challenge the growth and survival of many plants. Alternative polyadenylation (APA) produces mRNAs with different 3'-untranslated regions (3' UTRs) to regulate gene expression at the post-transcriptional level. However, the roles of alternative 3' UTRs in response to salt stress remain elusive. Here, we report the function of alternative 3' UTRs in response to high-salt stress in S. alterniflora (Spartina alterniflora), a monocotyledonous halophyte tolerant of high-salt environments. We found that high-salt stress induced global APA dynamics, and ∼42% of APA genes responded to salt stress. High-salt stress led to 3' UTR lengthening of 207 transcripts through increasing the usage of distal poly(A) sites. Transcripts with alternative 3' UTRs were mainly enriched in salt stress-related ion transporters. Alternative 3' UTRs of HIGH-AFFINITY K+ TRANSPORTER 1 (SaHKT1) increased RNA stability and protein synthesis in vivo. Regulatory AU-rich elements were identified in alternative 3' UTRs, boosting the protein level of SaHKT1. RNAi-knock-down experiments revealed that the biogenesis of 3' UTR lengthening in SaHKT1 was controlled by the poly(A) factor CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR 30 (SaCPSF30). Over-expression of SaHKT1 with an alternative 3' UTR in rice (Oryza sativa) protoplasts increased mRNA accumulation of salt-tolerance genes in an AU-rich element-dependent manner. These results suggest that mRNA 3' UTR lengthening is a potential mechanism in response to high-salt stress. These results also reveal complex regulatory roles of alternative 3' UTRs coupling APA and regulatory elements at the post-transcriptional level in plants.
Collapse
Affiliation(s)
- Taotao Wang
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wenbin Ye
- Department of Automation, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiaxiang Zhang
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Han Li
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Weike Zeng
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Sheng Zhu
- Department of Automation, Xiamen University, Xiamen, Fujian 361005, China
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaohui Wu
- Pasteurien College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Liuyin Ma
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
8
|
Ding N, Zhang B. microRNA production in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1096772. [PMID: 36743500 PMCID: PMC9893293 DOI: 10.3389/fpls.2023.1096772] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
In plants, microRNAs (miRNAs) associate with ARGONAUTE (AGO) proteins and act as sequence-specific repressors of target gene expression, at the post-transcriptional level through target transcript cleavage and/or translational inhibition. MiRNAs are mainly transcribed by DNA-dependent RNA polymerase II (POL II) and processed by DICER LIKE1 (DCL1) complex into 21∼22 nucleotide (nt) long. Although the main molecular framework of miRNA biogenesis and modes of action have been established, there are still new requirements continually emerging in the recent years. The studies on the involvement factors in miRNA biogenesis indicate that miRNA biogenesis is not accomplished separately step by step, but is closely linked and dynamically regulated with each other. In this article, we will summarize the current knowledge on miRNA biogenesis, including MIR gene transcription, primary miRNA (pri-miRNA) processing, miRNA AGO1 loading and nuclear export; and miRNA metabolism including methylation, uridylation and turnover. We will describe how miRNAs are produced and how the different steps are regulated. We hope to raise awareness that the linkage between different steps and the subcellular regulation are becoming important for the understanding of plant miRNA biogenesis and modes of action.
Collapse
|
9
|
Bajczyk M, Jarmolowski A, Jozwiak M, Pacak A, Pietrykowska H, Sierocka I, Swida-Barteczka A, Szewc L, Szweykowska-Kulinska Z. Recent Insights into Plant miRNA Biogenesis: Multiple Layers of miRNA Level Regulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020342. [PMID: 36679055 PMCID: PMC9864873 DOI: 10.3390/plants12020342] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 05/27/2023]
Abstract
MicroRNAs are small RNAs, 20-22 nt long, the main role of which is to downregulate gene expression at the level of mRNAs. MiRNAs are fundamental regulators of plant growth and development in response to internal signals as well as in response to abiotic and biotic factors. Therefore, the deficiency or excess of individual miRNAs is detrimental to particular aspects of a plant's life. In consequence, the miRNA levels must be appropriately adjusted. To obtain proper expression of each miRNA, their biogenesis is controlled at multiple regulatory layers. Here, we addressed processes discovered to influence miRNA steady-state levels, such as MIR transcription, co-transcriptional pri-miRNA processing (including splicing, polyadenylation, microprocessor assembly and activity) and miRNA-encoded peptides synthesis. MiRNA stability, RISC formation and miRNA export out of the nucleus and out of the plant cell also define the levels of miRNAs in various plant tissues. Moreover, we show the evolutionary conservation of miRNA biogenesis core proteins across the plant kingdom.
Collapse
|
10
|
Kurihara Y, Makita Y, Kawauchi M, Kageyama A, Kuriyama T, Matsui M. Intergenic splicing-stimulated transcriptional readthrough is suppressed by nonsense-mediated mRNA decay in Arabidopsis. Commun Biol 2022; 5:1390. [PMID: 36539571 PMCID: PMC9768141 DOI: 10.1038/s42003-022-04348-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Recent emerging evidence has shown that readthrough transcripts (RTs), including polycistronic mRNAs, are also transcribed in eukaryotes. However, the post-transcriptional regulation for these remains to be elucidated. Here, we identify 271 polycistronic RT-producing loci in Arabidopsis. Increased accumulation of RTs is detected in the nonsense-mediated mRNA decay (NMD)-deficient mutants compared with wild type, and the second open reading frames (ORFs) of bicistronic mRNAs are rarely translated in contrast to the first ORFs. Intergenic splicing (IS) events which occur between first and second genes are seen in 158 RTs. Splicing inhibition assays suggest that IS eliminates the chance of transcription termination at the polyadenylation sites of the first gene and promotes accumulation of RTs. These results indicate that RTs arise from genes whose transcription termination is relatively weak or attenuated by IS, but NMD selectively degrades them. Ultimately, this report presents a eukaryotic strategy for RNA metabolism.
Collapse
Affiliation(s)
- Yukio Kurihara
- grid.509461.f0000 0004 1757 8255Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902 Japan
| | - Yuko Makita
- grid.509461.f0000 0004 1757 8255Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan ,grid.444244.60000 0004 0628 9167Faculty of Engineering, Maebashi Institute of Technology, Kamisadori 460-1, Maebashi, Gunma 371-0816 Japan
| | - Masaharu Kawauchi
- grid.509461.f0000 0004 1757 8255Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ami Kageyama
- grid.509461.f0000 0004 1757 8255Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan ,grid.268441.d0000 0001 1033 6139Graduate School of Nanobioscience, Department of Life and Environmental System Science, Yokohama City University, Yokohama, Kanagawa 236-0027 Japan
| | - Tomoko Kuriyama
- grid.509461.f0000 0004 1757 8255Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Minami Matsui
- grid.509461.f0000 0004 1757 8255Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan ,grid.268441.d0000 0001 1033 6139Graduate School of Nanobioscience, Department of Life and Environmental System Science, Yokohama City University, Yokohama, Kanagawa 236-0027 Japan
| |
Collapse
|
11
|
Mo W, Liu B, Zhang H, Jin X, Lu D, Yu Y, Liu Y, Jia J, Long Y, Deng X, Cao X, Guo H, Zhai J. Landscape of transcription termination in Arabidopsis revealed by single-molecule nascent RNA sequencing. Genome Biol 2021; 22:322. [PMID: 34823554 PMCID: PMC8613925 DOI: 10.1186/s13059-021-02543-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The dynamic process of transcription termination produces transient RNA intermediates that are difficult to distinguish from each other via short-read sequencing methods. RESULTS Here, we use single-molecule nascent RNA sequencing to characterize the various forms of transient RNAs during termination at genome-wide scale in wildtype Arabidopsis and in atxrn3, fpa, and met1 mutants. Our data reveal a wide range of termination windows among genes, ranging from ~ 50 nt to over 1000 nt. We also observe efficient termination before downstream tRNA genes, suggesting that chromatin structure around the promoter region of tRNA genes may block pol II elongation. 5' Cleaved readthrough transcription in atxrn3 with delayed termination can run into downstream genes to produce normally spliced and polyadenylated mRNAs in the absence of their own transcription initiation. Consistent with previous reports, we also observe long chimeric transcripts with cryptic splicing in fpa mutant; but loss of CG DNA methylation has no obvious impact on termination in the met1 mutant. CONCLUSIONS Our method is applicable to establish a comprehensive termination landscape in a broad range of species.
Collapse
Affiliation(s)
- Weipeng Mo
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bo Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hong Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xianhao Jin
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dongdong Lu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiming Yu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuelin Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinbu Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanping Long
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China.
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Aygün I, Miki TS. Nuclear RNA Regulation by XRN2 and XTBD Family Proteins. Cell Struct Funct 2021; 46:73-78. [PMID: 34483148 PMCID: PMC10511037 DOI: 10.1247/csf.21041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/30/2021] [Indexed: 11/11/2022] Open
Abstract
XRN2 is a 5'-to-3' exoribonuclease that is predominantly localized in the nucleus. By degrading or trimming various classes of RNA, XRN2 contributes to essential processes in gene expression such as transcription termination and ribosome biogenesis. Despite limited substrate specificity in vitro, XRN2 targets a specific subset of RNA by interacting with other proteins in cells. Here we review the functions of proteins that have an evolutionarily conserved XRN2-binding domain, XTBD. These proteins modulate activity of XRN2 by stabilizing it, controlling its subcellular localization or recruiting it to specific RNA targets, and thereby impact on various cellular processes.Key words: RNA regulation, XRN2, XTBD, ribosome biogenesis, subcellular localization.
Collapse
Affiliation(s)
- Ilkin Aygün
- Department of Developmental Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Takashi S. Miki
- Department of Developmental Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
13
|
You L, Lin J, Xu H, Chen C, Chen J, Zhang J, Zhang J, Li Y, Ye C, Zhang H, Jiang J, Zhu J, Li QQ, Duan C. Intragenic heterochromatin-mediated alternative polyadenylation modulates miRNA and pollen development in rice. THE NEW PHYTOLOGIST 2021; 232:835-852. [PMID: 34289124 PMCID: PMC9292364 DOI: 10.1111/nph.17635] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/25/2021] [Indexed: 05/02/2023]
Abstract
Despite a much higher proportion of intragenic heterochromatin-containing genes in crop genomes, the importance of intragenic heterochromatin in crop development remains unclear. Intragenic heterochromatin can be recognised by a protein complex, ASI1-AIPP1-EDM2 (AAE) complex, to regulate alternative polyadenylation. Here, we investigated the impact of rice ASI1 on global poly(A) site usage through poly(A) sequencing and ASI1-dependent regulation on rice development. We found that OsASI1 is essential for rice pollen development and flowering. OsASI1 dysfunction has an important impact on global poly(A) site usage, which is closely related to heterochromatin marks. Intriguingly, OsASI1 interacts with the intronic heterochromatin of OsXRNL, a nuclear XRN family exonuclease gene involved in the processing of an miRNA precursor, to promote the processing of full-length OsXRNL and regulate miRNA abundance. We found that OsASI1-mediated regulation of pollen development partially depends on OsXRNL. Finally, we characterised the rice AAE complex and its involvement in alternative polyadenylation and pollen development. Our findings help to elucidate an epigenetic mechanism governing miRNA abundance and rice development, and provide a valuable resource for studying the epigenetic mechanisms of many important processes in crops.
Collapse
Affiliation(s)
- Li‐Yuan You
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- University of Chinese Academy of SciencesBeijing100049China
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamenFujian361102China
| | - Hua‐Wei Xu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- College of AgricultureHenan University of Science and TechnologyLuoyang471023China
| | - Chun‐Xiang Chen
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jun‐Yu Chen
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jinshan Zhang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
| | - Jian Zhang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ying‐Xin Li
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- University of Chinese Academy of SciencesBeijing100049China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamenFujian361102China
| | - Hui Zhang
- College of Life ScienceShanghai Normal UniversityShanghai200234China
| | - Jing Jiang
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifeng475004China
| | - Jian‐Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
| | - Qingshun Q. Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamenFujian361102China
- Graduate College of Biomedical SciencesWestern University of Health SciencesPomonaCA91766USA
| | - Cheng‐Guo Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- University of Chinese Academy of SciencesBeijing100049China
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifeng475004China
| |
Collapse
|
14
|
Abstract
MicroRNAs (miRNAs) are essential non-coding riboregulators of gene expression in plants and animals. In plants, miRNAs guide their effector protein named ARGONAUTE (AGO) to find target RNAs for gene silencing through target RNA cleavage or translational inhibition. miRNAs are derived from primary miRNA transcripts (pri-miRNAs), most of which are transcribed by the DNA-dependent RNA polymerase II. In plants, an RNase III enzyme DICER-LIKE1-containing complex processes pri-miRNAs in the nucleus into miRNAs. To ensure proper function of miRNAs, plants use multiple mechanisms to control miRNA accumulation. On one hand, pri-miRNA levels are controlled through transcription and stability. On the other hand, the activities of the DCL1 complex are regulated by many protein factors at transcriptional, post-transcriptional and post-translational levels. Notably, recent studies reveal that pri-miRNA structure/sequence features and modifications also play important roles in miRNA biogenesis. In this review, we summarize recent progresses on the mechanisms regulating miRNA biogenesis.
Collapse
Affiliation(s)
- Mu Li
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska USA
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska USA
| |
Collapse
|
15
|
Chen L, Zhu QH, Kaufmann K. Long non-coding RNAs in plants: emerging modulators of gene activity in development and stress responses. PLANTA 2020; 252:92. [PMID: 33099688 PMCID: PMC7585572 DOI: 10.1007/s00425-020-03480-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/22/2020] [Indexed: 05/14/2023]
Abstract
MAIN CONCLUSION Long non-coding RNAs modulate gene activity in plant development and stress responses by various molecular mechanisms. Long non-coding RNAs (lncRNAs) are transcripts larger than 200 nucleotides without protein coding potential. Computational approaches have identified numerous lncRNAs in different plant species. Research in the past decade has unveiled that plant lncRNAs participate in a wide range of biological processes, including regulation of flowering time and morphogenesis of reproductive organs, as well as abiotic and biotic stress responses. LncRNAs execute their functions by interacting with DNA, RNA and protein molecules, and by modulating the expression level of their targets through epigenetic, transcriptional, post-transcriptional or translational regulation. In this review, we summarize characteristics of plant lncRNAs, discuss recent progress on understanding of lncRNA functions, and propose an experimental framework for functional characterization.
Collapse
Affiliation(s)
- Li Chen
- Institute for Biology, Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Kerstin Kaufmann
- Institute for Biology, Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| |
Collapse
|
16
|
MAC5, an RNA-binding protein, protects pri-miRNAs from SERRATE-dependent exoribonuclease activities. Proc Natl Acad Sci U S A 2020; 117:23982-23990. [PMID: 32887800 DOI: 10.1073/pnas.2008283117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
MAC5 is a component of the conserved MOS4-associated complex. It plays critical roles in development and immunity. Here we report that MAC5 is required for microRNA (miRNA) biogenesis. MAC5 interacts with Serrate (SE), which is a core component of the microprocessor that processes primary miRNA transcripts (pri-miRNAs) into miRNAs and binds the stem-loop region of pri-miRNAs. MAC5 is essential for both the efficient processing and the stability of pri-miRNAs. Interestingly, the reduction of pri-miRNA levels in mac5 is partially caused by XRN2/XRN3, the nuclear-localized 5'-to-3' exoribonucleases, and depends on SE. These results reveal that MAC5 plays a dual role in promoting pri-miRNA processing and stability through its interaction with SE and/or pri-miRNAs. This study also uncovers that pri-miRNAs need to be protected from nuclear RNA decay machinery, which is connected to the microprocessor.
Collapse
|
17
|
Kurihara Y, Makita Y, Shimohira H, Fujita T, Iwasaki S, Matsui M. Translational Landscape of Protein-Coding and Non-Protein-Coding RNAs upon Light Exposure in Arabidopsis. PLANT & CELL PHYSIOLOGY 2020; 61:536-545. [PMID: 31794029 DOI: 10.1093/pcp/pcz219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Light is one of the most essential environmental clues for plant growth and morphogenesis. Exposure to blue monochromatic light from darkness is a turning point for plant biological activity, and as a result dramatic changes in gene expression occur. To understand the translational impacts of blue light, we have performed ribosome profiling analysis and called translated open reading frames (ORFs) de novo within not only mRNAs but also non-coding RNAs (ncRNAs). Translation efficiency of 3,823 protein-coding ORFs, such as nuclear chloroplast-related genes, was up-regulated by blue light exposure. Moreover, the translational activation of the microRNA biogenesis-related genes, DCL1 and HYL1, was induced by blue light. Considering the 3-nucleotide codon periodicity of ribosome footprints, a few hundred short ORFs lying on ncRNAs and upstream ORFs (uORFs) on mRNAs were found that had differential translation status between blue light and dark. uORFs are known to have a negative effect on the expression of the main ORFs (mORFs) on the same mRNAs. Our analysis suggests that the translation of uORFs is likely to be more stimulated than that of the corresponding mORFs, and uORF-mediated translational repression of the mORFs in five genes was alleviated by blue light exposure. With data-based annotation of the ORFs, our analysis provides insights into the translatome in response to environmental changes, such as those involving light.
Collapse
Affiliation(s)
- Yukio Kurihara
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Yuko Makita
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Haruka Shimohira
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Graduate School of Nanobioscience Department of Life and Environmental System Science, Yokohama City University, Yokohama, Kanagawa, 236-0027 Japan
| | - Tomoya Fujita
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198 Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503 Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198 Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561 Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
18
|
Nagarajan VK, Kukulich PM, von Hagel B, Green PJ. RNA degradomes reveal substrates and importance for dark and nitrogen stress responses of Arabidopsis XRN4. Nucleic Acids Res 2019; 47:9216-9230. [PMID: 31428786 PMCID: PMC6755094 DOI: 10.1093/nar/gkz712] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
XRN4, the plant cytoplasmic homolog of yeast and metazoan XRN1, catalyzes exoribonucleolytic degradation of uncapped mRNAs from the 5' end. Most studies of cytoplasmic XRN substrates have focused on polyadenylated transcripts, although many substrates are likely first deadenylated. Here, we report the global investigation of XRN4 substrates in both polyadenylated and nonpolyadenylated RNA to better understand the impact of the enzyme in Arabidopsis. RNA degradome analysis demonstrated that xrn4 mutants overaccumulate many more decapped deadenylated intermediates than those that are polyadenylated. Among these XRN4 substrates that have 5' ends precisely at cap sites, those associated with photosynthesis, nitrogen responses and auxin responses were enriched. Moreover, xrn4 was found to be defective in the dark stress response and lateral root growth during N resupply, demonstrating that XRN4 is required during both processes. XRN4 also contributes to nonsense-mediated decay (NMD) and xrn4 accumulates 3' fragments of select NMD targets, despite the lack of the metazoan endoribonuclease SMG6 in plants. Beyond demonstrating that XRN4 is a major player in multiple decay pathways, this study identified intriguing molecular impacts of the enzyme, including those that led to new insights about mRNA decay and discovery of functional contributions at the whole-plant level.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Patrick M Kukulich
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Bryan von Hagel
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Pamela J Green
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
19
|
FIERY1 promotes microRNA accumulation by suppressing rRNA-derived small interfering RNAs in Arabidopsis. Nat Commun 2019; 10:4424. [PMID: 31562313 PMCID: PMC6765019 DOI: 10.1038/s41467-019-12379-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/06/2019] [Indexed: 01/29/2023] Open
Abstract
Plant microRNAs (miRNAs) associate with ARGONAUTE1 (AGO1) to direct post-transcriptional gene silencing and regulate numerous biological processes. Although AGO1 predominantly binds miRNAs in vivo, it also associates with endogenous small interfering RNAs (siRNAs). It is unclear whether the miRNA/siRNA balance affects miRNA activities. Here we report that FIERY1 (FRY1), which is involved in 5'-3' RNA degradation, regulates miRNA abundance and function by suppressing the biogenesis of ribosomal RNA-derived siRNAs (risiRNAs). In mutants of FRY1 and the nuclear 5'-3' exonuclease genes XRN2 and XRN3, we find that a large number of 21-nt risiRNAs are generated through an endogenous siRNA biogenesis pathway. The production of risiRNAs correlates with pre-rRNA processing defects in these mutants. We also show that these risiRNAs are loaded into AGO1, causing reduced loading of miRNAs. This study reveals a previously unknown link between rRNA processing and miRNA accumulation.
Collapse
|
20
|
Bai Y, Dai X, Ye T, Zhang P, Yan X, Gong X, Liang S, Chen M. PlncRNADB: A Repository of Plant lncRNAs and lncRNA-RBP Protein Interactions. Curr Bioinform 2019. [DOI: 10.2174/1574893614666190131161002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Long noncoding RNAs (lncRNAs) are endogenous noncoding RNAs, arbitrarily
longer than 200 nucleotides, that play critical roles in diverse biological processes.
LncRNAs exist in different genomes ranging from animals to plants.
Objective:
PlncRNADB is a searchable database of lncRNA sequences and annotation in plants.
Methods:
We built a pipeline for lncRNA prediction in plants, providing a convenient utility for
users to quickly distinguish potential noncoding RNAs from protein-coding transcripts.
Results:
More than five thousand lncRNAs are collected from four plant species (Arabidopsis thaliana,
Arabidopsis lyrata, Populus trichocarpa and Zea mays) in PlncRNADB. Moreover, our database
provides the relationship between lncRNAs and various RNA-binding proteins (RBPs),
which can be displayed through a user-friendly web interface.
Conclusion:
PlncRNADB can serve as a reference database to investigate the lncRNAs and their
interaction with RNA-binding proteins in plants. The PlncRNADB is freely available at
http://bis.zju.edu.cn/PlncRNADB/.
Collapse
Affiliation(s)
- Youhuang Bai
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaozhuan Dai
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tiantian Ye
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peijing Zhang
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xu Yan
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaonan Gong
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siliang Liang
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Moro B, Chorostecki U, Arikit S, Suarez IP, Höbartner C, Rasia RM, Meyers BC, Palatnik JF. Efficiency and precision of microRNA biogenesis modes in plants. Nucleic Acids Res 2019; 46:10709-10723. [PMID: 30289546 PMCID: PMC6237749 DOI: 10.1093/nar/gky853] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
Many evolutionarily conserved microRNAs (miRNAs) in plants regulate transcription factors with key functions in development. Hence, mutations in the core components of the miRNA biogenesis machinery cause strong growth defects. An essential aspect of miRNA biogenesis is the precise excision of the small RNA from its precursor. In plants, miRNA precursors are largely variable in size and shape and can be processed by different modes. Here, we optimized an approach to detect processing intermediates during miRNA biogenesis. We characterized a miRNA whose processing is triggered by a terminal branched loop. Plant miRNA processing can be initiated by internal bubbles, small terminal loops or branched loops followed by dsRNA segments of 15–17 bp. Interestingly, precision and efficiency vary with the processing modes. Despite the various potential structural determinants present in a single a miRNA precursor, DCL1 is mostly guided by a predominant structural region in each precursor in wild-type plants. However, our studies in fiery1, hyl1 and se mutants revealed the existence of cleavage signatures consistent with the recognition of alternative processing determinants. The results provide a general view of the mechanisms underlying the specificity of miRNA biogenesis in plants.
Collapse
Affiliation(s)
- Belén Moro
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Uciel Chorostecki
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Siwaret Arikit
- Department of Agronomy, Kamphaeng Saen and Rice Science Center, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Irina P Suarez
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Claudia Höbartner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rodolfo M Rasia
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.,Department of Plant Science, University of Missouri - Columbia, MO 65211, USA
| | - Javier F Palatnik
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina.,Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario 2000, Argentina
| |
Collapse
|
22
|
Jones MA. Retrograde signalling as an informant of circadian timing. THE NEW PHYTOLOGIST 2019; 221:1749-1753. [PMID: 30299544 DOI: 10.1111/nph.15525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 1749 I. The circadian system is responsive to environmental change 1749 II. Photoassimilates regulate circadian timing 1750 III. Retrograde signals contribute to circadian timing 1750 IV. Conclusions 1752 Acknowledgements 1752 References 1752 SUMMARY: The circadian system comprises interlocking transcriptional-translational feedback loops that regulate gene expression and consequently modulate plant development and physiology. In order to maximize utility, the circadian system is entrained by changes in temperature and light, allowing endogenous rhythms to be synchronized with both daily and seasonal environmental change. Although a great deal of environmental information is decoded by a suite of photoreceptors, it is also becoming apparent that changes in cellular metabolism also contribute to circadian timing, through either the stimulation of metabolic pathways or the accumulation of metabolic intermediates as a consequence of environmental stress. As the source of many of these metabolic byproducts, mitochondria and chloroplasts have begun to be viewed as environmental sensors, and rapid advancement of this field is revealing the complex web of signalling pathways initiated by organelle perturbation. This review highlights recent advances in our understanding of how this metabolic regulation influences circadian timing.
Collapse
Affiliation(s)
- Matthew A Jones
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
23
|
Windels D, Bucher E. The 5'-3' Exoribonuclease XRN4 Regulates Auxin Response via the Degradation of Auxin Receptor Transcripts. Genes (Basel) 2018; 9:genes9120638. [PMID: 30563022 PMCID: PMC6316084 DOI: 10.3390/genes9120638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 11/16/2022] Open
Abstract
Auxin is a major hormone which plays crucial roles in instructing virtually all developmental programs of plants. Its signaling depends primarily on its perception by four partially redundant receptors of the TIR1/AFB2 clade (TAARs), which subsequently mediate the specific degradation of AUX/IAA transcriptional repressors to modulate the expression of primary auxin-responsive genes. Auxin homeostasis depends on complex regulations at the level of synthesis, conjugation, and transport. However, the mechanisms and principles involved in the homeostasis of its signaling are just starting to emerge. We report that xrn4 mutants exhibit pleiotropic developmental defects and strong auxin hypersensitivity phenotypes. We provide compelling evidences that these phenotypes are directly caused by improper regulation of TAAR transcript degradation. We show that the cytoplasmic 5′-3′ exoribonuclease XRN4 is required for auxin response. Thus, our work identifies new targets of XRN4 and a new level of regulation for TAAR transcripts important for auxin response and for plant development.
Collapse
Affiliation(s)
- David Windels
- Botanical Institute, University of Basel, Zurich-Basel Plant Science Center, Part of the Swiss Plant Science Web, Schönbeinstrasse 6, 4056 Basel, Switzerland.
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France.
| | - Etienne Bucher
- Botanical Institute, University of Basel, Zurich-Basel Plant Science Center, Part of the Swiss Plant Science Web, Schönbeinstrasse 6, 4056 Basel, Switzerland.
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France.
| |
Collapse
|
24
|
Crisp PA, Smith AB, Ganguly DR, Murray KD, Eichten SR, Millar AA, Pogson BJ. RNA Polymerase II Read-Through Promotes Expression of Neighboring Genes in SAL1-PAP-XRN Retrograde Signaling. PLANT PHYSIOLOGY 2018; 178:1614-1630. [PMID: 30301775 PMCID: PMC6288732 DOI: 10.1104/pp.18.00758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/25/2018] [Indexed: 05/07/2023]
Abstract
In plants, the molecular function(s) of the nucleus-localized 5'-3' EXORIBONUCLEASES (XRNs) are unclear; however, their activity is reported to have a significant effect on gene expression and SAL1-mediated retrograde signaling. Using parallel analysis of RNA ends, we documented a dramatic increase in uncapped RNA substrates of the XRNs in both sal1 and xrn2xrn3 mutants. We found that a major consequence of reducing SAL1 or XRN activity was RNA Polymerase II 3' read-through. This occurred at 72% of expressed genes, demonstrating a major genome-wide role for the XRN-torpedo model of transcription termination in Arabidopsis (Arabidopsis thaliana). Read-through is speculated to have a negative effect on transcript abundance; however, we did not observe this. Rather, we identified a strong association between read-through and increased transcript abundance of tandemly orientated downstream genes, strongly correlated with the proximity (less than 1,000 bp) and expression of the upstream gene. We observed read-through in the proximity of 903 genes up-regulated in the sal1-8 retrograde signaling mutant; thus, this phenomenon may account directly for up to 23% of genes up-regulated in sal1-8 Using APX2 and AT5G43770 as exemplars, we genetically uncoupled read-through loci from downstream genes to validate the principle of read-through-mediated mRNA regulation, providing one mechanism by which an ostensibly posttranscriptional exoribonuclease that targets uncapped RNAs could modulate gene expression.
Collapse
Affiliation(s)
- Peter A Crisp
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108
| | - Aaron B Smith
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
| | - Diep R Ganguly
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
| | - Kevin D Murray
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
| | - Steven R Eichten
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
| | - Anthony A Millar
- Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
| |
Collapse
|
25
|
Kindgren P, Ard R, Ivanov M, Marquardt S. Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation. Nat Commun 2018; 9:4561. [PMID: 30385760 PMCID: PMC6212407 DOI: 10.1038/s41467-018-07010-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/10/2018] [Indexed: 02/08/2023] Open
Abstract
Most DNA in the genomes of higher organisms does not encode proteins, yet much is transcribed by RNA polymerase II (RNAPII) into long non-coding RNAs (lncRNAs). The biological significance of most lncRNAs is largely unclear. Here, we identify a lncRNA (SVALKA) in a cold-sensitive region of the Arabidopsis genome. Mutations in SVALKA affect CBF1 expression and freezing tolerance. RNAPII read-through transcription of SVALKA results in a cryptic lncRNA overlapping CBF1 on the antisense strand, termed asCBF1. Our molecular dissection reveals that CBF1 is suppressed by RNAPII collision stemming from the SVALKA-asCBF1 lncRNA cascade. The SVALKA-asCBF1 cascade provides a mechanism to tightly control CBF1 expression and timing that could be exploited to maximize freezing tolerance with mitigated fitness costs. Our results provide a compelling example of local gene regulation by lncRNA transcription having a profound impact on the ability of plants to appropriately acclimate to challenging environmental conditions. The function of most lncRNA is unknown. Here, the authors show that transcriptional read-through at the Arabidopsis SVALKA locus produces a cryptic lncRNA that overlaps with the neighboring cold-responsive CBF1 gene and limits CBF1 expression via an RNA polymerase II collision-based mechanism.
Collapse
Affiliation(s)
- Peter Kindgren
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Bulowsvej 34, Frederiksberg, 1871, Denmark
| | - Ryan Ard
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Bulowsvej 34, Frederiksberg, 1871, Denmark
| | - Maxim Ivanov
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Bulowsvej 34, Frederiksberg, 1871, Denmark
| | - Sebastian Marquardt
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Bulowsvej 34, Frederiksberg, 1871, Denmark.
| |
Collapse
|
26
|
Ganguly DR, Crisp PA, Eichten SR, Pogson BJ. Maintenance of pre-existing DNA methylation states through recurring excess-light stress. PLANT, CELL & ENVIRONMENT 2018; 41:1657-1672. [PMID: 29707792 DOI: 10.1111/pce.13324] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 05/23/2023]
Abstract
The capacity for plant stress priming and memory and the notion of this being underpinned by DNA methylation-mediated memory is an appealing hypothesis for which there is mixed evidence. We previously established a lack of drought-induced methylome variation in Arabidopsis thaliana (Arabidopsis); however, this was tied to only minor observations of physiological memory. There are numerous independent observations demonstrating that photoprotective mechanisms, induced by excess-light stress, can lead to robust programmable changes in newly developing leaf tissues. Although key signalling molecules and transcription factors are known to promote this priming signal, an untested question is the potential involvement of chromatin marks towards the maintenance of light stress acclimation, or memory. Thus, we systematically tested our previous hypothesis of a stress-resistant methylome using a recurring excess-light stress, then analysing new, emerging, and existing tissues. The DNA methylome showed negligible stress-associated variation, with the vast majority attributable to stochastic differences. Yet, photoacclimation was evident through enhanced photosystem II performance in exposed tissues, and nonphotochemical quenching and fluorescence decline ratio showed evidence of mitotic transmission. Thus, we have observed physiological acclimation in new and emerging tissues in the absence of substantive DNA methylome changes.
Collapse
Affiliation(s)
- Diep R Ganguly
- Australian Research Council Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Peter A Crisp
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Steven R Eichten
- Australian Research Council Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
27
|
Litthauer S, Chan KX, Jones MA. 3'-Phosphoadenosine 5'-Phosphate Accumulation Delays the Circadian System. PLANT PHYSIOLOGY 2018; 176:3120-3135. [PMID: 29487119 PMCID: PMC5884616 DOI: 10.1104/pp.17.01611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/19/2018] [Indexed: 05/07/2023]
Abstract
The circadian system optimizes cellular responses to stress, but the signaling pathways that convey the metabolic consequences of stress into this molecular timekeeping mechanism remain unclear. Redox regulation of the SAL1 phosphatase during abiotic stress initiates a signaling pathway from chloroplast to nucleus by regulating the accumulation of a metabolite, 3'-phosphoadenosine 5'-phosphate (PAP). Consequently, PAP accumulates in response to redox stress and inhibits the activity of exoribonucleases (XRNs) in the nucleus and cytosol. We demonstrated that osmotic stress induces a lengthening of circadian period and that genetically inducing the SAL1-PAP-XRN pathway in plants lacking either SAL1 or XRNs similarly delays the circadian system. Exogenous application of PAP was also sufficient to extend circadian period. Thus, SAL1-PAP-XRN signaling likely regulates circadian rhythms in response to redox stress. Our findings exemplify how two central processes in plants, molecular timekeeping and responses to abiotic stress, can be interlinked to regulate gene expression.
Collapse
Affiliation(s)
- Suzanne Litthauer
- School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, United Kingdom
| | - Kai Xun Chan
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Matthew Alan Jones
- School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, United Kingdom
| |
Collapse
|
28
|
Krzyszton M, Zakrzewska-Placzek M, Kwasnik A, Dojer N, Karlowski W, Kufel J. Defective XRN3-mediated transcription termination in Arabidopsis affects the expression of protein-coding genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1017-1031. [PMID: 29356198 DOI: 10.1111/tpj.13826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Arabidopsis thaliana contains two nuclear XRN2/3 5'-3' exonucleases that are homologs of yeast and human Rat1/Xrn2 proteins involved in the processing and degradation of several classes of nuclear RNAs and in transcription termination of RNA polymerase II. Using strand-specific short read sequencing we show that knockdown of XRN3 leads to an altered expression of hundreds of genes and the accumulation of uncapped and polyadenylated read-through transcripts generated by inefficiently terminated Pol II. Our data support the notion that XRN3-mediated changes in the expression of a subset of genes are caused by upstream read-through transcription and these effects are enhanced by RNA-mRNA chimeras generated in xrn3 plants. In turn, read-through transcripts that are antisense to downstream genes may trigger production of siRNA. Our results highlight the importance of XRN3 exoribonuclease in Pol II transcription termination in plants and show that disturbance in this process may significantly alter gene expression.
Collapse
Affiliation(s)
- Michal Krzyszton
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Monika Zakrzewska-Placzek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Aleksandra Kwasnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Norbert Dojer
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097, Warsaw, Poland
| | - Wojciech Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
29
|
van Wonterghem M, Thieffry A, Boyd M, Bornholdt J, Brodersen P. A new class of genic nuclear RNA species in Arabidopsis. FEBS Lett 2018; 592:631-643. [PMID: 29355922 DOI: 10.1002/1873-3468.12981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/01/2018] [Accepted: 01/16/2018] [Indexed: 11/07/2022]
Abstract
Targeting of ArabidopsisPHABULOSA (PHB) mRNA by miR166 has been implicated in gene body methylation at the PHB locus. We report that the PHB locus produces an array of stable nuclear RNA species that are neither polyadenylated nor capped. Their biogenesis requires neither RNA polymerases IV/V nor miR166-guided cleavage. The PHB RNAs are insensitive to mutation of nuclear RNA decay pathways and are conserved in several Brassicaceae species, suggesting functional relevance. Similar RNA species are also produced by another body-methylated locus encoding the miR414 target eIF2. Our data reveal the existence of a new class of genic nuclear RNA species.
Collapse
Affiliation(s)
| | - Axel Thieffry
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark
| | - Mette Boyd
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark
| | - Jette Bornholdt
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
30
|
Ishiga Y, Watanabe M, Ishiga T, Tohge T, Matsuura T, Ikeda Y, Hoefgen R, Fernie AR, Mysore KS. The SAL-PAP Chloroplast Retrograde Pathway Contributes to Plant Immunity by Regulating Glucosinolate Pathway and Phytohormone Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:829-841. [PMID: 28703028 DOI: 10.1094/mpmi-03-17-0055-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chloroplasts have a crucial role in plant immunity against pathogens. Increasing evidence suggests that phytopathogens target chloroplast homeostasis as a pathogenicity mechanism. In order to regulate the performance of chloroplasts under stress conditions, chloroplasts produce retrograde signals to alter nuclear gene expression. Many signals for the chloroplast retrograde pathway have been identified, including chlorophyll intermediates, reactive oxygen species, and metabolic retrograde signals. Although there is a reasonably good understanding of chloroplast retrograde signaling in plant immunity, some signals are not well-understood. In order to understand the role of chloroplast retrograde signaling in plant immunity, we investigated Arabidopsis chloroplast retrograde signaling mutants in response to pathogen inoculation. sal1 mutants (fry1-2 and alx8) responsible for the SAL1-PAP retrograde signaling pathway showed enhanced disease symptoms not only to the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 but, also, to the necrotrophic pathogen Pectobacterium carotovorum subsp. carotovorum EC1. Glucosinolate profiles demonstrated the reduced accumulation of aliphatic glucosinolates in the fry1-2 and alx8 mutants compared with the wild-type Col-0 in response to DC3000 infection. In addition, quantification of multiple phytohormones and analyses of their gene expression profiles revealed that both the salicylic acid (SA)- and jasmonic acid (JA)-mediated signaling pathways were down-regulated in the fry1-2 and alx8 mutants. These results suggest that the SAL1-PAP chloroplast retrograde pathway is involved in plant immunity by regulating the SA- and JA-mediated signaling pathways.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- 1 Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Mutsumi Watanabe
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | - Takako Ishiga
- 1 Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takayuki Tohge
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | - Takakazu Matsuura
- 4 Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Yoko Ikeda
- 4 Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Rainer Hoefgen
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | - Alisdair R Fernie
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | | |
Collapse
|
31
|
Kurihara Y. Activity and roles of Arabidopsis thaliana XRN family exoribonucleases in noncoding RNA pathways. JOURNAL OF PLANT RESEARCH 2017; 130:25-31. [PMID: 27988817 DOI: 10.1007/s10265-016-0887-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/28/2016] [Indexed: 05/20/2023]
Abstract
RNA metabolism is mediated by several sophisticated exo- or endo- ribonucleases. XRN family proteins are the conserved 5'-3' exoribonucleases in eukaryotes. A. thaliana genome encodes three XRN homologs (AtXRN2, AtXRN3 and AtXRN4) and their independent or redundant roles, which are possibly plant-specific in some cases, have been reported. AtXRN2 acts in maturation of ribosomal RNAs partially with AtXRN3. AtXRN3 is also involved in elimination of 3' remnants of microRNA precursors and in termination of mRNA transcription events. AtXRN4 degrades not only a small fraction of mRNAs in stress response but also 3' cleavage products of miRNA-mediated cleavage of target mRNAs. Moreover, all AtXRNs are important factors to suppress unexpected RNA silencing occurrence. Thus, this review summarizes and discusses multiple roles of AtXRN exoribonucleases and their relationship with noncoding RNA pathways including RNA silencing pathways.
Collapse
Affiliation(s)
- Yukio Kurihara
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
32
|
Abstract
Plants must adapt to multiple biotic and abiotic stresses ; thus, sensing and responding to environmental signals is imperative for their survival. Moreover, understanding these responses is imperative for efforts to improve plant yield and consistency. Regulation of transcript levels is a key aspect of the plant response to environmental signals. Long noncoding RNAs (lncRNAs) have gained widespread attention in recent years with the advance of high-throughput sequencing technologies. As important biological regulators, lncRNAs have been implicated in a wide range of developmental processes and diseases in animals. However, knowledge of the role that lncRNAs play in plant stress tolerance remains limited. Here, we review recent studies on the identification, characteristics, classification, and biological functions of lncRNAs in response to various stresses, including bacterial pathogens, excess light, drought, salinity, hypoxia, extreme temperatures, and nitrogen/phosphate deficiency. We also discuss possible directions for future research.
Collapse
|
33
|
Miki TS, Carl SH, Stadler MB, Großhans H. XRN2 Autoregulation and Control of Polycistronic Gene Expresssion in Caenorhabditis elegans. PLoS Genet 2016; 12:e1006313. [PMID: 27631780 PMCID: PMC5025045 DOI: 10.1371/journal.pgen.1006313] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/22/2016] [Indexed: 12/30/2022] Open
Abstract
XRN2 is a conserved 5’→3’ exoribonuclease that complexes with proteins that contain XRN2-binding domains (XTBDs). In Caenorhabditis elegans (C. elegans), the XTBD-protein PAXT-1 stabilizes XRN2 to retain its activity. XRN2 activity is also promoted by 3'(2'),5'-bisphosphate nucleotidase 1 (BPNT1) through hydrolysis of an endogenous XRN inhibitor 3’-phosphoadenosine-5'-phosphate (PAP). Here, we find through unbiased screening that loss of bpnt-1 function suppresses lethality caused by paxt-1 deletion. This unexpected finding is explained by XRN2 autoregulation, which occurs through repression of a cryptic promoter activity and destabilization of the xrn-2 transcript. De-repression appears to be triggered such that more robust XRN2 perturbation, by elimination of both PAXT-1 and BPNT1, is less detrimental to worm viability than absence of PAXT-1 alone. Indeed, we find that two distinct XRN2 repression mechanisms are alleviated at different thresholds of XRN2 inactivation. Like more than 15% of C. elegans genes, xrn-2 occurs in an operon, and we identify additional operons under its control, consistent with a broader function of XRN2 in polycistronic gene regulation. Regulation occurs through intercistronic regions that link genes in an operon, but a part of the mechanisms may allow XRN2 to operate on monocistronic genes in organisms lacking operons. XRN2 is a conserved eukaryotic protein that controls gene expression by degrading or processing various types of RNA. Here we find that XRN2 negatively regulates its own levels in the nematode C. elegans. In response to reduction of XRN2 activity, this self-repression is alleviated, increasing xrn-2 mRNA and thus protein production, which restores robust XRN2 activity. Although XRN2 and its upstream gene are transcribed from a single promoter as a gene expression unit called “operon”, XRN2 regulates only itself. It does so by inactivating a cryptic promoter that exists between the two genes and by destabilizing its own nascent transcript. Many other C. elegans genes (>15%) occur in operons, and we identify additional operons that XRN2 regulates through an analogous mechanism. Thus we find a novel function of XRN2 in modulating expression of genes in operons including itself. As one of the mechanisms could operate on genes outside operons, XRN2 may also regulate gene expression in organisms lacking operonic gene organization.
Collapse
Affiliation(s)
- Takashi S Miki
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sarah H Carl
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
34
|
Parent JS, Jauvion V, Bouché N, Béclin C, Hachet M, Zytnicki M, Vaucheret H. Post-transcriptional gene silencing triggered by sense transgenes involves uncapped antisense RNA and differs from silencing intentionally triggered by antisense transgenes. Nucleic Acids Res 2015. [PMID: 26209135 PMCID: PMC4787800 DOI: 10.1093/nar/gkv753] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although post-transcriptional gene silencing (PTGS) has been studied for more than a decade, there is still a gap in our understanding of how de novo silencing is initiated against genetic elements that are not supposed to produce double-stranded (ds)RNA. Given the pervasive transcription occurring throughout eukaryote genomes, we tested the hypothesis that unintended transcription could produce antisense (as)RNA molecules that participate to the initiation of PTGS triggered by sense transgenes (S-PTGS). Our results reveal a higher level of asRNA in Arabidopsis thaliana lines that spontaneously trigger S-PTGS than in lines that do not. However, PTGS triggered by antisense transgenes (AS-PTGS) differs from S-PTGS. In particular, a hypomorphic ago1 mutation that suppresses S-PTGS prevents the degradation of asRNA but not sense RNA during AS-PTGS, suggesting a different treatment of coding and non-coding RNA by AGO1, likely because of AGO1 association to polysomes. Moreover, the intended asRNA produced during AS-PTGS is capped whereas the asRNA produced during S-PTGS derives from 3′ maturation of a read-through transcript and is uncapped. Thus, we propose that uncapped asRNA corresponds to the aberrant RNA molecule that is converted to dsRNA by RNA-DEPENDENT RNA POLYMERASE 6 in siRNA-bodies to initiate S-PTGS, whereas capped asRNA must anneal with sense RNA to produce dsRNA that initiate AS-PTGS.
Collapse
Affiliation(s)
| | - Vincent Jauvion
- Institut Jean-Pierre Bourgin, UMR1318, INRA, 78000 Versailles, France
| | - Nicolas Bouché
- Institut Jean-Pierre Bourgin, UMR1318, INRA, 78000 Versailles, France
| | - Christophe Béclin
- Institut Jean-Pierre Bourgin, UMR1318, INRA, 78000 Versailles, France
| | | | | | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, UMR1318, INRA, 78000 Versailles, France
| |
Collapse
|
35
|
Liu J, Wang H, Chua NH. Long noncoding RNA transcriptome of plants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:319-28. [PMID: 25615265 DOI: 10.1111/pbi.12336] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 05/20/2023]
Abstract
Since their discovery more than two decades ago, animal long noncoding RNAs (lncRNAs) have emerged as important regulators of many biological processes. Recently, a large number of lncRNAs have also been identified in higher plants, and here, we review their identification, classification and known regulatory functions in various developmental events and stress responses. Knowledge gained from a deeper understanding of this special group of noncoding RNAs may lead to biotechnological improvement of crops. Some possible examples in this direction are discussed.
Collapse
Affiliation(s)
- Jun Liu
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
36
|
Abstract
Current high-throughput DNA sequencing technologies enable acquisition of billions of data points through which myriad biological processes can be interrogated, including genetic variation, chromatin structure, gene expression patterns, small RNAs and protein-DNA interactions. Here we describe the MethylC-sequencing (MethylC-seq) library preparation method, a 2-d protocol that enables the genome-wide identification of cytosine DNA methylation states at single-base resolution. The technique involves fragmentation of genomic DNA followed by adapter ligation, bisulfite conversion and limited amplification using adapter-specific PCR primers in preparation for sequencing. To date, this protocol has been successfully applied to genomic DNA isolated from primary cell culture, sorted cells and fresh tissue from over a thousand plant and animal samples.
Collapse
|
37
|
Sequeira-Mendes J, Aragüez I, Peiró R, Mendez-Giraldez R, Zhang X, Jacobsen SE, Bastolla U, Gutierrez C. The Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States. THE PLANT CELL 2014; 26:2351-2366. [PMID: 24934173 PMCID: PMC4114938 DOI: 10.1105/tpc.114.124578] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 05/18/2023]
Abstract
Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin states using 16 features, including DNA sequence, CG methylation, histone variants, and modifications. The combinatorial complexity of chromatin can be reduced to nine states that describe chromatin with high resolution and robustness. Each chromatin state has a strong propensity to associate with a subset of other states defining a discrete number of chromatin motifs. These topographical relationships revealed that an intergenic state, characterized by H3K27me3 and slightly enriched in activation marks, physically separates the canonical Polycomb chromatin and two heterochromatin states from the rest of the euchromatin domains. Genomic elements are distinguished by specific chromatin states: four states span genes from transcriptional start sites (TSS) to termination sites and two contain regulatory regions upstream of TSS. Polycomb regions and the rest of the euchromatin can be connected by two major chromatin paths. Sequential chromatin immunoprecipitation experiments demonstrated the occurrence of H3K27me3 and H3K4me3 in the same chromatin fiber, within a two to three nucleosome size range. Our data provide insight into the Arabidopsis genome topography and the establishment of gene expression patterns, specification of DNA replication origins, and definition of chromatin domains.
Collapse
Affiliation(s)
- Joana Sequeira-Mendes
- Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Irene Aragüez
- Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Ramón Peiró
- Bioinformatics Unit, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Raul Mendez-Giraldez
- Bioinformatics Unit, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Xiaoyu Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Steven E Jacobsen
- Department of Molecular, Cellular, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Ugo Bastolla
- Bioinformatics Unit, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Crisanto Gutierrez
- Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
38
|
Schurch NJ, Cole C, Sherstnev A, Song J, Duc C, Storey KG, McLean WHI, Brown SJ, Simpson GG, Barton GJ. Improved annotation of 3' untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-Seq and ESTs. PLoS One 2014; 9:e94270. [PMID: 24722185 PMCID: PMC3983147 DOI: 10.1371/journal.pone.0094270] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/13/2014] [Indexed: 11/23/2022] Open
Abstract
The reference annotations made for a genome sequence provide the framework for all subsequent analyses of the genome. Correct and complete annotation in addition to the underlying genomic sequence is particularly important when interpreting the results of RNA-seq experiments where short sequence reads are mapped against the genome and assigned to genes according to the annotation. Inconsistencies in annotations between the reference and the experimental system can lead to incorrect interpretation of the effect on RNA expression of an experimental treatment or mutation in the system under study. Until recently, the genome-wide annotation of 3′ untranslated regions received less attention than coding regions and the delineation of intron/exon boundaries. In this paper, data produced for samples in Human, Chicken and A. thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing technology from Helicos Biosciences which locates 3′ polyadenylation sites to within +/− 2 nt, were combined with archival EST and RNA-Seq data. Nine examples are illustrated where this combination of data allowed: (1) gene and 3′ UTR re-annotation (including extension of one 3′ UTR by 5.9 kb); (2) disentangling of gene expression in complex regions; (3) clearer interpretation of small RNA expression and (4) identification of novel genes. While the specific examples displayed here may become obsolete as genome sequences and their annotations are refined, the principles laid out in this paper will be of general use both to those annotating genomes and those seeking to interpret existing publically available annotations in the context of their own experimental data.
Collapse
Affiliation(s)
- Nicholas J. Schurch
- Division of Computational Biology, University of Dundee, Dundee, United Kingdom
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Christian Cole
- Division of Computational Biology, University of Dundee, Dundee, United Kingdom
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Alexander Sherstnev
- Division of Computational Biology, University of Dundee, Dundee, United Kingdom
| | - Junfang Song
- Division of Cell and Developmental Biology, University of Dundee, Dundee, United Kingdom
| | - Céline Duc
- Division of Plant Sciences, University of Dundee, Dundee, United Kingdom
| | - Kate G. Storey
- Division of Cell and Developmental Biology, University of Dundee, Dundee, United Kingdom
| | - W. H. Irwin McLean
- Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, United Kingdom
| | - Sara J. Brown
- Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, United Kingdom
| | - Gordon G. Simpson
- Division of Plant Sciences, University of Dundee, Dundee, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Geoffrey J. Barton
- Division of Computational Biology, University of Dundee, Dundee, United Kingdom
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Zhang X, Lii Y, Wu Z, Polishko A, Zhang H, Chinnusamy V, Lonardi S, Zhu JK, Liu R, Jin H. Mechanisms of small RNA generation from cis-NATs in response to environmental and developmental cues. MOLECULAR PLANT 2013; 6:704-15. [PMID: 23505223 PMCID: PMC3660955 DOI: 10.1093/mp/sst051] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/28/2013] [Indexed: 05/18/2023]
Abstract
A large proportion of eukaryotic genomes is transcribed from both positive and negative strands of DNA and thus may generate overlapping sense and antisense transcripts. Some of these so-called natural antisense transcripts (NATs) are possibly co-regulated. When the overlapping sense and antisense transcripts are expressed at the same time in the same cell in response to various developmental and environmental cues; they may form double-stranded RNAs, which could be recognized by the small RNA biogenesis machinery and processed into small interfering RNAs (siRNAs). cis-NAT-derived siRNAs (nat-siRNAs) are present in plants, animals, and fungi. In plants, the presence of nat-siRNAs is supported not only by Northern blot and genetic analyses, but also by the fact that there is an overall sixfold enrichment of siRNAs in the overlapping regions of cis-NATs and 19%-29% of the siRNA-generating cis-NATs in plants give rise to siRNAs only in their overlapping regions. Silencing mediated by nat-siRNAs is one of the mechanisms for regulating the expression of the cis-NATs. This review focuses on challenging issues related to the biogenesis mechanisms as well as regulation and detection of nat-siRNAs. The advantages and limitations of new technologies for detecting cis-NATs, including direct RNA sequencing and strand-specific RNA sequencing, are also discussed.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Yifan Lii
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Zhigang Wu
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Anton Polishko
- Computer Science and Engineering, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Huiming Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Stefano Lonardi
- Computer Science and Engineering, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Shanghai Center for Plant Stress Biology and Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- To whom correspondence should be addressed. H.J. E-mail , tel. +1-951-827-7995. R.L. E-mail . J.-k.Z. E-mail
| | - Renyi Liu
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- To whom correspondence should be addressed. H.J. E-mail , tel. +1-951-827-7995. R.L. E-mail . J.-k.Z. E-mail
| | - Hailing Jin
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- To whom correspondence should be addressed. H.J. E-mail , tel. +1-951-827-7995. R.L. E-mail . J.-k.Z. E-mail
| |
Collapse
|
40
|
Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, Arenas-Huertero C, Chua NH. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. THE PLANT CELL 2012; 24:4333-45. [PMID: 23136377 PMCID: PMC3531837 DOI: 10.1105/tpc.112.102855] [Citation(s) in RCA: 487] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/12/2012] [Accepted: 10/19/2012] [Indexed: 05/18/2023]
Abstract
Long intergenic noncoding RNAs (lincRNAs) transcribed from intergenic regions of yeast and animal genomes play important roles in key biological processes. Yet, plant lincRNAs remain poorly characterized and how lincRNA biogenesis is regulated is unclear. Using a reproducibility-based bioinformatics strategy to analyze 200 Arabidopsis thaliana transcriptome data sets, we identified 13,230 intergenic transcripts of which 6480 can be classified as lincRNAs. Expression of 2708 lincRNAs was detected by RNA sequencing experiments. Transcriptome profiling by custom microarrays revealed that the majority of these lincRNAs are expressed at a level between those of mRNAs and precursors of miRNAs. A subset of lincRNA genes shows organ-specific expression, whereas others are responsive to biotic and/or abiotic stresses. Further analysis of transcriptome data in 11 mutants uncovered SERRATE, CAP BINDING PROTEIN20 (CBP20), and CBP80 as regulators of lincRNA expression and biogenesis. RT-PCR experiments confirmed these three proteins are also needed for splicing of a small group of intron-containing lincRNAs.
Collapse
|
41
|
Krzyszton M, Zakrzewska-Placzek M, Koper M, Kufel J. Rat1 and Xrn2: The Diverse Functions of the Nuclear Rat1/Xrn2 Exonuclease. EUKARYOTIC RNASES AND THEIR PARTNERS IN RNA DEGRADATION AND BIOGENESIS, PART A 2012; 31:131-63. [DOI: 10.1016/b978-0-12-404740-2.00007-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Plant Exosomes and Cofactors. EUKARYOTIC RNASES AND THEIR PARTNERS IN RNA DEGRADATION AND BIOGENESIS, PART A 2012; 31:31-52. [DOI: 10.1016/b978-0-12-404740-2.00002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|