1
|
Fang B, Edwards SV. Fitness consequences of structural variation inferred from a House Finch pangenome. Proc Natl Acad Sci U S A 2024; 121:e2409943121. [PMID: 39531493 PMCID: PMC11588099 DOI: 10.1073/pnas.2409943121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Genomic structural variants (SVs) play a crucial role in adaptive evolution, yet their average fitness effects and characterization with pangenome tools are understudied in wild animal populations. We constructed a pangenome for House Finches (Haemorhous mexicanus), a model for studies of host-pathogen coevolution, using long-read sequence data on 16 individuals (32 de novo-assembled haplotypes) and one outgroup. We identified 887,118 SVs larger than 50 base pairs, mostly (60%) involving repetitive elements, with reduced SV diversity in the eastern US as a result of its introduction by humans. The distribution of fitness effects of genome-wide SVs was estimated using maximum likelihood approaches and revealed that SVs in both coding and noncoding regions were on average more deleterious than smaller indels or single nucleotide polymorphisms. The reference-free pangenome facilitated identification of a > 10-My-old, 11-megabase-long pericentric inversion on chromosome 1. We found that the genotype frequencies of the inversion, estimated from 135 birds widely sampled temporally and geographically, increased steadily over the 25 y since House Finches were first exposed to the bacterial pathogen Mycoplasma gallisepticum and showed signatures of balancing selection, capturing genes related to immunity and telomerase activity. We also observed shorter telomeres in populations with a greater number of years exposure to Mycoplasma. Our study illustrates the utility of long-read sequencing and pangenome methods for understanding wild animal populations, estimating fitness effects of genome-wide SVs, and advancing our understanding of adaptive evolution through structural variation.
Collapse
Affiliation(s)
- Bohao Fang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| |
Collapse
|
2
|
Hashiguchi Y, Mishina T, Takeshima H, Nakayama K, Tanoue H, Takeshita N, Takahashi H. Draft Genome of Akame (Lates Japonicus) Reveals Possible Genetic Mechanisms for Long-Term Persistence and Adaptive Evolution with Low Genetic Diversity. Genome Biol Evol 2024; 16:evae174. [PMID: 39109913 PMCID: PMC11346364 DOI: 10.1093/gbe/evae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2024] [Indexed: 08/27/2024] Open
Abstract
It is known that some endangered species have persisted for thousands of years despite their very small effective population sizes and low levels of genetic polymorphisms. To understand the genetic mechanisms of long-term persistence in threatened species, we determined the whole genome sequences of akame (Lates japonicus), which has survived for a long time with extremely low genetic variations. Genome-wide heterozygosity in akame was estimated to be 3.3 to 3.4 × 10-4/bp, one of the smallest values in teleost fishes. Analysis of demographic history revealed that the effective population size in akame was around 1,000 from 30,000 years ago to the recent past. The relatively high ratio of nonsynonymous to synonymous heterozygosity in akame indicated an increased genetic load. However, a detailed analysis of genetic diversity in the akame genome revealed that multiple genomic regions, including genes involved in immunity, synaptic development, and olfactory sensory systems, have retained relatively high nucleotide polymorphisms. This implies that the akame genome has preserved the functional genetic variations by balancing selection, to avoid a reduction in viability and loss of adaptive potential. Analysis of synonymous and nonsynonymous nucleotide substitution rates has detected signs of positive selection in many akame genes, suggesting adaptive evolution to temperate waters after the speciation of akame and its close relative, barramundi (Lates calcarifer). Our results indicate that the functional genetic diversity likely contributed to the long-term persistence of this species by avoiding the harmful effects of the population size reduction.
Collapse
Affiliation(s)
- Yasuyuki Hashiguchi
- Department of Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-0801, Japan
| | - Tappei Mishina
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Chuo-ku, Kobe 650-0047, Japan
- Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hirohiko Takeshima
- Faculty of Marine Bioscience, Research Center for Marine Biosciences, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Kouji Nakayama
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hideaki Tanoue
- Operations Evaluation Division, General Planning and Coordination Department, Headquarters, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa 221-8529, Japan
| | - Naohiko Takeshita
- Department of Applied Aquabiology, National Fisheries University, Shimonoseki, Yamaguchi 759-6595, Japan
| | - Hiroshi Takahashi
- Department of Applied Aquabiology, National Fisheries University, Shimonoseki, Yamaguchi 759-6595, Japan
| |
Collapse
|
3
|
Mohamadnejad Sangdehi F, Jamsandekar MS, Enbody ED, Pettersson ME, Andersson L. Copy number variation and elevated genetic diversity at immune trait loci in Atlantic and Pacific herring. BMC Genomics 2024; 25:459. [PMID: 38730342 PMCID: PMC11088111 DOI: 10.1186/s12864-024-10380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Genome-wide comparisons of populations are widely used to explore the patterns of nucleotide diversity and sequence divergence to provide knowledge on how natural selection and genetic drift affect the genome. In this study we have compared whole-genome sequencing data from Atlantic and Pacific herring, two sister species that diverged about 2 million years ago, to explore the pattern of genetic differentiation between the two species. RESULTS The genome comparison of the two species revealed high genome-wide differentiation but with islands of remarkably low genetic differentiation, as measured by an FST analysis. However, the low FST observed in these islands is not caused by low interspecies sequence divergence (dxy) but rather by exceptionally high estimated intraspecies nucleotide diversity (π). These regions of low differentiation and elevated nucleotide diversity, termed high-diversity regions in this study, are not enriched for repeats but are highly enriched for immune-related genes. This enrichment includes genes from both the adaptive immune system, such as immunoglobulin, T-cell receptor and major histocompatibility complex genes, as well as a substantial number of genes with a role in the innate immune system, e.g. novel immune-type receptor, tripartite motif and tumor necrosis factor receptor genes. Analysis of long-read based assemblies from two Atlantic herring individuals revealed extensive copy number variation in these genomic regions, indicating that the elevated intraspecies nucleotide diversities were partially due to the cross-mapping of short reads. CONCLUSIONS This study demonstrates that copy number variation is a characteristic feature of immune trait loci in herring. Another important implication is that these loci are blind spots in classical genome-wide screens for genetic differentiation using short-read data, not only in herring, likely also in other species harboring qualitatively similar variation at immune trait loci. These loci stood out in this study because of the relatively high genome-wide baseline for FST values between Atlantic and Pacific herring.
Collapse
Affiliation(s)
| | - Minal S Jamsandekar
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Biomolecular Engineering, University of California, Santa Cruz, USA
| | - Mats E Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA.
| |
Collapse
|
4
|
Hui R, Scheib CL, D’Atanasio E, Inskip SA, Cessford C, Biagini SA, Wohns AW, Ali MQ, Griffith SJ, Solnik A, Niinemäe H, Ge XJ, Rose AK, Beneker O, O’Connell TC, Robb JE, Kivisild T. Genetic history of Cambridgeshire before and after the Black Death. SCIENCE ADVANCES 2024; 10:eadi5903. [PMID: 38232165 PMCID: PMC10793959 DOI: 10.1126/sciadv.adi5903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
The extent of the devastation of the Black Death pandemic (1346-1353) on European populations is known from documentary sources and its bacterial source illuminated by studies of ancient pathogen DNA. What has remained less understood is the effect of the pandemic on human mobility and genetic diversity at the local scale. Here, we report 275 ancient genomes, including 109 with coverage >0.1×, from later medieval and postmedieval Cambridgeshire of individuals buried before and after the Black Death. Consistent with the function of the institutions, we found a lack of close relatives among the friars and the inmates of the hospital in contrast to their abundance in general urban and rural parish communities. While we detect long-term shifts in local genetic ancestry in Cambridgeshire, we find no evidence of major changes in genetic ancestry nor higher differentiation of immune loci between cohorts living before and after the Black Death.
Collapse
Affiliation(s)
- Ruoyun Hui
- Alan Turing Institute, London, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Christiana L. Scheib
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- St John’s College, University of Cambridge, Cambridge, UK
| | | | - Sarah A. Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- School of Archaeology and Ancient History, University of Leicester, Leicester, UK
| | - Craig Cessford
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Cambridge Archaeological Unit, Department of Archaeology, University of Cambridge, Cambridge, UK
| | | | - Anthony W. Wohns
- School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics and Biology, Stanford University, Stanford, CA, USA
| | | | - Samuel J. Griffith
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anu Solnik
- Core Facility, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helja Niinemäe
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Xiangyu Jack Ge
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, UK
| | - Alice K. Rose
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Department of Archaeology, University of Durham, Durham, UK
| | - Owyn Beneker
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Tamsin C. O’Connell
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - John E. Robb
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Toomas Kivisild
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Shiina T, Kulski JK. HLA Genetics for the Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:237-258. [PMID: 38467984 DOI: 10.1007/978-981-99-9781-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Highly polymorphic human leukocyte antigen (HLA) molecules (alleles) expressed by different classical HLA class I and class II genes have crucial roles in the regulation of innate and adaptive immune responses, transplant rejection and in the pathogenesis of numerous infectious and autoimmune diseases. To date, over 35,000 HLA alleles have been published from the IPD-IMGT/HLA database, and specific HLA alleles and HLA haplotypes have been reported to be associated with more than 100 different diseases and phenotypes. Next generation sequencing (NGS) technology developed in recent years has provided breakthroughs in various HLA genomic/gene studies and transplant medicine. In this chapter, we review the current information on the HLA genomic structure and polymorphisms, as well as the genetic context in which numerous disease associations have been identified in this region.
Collapse
Affiliation(s)
| | - Jerzy K Kulski
- Tokai University School of Medicine, Isehara, Japan
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
6
|
Lemieux W, Richard L, Nunes JM, Sanchez-Mazas A, Renaud C, Sapir-Pichhadze R, Lewin A. A registry-based population study of the HLA in Québec, Canada. HLA 2023; 102:671-689. [PMID: 37439270 DOI: 10.1111/tan.15154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
As part of the worldwide effort to better characterize HLA diversity in populations, we have studied the population of Québec in Canada. This province has been defined by a complex history with multiple founder effects and migration patterns. We analyzed the typing data of 3806 individuals registered in Héma-Québec's Registry, which covered most administrative regions in Québec. Typing information was resolved at the second field level of resolution by next-generation sequencing (NGS) or by Sanger sequencing. We used the HLA-net.eu GENE[RATE] tools to estimate allele and two-locus haplotype frequencies for HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1, as well as Hardy-Weinberg equilibrium (HWE), selective neutrality, and linkage disequilibrium. The chord genetic distance was also calculated between administrative regions and was visualized using non-metric multidimensional scaling (NMDS) analysis. While most individual regions were in HWE, HWE was rejected for the province considered as a whole. Some regions exhibited signatures of selection, mostly toward an excess of heterozygotes. Allele and haplotype frequencies revealed outlier regions that strongly differed from the other regions. NMDS plots also showed differences between regions. The administrative regions of the province of Québec displayed heterogeneity in their HLA profiles. This heterogeneity was attributable to differing allele and haplotype specificities by region. In particular, regions 02-Saguenay-Lac-Saint-Jean and 01-Bas-St-Laurent diverged from the rest of the regions. The urban regions 06-Montréal and 13-Laval were very diversified in their HLA profiles. Together, these results will help optimize donor recruitment strategies in Québec.
Collapse
Affiliation(s)
- William Lemieux
- Medical Affairs & Innovation, Héma-Québec, Montréal, Quebec, Canada
- Centre for Outcomes Research and Evaluation (CORE), Research Institute of McGill University Health Centre, Montréal, Quebec, Canada
| | - Lucie Richard
- Transfusion Medicine/Reference Laboratory, Héma-Québec, Montréal, Quebec, Canada
| | - José Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling history, Department of Genetics and Evolution, University of Geneva and Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| | - Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling history, Department of Genetics and Evolution, University of Geneva and Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| | - Christian Renaud
- Medical Affairs & Innovation, Héma-Québec, Montréal, Quebec, Canada
| | - Ruth Sapir-Pichhadze
- Centre for Outcomes Research and Evaluation (CORE), Research Institute of McGill University Health Centre, Montréal, Quebec, Canada
- Division of Nephrology and the Multi-Organ Transplant Program, Royal Victoria Hospital, McGill University Health Centre, Montréal, Quebec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Quebec, Canada
| | - Antoine Lewin
- Medical Affairs & Innovation, Héma-Québec, Montréal, Quebec, Canada
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
7
|
Jung K, Kim JG, Shin S, Roh EY, Hong YJ, Song EY. Allele and haplotype frequencies of 11 HLA loci in Koreans by next-generation sequencing. HLA 2023; 101:602-612. [PMID: 36719349 DOI: 10.1111/tan.14980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 12/24/2022] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Data on HLA genotype distribution, including DQA1 and DPA1, in the Korean population are limited. We aimed to investigate the allele and haplotype frequencies of 11 HLA loci in 339 Korean subjects using next-generation sequencing (NGS)-based HLA typing. A total of 339 samples from unrelated healthy subjects were genotyped for HLA-A, -B, -C, -DRB1, -DRB3, -DRB4, -DRB5, -DQB1, -DQA1, -DPB1, and -DPA1 using two different NGS-based HLA typing kits (166 tested using the NGSgo-MX11-3 kit [GenDx, Netherlands] and 173 by the AllType NGS 11 Loci Amplification kit [One Lambda, USA]). PyPop software was used to estimate allele and haplotype frequencies and linkage disequilibrium between the loci. Additionally, a principal component analysis was performed to compare the allele distribution of Koreans with that of other populations. A total of 214 HLA alleles (97 class I and 117 class II alleles) were assigned. The most frequent alleles for each locus were A*24:02:01 (24.78%), B*15:01:01 (10.18%), C*01:02:01 (18.44%), DRB1*04:05:01 (9.59%), DRB3*02:02:01 (13.72%), DRB4*01:03:01 (25.81%), DRB5*01:01:01 (9.0%), DQA1*01:02:01 (16.96%), DQB1*03:01:01 (14.31%), DPA1*01:03:01 (44.4%), and DPB1*05:01:01 (35.1%), respectively. The most frequent haplotypes were A*33:03:01-C*03:02:02-B*58:01:01 for HLA class I (5.01%) and DRB1*04:05:01-DQA1*03:03:01-DQB1*04:01:01-DPA1*02:02:02-DPB1*05:01:01 for HLA class II (6.23%). The total allelic ambiguities by NGS were estimated to be minimal and considerably decreased compared with those by Sanger sequencing. The Japanese population had the most similar allele distribution to Koreans, followed by the Chinese population. Frequency data of 11 HLA loci in Koreans can provide essential data for population genetics and disease association studies.
Collapse
Affiliation(s)
- Kiwook Jung
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Laboratory Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Jisoo G Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sue Shin
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Eun Youn Roh
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Yun Ji Hong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Eun Young Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Gundling WE, Post S, Illsley NP, Echalar L, Zamudio S, Wildman DE. Ancestry dependent balancing selection of placental dysferlin at high-altitude. Front Cell Dev Biol 2023; 11:1125972. [PMID: 37025168 PMCID: PMC10070852 DOI: 10.3389/fcell.2023.1125972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction: The placenta mediates fetal growth by regulating gas and nutrient exchange between the mother and the fetus. The cell type in the placenta where this nutrient exchange occurs is called the syncytiotrophoblast, which is the barrier between the fetal and maternal blood. Residence at high-altitude is strongly associated with reduced 3rd trimester fetal growth and increased rates of complications such as preeclampsia. We asked whether altitude and/or ancestry-related placental gene expression contributes to differential fetal growth under high-altitude conditions, as native populations have greater fetal growth than migrants to high-altitude. Methods: We have previously shown that methylation differences largely accounted for altitude-associated differences in placental gene expression that favor improved fetal growth among high-altitude natives. We tested for differences in DNA methylation between Andean and European placental samples from Bolivia [La Paz (∼3,600 m) and Santa Cruz, Bolivia (∼400 m)]. One group of genes showing significant altitude-related differences are those involved in cell fusion and membrane repair in the syncytiotrophoblast. Dysferlin (DYSF) shows greater expression levels in high- vs. low-altitude placentas, regardless of ancestry. DYSF has a single nucleotide variant (rs10166384;G/A) located at a methylation site that can potentially stimulate or repress DYSF expression. Following up with individual DNA genotyping in an expanded sample size, we observed three classes of DNA methylation that corresponded to individual genotypes of rs10166384 (A/A < A/G < G/G). We tested whether these genotypes are under Darwinian selection pressure by sequencing a ∼2.5 kb fragment including the DYSF variants from 96 Bolivian samples and compared them to data from the 1000 genomes project. Results: We found that balancing selection (Tajima's D = 2.37) was acting on this fragment among Andeans regardless of altitude, and in Europeans at high-altitude (Tajima's D = 1.85). Discussion: This supports that balancing selection acting on dysferlin is capable of altering DNA methylation patterns based on environmental exposure to high-altitude hypoxia. This finding is analogous to balancing selection seen frequency-dependent selection, implying both alleles are advantageous in different ways depending on environmental circumstances. Preservation of the adenine (A) and guanine (G) alleles may therefore aid both Andeans and Europeans in an altitude dependent fashion.
Collapse
Affiliation(s)
- William E. Gundling
- Department of Biology, Christian Brothers University, Memphis, TN, United States
- *Correspondence: Derek E. Wildman, ; William E. Gundling,
| | - Sasha Post
- College of Public Health, University of South Florida, Tampa, FL, United States
| | | | - Lourdes Echalar
- Instituto Boliviano de Biología de Altura, Universidad de San Andreas Mayor, La Paz, Bolivia
| | - Stacy Zamudio
- Placental Research Group LLC., Maplewood, NJ, United States
| | - Derek E. Wildman
- College of Public Health, University of South Florida, Tampa, FL, United States
- *Correspondence: Derek E. Wildman, ; William E. Gundling,
| |
Collapse
|
9
|
Souilmi Y, Tobler R, Johar A, Williams M, Grey ST, Schmidt J, Teixeira JC, Rohrlach A, Tuke J, Johnson O, Gower G, Turney C, Cox M, Cooper A, Huber CD. Admixture has obscured signals of historical hard sweeps in humans. Nat Ecol Evol 2022; 6:2003-2015. [PMID: 36316412 PMCID: PMC9715430 DOI: 10.1038/s41559-022-01914-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
The role of natural selection in shaping biological diversity is an area of intense interest in modern biology. To date, studies of positive selection have primarily relied on genomic datasets from contemporary populations, which are susceptible to confounding factors associated with complex and often unknown aspects of population history. In particular, admixture between diverged populations can distort or hide prior selection events in modern genomes, though this process is not explicitly accounted for in most selection studies despite its apparent ubiquity in humans and other species. Through analyses of ancient and modern human genomes, we show that previously reported Holocene-era admixture has masked more than 50 historic hard sweeps in modern European genomes. Our results imply that this canonical mode of selection has probably been underappreciated in the evolutionary history of humans and suggest that our current understanding of the tempo and mode of selection in natural populations may be inaccurate.
Collapse
Affiliation(s)
- Yassine Souilmi
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Raymond Tobler
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
- Evolution of Cultural Diversity Initiative, Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Angad Johar
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| | - Matthew Williams
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shane T Grey
- Transplantation Immunology Group, Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, New South Wales, Australia
| | - Joshua Schmidt
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - João C Teixeira
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Adam Rohrlach
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Jonathan Tuke
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, South Australia, Australia
- School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Olivia Johnson
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Graham Gower
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Chris Turney
- Chronos 14Carbon-Cycle Facility and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Murray Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Alan Cooper
- South Australian Museum, Adelaide, South Australia, Australia.
- BlueSky Genetics, Ashton, South Australia, Australia.
| | - Christian D Huber
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
- Department of Biology, Penn State University, University Park, PA, USA.
| |
Collapse
|
10
|
Pagliuca S, Gurnari C, Rubio MT, Visconte V, Lenz TL. Individual HLA heterogeneity and its implications for cellular immune evasion in cancer and beyond. Front Immunol 2022; 13:944872. [PMID: 36131910 PMCID: PMC9483928 DOI: 10.3389/fimmu.2022.944872] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023] Open
Abstract
Structural and functional variability of human leukocyte antigen (HLA) is the foundation for competent adaptive immune responses against pathogen and tumor antigens as it assures the breadth of the presented immune-peptidome, theoretically sustaining an efficient and diverse T cell response. This variability is presumably the result of the continuous selection by pathogens, which over the course of evolution shaped the adaptive immune system favoring the assortment of a hyper-polymorphic HLA system able to elaborate efficient immune responses. Any genetic alteration affecting this diversity may lead to pathological processes, perturbing antigen presentation capabilities, T-cell reactivity and, to some extent, natural killer cell functionality. A highly variable germline HLA genotype can convey immunogenetic protection against infections, be associated with tumor surveillance or influence response to anti-neoplastic treatments. In contrast, somatic aberrations of HLA loci, rearranging the original germline configuration, theoretically decreasing its variability, can facilitate mechanisms of immune escape that promote tumor growth and immune resistance. The purpose of the present review is to provide a unified and up-to-date overview of the pathophysiological consequences related to the perturbations of the genomic heterogeneity of HLA complexes and their impact on human diseases, with a special focus on cancer.
Collapse
Affiliation(s)
- Simona Pagliuca
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH, United States
- Service d’hématologie Clinique, Hôpital Brabois, CHRU Nancy and CNRS UMR 7365 IMoPa, Biopole de l’Université de Loarraine, Vandoeuvre les Nancy, France
| | - Carmelo Gurnari
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Marie Thérèse Rubio
- Service d’hématologie Clinique, Hôpital Brabois, CHRU Nancy and CNRS UMR 7365 IMoPa, Biopole de l’Université de Loarraine, Vandoeuvre les Nancy, France
| | - Valeria Visconte
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH, United States
| | - Tobias L. Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
11
|
Kumar H, Panigrahi M, Panwar A, Rajawat D, Nayak SS, Saravanan KA, Kaisa K, Parida S, Bhushan B, Dutt T. Machine-Learning Prospects for Detecting Selection Signatures Using Population Genomics Data. J Comput Biol 2022; 29:943-960. [PMID: 35639362 DOI: 10.1089/cmb.2021.0447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Natural selection has been given a lot of attention because it relates to the adaptation of populations to their environments, both biotic and abiotic. An allele is selected when it is favored by natural selection. Consequently, the favored allele increases in frequency in the population and neighboring linked variation diminishes, causing so-called selective sweeps. A high-throughput genomic sequence allows one to disentangle the evolutionary forces at play in populations. With the development of high-throughput genome sequencing technologies, it has become easier to detect these selective sweeps/selection signatures. Various methods can be used to detect selective sweeps, from simple implementations using summary statistics to complex statistical approaches. One of the important problems of these statistical models is the potential to provide inaccurate results when their assumptions are violated. The use of machine learning (ML) in population genetics has been introduced as an alternative method of detecting selection by treating the problem of detecting selection signatures as a classification problem. Since the availability of population genomics data is increasing, researchers may incorporate ML into these statistical models to infer signatures of selection with higher predictive accuracy and better resolution. This article describes how ML can be used to aid in detecting and studying natural selection patterns using population genomic data.
Collapse
Affiliation(s)
- Harshit Kumar
- Divisions of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Manjit Panigrahi
- Divisions of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Anuradha Panwar
- Divisions of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Divya Rajawat
- Divisions of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Sonali Sonejita Nayak
- Divisions of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - K A Saravanan
- Divisions of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Kaiho Kaisa
- Divisions of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Subhashree Parida
- Divisions of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Bharat Bhushan
- Divisions of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
12
|
Palmer WH, Telford M, Navarro A, Santpere G, Norman PJ. Human herpesvirus diversity is altered in HLA class I binding peptides. Proc Natl Acad Sci U S A 2022; 119:e2123248119. [PMID: 35486690 PMCID: PMC9170163 DOI: 10.1073/pnas.2123248119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Herpesviruses are ubiquitous, genetically diverse DNA viruses, with long-term presence in humans associated with infrequent but significant pathology. Human leukocyte antigen (HLA) class I presents intracellularly derived peptide fragments from infected tissue cells to CD8+ T and natural killer cells, thereby directing antiviral immunity. Allotypes of highly polymorphic HLA class I are distinguished by their peptide binding repertoires. Because this HLA class I variation is a major determinant of herpesvirus disease, we examined if sequence diversity of virus proteins reflects evasion of HLA presentation. Using population genomic data from Epstein–Barr virus (EBV), human cytomegalovirus (HCMV), and Varicella–Zoster virus, we tested whether diversity differed between the regions of herpesvirus proteins that can be recognized, or not, by HLA class I. Herpesviruses exhibit lytic and latent infection stages, with the latter better enabling immune evasion. Whereas HLA binding peptides of lytic proteins are conserved, we found that EBV and HCMV proteins expressed during latency have increased peptide sequence diversity. Similarly, latent, but not lytic, herpesvirus proteins have greater population structure in HLA binding than nonbinding peptides. Finally, we found patterns consistent with EBV adaption to the local HLA environment, with less efficient recognition of EBV isolates by high-frequency HLA class I allotypes. Here, the frequency of CD8+ T cell epitopes inversely correlated with the frequency of HLA class I recognition. Previous analyses have shown that pathogen-mediated natural selection maintains exceptional polymorphism in HLA residues that determine peptide recognition. Here, we show that HLA class I peptide recognition impacts diversity of globally widespread pathogens.
Collapse
Affiliation(s)
- William H. Palmer
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| | - Marco Telford
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Arcadi Navarro
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra - Consejo Superior de Investigaciones Científicas), Department of Medicine and Life Sciences (MELIS), Barcelona Biomedical Research Park, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats and Universitat Pompeu Fabra, 08010 Barcelona, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Barcelona Beta Brain Research Center, Pasqual Maragall Foundation, 08005 Barcelona, Spain
| | - Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| |
Collapse
|
13
|
Maróstica AS, Nunes K, Castelli EC, Silva NSB, Weir BS, Goudet J, Meyer D. How HLA diversity is apportioned: influence of selection and relevance to transplantation. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200420. [PMID: 35430892 PMCID: PMC9014195 DOI: 10.1098/rstb.2020.0420] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In his 1972 paper ‘The apportionment of human diversity’, Lewontin showed that, when averaged over loci, genetic diversity is predominantly attributable to differences among individuals within populations. However, selection can alter the apportionment of diversity of specific genes or genomic regions. We examine genetic diversity at the human leucocyte antigen (HLA) loci, located within the major histocompatibility complex (MHC) region. HLA genes code for proteins that are critical to adaptive immunity and are well-documented targets of balancing selection. The single-nucleotide polymorphisms (SNPs) within HLA genes show strong signatures of balancing selection on large timescales and are broadly shared among populations, displaying low FST values. However, when we analyse haplotypes defined by these SNPs (which define ‘HLA alleles’), we find marked differences in frequencies between geographic regions. These differences are not reflected in the FST values because of the extreme polymorphism at HLA loci, illustrating challenges in interpreting FST. Differences in the frequency of HLA alleles among geographic regions are relevant to bone-marrow transplantation, which requires genetic identity at HLA loci between patient and donor. We discuss the case of Brazil's bone marrow registry, where a deficit of enrolled volunteers with African ancestry reduces the chance of finding donors for individuals with an MHC region of African ancestry. This article is part of the theme issue ‘Celebrating 50 years since Lewontin's apportionment of human diversity’.
Collapse
Affiliation(s)
- André Silva Maróstica
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Kelly Nunes
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Erick C. Castelli
- Departamento de Patologia, Universidade Estadual Paulista - Unesp, Faculdade de Medicina de Botucatu, Botucatu, SP, Brazil
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University - Unesp, Botucatu, SP, Brazil
| | - Nayane S. B. Silva
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University - Unesp, Botucatu, SP, Brazil
| | - Bruce S. Weir
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Diogo Meyer
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Douillard V, Castelli EC, Mack SJ, Hollenbach JA, Gourraud PA, Vince N, Limou S. Approaching Genetics Through the MHC Lens: Tools and Methods for HLA Research. Front Genet 2021; 12:774916. [PMID: 34925459 PMCID: PMC8677840 DOI: 10.3389/fgene.2021.774916] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
The current SARS-CoV-2 pandemic era launched an immediate and broad response of the research community with studies both about the virus and host genetics. Research in genetics investigated HLA association with COVID-19 based on in silico, population, and individual data. However, they were conducted with variable scale and success; convincing results were mostly obtained with broader whole-genome association studies. Here, we propose a technical review of HLA analysis, including basic HLA knowledge as well as available tools and advice. We notably describe recent algorithms to infer and call HLA genotypes from GWAS SNPs and NGS data, respectively, which opens the possibility to investigate HLA from large datasets without a specific initial focus on this region. We thus hope this overview will empower geneticists who were unfamiliar with HLA to run MHC-focused analyses following the footsteps of the Covid-19|HLA & Immunogenetics Consortium.
Collapse
Affiliation(s)
- Venceslas Douillard
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | | | - Steven J. Mack
- Division of Allergy, Immunology and Bone Marrow Transplantation, Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jill A. Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Pierre-Antoine Gourraud
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | - Nicolas Vince
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | - Sophie Limou
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
- Ecole Centrale de Nantes, Department of Computer Sciences and Mathematics in Biology, Nantes, France
| |
Collapse
|
15
|
Castelli EC, de Almeida BS, Muniz YCN, Silva NSB, Passos MRS, Souza AS, Page AE, Dyble M, Smith D, Aguileta G, Bertranpetit J, Migliano AB, Duarte YAO, Scliar MO, Wang J, Passos-Bueno MR, Naslavsky MS, Zatz M, Mendes-Junior CT, Donadi EA. HLA-G genetic diversity and evolutive aspects in worldwide populations. Sci Rep 2021; 11:23070. [PMID: 34845256 PMCID: PMC8629979 DOI: 10.1038/s41598-021-02106-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
HLA-G is a promiscuous immune checkpoint molecule. The HLA-G gene presents substantial nucleotide variability in its regulatory regions. However, it encodes a limited number of proteins compared to classical HLA class I genes. We characterized the HLA-G genetic variability in 4640 individuals from 88 different population samples across the globe by using a state-of-the-art method to characterize polymorphisms and haplotypes from high-coverage next-generation sequencing data. We also provide insights regarding the HLA-G genetic diversity and a resource for future studies evaluating HLA-G polymorphisms in different populations and association studies. Despite the great haplotype variability, we demonstrated that: (1) most of the HLA-G polymorphisms are in introns and regulatory sequences, and these are the sites with evidence of balancing selection, (2) linkage disequilibrium is high throughout the gene, extending up to HLA-A, (3) there are few proteins frequently observed in worldwide populations, with lack of variation in residues associated with major HLA-G biological properties (dimer formation, interaction with leukocyte receptors). These observations corroborate the role of HLA-G as an immune checkpoint molecule rather than as an antigen-presenting molecule. Understanding HLA-G variability across populations is relevant for disease association and functional studies.
Collapse
Affiliation(s)
- Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, State of São Paulo, Brazil.
- Department of Pathology, School of Medicine, São Paulo State University (UNESP), Botucatu, State of São Paulo, CEP: 18618970, Brazil.
| | - Bibiana S de Almeida
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, CEP: 14049-900, Brazil
- Laboratório Multiusuário de Estudos em Biologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Yara C N Muniz
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Nayane S B Silva
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, State of São Paulo, Brazil
| | - Marília R S Passos
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, State of São Paulo, Brazil
| | - Andreia S Souza
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, State of São Paulo, Brazil
| | - Abigail E Page
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Mark Dyble
- Departament of Anthropology, University College London (UCL), London, UK
| | - Daniel Smith
- Bristol Medical School (PHS), University of Bristol, Bristol, UK
| | - Gabriela Aguileta
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jaume Bertranpetit
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andrea B Migliano
- Departament of Anthropology, Unversity of Zurich, Zurich, Switzerland
| | - Yeda A O Duarte
- Escola de Enfermagem e Faculdade de Saúde Pública, Universidade de São Paulo (USP), São Paulo, State of São Paulo, Brazil
| | - Marília O Scliar
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
| | - Jaqueline Wang
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
| | - Michel S Naslavsky
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, State of São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
| | - Celso Teixeira Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, CEP: 14049-900, Brazil.
| |
Collapse
|
16
|
Revealing modifier variations characterizations for elucidating the genetic basis of human phenotypic variations. Hum Genet 2021; 141:1223-1233. [PMID: 34498116 DOI: 10.1007/s00439-021-02362-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022]
Abstract
Epistatic interactions complicate the identification of variants involved in phenotypic effect. In-depth knowledge in modifiers and in pathogenic variants would benefit the mechanistic studies on the genetic basis of complex traits. We systematically compared the modifier variants which have evidence of modifier effect with the pathogenic variants from multiple angles. Our study found that genomic loci of modifier variations differ from pathogenic loci in many aspects, such as population genetics statistics, epigenetic features, evolutionary characteristics and functional properties of the variations. Genes containing modifier variation(s) exhibit higher probability of being haploinsufficient and higher probability of recessive disease causation, and they are relatively more important in network communication. Furthermore, we reinforced that co-expression analysis is an effective methodology to predict functional associations between modifier genes and their potential target genes. In many aspects, we detected statistically significant differences between modifier variants/genes and pathogenic variants/genes, and investigated relationships between modifiers and their potential targets. Our results offer some actionable insights that may provide appropriate guidelines to clinical genetics and researchers to elucidate the molecular mechanism underlying the human phenotypic variation.
Collapse
|
17
|
Sarri CA, Giannoulis T, Moutou KA, Mamuris Z. HLA class II peptide-binding-region analysis reveals funneling of polymorphism in action. Immunol Lett 2021; 238:75-95. [PMID: 34329645 DOI: 10.1016/j.imlet.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND HLA-class II proteins hold important roles in key physiological processes. The purpose of this study was to compile all class II alleles reported in human population and investigate patterns in pocket variants and their combinations, focusing on the peptide-binding region (PBR). METHODS For this purpose, all protein sequences of DPA1, DQA1, DPB1, DQB1 and DRB1 were selected and filtered, in order to have full PBR sequences. Proportional representation was used for pocket variants while population data were also used. RESULTS All pocket variants and PBR sequences were retrieved and analyzed based on the preference of amino acids and their properties in all pocket positions. The observed number of pocket variants combinations was much lower than the possible inferred, suggesting that PBR formation is under strict funneling. Also, although class II proteins are very polymorphic, in the majority of the reported alleles in all populations, a significantly less polymorphic pocket core was found. CONCLUSIONS Pocket variability of five HLA class II proteins was studied revealing favorable properties of each protein. The actual PBR sequences of HLA class II proteins appear to be governed by restrictions that lead to the establishment of only a fraction of the possible combinations and the polymorphism recorded is the result of intense funneling based on function.
Collapse
Affiliation(s)
- Constantina A Sarri
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Themistoklis Giannoulis
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece; Department of Animal Science, University of Thessaly, Trikallon 224, 43100 Karditsa, Greece
| | - Katerina A Moutou
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Zissis Mamuris
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece.
| |
Collapse
|
18
|
Nunes K, Maia MHT, Dos Santos EJM, Dos Santos SEB, Guerreiro JF, Petzl-Erler ML, Bedoya G, Gallo C, Poletti G, Llop E, Tsuneto L, Bortolini MC, Rothhammer F, Single R, Ruiz-Linares A, Rocha J, Meyer D. How natural selection shapes genetic differentiation in the MHC region: A case study with Native Americans. Hum Immunol 2021; 82:523-531. [PMID: 33812704 PMCID: PMC8217218 DOI: 10.1016/j.humimm.2021.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
Abstract
The Human Leukocyte Antigen (HLA) loci are extremely well documented targets of balancing selection, yet few studies have explored how selection affects population differentiation at these loci. In the present study we investigate genetic differentiation at HLA genes by comparing differentiation at microsatellites distributed genomewide to those in the MHC region. Our study uses a sample of 494 individuals from 30 human populations, 28 of which are Native Americans, all of whom were typed for genomewide and MHC region microsatellites. We find greater differentiation in the MHC than in the remainder of the genome (FST-MHC = 0.130 and FST-Genomic = 0.087), and use a permutation approach to show that this difference is statistically significant, and not accounted for by confounding factors. This finding lies in the opposite direction to the expectation that balancing selection reduces population differentiation. We interpret our findings as evidence that selection favors different sets of alleles in distinct localities, leading to increased differentiation. Thus, balancing selection at HLA genes simultaneously increases intra-population polymorphism and inter-population differentiation in Native Americans.
Collapse
Affiliation(s)
- Kelly Nunes
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | - Gabriel Bedoya
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Giovanni Poletti
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Elena Llop
- Instituto de Ciencias Biomédicas, Faculdad de Medicina, Universidade de Chile, Santiago, Chile
| | - Luiza Tsuneto
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Brazil
| | - Maria Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Richard Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, USA
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200433, China; D Aix-Marseille University, CNRS, EFS, ADES, Marseille 13007, France
| | - Jorge Rocha
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Porto, Portugal.
| | - Diogo Meyer
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
19
|
Özer O, Lenz TL. Unique pathogen peptidomes facilitate pathogen-specific selection and specialization of MHC alleles. Mol Biol Evol 2021; 38:4376-4387. [PMID: 34110412 PMCID: PMC8476153 DOI: 10.1093/molbev/msab176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A key component of pathogen-specific adaptive immunity in vertebrates is the presentation of pathogen-derived antigenic peptides by major histocompatibility complex (MHC) molecules. The excessive polymorphism observed at MHC genes is widely presumed to result from the need to recognize diverse pathogens, a process called pathogen-driven balancing selection. This process assumes that pathogens differ in their peptidomes—the pool of short peptides derived from the pathogen’s proteome—so that different pathogens select for different MHC variants with distinct peptide-binding properties. Here, we tested this assumption in a comprehensive data set of 51.9 Mio peptides, derived from the peptidomes of 36 representative human pathogens. Strikingly, we found that 39.7% of the 630 pairwise comparisons among pathogens yielded not a single shared peptide and only 1.8% of pathogen pairs shared more than 1% of their peptides. Indeed, 98.8% of all peptides were unique to a single pathogen species. Using computational binding prediction to characterize the binding specificities of 321 common human MHC class-I variants, we investigated quantitative differences among MHC variants with regard to binding peptides from distinct pathogens. Our analysis showed signatures of specialization toward specific pathogens especially by MHC variants with narrow peptide-binding repertoires. This supports the hypothesis that such fastidious MHC variants might be maintained in the population because they provide an advantage against particular pathogens. Overall, our results establish a key selection factor for the excessive allelic diversity at MHC genes observed in natural populations and illuminate the evolution of variable peptide-binding repertoires among MHC variants.
Collapse
Affiliation(s)
- Onur Özer
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.,Research Unit for Evolutionary Immunogenomics, Department of Biology, Universität Hamburg, 20146 Hamburg, Germany
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.,Research Unit for Evolutionary Immunogenomics, Department of Biology, Universität Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
20
|
Kumar H, Panigrahi M, Saravanan KA, Parida S, Bhushan B, Gaur GK, Dutt T, Mishra BP, Singh RK. SNPs with intermediate minor allele frequencies facilitate accurate breed assignment of Indian Tharparkar cattle. Gene 2021; 777:145473. [PMID: 33549713 DOI: 10.1016/j.gene.2021.145473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Tharparkar cattle breed is widely known for its superior milch quality and hardiness attributes. This study aimed to develop an ultra-low density breed-specific single nucleotide polymorphism (SNP) genotype panel to accurately quantify Tharparkar populations in biological samples. In this study, we selected and genotyped 72 Tharparkar animals randomly from Cattle & Buffalo Farm of IVRI, India. This Bovine SNP50 BeadChip genotypic datum was merged with the online data from six indigenous cattle breeds and five taurine breeds. Here, we used a combination of pre-selection statistics and the MAF-LD method developed in our laboratory to analyze the genotypic data obtained from 317 individuals of 12 distinct breeds to identify breed-informative SNPs for the selection of Tharparkar cattle. This methodology identified 63 unique Tharparkar-specific SNPs near intermediate gene frequencies. We report several informative SNPs in genes/QTL regions affecting phenotypes or production traits that might differentiate the Tharparkar breed.
Collapse
Affiliation(s)
- Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - K A Saravanan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - G K Gaur
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - B P Mishra
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - R K Singh
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
21
|
Single RM, Meyer D, Nunes K, Francisco RS, Hünemeier T, Maiers M, Hurley CK, Bedoya G, Gallo C, Hurtado AM, Llop E, Petzl-Erler ML, Poletti G, Rothhammer F, Tsuneto L, Klitz W, Ruiz-Linares A. Demographic history and selection at HLA loci in Native Americans. PLoS One 2020; 15:e0241282. [PMID: 33147239 PMCID: PMC7641399 DOI: 10.1371/journal.pone.0241282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
The American continent was the last to be occupied by modern humans, and native populations bear the marks of recent expansions, bottlenecks, natural selection, and population substructure. Here we investigate how this demographic history has shaped genetic variation at the strongly selected HLA loci. In order to disentangle the relative contributions of selection and demography process, we assembled a dataset with genome-wide microsatellites and HLA-A, -B, -C, and -DRB1 typing data for a set of 424 Native American individuals. We find that demographic history explains a sizeable fraction of HLA variation, both within and among populations. A striking feature of HLA variation in the Americas is the existence of alleles which are present in the continent but either absent or very rare elsewhere in the world. We show that this feature is consistent with demographic history (i.e., the combination of changes in population size associated with bottlenecks and subsequent population expansions). However, signatures of selection at HLA loci are still visible, with significant evidence selection at deeper timescales for most loci and populations, as well as population differentiation at HLA loci exceeding that seen at neutral markers.
Collapse
Affiliation(s)
- Richard M. Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| | - Diogo Meyer
- Departmento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
| | - Kelly Nunes
- Departmento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
| | | | - Tábita Hünemeier
- Departmento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
| | - Martin Maiers
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, United States of America
| | - Carolyn K. Hurley
- CW Bill Young Marrow Donor Recruitment and Research Program, Georgetown University, Washington, DC, United States of America
| | - Gabriel Bedoya
- Instituto de Biología, Universidad de Antioquia Medellín, Medellín, Colombia
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ana Magdalena Hurtado
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
| | - Elena Llop
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Giovanni Poletti
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francisco Rothhammer
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto de Alta Investigación, Tarapacá University, Arica, Chile
| | - Luiza Tsuneto
- Department of Basic Health Sciences, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - William Klitz
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
- CNRS, EFS, ADES, D Aix-Marseille University, Marseille, France
| |
Collapse
|
22
|
Willemsen D, Cui R, Reichard M, Valenzano DR. Intra-species differences in population size shape life history and genome evolution. eLife 2020; 9:e55794. [PMID: 32869739 PMCID: PMC7462614 DOI: 10.7554/elife.55794] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022] Open
Abstract
The evolutionary forces shaping life history divergence within species are largely unknown. Turquoise killifish display differences in lifespan among wild populations, representing an ideal natural experiment in evolution and diversification of life history. By combining genome sequencing and population genetics, we investigate the evolutionary forces shaping lifespan among wild turquoise killifish populations. We generate an improved reference genome assembly and identify genes under positive and purifying selection, as well as those evolving neutrally. Short-lived populations from the outer margin of the species range have small population size and accumulate deleterious mutations in genes significantly enriched in the WNT signaling pathway, neurodegeneration, cancer and the mTOR pathway. We propose that limited population size due to habitat fragmentation and repeated population bottlenecks, by increasing the genome-wide mutation load, exacerbates the effects of mutation accumulation and cumulatively contribute to the short adult lifespan.
Collapse
Affiliation(s)
| | - Rongfeng Cui
- Max Planck Institute for Biology of AgeingCologneGermany
| | - Martin Reichard
- Czech Academy of Sciences, Institute of Vertebrate BiologyBrnoCzech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk UniversityBrnoCzech Republic
| | - Dario Riccardo Valenzano
- Max Planck Institute for Biology of AgeingCologneGermany
- CECAD, University of CologneCologneGermany
| |
Collapse
|
23
|
Jaworska J, Ropka-Molik K, Wocławek-Potocka I, Siemieniuch M. Inter- and intrabreed diversity of the major histocompatibility complex (MHC) in primitive and draft horse breeds. PLoS One 2020; 15:e0228658. [PMID: 32012208 PMCID: PMC6996847 DOI: 10.1371/journal.pone.0228658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Polymorphism of major histocompatibility complex (MHC) genes ensures effective immune responses against a wide array of pathogens. However, artificial selection, as performed in the case of domestic animals, may influence MHC diversity. Here, we investigate and compare the MHC diversity of three populations of horses, for which different breeding policies were applied, to evaluate the impact of artificial selection and the environment on MHC polymorphism. Methods Samples of DNA were taken from 100 Polish draft horses, 38 stabled Konik Polski horses and 32 semiferal Konik Polski horses. MHC alleles and haplotype diversity within and between these populations of horses was estimated from 11 MHC microsatellite loci. Results MHC diversity measured based on allelic richness, observed heterozygosity, expected heterozygosity and polymorphism content was similar across the MHC microsatellite loci in all three populations. The highest expected heterozygosity was detected in semiferal primitive horses (He = 0.74), while the lowest was calculated for draft horses (He = 0.65). In total, 203 haplotypes were determined (111 in Polish draft horses, 43 in semiferal Konik Polski horses and 49 in stabled Konik Polski horses), and four haplotypes were shared between the two populations of Koniks. None of these haplotypes were present in any of the previously investigated horse breeds. Intra-MHC recombination events were detected in all three populations. However, the population of semiferal Konik horses showed the highest recombination frequency among the three horse populations. In addition, three recombination events were detected. Conclusions These results showed that despite the different breeding policies, the MHC allele and haplotype diversity was similarly high in all three horse populations. Nevertheless, the proportion of new haplotypes in the offspring was the highest in semiferal Konik Polski horses, which indicates the influence of the environment on MHC diversity in horses. Thus, we speculate that the genetic makeup of the domestic horse MHC might be more strongly influenced by the environment than by artificial selection. Moreover, intra-MHC conversion, insertion, and deletion and intra-MHC recombination may be proposed as mechanisms underlying the generation of new MHC haplotypes in horses.
Collapse
Affiliation(s)
- Joanna Jaworska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- * E-mail:
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Izabela Wocławek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Marta Siemieniuch
- Research Station of the Institute of Reproduction and Food Research, Polish Academy of Sciences in Popielno, Ruciane-Nida, Poland
| |
Collapse
|
24
|
Laval G, Peyrégne S, Zidane N, Harmant C, Renaud F, Patin E, Prugnolle F, Quintana-Murci L. Recent Adaptive Acquisition by African Rainforest Hunter-Gatherers of the Late Pleistocene Sickle-Cell Mutation Suggests Past Differences in Malaria Exposure. Am J Hum Genet 2019; 104:553-561. [PMID: 30827499 PMCID: PMC6407493 DOI: 10.1016/j.ajhg.2019.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
The hemoglobin βS sickle mutation is a textbook case in which natural selection maintains a deleterious mutation at high frequency in the human population. Homozygous individuals for this mutation develop sickle-cell disease, whereas heterozygotes benefit from higher protection against severe malaria. Because the overdominant βS allele should be purged almost immediately from the population in the absence of malaria, the study of the evolutionary history of this iconic mutation can provide important information about the history of human exposure to malaria. Here, we sought to increase our understanding of the origins and time depth of the βS mutation in populations with different lifestyles and ecologies, and we analyzed the diversity of HBB in 479 individuals from 13 populations of African farmers and rainforest hunter-gatherers. Using an approximate Bayesian computation method, we estimated the age of the βS allele while explicitly accounting for population subdivision, past demography, and balancing selection. When the effects of balancing selection are taken into account, our analyses indicate a single emergence of βS in the ancestors of present-day agriculturalist populations ∼22,000 years ago. Furthermore, we show that rainforest hunter-gatherers have more recently acquired the βS mutation from the ancestors of agriculturalists through adaptive gene flow during the last ∼6,000 years. Together, our results provide evidence for a more ancient exposure to malarial pressures among the ancestors of agriculturalists than previously appreciated, and they suggest that rainforest hunter-gatherers have been increasingly exposed to malaria during the last millennia.
Collapse
Affiliation(s)
- Guillaume Laval
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000 Centre National de la Recherche Scientifique, Paris 75015, France; Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris 75015, France.
| | - Stéphane Peyrégne
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000 Centre National de la Recherche Scientifique, Paris 75015, France; Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris 75015, France; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Nora Zidane
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000 Centre National de la Recherche Scientifique, Paris 75015, France; Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris 75015, France
| | - Christine Harmant
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000 Centre National de la Recherche Scientifique, Paris 75015, France; Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris 75015, France
| | - François Renaud
- Laboratory MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), UMR 5290 Centre National de la Recherche Scientifique, Institut de Rechereche pour le Développement, Montpellier 34394, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000 Centre National de la Recherche Scientifique, Paris 75015, France; Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris 75015, France
| | - Franck Prugnolle
- Laboratory MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), UMR 5290 Centre National de la Recherche Scientifique, Institut de Rechereche pour le Développement, Montpellier 34394, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000 Centre National de la Recherche Scientifique, Paris 75015, France; Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris 75015, France.
| |
Collapse
|
25
|
Prohaska A, Racimo F, Schork AJ, Sikora M, Stern AJ, Ilardo M, Allentoft ME, Folkersen L, Buil A, Moreno-Mayar JV, Korneliussen T, Geschwind D, Ingason A, Werge T, Nielsen R, Willerslev E. Human Disease Variation in the Light of Population Genomics. Cell 2019; 177:115-131. [DOI: 10.1016/j.cell.2019.01.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/25/2023]
|
26
|
Montero-Martín G, Mallempati KC, Gangavarapu S, Sánchez-Gordo F, Herrero-Mata MJ, Balas A, Vicario JL, Sánchez-García F, González-Escribano MF, Muro M, Moya-Quiles MR, González-Fernández R, Ocejo-Vinyals JG, Marín L, Creary LE, Osoegawa K, Vayntrub T, Caro-Oleas JL, Vilches C, Planelles D, Fernández-Viña MA. High-resolution characterization of allelic and haplotypic HLA frequency distribution in a Spanish population using high-throughput next-generation sequencing. Hum Immunol 2019; 80:429-436. [PMID: 30763600 DOI: 10.1016/j.humimm.2019.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 12/25/2022]
Abstract
Next-generation sequencing (NGS) at the HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1 and -DRB3/4/5 loci was performed on 282 healthy unrelated individuals from different major regions of Spain. High-resolution HLA genotypes defined by full sequencing of class I loci and extended coverage of class II loci were obtained to determine allele frequencies and also to estimate extended haplotype frequencies. HLA alleles were typed at the highest resolution level (4-field level, 4FL); with exception of a minor deviation in HLA-DPA1, no statistically significant deviations from expected Hardy Weinberg Equilibrium (HWE) proportions were observed for all other HLA loci. This study provides new 4FL-allele and -haplotype frequencies estimated for the first time in the Spanish population. Furthermore, our results describe extended haplotypes (including the less frequently typed HLA-DPA1 and HLA-DQA1 loci) and show distinctive haplotype associations found at 4FL-allele definition in this Spanish population study. The distinctive allelic and haplotypic diversity found at the 4FL reveals the high level of heterozygosity and specific haplotypic associations displayed that were not apparent at 2-field level (2FL). Overall, these results may contribute as a useful reference source for future population studies, for HLA-disease association studies as a healthy control group dataset and for improving donor recruitment strategies of bone marrow registries. HLA genotyping data of this Spanish population cohort was also included in the 17th International Histocompatibility and Immunogenetics Workshop (IHIW) as part of the study of HLA diversity in unrelated worldwide populations using NGS.
Collapse
Affiliation(s)
| | - Kalyan C Mallempati
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sridevi Gangavarapu
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Antonio Balas
- Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - Jose L Vicario
- Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | | | | | - Manuel Muro
- Immunology, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Maria R Moya-Quiles
- Immunology, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | | | | | - Luis Marín
- Molecular Biology-Hematology, Hospital Clínico Universitario, Salamanca, Spain
| | - Lisa E Creary
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kazutoyo Osoegawa
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tamara Vayntrub
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jose L Caro-Oleas
- Histocompatibility and Immunogenetics, Banc de Sang i Teixits, Barcelona, Spain
| | - Carlos Vilches
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain
| | - Dolores Planelles
- Histocompatibility, Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | | |
Collapse
|