1
|
Stott KE, Mohabir JT, Bowers K, Tenor JL, Toffaletti DL, Unsworth J, Jimenez-Valverde A, Ahmadu A, Moyo M, Gondwe E, Chimang’anga W, Chasweka M, Lawrence DS, Jarvis JN, Harrison T, Hope W, Lalloo DG, Mwandumba HC, Perfect JR, Cuomo CA. Integration of genomic and pharmacokinetic data to predict clinical outcomes in HIV-associated cryptococcal meningitis. mBio 2024; 15:e0159224. [PMID: 39189739 PMCID: PMC11481554 DOI: 10.1128/mbio.01592-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
Cryptococcal meningitis causes an estimated 112,000 global deaths per annum. Genomic and phenotypic features of the infecting strain of Cryptococcus spp. have been associated with outcomes from cryptococcal meningitis. Additionally, population-level pharmacokinetic variability is well documented in these patient cohorts. The relative contribution of these factors to clinical outcomes is unknown. Based in Malawi, we conducted a sub-study of the phase 3 Ambition-CM trial (ISRCTN72509687), collecting plasma and cerebrospinal fluid at serial time points during the first 14 days of antifungal therapy. We explored the relative contribution of pathogen genotype, drug resistance phenotype, and pharmacokinetics on clinical outcomes including lumbar opening pressure, pharmacodynamic effect, and mortality. We report remarkable genomic homogeneity among infecting strains of Cryptococcus spp., within and between patients. There was no evidence of acquisition of antifungal resistance in our isolates. Genotypic features of the infecting strain were not consistently associated with adverse or favorable clinical outcomes. However, baseline fungal burden and early fungicidal activity (EFA) were associated with mortality. The strongest predictor of EFA was the level of exposure to amphotericin B. Our analysis suggests the most effective means of improving clinical outcomes from HIV-associated cryptococcal meningitis is to optimize exposure to potent antifungal therapy. IMPORTANCE HIV-associated cryptococcal meningitis is associated with a high burden of mortality. Research into the different strain types causing this disease has yielded inconsistent findings in terms of which strains are associated with worse clinical outcomes. Our study suggests that the exposure of patients to potent anti-cryptococcal drugs has a more significant impact on clinical outcomes than the strain type of the infecting organism. Future research should focus on optimizing drug exposure, particularly in the context of novel anticryptococcal drugs coming into clinical use.
Collapse
Affiliation(s)
- Katharine E. Stott
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Jason T. Mohabir
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Katharine Bowers
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jennifer L. Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dena L. Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jennifer Unsworth
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Ana Jimenez-Valverde
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Ajisa Ahmadu
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Melanie Moyo
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
- Department of Medicine, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Ebbie Gondwe
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Wezi Chimang’anga
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | | | - David S. Lawrence
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine, London, United Kingdom
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Joseph N. Jarvis
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine, London, United Kingdom
- Botswana Harvard Health Partnership, Gaborone, Botswana
| | - Tom Harrison
- Institute of Infection and Immunity, St George’s University London, London, United Kingdom
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - David G. Lalloo
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - The AMBITION Study Group
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine, London, United Kingdom
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Infection and Immunity, St George’s University London, London, United Kingdom
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
2
|
Chadwick BJ, Ristow LC, Xie X, Krysan DJ, Lin X. Discovery of CO 2 tolerance genes associated with virulence in the fungal pathogen Cryptococcus neoformans. Nat Microbiol 2024; 9:2684-2695. [PMID: 39232204 DOI: 10.1038/s41564-024-01792-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/23/2024] [Indexed: 09/06/2024]
Abstract
Cryptococcus neoformans is a ubiquitous soil fungus and airborne pathogen that causes over 180,000 deaths each year. Cryptococcus must adapt to host CO2 levels to cause disease, but the genetic basis for this adaptation is unknown. We utilized quantitative trait loci mapping with 374 progeny from a cross between a CO2-tolerant clinical isolate and a CO2-sensitive environmental isolate to identify genetic regions regulating CO2 tolerance. To identify specific quantitative trait genes, we applied fine mapping through bulk segregant analysis of near-isogenic progeny with distinct tolerance levels to CO2. We found that virulence among near-isogenic strains in a murine model of cryptococcosis correlated with CO2 tolerance. Moreover, we discovered that sensitive strains may adapt in vivo to become more CO2 tolerant and more virulent. These findings highlight the underappreciated role of CO2 tolerance and its importance in the ability of an opportunistic environmental pathogen to cause disease.
Collapse
Affiliation(s)
| | - Laura C Ristow
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiaofeng Xie
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Damian J Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiaorong Lin
- Department of Plant Biology, University of Georgia, Athens, GA, USA.
- Department of Microbiology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
3
|
de Holanda Fonseca DL, Silva DMWD, de Albuquerque Maranhão FC. Molecular characterization of clinical and environmental isolates from the Cryptococcus neoformans/C. Gattii species complexes of Maceió, Alagoas, Brazil. Braz J Microbiol 2024; 55:1369-1380. [PMID: 38619732 PMCID: PMC11153433 DOI: 10.1007/s42770-024-01313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
Cryptococcosis is one of the major life-threatening opportunistic/systemic fungal diseases of worldwide occurrence, which can be asymptomatic or establish pneumonia and meningoencephalitis mainly in immunosuppressed patients, caused by the Cryptococcus neoformans and C. gattii species complexes. Acquisition is by inhaling fungal propagules from avian droppings, tree hollows and decaying wood, and the association of the molecular types with geographic origin, virulence and antifungal resistance have epidemiological importance. Since data on cryptococcosis in Alagoas are limited, we sought to determine the molecular types of etiological agents collected from clinical and environmental sources. We evaluated 21 isolates previously collected from cerebrospinal fluid and from environment sources (pigeon droppings and tree hollows) in Maceió-Alagoas (Brazil). Restriction fragment length polymorphism of URA5 gene was performed to characterize among the eight standard molecular types (VNI-VNIV and VGI-VGIV). Among isolates, 66.67% (14) were assigned to C. neoformans VNI - 12 of them (12/14) recovered from liquor and 2 from a tree hollow (2/14). One isolate from pigeon droppings (4.76%) corresponded to C. neoformans VNIV, while five strains from tree hollows and one from pigeon droppings (6, 28.57%) to C. gattii VGII. VNI-type was present in clinical and environmental samples and most C. neoformans infections were observed in HIV-positive patients, while types VNIV and VGII were prevalent in environmental sources in Alagoas. This is the first molecular characterization of Cryptococcus spp. in Alagoas, our study provides additional information on the ecoepidemiology of Cryptococcus spp. in Brazil, contributing to a closer view of the endemic species.
Collapse
Affiliation(s)
| | - Denise Maria Wanderlei da Silva
- Institute of Biological and Health Sciences, Sector of Microbiology, Laboratory of Clinical Microbiology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Fernanda Cristina de Albuquerque Maranhão
- Institute of Biological and Health Sciences, Sector of Microbiology, Laboratory of Clinical Microbiology, Federal University of Alagoas, Av. Lourival de Melo Mota, S/N, Tabuleiro do Martins, Maceió, 57072-900, Alagoas, Brazil.
| |
Collapse
|
4
|
Ortiz SC, Hull CM. Biogenesis, germination, and pathogenesis of Cryptococcus spores. Microbiol Mol Biol Rev 2024; 88:e0019623. [PMID: 38440970 PMCID: PMC10966950 DOI: 10.1128/mmbr.00196-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
SUMMARYSpores are primary infectious propagules for the majority of human fungal pathogens; however, relatively little is known about their fundamental biology. One strategy to address this deficiency has been to develop the basidiospores of Cryptococcus into a model for pathogenic spore biology. Here, we provide an update on the state of the field with a comprehensive review of the data generated from the study of Cryptococcus basidiospores from their formation (sporulation) and differentiation (germination) to their roles in pathogenesis. Importantly, we provide support for the presence of basidiospores in nature, define the key characteristics that distinguish basidiospores from yeast cells, and clarify their likely roles as infectious particles. This review is intended to demonstrate the importance of basidiospores in the field of Cryptococcus research and provide a solid foundation from which researchers who wish to study sexual spores in any fungal system can launch their studies.
Collapse
Affiliation(s)
- Sébastien C. Ortiz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christina M. Hull
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Kebabonye K, Jongman M, Loeto D, Moyo S, Choga W, Kasvosve I. Determining Potential Link between Environmental and Clinical Isolates of Cryptococcus neoformans/Cryptococcus gattii Species Complexes Using Phenotypic and Genotypic Characterisation. MYCOBIOLOGY 2023; 51:452-462. [PMID: 38179115 PMCID: PMC10763847 DOI: 10.1080/12298093.2023.2272380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/10/2023] [Indexed: 01/06/2024]
Abstract
Opportunistic infections due to Cryptococcus neoformans and C. gattii species complexes continue to rise unabated among HIV/AIDS patients, despite improved antifungal therapies. Here, we collected a total of 20 environmental and 25 presumptive clinical cryptococcal isolates from cerebrospinal fluid (CSF) samples of 175 patients enrolled in an ongoing clinical trial Ambition 1 Project (Botswana-Harvard Partnership). Identity confirmation of the isolates was done using MALDI-TOF MS and PCR. We describe the diversity of the isolates by PCR fingerprinting and sequencing (Oxford Nanopore Technology) of the intergenic spacer region. Mating types of the isolates were determined by amplification of the MAT locus. We report an unusual prevalence of 42.1% of C. neoformans x C. deneoformans hybrids Serotype AD (n = 16), followed by 39.5% of C. neoformans Serotype A (n = 15), 5.3% of C. deneoformans, Serotype D (n = 2), 7.9% of C. gattii (n = 3), and 5.3% of C. tetragattii (n = 2) in 38 representative isolates that have been characterized. Mating type-specific PCR performed on 38 representative environmental and clinical isolates revealed that 16 (42.1%) were MATa/MATα hybrids, 17 (44.7%) were MATα, and five (13.2%) possessed MATa mating type. We used conventional and NGS platforms to demonstrate a potential link between environmental and clinical isolates and lay a foundation to further describe mating patterns/history in Botswana.
Collapse
Affiliation(s)
- Kenosi Kebabonye
- School of Health Allied Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Mosimanegape Jongman
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone, Botswana
- Research Laboratory, Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Daniel Loeto
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Sikhulile Moyo
- School of Health Allied Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Research Laboratory, Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Medical Virology, Stellenbosch University, Cape Town, South Africa
- School of Health Systems of Public Health, University of Pretoria, Pretoria, South Africa
| | - Wonderful Choga
- Research Laboratory, Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Ishmael Kasvosve
- School of Health Allied Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| |
Collapse
|
6
|
Sephton-Clark P, Temfack E, Tenor JL, Toffaletti DL, Loyse A, Molloy SF, Perfect JR, Bicanic T, Harrison TS, Lortholary O, Kouanfack C, Cuomo CA. Genetic diversity and microevolution in clinical Cryptococcus isolates from Cameroon. Med Mycol 2023; 61:myad116. [PMID: 37952096 PMCID: PMC10709296 DOI: 10.1093/mmy/myad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
Cryptococcal meningitis is the second most common cause of death in people living with HIV/AIDS, yet we have a limited understanding of how cryptococcal isolates change over the course of infection. Cryptococcal infections are environmentally acquired, and the genetic diversity of these infecting isolates can also be geographically linked. Here, we employ whole genome sequences for 372 clinical Cryptococcus isolates from 341 patients with HIV-associated cryptococcal meningitis obtained via a large clinical trial, across both Malawi and Cameroon, to enable population genetic comparisons of isolates between countries. We see that isolates from Cameroon are highly clonal, when compared to those from Malawi, with differential rates of disruptive variants in genes with roles in DNA binding and energy use. For a subset of patients (22) from Cameroon, we leverage longitudinal sampling, with samples taken at days 7 and 14 post-enrollment, to interrogate the genetic changes that arise over the course of infection, and the genetic diversity of isolates within patients. We see disruptive variants arising over the course of infection in several genes, including the phagocytosis-regulating transcription factor GAT204. In addition, in 13% of patients sampled longitudinally, we see evidence for mixed infections. This approach identifies geographically linked genetic variation, signatures of microevolution, and evidence for mixed infections across a clinical cohort of patients affected by cryptococcal meningitis in Central Africa.
Collapse
Affiliation(s)
- Poppy Sephton-Clark
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Elvis Temfack
- Internal Medicine Unit, Douala General Hospital, Douala, Cameroon
- Institut Pasteur, Molecular Mycology Unit, CNRS UMR 2000, Paris, France
| | - Jennifer L Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dena L Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Angela Loyse
- Institute of Infection and Immunity, St George's University of London, London, UK
- Clinical Academic Group in Infection, St George's University Hospital, London, UK
| | - Síle F Molloy
- Institute of Infection and Immunity, St George's University of London, London, UK
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tihana Bicanic
- Institute of Infection and Immunity, St George's University of London, London, UK
- Clinical Academic Group in Infection, St George's University Hospital, London, UK
| | - Thomas S Harrison
- Institute of Infection and Immunity, St George's University of London, London, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Olivier Lortholary
- Department of Infectious Diseases and Tropical Medicine, Paris Cité University, Necker-Enfants Malades Hospital, AP-HP, IHU Imagine, Paris, France
- Mycology Department and National Reference Center for Invasive Mycoses and Antifungals, Institut Pasteur, Paris, France
| | - Charles Kouanfack
- Department of Public Health, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
- Day Hospital, Hospital Central Yaoundé, Yaoundé, Cameroon
- Research Center for Emerging and Re-emerging Diseases, Cameroon Baptist Convention Health Services (CBCHS), Yaoundé, Cameroon
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Agustinho DP, Brown HL, Chen G, Gaylord EA, Geddes-McAlister J, Brent MR, Doering TL. Unbiased discovery of natural sequence variants that influence fungal virulence. Cell Host Microbe 2023; 31:1910-1920.e5. [PMID: 37898126 PMCID: PMC10842055 DOI: 10.1016/j.chom.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/18/2023] [Accepted: 10/02/2023] [Indexed: 10/30/2023]
Abstract
Isolates of Cryptococcus neoformans, a fungal pathogen that kills over 112,000 people each year, differ from a 19-Mb reference genome at a few thousand up to almost a million DNA sequence positions. We used bulked segregant analysis and association analysis, genetic methods that require no prior knowledge of sequence function, to address the key question of which naturally occurring sequence variants influence fungal virulence. We identified a region containing such variants, prioritized them, and engineered strains to test our findings in a mouse model of infection. At one locus, we identified a 4-nt variant in the PDE2 gene that occurs in common laboratory strains and severely truncates the encoded phosphodiesterase. The resulting loss of phosphodiesterase activity significantly impacts virulence. Our studies demonstrate a powerful and unbiased strategy for identifying key genomic regions in the absence of prior information and provide significant sequence and strain resources to the community.
Collapse
Affiliation(s)
- Daniel Paiva Agustinho
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Holly Leanne Brown
- Department of Computer Science & Engineering, Washington University, St. Louis, MO 63130, USA
| | - Guohua Chen
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elizabeth Anne Gaylord
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Michael Richard Brent
- Department of Computer Science & Engineering, Washington University, St. Louis, MO 63130, USA; Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Tamara Lea Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Sauters TJC, Roth C, Murray D, Sun S, Floyd Averette A, Onyishi CU, May RC, Heitman J, Magwene PM. Amoeba predation of Cryptococcus: A quantitative and population genomic evaluation of the accidental pathogen hypothesis. PLoS Pathog 2023; 19:e1011763. [PMID: 37956179 PMCID: PMC10681322 DOI: 10.1371/journal.ppat.1011763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/27/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
The "Amoeboid Predator-Fungal Animal Virulence Hypothesis" posits that interactions with environmental phagocytes shape the evolution of virulence traits in fungal pathogens. In this hypothesis, selection to avoid predation by amoeba inadvertently selects for traits that contribute to fungal escape from phagocytic immune cells. Here, we investigate this hypothesis in the human fungal pathogens Cryptococcus neoformans and Cryptococcus deneoformans. Applying quantitative trait locus (QTL) mapping and comparative genomics, we discovered a cross-species QTL region that is responsible for variation in resistance to amoeba predation. In C. neoformans, this same QTL was found to have pleiotropic effects on melanization, an established virulence factor. Through fine mapping and population genomic comparisons, we identified the gene encoding the transcription factor Bzp4 that underlies this pleiotropic QTL and we show that decreased expression of this gene reduces melanization and increases susceptibility to amoeba predation. Despite the joint effects of BZP4 on amoeba resistance and melanin production, we find no relationship between BZP4 genotype and escape from macrophages or virulence in murine models of disease. Our findings provide new perspectives on how microbial ecology shapes the genetic architecture of fungal virulence, and suggests the need for more nuanced models for the evolution of pathogenesis that account for the complexities of both microbe-microbe and microbe-host interactions.
Collapse
Affiliation(s)
- Thomas J. C. Sauters
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Cullen Roth
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Debra Murray
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Chinaemerem U. Onyishi
- School of Biosciences, College of Life and Environmental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Robin C. May
- School of Biosciences, College of Life and Environmental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Paul M. Magwene
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
9
|
Tshekiso K, Loeto D, Muzila M, Seetswane E, Kenosi K, Jongman M. Prevalence, molecular and phenotypic profiles of arboreal associated Cryptococcus neoformans in Botswana. Fungal Biol 2023; 127:1129-1135. [PMID: 37495303 DOI: 10.1016/j.funbio.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023]
Abstract
Mopane tree (Colophospermum mopane) is one of the main ecological niches of Cryptococcus neoformans, an opportunistic fungal pathogen that causes cryptococcosis primarily on immunocompromised hosts after inhalation of basidiospores from the environment. Hence, we investigated the prevalence, and phenotypically (antifungal resistance and biofilm formation capacity) and genotypically (mating type and genetic structure) characterized C. neoformans isolated from C. mopane, Acacia tortilis, Adansonia digitata and Ziziphus mucronata in Botswana. We report 7.1% and 2.9% prevalence of C. neoformans in C. mopane and other trees, respectively. All tested C. neoformans isolates were determined to be non-WT to fluconazole. Most isolates (65%) of C. neoformans isolates were biofilm producers. Mating type determination revealed a higher proportion of the globally rare MATa allele (53%) and a single MATα/MATa hybrid. The observed genotypeswere VNI (71%), VNB (23%) and VNB/VNB hybrids (6%). Native trees other than C. mopane are alternative ecological niches of antifungal resistant C. neoformans, and this represents a serious public health concern,and this represents a serious public health concern, especially for high-risk populations. Prevalence of C. neoformans on native trees and the observed emergence of hybrids (evidence of sexual recombination) highlight the need for increased surveillance and risk assessment within a One Health paradigm.
Collapse
Affiliation(s)
- Kgomotso Tshekiso
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Daniel Loeto
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Mbaki Muzila
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Eunicah Seetswane
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Kebabonye Kenosi
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Mosimanegape Jongman
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana.
| |
Collapse
|
10
|
Jackson KM, Ding M, Nielsen K. Importance of Clinical Isolates in Cryptococcus neoformans Research. J Fungi (Basel) 2023; 9:364. [PMID: 36983532 PMCID: PMC10056780 DOI: 10.3390/jof9030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
The human pathogenic fungus Cryptococcus neoformans is a global health concern. Previous research in the field has focused on studies using reference strains to identify virulence factors, generate mutant libraries, define genomic structures, and perform functional studies. In this review, we discuss the benefits and drawbacks of using reference strains to study C. neoformans, describe how the study of clinical isolates has expanded our understanding of pathogenesis, and highlight how studies using clinical isolates can further develop our understanding of the host-pathogen interaction during C. neoformans infection.
Collapse
Affiliation(s)
| | | | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Sephton-Clark P, Tenor JL, Toffaletti DL, Meyers N, Giamberardino C, Molloy SF, Palmucci JR, Chan A, Chikaonda T, Heyderman R, Hosseinipour M, Kalata N, Kanyama C, Kukacha C, Lupiya D, Mwandumba HC, Harrison T, Bicanic T, Perfect JR, Cuomo CA. Genomic Variation across a Clinical Cryptococcus Population Linked to Disease Outcome. mBio 2022; 13:e0262622. [PMID: 36354332 PMCID: PMC9765290 DOI: 10.1128/mbio.02626-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/13/2022] [Indexed: 11/12/2022] Open
Abstract
Cryptococcus neoformans is the causative agent of cryptococcosis, a disease with poor patient outcomes that accounts for approximately 180,000 deaths each year. Patient outcomes may be impacted by the underlying genetics of the infecting isolate; however, our current understanding of how genetic diversity contributes to clinical outcomes is limited. Here, we leverage clinical, in vitro growth and genomic data for 284 C. neoformans isolates to identify clinically relevant pathogen variants within a population of clinical isolates from patients with human immunodeficiency virus (HIV)-associated cryptococcosis in Malawi. Through a genome-wide association study (GWAS) approach, we identify variants associated with the fungal burden and the growth rate. We also find both small and large-scale variation, including aneuploidy, associated with alternate growth phenotypes, which may impact the course of infection. Genes impacted by these variants are involved in transcriptional regulation, signal transduction, glycosylation, sugar transport, and glycolysis. We show that growth within the central nervous system (CNS) is reliant upon glycolysis in an animal model and likely impacts patient mortality, as the CNS yeast burden likely modulates patient outcome. Additionally, we find that genes with roles in sugar transport are enriched in regions under selection in specific lineages of this clinical population. Further, we demonstrate that genomic variants in two genes identified by GWAS impact virulence in animal models. Our approach identifies links between the genetic variation in C. neoformans and clinically relevant phenotypes and animal model pathogenesis, thereby shedding light on specific survival mechanisms within the CNS and identifying the pathways involved in yeast persistence. IMPORTANCE Infection outcomes for cryptococcosis, most commonly caused by C. neoformans, are influenced by host immune responses as well as by host and pathogen genetics. Infecting yeast isolates are genetically diverse; however, we lack a deep understanding of how this diversity impacts patient outcomes. To better understand both clinical isolate diversity and how diversity contributes to infection outcomes, we utilize a large collection of clinical C. neoformans samples that were isolated from patients enrolled in a clinical trial across 3 hospitals in Malawi. By combining whole-genome sequence data, clinical data, and in vitro growth data, we utilize genome-wide association approaches to examine the genetic basis of virulence. Genes with significant associations display virulence attributes in both murine and rabbit models, demonstrating that our approach can identify potential links between genetic variants and patho-biologically significant phenotypes.
Collapse
Affiliation(s)
- Poppy Sephton-Clark
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jennifer L. Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dena L. Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nancy Meyers
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Charles Giamberardino
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Síle F. Molloy
- Centre for Global Health, Institute of Infection and Immunity, St George's University of London, London, United Kingdom
- Clinical Academic Group in Infection, St George's University Hospital, London, United Kingdom
| | - Julia R. Palmucci
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Adrienne Chan
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Tarsizio Chikaonda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Robert Heyderman
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mina Hosseinipour
- UNC Project Malawi, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Newton Kalata
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Cecilia Kanyama
- UNC Project Malawi, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Christopher Kukacha
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Duncan Lupiya
- Tisungane Clinic, Zomba Central Hospital, Zomba, Malawi
| | - Henry C. Mwandumba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Thomas Harrison
- Centre for Global Health, Institute of Infection and Immunity, St George's University of London, London, United Kingdom
- Clinical Academic Group in Infection, St George's University Hospital, London, United Kingdom
| | - Tihana Bicanic
- Centre for Global Health, Institute of Infection and Immunity, St George's University of London, London, United Kingdom
- Clinical Academic Group in Infection, St George's University Hospital, London, United Kingdom
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christina A. Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Firacative C, Zuluaga-Puerto N, Guevara J. Cryptococcus neoformans Causing Meningoencephalitis in Adults and a Child from Lima, Peru: Genotypic Diversity and Antifungal Susceptibility. J Fungi (Basel) 2022; 8:jof8121306. [PMID: 36547639 PMCID: PMC9781953 DOI: 10.3390/jof8121306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cryptococcosis, caused predominantly by Cryptococcus neoformans, is a potentially fatal, opportunistic infection that commonly affects the central nervous system of immunocompromised patients. Globally, this mycosis is responsible for almost 20% of AIDS-related deaths, and in countries like Peru, its incidence remains high, mostly due to the annual increase in new cases of HIV infection. This study aimed to establish the genotypic diversity and antifungal susceptibility of C. neoformans isolates causing meningoencephalitis in 25 adults and a 9-year-old girl with HIV and other risk factors from Lima, Peru. To identify the genotype of the isolates, multilocus sequence typing was applied, and to establish the susceptibility of the isolates to six antifungals, a YeastOne® broth microdilution was used. From the isolates, 19 were identified as molecular type VNI, and seven as VNII, grouped in eight and three sequence types, respectively, which shows that the studied population was highly diverse. Most isolates were susceptible to all antifungals tested. However, VNI isolates were less susceptible to fluconazole, itraconazole and voriconazole than VNII isolates (p < 0.05). This study contributes data on the molecular epidemiology and the antifungal susceptibility profile of the most common etiological agent of cryptococcosis, highlighting a pediatric case, something which is rare among cryptococcal infection.
Collapse
Affiliation(s)
- Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad de Rosario, Bogota 111221, Colombia
- Correspondence:
| | | | - José Guevara
- Facultad de Medicina “San Fernando”, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| |
Collapse
|
13
|
Priest SJ, Yadav V, Roth C, Dahlmann TA, Kück U, Magwene PM, Heitman J. Uncontrolled transposition following RNAi loss causes hypermutation and antifungal drug resistance in clinical isolates of Cryptococcus neoformans. Nat Microbiol 2022; 7:1239-1251. [PMID: 35918426 PMCID: PMC10840647 DOI: 10.1038/s41564-022-01183-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/23/2022] [Indexed: 02/07/2023]
Abstract
Cryptococcus neoformans infections cause approximately 15% of AIDS-related deaths owing to a combination of limited antifungal therapies and drug resistance. A collection of clinical and environmental C. neoformans isolates were assayed for increased mutation rates via fluctuation analysis, and we identified two hypermutator C. neoformans clinical isolates with increased mutation rates when exposed to the combination of rapamycin and FK506. Sequencing of drug target genes found that Cnl1 transposon insertions conferred the majority of resistance to rapamycin and FK506 and could also independently cause resistance to 5-fluoroorotic acid and the clinically relevant antifungal 5-flucytosine. Whole-genome sequencing revealed both hypermutator genomes harbour a nonsense mutation in the RNA-interference component ZNF3 and hundreds of Cnl1 elements organized into massive subtelomeric arrays on each of the fourteen chromosomes. Quantitative trait locus mapping in 28 progeny derived from a cross between a hypermutator and wild-type identified a locus associated with hypermutation that included znf3. CRISPR editing of the znf3 nonsense mutation abolished hypermutation and restored small-interfering-RNA production. We conclude that hypermutation and drug resistance in these clinical isolates result from RNA-interference loss and accumulation of Cnl1 elements.
Collapse
Affiliation(s)
- Shelby J Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Cullen Roth
- Department of Biology, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Tim A Dahlmann
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
14
|
Abstract
Cryptococcosis is a disease caused by the pathogenic fungi Cryptococcus neoformans and Cryptococcus gattii, both environmental fungi that cause severe pneumonia and may even lead to cryptococcal meningoencephalitis. Although C. neoformans affects more fragile individuals, such as immunocompromised hosts through opportunistic infections, C. gattii causes a serious indiscriminate primary infection in immunocompetent individuals. Typically seen in tropical and subtropical environments, C. gattii has increased its endemic area over recent years, largely due to climatic factors that favor contagion in warmer climates. It is important to point out that not only C. gattii, but the Cryptococcus species complex produces a polysaccharidic capsule with immunomodulatory properties, enabling the pathogenic species of Cryptococccus to subvert the host immune response during the establishment of cryptococcosis, facilitating its dissemination in the infected organism. C. gattii causes a more severe and difficult-to-treat infection, with few antifungals eliciting an effective response during chronic treatment. Much of the immunopathology of this cryptococcosis is still poorly understood, with most studies focusing on cryptococcosis caused by the species C. neoformans. C. gattii became more important in the epidemiological scenario with the outbreaks in the Pacific Northwest of the United States, which resulted in phylogenetic studies of the virulent variant responsible for the severe infection in the region. Since then, the study of cryptococcosis caused by C. gattii has helped researchers understand the immunopathological aspects of different variants of this pathogen.
Collapse
|
15
|
Cryptococcus spp. and Cryptococcosis: focusing on the infection in Brazil. Braz J Microbiol 2022; 53:1321-1337. [PMID: 35486354 PMCID: PMC9433474 DOI: 10.1007/s42770-022-00744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/25/2022] [Indexed: 11/02/2022] Open
Abstract
Cryptococcosis is a global fungal infection caused by the Cryptococcus neoformans/Cryptococcus gattii yeast complex. This infection is acquired by inhalation of propagules such as basidiospores or dry yeast, initially causing lung infections with the possibility of progressing to the meninges. This infection mainly affects immunocompromised HIV and transplant patients; however, immunocompetent patients can also be affected. This review proposes to evaluate cryptococcosis focusing on studies of this mycosis in Brazilian territory; moreover, recent advances in the understanding of its virulence mechanism, animal models in research are also assessed. For this, literature review as realized in PubMed, Scielo, and Brazilian legislation. In Brazil, cryptococcosis has been identified as one of the most lethal fungal infections among HIV patients and C. neoformans VNI and C. gattii VGII are the most prevalent genotypes. Moreover, different clinical settings published in Brazil were described. As in other countries, cryptococcosis is difficult to treat due to a limited therapeutic arsenal, which is highly toxic and costly. The presence of a polysaccharide capsule, thermo-tolerance, production of melanin, biofilm formation, mechanisms for iron use, and morphological alterations is an important virulence mechanism of these yeasts. The introduction of cryptococcosis as a compulsory notification disease could improve data regarding incidence and help in the management of these infections.
Collapse
|
16
|
A Possible Link between the Environment and Cryptococcus gattii Nasal Colonisation in Koalas ( Phascolarctos cinereus) in the Liverpool Plains, New South Wales. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084603. [PMID: 35457470 PMCID: PMC9028200 DOI: 10.3390/ijerph19084603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 01/25/2023]
Abstract
Cryptococcosis caused by yeasts of the Cryptococcus gattii species complex is an increasingly important mycological disease in humans and other mammals. In Australia, cases of C. gattii-related cryptococcosis are more prevalent in the koala (Phascolarctos cinereus) compared to humans and other animals, likely due to the close association that both C. gattii and koalas have with Eucalyptus species. This provides a cogent opportunity to investigate the epidemiology of spontaneous C. gattii infections in a free-living mammalian host, thereby offering insights into similar infections in humans. This study aimed to establish a link between nasal colonisation by C. gattii in free-ranging koalas and the tree hollows of Eucalyptus species, the key environmental source of the pathogen. We (i) detected and genotyped C. gattii from nine out of 169 free-ranging koalas and representative tree hollows within their home range in the Liverpool Plains, New South Wales, and (ii) examined potential environmental predictors of nasal colonisation in koalas and the presence of C. gattii in tree hollows. Phylogenetic analyses based on multi-locus sequence typing (MLST) revealed that the koalas were most likely colonised by the most abundant C. gattii genotypes found in the Eucalyptus species, or closely related genotypes. Importantly, the likelihood of the presence of C. gattii in tree hollows was correlated with increasing hollow size.
Collapse
|
17
|
Harun A, Kan A, Schwabenbauer K, Gilgado F, Perdomo H, Firacative C, Losert H, Abdullah S, Giraud S, Kaltseis J, Fraser M, Buzina W, Lackner M, Blyth CC, Arthur I, Rainer J, Lira JFC, Artigas JG, Tintelnot K, Slavin MA, Heath CH, Bouchara JP, Chen SCA, Meyer W. Multilocus Sequence Typing Reveals Extensive Genetic Diversity of the Emerging Fungal Pathogen Scedosporium aurantiacum. Front Cell Infect Microbiol 2022; 11:761596. [PMID: 35024355 PMCID: PMC8744116 DOI: 10.3389/fcimb.2021.761596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/26/2021] [Indexed: 01/19/2023] Open
Abstract
Scedosporium spp. are the second most prevalent filamentous fungi after Aspergillus spp. recovered from cystic fibrosis (CF) patients in various regions of the world. Although invasive infection is uncommon prior to lung transplantation, fungal colonization may be a risk factor for invasive disease with attendant high mortality post-transplantation. Abundant in the environment, Scedosporium aurantiacum has emerged as an important fungal pathogen in a range of clinical settings. To investigate the population genetic structure of S. aurantiacum, a MultiLocus Sequence Typing (MLST) scheme was developed, screening 24 genetic loci for polymorphisms on a tester strain set. The six most polymorphic loci were selected to form the S. aurantiacum MLST scheme: actin (ACT), calmodulin (CAL), elongation factor-1α (EF1α), RNA polymerase subunit II (RPB2), manganese superoxide dismutase (SOD2), and β-tubulin (TUB). Among 188 global clinical, veterinary, and environmental strains, 5 to 18 variable sites per locus were revealed, resulting in 8 to 23 alleles per locus. MLST analysis observed a markedly high genetic diversity, reflected by 159 unique sequence types. Network analysis revealed a separation between Australian and non-Australian strains. Phylogenetic analysis showed two major clusters, indicating correlation with geographic origin. Linkage disequilibrium analysis revealed evidence of recombination. There was no clustering according to the source of the strains: clinical, veterinary, or environmental. The high diversity, especially amongst the Australian strains, suggests that S. aurantiacum may have originated within the Australian continent and was subsequently dispersed to other regions, as shown by the close phylogenetic relationships between some of the Australian sequence types and those found in other parts of the world. The MLST data are accessible at http://mlst.mycologylab.org. This is a joined publication of the ISHAM/ECMM working groups on “Scedosporium/Pseudallescheria Infections” and “Fungal Respiratory Infections in Cystic Fibrosis”.
Collapse
Affiliation(s)
- Azian Harun
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Alex Kan
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Katharina Schwabenbauer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Felix Gilgado
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Haybrig Perdomo
- Unitat de Microbiologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Carolina Firacative
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | | | - Sarimah Abdullah
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Sandrine Giraud
- UNIV Angers, Université de Bretagne Occidentale, Centre Hospitalier Universitaire (CHU) d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), EA3142, Structure Fédérative de Recherche "Interactions Cellulaires et Applications Thérapeutiques (SFR ICAT), Angers, France
| | - Josef Kaltseis
- Institute of Hygiene and Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Mark Fraser
- UK National Mycology Reference Laboratory, National Infection Service, Public Health England South-West, Bristol, United Kingdom
| | - Walter Buzina
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University, Graz, Austria
| | - Michaela Lackner
- Institute of Hygiene and Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Christopher C Blyth
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia.,Telethon Kids Institute and Medical School, University of Western Australia, Perth, WA, Australia
| | - Ian Arthur
- Mycology Laboratory, Division of Microbiology and Infectious Diseases, PathWest Laboratory Medicine Western Australia, Perth, WA, Australia
| | - Johannes Rainer
- Institute of Microbiology, Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - José F Cano Lira
- Unitat de Microbiologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Guarro Artigas
- Unitat de Microbiologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | | | - Monica A Slavin
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia
| | - Christopher H Heath
- Department of Microbiology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch; & Infectious Diseases Department, Fiona Stanley Hospital, Murdoch; Department of Microbiology & Infectious Diseases, Royal Perth Hospital, Perth; & the University of Western Australia, Perth, WA, Australia
| | - Jean-Philippe Bouchara
- UNIV Angers, Université de Bretagne Occidentale, Centre Hospitalier Universitaire (CHU) d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), EA3142, Structure Fédérative de Recherche "Interactions Cellulaires et Applications Thérapeutiques (SFR ICAT), Angers, France
| | - Sharon C A Chen
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia.,Center for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, NSW, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Recent Advances in Cryptococcus and Cryptococcosis. Microorganisms 2021; 10:microorganisms10010013. [PMID: 35056462 PMCID: PMC8779235 DOI: 10.3390/microorganisms10010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 01/12/2023] Open
|
19
|
Reis RS, Bonna ICF, Antonio IMDS, Pereira SA, do Nascimento CRS, Ferraris FK, Brito-Santos F, Ferreira Gremião ID, Trilles L. Cryptococcus neoformans VNII as the Main Cause of Cryptococcosis in Domestic Cats from Rio de Janeiro, Brazil. J Fungi (Basel) 2021; 7:jof7110980. [PMID: 34829267 PMCID: PMC8621350 DOI: 10.3390/jof7110980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Cryptococcosis is a systemic fungal disease acquired from contaminated environments with propagules of the basidiomycetous yeasts of the Cryptococcus neoformans and C. gattii species complexes. The C. neoformans species complex classically comprises four major molecular types (VNI, VNII, VNIII, and VNIV), and the C. gattii species complex comprises another four (VGI, VGII, VGIII, and VGIV) and the newly identified molecular type VGV. These major molecular types differ in their epidemiological and ecological features, clinical presentations, and therapeutic outcomes. Generally, the most common isolated types are VNI, VGI, and VGII. The epidemiological profile of cryptococcosis in domestic cats is poorly studied and cats can be the sentinels for human infections. Therefore, the present study aimed to determine the molecular characterization of Cryptococcus spp. isolated from domestic cats and their dwellings in the metropolitan area of Rio de Janeiro, Brazil. A total of 36 Cryptococcus spp. strains, both clinical and environmental, from 19 cats were subtyped using multilocus sequence typing (MLST). The ploidy was identified using flow cytometry and the mating type was determined through amplification with specific pheromone primers. All strains were mating type alpha and 6/36 were diploid (all VNII). Most isolates (63.88%) were identified as VNII, a rare molecular type, leading to the consideration that this genotype is more likely related to skin lesions, since there was a high percentage (68.75%) of cats with skin lesions, which is also considered rare. Further studies regarding the molecular epidemiology of cryptococcosis in felines are still needed to clarify the reason for the large proportion of the rare molecular type VNII causing infections in cats.
Collapse
Affiliation(s)
- Rosani Santos Reis
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (R.S.R.); (I.C.F.B.); (F.B.-S.)
| | - Isabel Cristina Fábregas Bonna
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (R.S.R.); (I.C.F.B.); (F.B.-S.)
| | - Isabela Maria da Silva Antonio
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals (Lapclin-Dermzoo)/INI/Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.M.d.S.A.); (S.A.P.); (I.D.F.G.)
| | - Sandro Antonio Pereira
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals (Lapclin-Dermzoo)/INI/Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.M.d.S.A.); (S.A.P.); (I.D.F.G.)
| | | | - Fausto Klabund Ferraris
- Pharmacology Laboratory/INCQS/Fiocruz. Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil;
| | - Fábio Brito-Santos
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (R.S.R.); (I.C.F.B.); (F.B.-S.)
| | - Isabella Dib Ferreira Gremião
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals (Lapclin-Dermzoo)/INI/Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.M.d.S.A.); (S.A.P.); (I.D.F.G.)
| | - Luciana Trilles
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (R.S.R.); (I.C.F.B.); (F.B.-S.)
- Correspondence:
| |
Collapse
|
20
|
Chidebelu PE, Nweze EI, Meis JF, Cogliati M, Hagen F. Multi-locus sequence typing reveals genotypic similarity in Nigerian Cryptococcus neoformans AFLP1/VNI of environmental and clinical origin. J Med Microbiol 2021; 70. [PMID: 34665109 DOI: 10.1099/jmm.0.001440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IntroductionPigeon droppings are among the major environmental sources of Cryptococcus neoformans AFLP1/VNI, from where the organism infects susceptible humans and animals resulting in cryptococcosis. Until now, C. neoformans AFLP1B/VNII was the only molecular type reported in Nigeria. Effective clinical treatment of this infection has occasionally been stymied by the emergence of antifungal non-susceptible, and resistant strains of C. neoformans AFLP1/VNI.Hypothesis/Gap StatementPigeon droppings harbour C. neoformans and HIV/AIDS patients are among the susceptible population to develop cryptococcal infection. Epidemiological data on cryptococcal prevalence is limited in Nigeria.AimTo investigate the environmental prevalence of C. neoformans in South-eastern Nigeria and compare the isolates with other lineages by using molecular and microbiological tools.MethodologyA total of 500 pigeon droppings and 300 blood samples of HIV/AIDS patients were collected, respectively, from five market squares and three tertiary healthcare centres within the Nsukka area of South-eastern Nigeria. The antifungal susceptibility of the C. neoformans isolates to amphotericin B, fluconazole, 5-fluorocytosine, itraconazole, voriconazole, posaconazole, and isavuconazole was investigated based on the CLSI M27-A3 protocol. Yeasts were identified by MALDI-TOF MS, thereafter Cryptococcus MLST was performed according to the International Society for Human and Animal Mycology (ISHAM) consensus scheme.Results C. neoformans was recovered from 6 (1.2 %) pigeon droppings and 6 (2 %) blood cultures of HIV/AIDS patients. Molecular analyses indicated that all cryptococcal isolates belong to serotype A and the AFLP1/VNI molecular type with sequence type (ST)32. Infection with C. neoformans was independent of sex and age of the patients investigated. All C. neoformans isolates were susceptible to the seven antifungal agents.ConclusionThis is the first report on the prevalence of C. neoformans AFLP1/VNI (ST32) in environmental and clinical samples from Nigeria. The antifungal susceptibility indicates that antifungal resistance by C. neoformans is yet a rare occurrence in Nigeria.
Collapse
Affiliation(s)
- Paul E Chidebelu
- Department of Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Emeka I Nweze
- Department of Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
- Cleveland State University, Cleveland, Ohio, USA
| | - Jacques F Meis
- Department of Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands
- Centre of Expertise in Mycology RadboudUMC/CWZ, Nijmegen, The Netherlands
| | - Massimo Cogliati
- Laboratorio di Micologia Medica, Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
21
|
Moslem M, Fatahinia M, Kiasat N, Mahmoudabadi AZ. Genotypic diversity of Iranian Cryptococcus neoformans using multilocus sequence typing (MLST) and susceptibility to antifungals. Mol Biol Rep 2021; 48:4201-4208. [PMID: 34057687 DOI: 10.1007/s11033-021-06433-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/21/2021] [Indexed: 11/28/2022]
Abstract
Cryptococcus species is an opportunistic yeast pathogen and classified into different molecular types according to typing techniques including multilocus sequence typing (MLST). The study aimed to investigate the genotypes of environmental Cryptococcus isolates using MLST and the relationship between the in vitro antifungal susceptibility and sequence types of isolates. Genotyping Cryptococcus isolates was performed by the MLST method at seven nuclear loci. Antifungal susceptibility was determined by using CLSI broth micro-dilution method for amphotericin B, fluconazole, itraconazole, voriconazole, flucytosine, and luliconazole. Seven sequence types (ST) were detected using MLST analysis, with the most frequent (50%) ST77, followed by ST4 (16.7%) among 30 C. neoformans isolates. All antifungals demonstrated excellent activity against isolates, except for itraconazole and amphotericin B that were non-wild type against 53.3% and 10% of isolates, respectively. Although seven sequence types belonging to C. neoformans isolates were detected, ST77 was the main sequence type in Ahvaz. Also, non-wild type isolates were only found against itraconazole and amphotericin B.
Collapse
Affiliation(s)
- Maryam Moslem
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahnaz Fatahinia
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Kiasat
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Zarei Mahmoudabadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
22
|
Hong N, Chen M, Xu J. Molecular Markers Reveal Epidemiological Patterns and Evolutionary Histories of the Human Pathogenic Cryptococcus. Front Cell Infect Microbiol 2021; 11:683670. [PMID: 34026667 PMCID: PMC8134695 DOI: 10.3389/fcimb.2021.683670] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/22/2021] [Indexed: 01/02/2023] Open
Abstract
The human pathogenic Cryptococcus species are the main agents of fungal meningitis in humans and the causes of other diseases collectively called cryptococcosis. There are at least eight evolutionary divergent lineages among these agents, with different lineages showing different geographic and/or ecological distributions. In this review, we describe the main strain typing methods that have been used to analyze the human pathogenic Cryptococcus and discuss how molecular markers derived from the various strain typing methods have impacted our understanding of not only cryptococcal epidemiology but also its evolutionary histories. These methods include serotyping, multilocus enzyme electrophoresis, electrophoretic karyotyping, random amplified polymorphic DNA, restriction fragment length polymorphism, PCR-fingerprinting, amplified fragment length polymorphism, multilocus microsatellite typing, single locus and multilocus sequence typing, matrix-assisted laser desorption/ionization time of flight mass spectrometry, and whole genome sequencing. The major findings and the advantages and disadvantages of each method are discussed. Together, while controversies remain, these strain typing methods have helped reveal (i) the broad phylogenetic pattern among these agents, (ii) the centers of origins for several lineages and their dispersal patterns, (iii) the distributions of genetic variation among geographic regions and ecological niches, (iv) recent hybridization among several lineages, and (v) specific mutations during infections within individual patients. However, significant challenges remain. Multilocus sequence typing and whole genome sequencing are emerging as the gold standards for continued strain typing and epidemiological investigations of cryptococcosis.
Collapse
Affiliation(s)
- Nan Hong
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China.,Department of Burn and Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
23
|
Fu MS, Liporagi-Lopes LC, Dos Santos SR, Tenor JL, Perfect JR, Cuomo CA, Casadevall A. Amoeba Predation of Cryptococcus neoformans Results in Pleiotropic Changes to Traits Associated with Virulence. mBio 2021; 12:e00567-21. [PMID: 33906924 PMCID: PMC8092252 DOI: 10.1128/mbio.00567-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/30/2021] [Indexed: 11/20/2022] Open
Abstract
Amoeboid predators, such as amoebae, are proposed to select for survival traits in soil microbes such as Cryptococcus neoformans; these traits can also function in animal virulence by defeating phagocytic immune cells, such as macrophages. Consistent with this notion, incubation of various fungal species with amoebae enhanced their virulence, but the mechanisms involved are unknown. In this study, we exposed three strains of C. neoformans (1 clinical and 2 environmental) to predation by Acanthamoeba castellanii for prolonged times and then analyzed surviving colonies phenotypically and genetically. Surviving colonies comprised cells that expressed either pseudohyphal or yeast phenotypes, which demonstrated variable expression of traits associated with virulence, such as capsule size, urease production, and melanization. Phenotypic changes were associated with aneuploidy and DNA sequence mutations in some amoeba-passaged isolates, but not in others. Mutations in the gene encoding the oligopeptide transporter (CNAG_03013; OPT1) were observed among amoeba-passaged isolates from each of the three strains. Isolates derived from environmental strains gained the capacity for enhanced macrophage toxicity after amoeba selection and carried mutations on the CNAG_00570 gene encoding Pkr1 (AMP-dependent protein kinase regulator) but manifested reduced virulence in mice because they elicited more effective fungal-clearing immune responses. Our results indicate that C. neoformans survival under constant amoeba predation involves the generation of strains expressing pleiotropic phenotypic and genetic changes. Given the myriad potential predators in soils, the diversity observed among amoeba-selected strains suggests a bet-hedging strategy whereby variant diversity increases the likelihood that some will survive predation.IMPORTANCECryptococcus neoformans is a ubiquitous environmental fungus that is also a leading cause of fatal fungal infection in humans, especially among immunocompromised patients. A major question in the field is how an environmental yeast such as C. neoformans becomes a human pathogen when it has no need for an animal host in its life cycle. Previous studies showed that C. neoformans increases its pathogenicity after interacting with its environmental predator amoebae. Amoebae, like macrophages, are phagocytic cells that are considered an environmental training ground for pathogens to resist macrophages, but the mechanism by which C. neoformans changes its virulence through interactions with protozoa is unknown. Our study indicates that fungal survival in the face of amoeba predation is associated with the emergence of pleiotropic phenotypic and genomic changes that increase the chance of fungal survival, with this diversity suggesting a bet-hedging strategy to ensure that some forms survive.
Collapse
Affiliation(s)
- Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Livia C Liporagi-Lopes
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samuel R Dos Santos
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jennifer L Tenor
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Firacative C, Meyer W, Castañeda E. Cryptococcus neoformans and Cryptococcus gattii Species Complexes in Latin America: A Map of Molecular Types, Genotypic Diversity, and Antifungal Susceptibility as Reported by the Latin American Cryptococcal Study Group. J Fungi (Basel) 2021; 7:jof7040282. [PMID: 33918572 PMCID: PMC8069395 DOI: 10.3390/jof7040282] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/20/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cryptococcosis, a potentially fatal mycosis, is caused by members of the Cryptococcus neoformans and Cryptococcus gattii species complexes. In Latin America, cryptococcal meningitis is still an important health threat with a significant clinical burden. Analysis of publicly available molecular data from 5686 clinical, environmental, and veterinary cryptococcal isolates from member countries of the Latin American Cryptococcal Study Group showed that, as worldwide, C. neoformans molecular type VNI is the most common cause of cryptococcosis (76.01%) in HIV-infected people, followed by C. gattii molecular type VGII (12.37%), affecting mostly otherwise healthy hosts. These two molecular types also predominate in the environment (68.60% for VNI and 20.70% for VGII). Among the scarce number of veterinary cases, VGII is the predominant molecular type (73.68%). Multilocus sequence typing analysis showed that, in Latin America, the C. neoformans population is less diverse than the C. gattii population (D of 0.7104 vs. 0.9755). Analysis of antifungal susceptibility data showed the presence of non-wild-type VNI, VGI, VGII, and VGIII isolates in the region. Overall, the data presented herein summarize the progress that has been made towards the molecular epidemiology of cryptococcal isolates in Latin America, contributing to the characterization of the genetic diversity and antifungal susceptibility of these globally spreading pathogenic yeasts.
Collapse
Affiliation(s)
- Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota 111221, Colombia
- Correspondence: ; Tel.: +57-1-297-0200 (ext. 3404)
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Research and Education Network Westmead Hospital, Faculty of Medicine and Health, Sydney Medical School-Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, Australia;
| | - Elizabeth Castañeda
- Grupo de Microbiología, Instituto Nacional de Salud, Bogota 111321, Colombia;
| |
Collapse
|
25
|
The interplay of phenotype and genotype in Cryptococcus neoformans disease. Biosci Rep 2021; 40:226594. [PMID: 33021310 PMCID: PMC7569153 DOI: 10.1042/bsr20190337] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes life-threatening meningitis primarily in immunocompromised individuals. In order to survive and proliferate during infection, C. neoformans must adapt to a variety of stresses it encounters within the host. Patient outcome depends on the interaction between the pathogen and the host. Understanding the mechanisms that C. neoformans uses to facilitate adaptation to the host and promote pathogenesis is necessary to better predict disease severity and establish proper treatment. Several virulence phenotypes have been characterized in C. neoformans, but the field still lacks a complete understanding of how genotype and phenotype contribute to clinical outcome. Furthermore, while it is known that C. neoformans genotype impacts patient outcome, the mechanisms remain unknown. This lack of understanding may be due to the genetic heterogeneity of C. neoformans and the extensive phenotypic variation observed between and within isolates during infection. In this review, we summarize the current understanding of how the various genotypes and phenotypes observed in C. neoformans correlate with human disease progression in the context of patient outcome and recurrence. We also postulate the mechanisms underlying the genetic and phenotypic changes that occur in vivo to promote rapid adaptation in the host.
Collapse
|
26
|
Mirpourian SS, Sharifi N, Talazadeh F, Jafari RA, Ghorbanpoor M. Isolation, molecular identification, and phylogenetic evaluation of Cryptococcus neoformans isolated from pigeon lofts, Psittaciformes, and Passeriformes in Ahvaz, Iran. Comp Immunol Microbiol Infect Dis 2021; 76:101618. [PMID: 33642075 DOI: 10.1016/j.cimid.2021.101618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 11/28/2022]
Abstract
Cryptococcus neoformans, the main pathogen in immunocompromised patients, is a ubiquitous free-living fungus that can be isolated from avian excreta, soils, and plant material. This study was carried out to determine the infection rate of pigeon lofts, Passeriformes, and Psittaciformes in Ahvaz, the capital of Khuzestan province in Iran and to determine varieties of Cryptococcus neoformans (C. neoformans). The 80 samples were collected from pigeon lofts. Also, 163 feces of captive birds (Passeriformes and Psittaciformes) which kept in Ahvaz pet shops, and the 70 cloacal swabs of pet birds (Passeriformes and psittaciformes) referring to the department of avian medicine (the faculty of veterinary medicine of Shahid Chamran University of Ahvaz) were analyzed. The samples were directly inoculated on niger seed agar (NSA) and also enriched in brain heart infusion broth and then inoculated on NSA. Dark brown colonies suspected to C. neoformans subcultured on saborouds dextrose agar and pure cultures subjected to molecular (polymerase chain reaction (PCR)) diagnosis. For detection of C. neoformans, primer sets that targeting the CNLAC1 gene were selected and nested PCR was conducted. For identification of C. neoformans varieties, a primer set targeting the STR1 gene was selected. For more accurate confirmation, the purified PCR products of some isolates were also sequenced, and based on the gene sequences, all of the isolates belonged to C. neoformans variety grubii (var. grubii)(serotype A). Totally 16 out of 80 pigeon samples (20%) were contaminated with C. neoformans. The results in pigeons disclosed a 98.64% identity when compared with other strains of C. neoformans (CN1525, T4, and T1) which were previously deposited in GenBank from Italy and Thailand. Also, 21 out of 233 samples from Psittaciformes (9.01%) were contaminated with C. neoformans. The results in Psittaciformes disclosed a 99.7% identity when compared with other strains of C. neoformans (TIMM1313, IFM5882, CN1525, etc.) which were previously deposited in GenBank from Japan and Italy, etc. In the present study, the samples belonging to the passerine order were free of C. neoformans infection. According to the results, C. neoformans is prevalent in pigeon flocks and pet birds including Psittaciformes in the Ahvaz area, and should be considered by pigeon and captive bird breeders, veterinarians, and public health organizations in Ahvaz. The cryptococcus species isolated from captive birds and pigeons could be potential pathogens in humans.
Collapse
Affiliation(s)
- Seyyed Saed Mirpourian
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Neda Sharifi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Forough Talazadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Ramezan Ali Jafari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Masoud Ghorbanpoor
- Department of pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
27
|
Predominance of Cryptococcus neoformans Var. grubii in Ahvaz, Molecular Identification and Evaluation of Virulence Factors. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.112408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Cryptococcus neoformans is an encapsulated yeast pathogen with worldwide distribution, and the highest incidence of cryptococcosis was attributed to C. neoformans (var. grubii. The pathogenicity of Cryptococcus species is associated with several factors, including capsule and melanin production, growth at 37 ºC, and secretion of extracellular enzymes. Objectives: The present study aimed to isolate and identify Cryptococcus species from pigeon guano in Ahvaz, Iran and investigate important virulence factors in the isolates. Methods: Seventy-three isolates of C. neoformans var. grubii were identified based on classical and molecular microbiology methods. Capsule size was measured by the grow yeasts in the presence of 5% CO2. Specific media demonstrated the activity of extracellular enzymes (phospholipase, hemolysin, proteinase, esterase, urease, catalase, and gelatinase). Besides, melanin production was evaluated by the niger seed agar medium. Results: Two hundred and seventeen samples were examined for the presence of Cryptococcus over 165 days in Ahvaz. All tested isolates were contained capsules with variable sizes under 5% CO2 concentration. Moreover, 100% of isolates were produced extracellular enzymes (urease, hemolysin, and catalase), whereas no proteinase and gelatinase activities were observed among isolates. Furthermore, most isolates had phospholipase (93.1%) and esterase activities (86.3%). Also, melanin was produced by all of the isolates. Conclusions: Although two methods were used for recovery of Cryptococcus, only Cryptococcus was isolated from pigeon guano, and swabs from the cage walls were negative. Cryptococcus neoformans var. grubii was the only species from pigeon droppings from Ahvaz with more pathogenic factors. Owing to the high pathogenicity of the isolates, the frequency of the disease is expected to be higher.
Collapse
|
28
|
Multilocus Sequence Typing of Clinical Isolates of Cryptococcus from India. Mycopathologia 2021; 186:199-211. [PMID: 33469844 DOI: 10.1007/s11046-020-00500-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022]
Abstract
Cryptococcosis is a life-threatening infection caused by Cryptococcus neoformans and C. gattii species complex. In the present study, to understand the molecular epidemiology of 208 clinical isolates of Cryptococcus from different parts of India, multilocus sequence typing (MLST) using ISHAM MLST consensus scheme for C. neoformans/C. gattii species complex was used. MLST analysis yielded a total of 10 Sequence Types (STs)-7 STs for C. neoformans and 3 for C. gattii species complex. The majority of isolates identified as C. neoformans belonged to molecular type VNI with predominant STs 31 and 93. Only 3 isolates of C. gattii species complex were obtained, belonging to ST58 and ST215 of VGI and ST69 of VGIV. Phylogenetic analysis revealed less diversity among the clinical Indian isolates compared to the global MLST database. No association between prevalent STs and HIV status, geographical origin or minimum inhibitory concentration (MIC) could be established.
Collapse
|
29
|
Yu CH, Chen Y, Desjardins CA, Tenor JL, Toffaletti DL, Giamberardino C, Litvintseva A, Perfect JR, Cuomo CA. Landscape of gene expression variation of natural isolates of Cryptococcus neoformans in response to biologically relevant stresses. Microb Genom 2020; 6. [PMID: 31860441 PMCID: PMC7067042 DOI: 10.1099/mgen.0.000319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that at its peak epidemic levels caused an estimated million cases of cryptococcal meningitis per year worldwide. This species can grow in diverse environmental (trees, soil and bird excreta) and host niches (intracellular microenvironments of phagocytes and free-living in host tissues). The genetic basic for adaptation to these different conditions is not well characterized, as most experimental work has relied on a single reference strain of C. neoformans. To identify genes important for yeast infection and disease progression, we profiled the gene expression of seven C. neoformans isolates grown in five representative in vitro environmental and in vivo conditions. We characterized gene expression differences using RNA-Seq (RNA sequencing), comparing clinical and environmental isolates from two of the major lineages of this species, VNI and VNBI. These comparisons highlighted genes showing lineage-specific expression that are enriched in subtelomeric regions and in lineage-specific gene clusters. By contrast, we find few expression differences between clinical and environmental isolates from the same lineage. Gene expression specific to in vivo stages reflects available nutrients and stresses, with an increase in fungal metabolism within macrophages, and an induction of ribosomal and heat-shock gene expression within the subarachnoid space. This study provides the widest view to date of the transcriptome variation of C. neoformans across natural isolates, and provides insights into genes important for in vitro and in vivo growth stages.
Collapse
Affiliation(s)
- Chen-Hsin Yu
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yuan Chen
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Jennifer L Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dena L Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Charles Giamberardino
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anastasia Litvintseva
- Mycotic Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
30
|
Population diversity and virulence characteristics of Cryptococcus neoformans/C. gattii species complexes isolated during the pre-HIV-pandemic era. PLoS Negl Trop Dis 2020; 14:e0008651. [PMID: 33017391 PMCID: PMC7535028 DOI: 10.1371/journal.pntd.0008651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/27/2020] [Indexed: 11/19/2022] Open
Abstract
Cryptococcosis has become a major global health problem since the advent of the HIV pandemic in 1980s. Although its molecular epidemiology is well-defined, using isolates recovered since then, no pre-HIV-pandemic era epidemiological data exist. We conducted a molecular epidemiological study using 228 isolates of the C. neoformans/C. gattii species complexes isolated before 1975. Genotypes were determined by URA5 restriction fragment length polymorphism analysis and multi-locus sequence typing. Population genetics were defined by nucleotide diversity measurements, neutrality tests, and recombination analysis. Growth at 37°C, melanin synthesis, capsule production, and urease activity as virulence factors were quantified. The pre-HIV-pandemic isolates consisted of 186 (81.5%) clinical, 35 (15.4%) environmental, and 7 (3.1%) veterinary isolates. Of those, 204 (89.5%) belonged to C. neoformans VNI (64.0%), VNII (14.9%) and VNIV (10.5%) while 24 (10.5%) belonged to C. gattii VGIII (7.5%), VGI (2.6%) and VGII (0.5%). Among the 47 sequence types (STs) identified, one of VNII and 8 of VNIV were novel. ST5/VNI (23.0%) in C. neoformans and ST75/VGIII (25.0%) in C. gattii were the most common STs in both species complexes. Among C. neoformans, VNIV had the highest genetic diversity (Hd = 0.926) and the minimum recombination events (Rm = 10), and clinical isolates had less genetic diversity (Hd = 0.866) than environmental (Hd = 0.889) and veterinary isolates (Hd = 0.900). Among C. gattii, VGI had a higher nucleotide diversity (π = 0.01436) than in VGIII (π = 0.00328). The high-virulence genotypes (ST5/VNI and VGIIIa/serotype B) did not produce higher virulence factors levels than other genotypes. Overall, high genetic variability and recombination rates were found for the pre-HIV-pandemic era among strains of the C. neoformans/C. gattii species complexes. Whole genome analysis and in vivo virulence studies would clarify the evolution of the genetic diversity and/or virulence of isolates of the C. neoformans/C. gattii species complexes during the pre- and post-HIV-pandemic eras. Since the beginning of the HIV pandemic in 1980, infections due to isolates of the Cryptococcus neoformans/C. gattii species complexes have caused many deaths worldwide, especially in the HIV-infected population. Annually, approximately one-third, of all AIDS-related deaths,—representing more than 1,000,000 cases,—are caused by cryptococcosis. Since 1980, extensive molecular epidemiological surveys have been conducted, and the VNI molecular type has been found to be responsible for more than 90% of cryptococcosis in HIV patients. Whether the high VNI prevalence is associated with the HIV pandemic remains controversial as information on the isolates of the pre-HIV pandemic era is lacking. Therefore, this study of the molecular epidemiology and in vitro characteristics of the strains from the pre-HIV-pandemic era was undertaken. We found that only 64% of cryptococcosis was caused by VNI, and 9 sequence types existed only in the pre-HIV pandemic era. Unlike what was already known about the strains collected during the HIV pandemic era, ST5 and VGIIIa,—supposedly high virulence genotypes,—did not express higher virulence factors than other genotypes. These results implied that the HIV pandemic altered both the molecular epidemiology and virulence of Cryptococcus neoformans/C. gattii species complexes have been altered during HIV pandemic. However, detailed mechanism of these alteration remains to be deciphered further.
Collapse
|
31
|
Molecular Epidemiology Reveals Low Genetic Diversity among Cryptococcus neoformans Isolates from People Living with HIV in Lima, Peru, during the Pre-HAART Era. Pathogens 2020; 9:pathogens9080665. [PMID: 32824653 PMCID: PMC7459599 DOI: 10.3390/pathogens9080665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cryptococcosis, a mycosis presenting mostly as meningoencephalitis, affecting predominantly human immunodeficiency virus (HIV)-infected people, is mainly caused by Cryptococcus neoformans. The genetic variation of 48 C. neoformans isolates, recovered from 20 HIV-positive people in Lima, Peru, during the pre-highly active antiretroviral therapy (HAART) era, was studied retrospectively. The mating type of the isolates was determined by PCR, and the serotype by agglutination and CAP59-restriction fragment length polymorphism (RFLP). Genetic diversity was assessed by URA5-RFLP, PCR-fingerprinting, amplified fragment length polymorphism (AFLP), and multilocus sequence typing (MLST). All isolates were mating type alpha, with 39 molecular type VNI, seven VNII, corresponding to C. neoformans var. grubii serotype A, and two VNIII AD hybrids. Overall, the cryptococcal population from HIV-positive people in Lima shows a low degree of genetic diversity. In most patients with persistent cryptococcal infection, the same genotype was recovered during the follow-up. In four patients with relapse and one with therapy failure, different genotypes were found in isolates from the re-infection and from the isolate recovered at the end of the treatment. In one patient, two genotypes were found in the first cryptococcosis episode. This study contributes data from Peru to the ongoing worldwide population genetic analysis of Cryptococcus.
Collapse
|
32
|
Okurut S, Boulware DR, Olobo J, Meya DB. Landmark clinical observations and immunopathogenesis pathways linked to HIV and Cryptococcus fatal central nervous system co-infection. Mycoses 2020; 63:840-853. [PMID: 32472727 PMCID: PMC7416908 DOI: 10.1111/myc.13122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
Cryptococcal meningitis remains one of the leading causes of death among HIV-infected adults in the fourth decade of HIV era in sub-Saharan Africa, contributing to 10%-20% of global HIV-related deaths. Despite widespread use and early induction of ART among HIV-infected adults, incidence of cryptococcosis remains significant in those with advanced HIV disease. Cryptococcus species that causes fatal infection follows systemic spread from initial environmental acquired infection in lungs to antigenaemia and fungaemia in circulation prior to establishment of often fatal disease, cryptococcal meningitis in the CNS. Cryptococcus person-to-person transmission is uncommon, and deaths related to blood infection without CNS involvement are rare. Keen to the persistent high mortality associated with HIV-cryptococcal meningitis, seizures are common among a third of the patients, altered mental status is frequent, anaemia is prevalent with ensuing brain hypoxia and at autopsy, brain fibrosis and infarction are evident. In addition, fungal burden is 3-to-4-fold higher in those with seizures. And high immune activation together with exacerbated inflammation and elevated PD-1/PD-L immune checkpoint expression is immunomodulated phenotypes elevated in CSF relative to blood. Lastly, though multiple Cryptococcus species cause disease in this setting, observations are mostly generalised to cryptococcal infection/meningitis or regional dominant species (C neoformans or gattii complex) that may limit our understanding of interspecies differences in infection, progression, treatment or recovery outcome. Together, these factors and underlying mechanisms are hypotheses generating for research to find targets to prevent infection or adequate therapy to prevent persistent high mortality with current optimal therapy.
Collapse
Affiliation(s)
- Samuel Okurut
- Research DepartmentInfectious Diseases InstituteMakerere UniversityKampalaUganda
- Department of MicrobiologySchool of Biomedical SciencesCollege of Health SciencesMakerere UniversityKampalaUganda
| | - David R. Boulware
- Division of Infectious Diseases and International MedicineDepartment of MedicineUniversity of MinnesotaMinneapolisMinnesota
| | - Joseph Olobo
- Department of Immunology and Molecular BiologySchool of Biomedical SciencesCollege of Health SciencesMakerere UniversityKampalaUganda
| | - David B. Meya
- Research DepartmentInfectious Diseases InstituteMakerere UniversityKampalaUganda
- Division of Infectious Diseases and International MedicineDepartment of MedicineUniversity of MinnesotaMinneapolisMinnesota
- Department of MedicineSchool of MedicineCollege of Health SciencesMakerere UniversityKampalaUganda
| |
Collapse
|
33
|
Coelho C, Farrer RA. Pathogen and host genetics underpinning cryptococcal disease. ADVANCES IN GENETICS 2020; 105:1-66. [PMID: 32560785 DOI: 10.1016/bs.adgen.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptococcosis is a severe fungal disease causing 220,000 cases of cryptococcal meningitis yearly. The etiological agents of cryptococcosis are taxonomically grouped into at least two species complexes belonging to the genus Cryptococcus. All of these yeasts are environmentally ubiquitous fungi (often found in soil, leaves and decaying wood, tree hollows, and associated with bird feces especially pigeon guano). Infection in a range of animals including humans begins following inhalation of spores or aerosolized yeasts. Recent advances provide fundamental insights into the factors from both the pathogen and its hosts which influence pathogenesis and disease. The complex interactions leading to disease in mammalian hosts have also updated from the availability of better genomic tools and datasets. In this review, we discuss recent genetic research on Cryptococcus, covering the epidemiology, ecology, and evolution of Cryptococcus pathogenic species. We also discuss the insights into the host immune response obtained from the latest genetic modified host models as well as insights from monogenic disorders in humans. Finally we highlight outstanding questions that can be answered in the near future using bioinformatics and genomic tools.
Collapse
Affiliation(s)
- Carolina Coelho
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Rhys A Farrer
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
34
|
Nishikawa MM, Almeida-Paes R, Brito-Santos F, Nascimento CR, Fialho MM, Trilles L, Morales BP, da Silva SA, Santos W, Santos LO, Fortes ST, Cardarelli-Leite P, Lázera MDS. Comparative antifungal susceptibility analyses of Cryptococcus neoformans VNI and Cryptococcus gattii VGII from the Brazilian Amazon Region by the Etest, Vitek 2, and the Clinical and Laboratory Standards Institute broth microdilution methods. Med Mycol 2020; 57:864-873. [PMID: 30657975 DOI: 10.1093/mmy/myy150] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/09/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
Early diagnosis, efficient clinical support, and proper antifungal therapy are essential to reduce death and sequels caused by cryptococcosis. The emergence of resistance to the antifungal drugs commonly used for cryptococcosis treatment is an important issue of concern. Thus, the in vitro antifungal susceptibility of clinical strains from northern Brazil, including C. neoformans VNI (n = 62) and C. gattii VGII (n = 37), to amphotericin B (AMB), 5-flucytosine, fluconazole, voriconazole, and itraconazole was evaluated using the Etest and Vitek 2 systems and the standardized broth microdilution (CLSI-BMD) methodology. According to the CLSI-BMD, the most active in vitro azole was voriconazole (C. neoformans VNI modal MIC of 0.06 μg/ml and C. gattii VGII modal MIC of 0.25 μg/ml), and fluconazole was the least active (modal MIC of 4 μg/ml for both fungi). Modal MICs for amphotericin B were 1 μg/ml for both fungi. In general, good essential agreement (EA) values were observed between the methods. However, AMB presented the lowest EA between CLSI-BMD and Etest for C. neoformans VNI and C. gattii VGII (1.6% and 2.56%, respectively, P < .05 for both). Considering the proposed Cryptococcus spp. epidemiological cutoff values, more than 97% of the studied isolates were categorized as wild-type for the azoles. However, the high frequency of C. neoformans VNI isolates in the population described here that displayed non-wild-type susceptibility to AMB is noteworthy. Epidemiological surveillance of the antifungal resistance of cryptococcal strains is relevant due to the potential burden and the high lethality of cryptococcal meningitis in the Amazon region.
Collapse
Affiliation(s)
| | - Rodrigo Almeida-Paes
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, INI/Fiocruz, Rio de Janeiro, RJ
| | - Fabio Brito-Santos
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, INI/Fiocruz, Rio de Janeiro, RJ
| | | | - Miguel Madi Fialho
- Fungal Section, National Institute of Quality Control in Health, INCQS/Fiocruz, Rio de Janeiro, RJ
| | - Luciana Trilles
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, INI/Fiocruz, Rio de Janeiro, RJ
| | | | - Sérgio Alves da Silva
- Quality Management board, National Institute for Quality Control in Health, INCQS/ Fiocruz, Rio de Janeiro, RJ
| | - Wallace Santos
- Department of Pharmacy, Federal University of Pará, Belém, PA
| | | | | | - Paola Cardarelli-Leite
- Molecular Biology Section, National Institute for Quality Control in Health, INCQS/ Fiocruz, Rio de Janeiro, RJ
| | - Márcia Dos Santos Lázera
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, INI/Fiocruz, Rio de Janeiro, RJ
| |
Collapse
|
35
|
Prakash A, Sundar G, Sharma B, Hagen F, Meis JF, Chowdhary A. Genotypic diversity in clinical and environmental isolates of Cryptococcus neoformans from India using multilocus microsatellite and multilocus sequence typing. Mycoses 2020; 63:284-293. [PMID: 31820495 DOI: 10.1111/myc.13041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cryptococcus neoformans is the leading cause of cryptococcal meningitis in HIV/AIDS patients. As infections in humans are predominantly caused by the inhalation of basidiospores from environmental sources, therefore, analysing the population structure of both clinical and environmental populations of C neoformans can increase our understanding of the molecular epidemiology of cryptococcosis. OBJECTIVE To investigate the genotypic diversity and antifungal susceptibility profile of a large collection of C neoformans isolates (n = 523) from clinical and environmental sources in India between 2001 and 2014. MATERIALS AND METHODS Cryptococcus neoformans isolates were genotyped by AFLP, microsatellite typing (MLMT) and MLST. In vitro antifungal susceptibility for standard antifungals was undertaken using CLSI M27-A3. RESULTS All isolates were C neoformans, AFLP1/VNI and exhibited mating-type MATα. MLMT revealed that the majority of isolates belonged to microsatellite cluster (MC) MC3 (49%), followed by MC1 (35%), and the remaining isolates fell in 11 other MC types. Interestingly, two-thirds of clinical isolates were genotype MC3 and only 17% of them were MC1, whereas majority of environmental strains were MC1 (54%) followed by MC3 (16%). Overall, MLST assigned 5 sequence types (STs) among all isolates and ST93 was the most common (n = 76.7%), which was equally distributed in both HIV-positive and HIV-negative patients. Geometric mean MICs revealed that isolates in MC1 were significantly less (P < .05) susceptible to amphotericin B, 5-flucytosine, itraconazole, posaconazole and isavuconazole than isolates in MC3. CONCLUSIONS The study shows a good correlation between MLMT and MLST genotyping methods. Further, environmental isolates were genetically more diverse than clinical isolates.
Collapse
Affiliation(s)
- Anupam Prakash
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Gandhi Sundar
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Brijesh Sharma
- Department of Medicine, PGIMER & Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China
| | - Jacques F Meis
- Center of Expertise in Mycology, Radboud University Medical Centre/Canisius Wilhelmina Hospital and Excellence Center for Medical Mycology of the European Confederation of Medical Mycology (ECMM), Nijmegen, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
36
|
Abstract
We discovered a new lineage of the globally important fungal pathogen Cryptococcus gattii on the basis of analysis of six isolates collected from three locations spanning the Central Miombo Woodlands of Zambia, Africa. All isolates were from environments (middens and tree holes) that are associated with a small mammal, the African hyrax. Phylogenetic and population genetic analyses confirmed that these isolates form a distinct, deeply divergent lineage, which we name VGV. VGV comprises two subclades (A and B) that are capable of causing mild lung infection with negligible neurotropism in mice. Comparing the VGV genome to previously identified lineages of C. gattii revealed a unique suite of genes together with gene loss and inversion events. However, standard URA5 restriction fragment length polymorphism (RFLP) analysis could not distinguish between VGV and VGIV isolates. We therefore developed a new URA5 RFLP method that can reliably identify the newly described lineage. Our work highlights how sampling understudied ecological regions alongside genomic and functional characterization can broaden our understanding of the evolution and ecology of major global pathogens.IMPORTANCE Cryptococcus gattii is an environmental pathogen that causes severe systemic infection in immunocompetent individuals more often than in immunocompromised humans. Over the past 2 decades, researchers have shown that C. gattii falls within four genetically distinct major lineages. By combining field work from an understudied ecological region (the Central Miombo Woodlands of Zambia, Africa), genome sequencing and assemblies, phylogenetic and population genetic analyses, and phenotypic characterization (morphology, histopathological, drug-sensitivity, survival experiments), we discovered a hitherto unknown lineage, which we name VGV (variety gattii five). The discovery of a new lineage from an understudied ecological region has far-reaching implications for the study and understanding of fungal pathogens and diseases they cause.
Collapse
|
37
|
Kassi FK, Drakulovski P, Bellet V, Roger F, Chabrol A, Krasteva D, Doumbia A, Landman R, Kakou A, Reynes J, Delaporte E, Menan HEI, Bertout S. Cryptococcus genetic diversity and mixed infections in Ivorian HIV patients: A follow up study. PLoS Negl Trop Dis 2019; 13:e0007812. [PMID: 31738768 PMCID: PMC6886875 DOI: 10.1371/journal.pntd.0007812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 12/02/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023] Open
Abstract
Genetic diversity analyses were performed by sero-genotyping and multi-locus sequence typing on 252 cryptococcal isolates from 13 HIV-positive Ivorian patients followed-up for cryptococcal meningitis. Antifungal susceptibility analyses were performed according to the CLSI M27A3 method. The majority (67.8%) of the isolates belonged to the Cryptococcus neoformans (serotype A) species complex, with 93% being VNI and 7% being VNII. Cryptococcus deuterogattii VGII (serotype B) represented 16.7% of the strains, while C. neoformans/C. deneoformans VNIII (serotype AD) hybrids accounted for 15.1% of the strains. One strain (0.4%) was not identifiable. Nine different sequence types (STs 5, 6, 23, 40, 93, 207, 311, and a new ST; 555) were identified in the C. neoformans population, while the C. deuterogattii population comprised the single ST 173. The distribution of the strains showed that, while the majority of patients (9/13) harboured a single sequence type, 4 patients showed mixed infections. These patients experienced up to 4 shifts in strain content either at the species and/or ST level during their follow-up. This evolution of diversity over time led to the co-existence of up to 3 different Cryptococcus species and 4 different ST within the same individual during the course of infection. Susceptibility testing showed that all strains were susceptible to amphotericin B while 3.6% of them had a none-wild type phenotype to 5-flucytosine. Concerning fluconazole, 2.9% of C.neoformans serotype A strains and 2.4% of C. deuterogattii had also respectively a none-wild type phenotype to this molecule. All C. neoformans x C. deneoformans serotype AD hybrids had however a wild type phenotype to fluconazole. The present study showed that mixed infections exist and could be of particular importance for care outcomes. Indeed, (i) the different Cryptococcus species are known to exhibit different virulence and different susceptibility patterns to antifungal drugs and (ii) the strains genetic diversity within the samples may influence the susceptibility to antifungal treatment.
Collapse
Affiliation(s)
- Fulgence Kondo Kassi
- Université Félix Houphouet-Boigny, Unité des Sciences Pharmaceutiques et Biologiques, Abidjan, Côte d’Ivoire
| | - Pascal Drakulovski
- Laboratoire de Parasitologie et Mycologie Médicale, IRD UMI 233, INSERM U1175, Université de Montpellier, Unité TransVIHMI, Montpellier, France
| | - Virginie Bellet
- Laboratoire de Parasitologie et Mycologie Médicale, IRD UMI 233, INSERM U1175, Université de Montpellier, Unité TransVIHMI, Montpellier, France
| | - Frédéric Roger
- Laboratoire de Parasitologie et Mycologie Médicale, IRD UMI 233, INSERM U1175, Université de Montpellier, Unité TransVIHMI, Montpellier, France
| | - Amélie Chabrol
- Service de Maladies Infectieuses et Tropicales, CH Sud Francilien, Corbeil, France
| | - Donika Krasteva
- Laboratoire de Parasitologie et Mycologie Médicale, IRD UMI 233, INSERM U1175, Université de Montpellier, Unité TransVIHMI, Montpellier, France
| | - Adama Doumbia
- Université Félix Houphouet-Boigny, Unité des Sciences Pharmaceutiques et Biologiques, Abidjan, Côte d’Ivoire
| | - Roland Landman
- Institut de Médecine et Epidémiologie Appliquée (IMEA), Fondation Léon M’Ba, Paris, France
| | - Aka Kakou
- Service des Maladies Infectieuses et Tropicales, CHU Treichville, Abidjan, Côte d’Ivoire
| | - Jacques Reynes
- CHU Gui de Chauliac, Service des Maladies Infectieuses et Tropicales, IRD UMI 233, INSERM U1175, Université de Montpellier, Unité TransVIHMI, Montpellier, France
| | - Eric Delaporte
- TransVIHMI/INSERM1175, Institut de Recherche pour le Développement (IRD) and University of Montpellier, Montpellier, France
| | - Hervé Eby Ignace Menan
- Diagnostic and Research Center on AIDS and Other Infectious Diseases (CeDReS), Abidjan, Côte d'Ivoire
| | - Sébastien Bertout
- Laboratoire de Parasitologie et Mycologie Médicale, IRD UMI 233, INSERM U1175, Université de Montpellier, Unité TransVIHMI, Montpellier, France
| |
Collapse
|
38
|
Setianingrum F, Rautemaa-Richardson R, Denning DW. Pulmonary cryptococcosis: A review of pathobiology and clinical aspects. Med Mycol 2019; 57:133-150. [PMID: 30329097 DOI: 10.1093/mmy/myy086] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
Pulmonary cryptococcosis is an important opportunistic invasive mycosis in immunocompromised patients, but it is also increasingly seen in immunocompetent patients. The main human pathogens are Cryptococcus neoformans and C. gattii, which have a worldwide distribution. In contrast to cryptococcal meningitis, pulmonary cryptococcosis is still underdiagnosed because of limitations in diagnostic tools. It can mimic lung cancer, pulmonary tuberculosis, bacterial pneumonia, and other pulmonary mycoses both clinically and radiologically. Pulmonary nodules are the most common radiological feature, but these are not specific to pulmonary cryptococcosis. The sensitivity of culture of respiratory samples for Cryptococcus is poor and a positive result may also reflect colonisation. Cryptococcal antigen (CrAg) with lateral flow device is a fast and sensitive test and widely used on serum and cerebrospinal fluid, but sera from patients with pulmonary cryptococcosis are rarely positive in the absence of disseminated disease. Detection of CrAg from respiratory specimens might assist the diagnosis of pulmonary cryptococcosis but there are very few data. Molecular detection techniques such as multiplex reverse transcription polymerase chain reaction (RT-PCR) could also provide better sensitivity but these still require validation for respiratory specimens. The first line of treatment for pulmonary cryptococcosis is fluconazole, or amphotericin B and flucytosine for those with central nervous system involvement. Pulmonary cryptococcosis worsens the prognosis of cryptococcal meningitis. In this review, we summarize the biological aspects of Cryptococcus and provide an update on the diagnosis and management of pulmonary cryptococcosis.
Collapse
Affiliation(s)
- Findra Setianingrum
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Parasitology Department, Universitas Indonesia, Jakarta, Indonesia
| | - Riina Rautemaa-Richardson
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Mycology Reference Centre Manchester, ECMM Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Department of Infectious Diseases, Wythenshawe Hospital Manchester University NHS Foundation Trust, Manchester, UK
| | - David W Denning
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Department of Infectious Diseases, Wythenshawe Hospital Manchester University NHS Foundation Trust, Manchester, UK
- National Aspergillosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
39
|
Ponzio V, Chen Y, Rodrigues AM, Tenor JL, Toffaletti DL, Medina-Pestana JO, Colombo AL, Perfect JR. Genotypic diversity and clinical outcome of cryptococcosis in renal transplant recipients in Brazil. Emerg Microbes Infect 2019; 8:119-129. [PMID: 30866766 PMCID: PMC6455115 DOI: 10.1080/22221751.2018.1562849] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genotypic diversity and fluconazole susceptibility of 82 Cryptococcus neoformans and Cryptococcus gattii isolates from 60 renal transplant recipients in Brazil were characterized. Clinical characteristics of the patients and prognostic factors were analysed. Seventy-two (87.8%) isolates were C. neoformans and 10 (12.2%) were C. gattii. VNI was the most common molecular type (40 cases; 66.7%), followed by VNII (9 cases; 15%), VGII (6 cases; 10%), VNB (4 cases; 6.7%) and VNI/II (1 case; 1.7%). The isolates showed a high genetic diversity in the haplotype network and six new sequence types were described, most of them for VNB. There was a bias towards skin involvement in the non-VNI population (P = .012). VGII isolates exhibited higher fluconazole minimum inhibitory concentrations compared to C. neoformans isolates (P = 0.008). The 30-day mortality rate was 38.3%, and it was significantly associated with fungemia and absence of headache. Patients infected with VGII had a high mortality rate at 90 days (66.7%). A variety of molecular types produce disease in renal transplant recipients in Brazil and highlighted by VGII and VNB. We report the clinical appearance and impact of the molecular type, fluconazole susceptibility of the isolates, and clinical characteristics on patient outcome in this population.
Collapse
Affiliation(s)
- Vinicius Ponzio
- a Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina , Universidade Federal de São Paulo (UNIFESP) , São Paulo , Brazil
| | - Yuan Chen
- b Division of Infectious Disease, Department of Medicine , Duke University School of Medicine , Durham , NC , USA
| | - Anderson Messias Rodrigues
- c Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology and Parasitology , Universidade Federal de São Paulo (UNIFESP) , São Paulo , Brazil
| | - Jennifer L Tenor
- b Division of Infectious Disease, Department of Medicine , Duke University School of Medicine , Durham , NC , USA
| | - Dena L Toffaletti
- b Division of Infectious Disease, Department of Medicine , Duke University School of Medicine , Durham , NC , USA
| | - José Osmar Medina-Pestana
- d Hospital do Rim Oswaldo Ramos Foundation, Discipline of Nephrology , Universidade Federal de São Paulo (UNIFESP) , São Paulo , Brazil
| | - Arnaldo Lopes Colombo
- a Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina , Universidade Federal de São Paulo (UNIFESP) , São Paulo , Brazil
| | - John R Perfect
- b Division of Infectious Disease, Department of Medicine , Duke University School of Medicine , Durham , NC , USA
| |
Collapse
|
40
|
Walsh NM, Botts MR, McDermott AJ, Ortiz SC, Wüthrich M, Klein B, Hull CM. Infectious particle identity determines dissemination and disease outcome for the inhaled human fungal pathogen Cryptococcus. PLoS Pathog 2019; 15:e1007777. [PMID: 31247052 PMCID: PMC6597114 DOI: 10.1371/journal.ppat.1007777] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/22/2019] [Indexed: 01/01/2023] Open
Abstract
The majority of invasive human fungal pathogens gain access to their human hosts via the inhalation of spores from the environment into the lung, but relatively little is known about this infectious process. Among human fungal pathogens the most frequent cause of inhaled fatal fungal disease is Cryptococcus, which can disseminate from the lungs to other tissues, including the brain, where it causes meningoencephalitis. To determine the mechanisms by which distinct infectious particles of Cryptococcus cause disseminated disease, we evaluated two developmental cell types (spores and yeast) in mouse models of infection. We discovered that while both yeast and spores from several strains cause fatal disease, there was a consistently higher fungal burden in the brains of spore-infected mice. To determine the basis for this difference, we compared the pathogenesis of avirulent yeast strains with their spore progeny derived from sexual crosses. Strikingly, we discovered that spores produced by avirulent yeast caused uniformly fatal disease in the murine inhalation model of infection. We determined that this difference in outcome is associated with the preferential dissemination of spores to the lymph system. Specifically, mice infected with spores harbored Cryptococcus in their lung draining lymph nodes as early as one day after infection, whereas mice infected with yeast did not. Furthermore, phagocyte depletion experiments revealed this dissemination to the lymph nodes to be dependent on CD11c+ phagocytes, indicating a critical role for host immune cells in preferential spore trafficking. Taken together, these data support a model in which spores capitalize on phagocytosis by immune cells to escape the lung and gain access to other tissues, such as the central nervous system, to cause fatal disease. These previously unrealized insights into early interactions between pathogenic fungal spores and lung phagocytes provide new opportunities for understanding cryptococcosis and other spore-mediated fungal diseases.
Collapse
Affiliation(s)
- Naomi M. Walsh
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael R. Botts
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrew J. McDermott
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sébastien C. Ortiz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Marcel Wüthrich
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bruce Klein
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christina M. Hull
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
41
|
Ashton PM, Thanh LT, Trieu PH, Van Anh D, Trinh NM, Beardsley J, Kibengo F, Chierakul W, Dance DAB, Rattanavong S, Davong V, Hung LQ, Chau NVV, Tung NLN, Chan AK, Thwaites GE, Lalloo DG, Anscombe C, Nhat LTH, Perfect J, Dougan G, Baker S, Harris S, Day JN. Three phylogenetic groups have driven the recent population expansion of Cryptococcus neoformans. Nat Commun 2019; 10:2035. [PMID: 31048698 PMCID: PMC6497710 DOI: 10.1038/s41467-019-10092-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 04/15/2019] [Indexed: 01/04/2023] Open
Abstract
Cryptococcus neoformans (C. neoformans var. grubii) is an environmentally acquired pathogen causing 181,000 HIV-associated deaths each year. We sequenced 699 isolates, primarily C. neoformans from HIV-infected patients, from 5 countries in Asia and Africa. The phylogeny of C. neoformans reveals a recent exponential population expansion, consistent with the increase in the number of susceptible hosts. In our study population, this expansion has been driven by three sub-clades of the C. neoformans VNIa lineage; VNIa-4, VNIa-5 and VNIa-93. These three sub-clades account for 91% of clinical isolates sequenced in our study. Combining the genome data with clinical information, we find that the VNIa-93 sub-clade, the most common sub-clade in Uganda and Malawi, was associated with better outcomes than VNIa-4 and VNIa-5, which predominate in Southeast Asia. This study lays the foundation for further work investigating the dominance of VNIa-4, VNIa-5 and VNIa-93 and the association between lineage and clinical phenotype.
Collapse
Affiliation(s)
- P M Ashton
- Wellcome Trust Asia Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
| | - L T Thanh
- Wellcome Trust Asia Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Ho Chi Minh City, Vietnam
| | - P H Trieu
- Wellcome Trust Asia Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Ho Chi Minh City, Vietnam
| | - D Van Anh
- Wellcome Trust Asia Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Ho Chi Minh City, Vietnam
| | - N M Trinh
- Wellcome Trust Asia Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Ho Chi Minh City, Vietnam
| | - J Beardsley
- Wellcome Trust Asia Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
- Marie Bashir Institute, University of Sydney, Sydney, 2050, NSW, Australia
| | - F Kibengo
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - W Chierakul
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - D A B Dance
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Laos
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - S Rattanavong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Laos
| | - V Davong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Laos
| | - L Q Hung
- Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - N V V Chau
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - N L N Tung
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - A K Chan
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, M4N 3M5, ON, Canada
- Dignitas International, Zomba, Malawi
| | - G E Thwaites
- Wellcome Trust Asia Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
| | - D G Lalloo
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - C Anscombe
- Wellcome Trust Asia Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
| | - L T H Nhat
- Wellcome Trust Asia Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Ho Chi Minh City, Vietnam
| | - J Perfect
- Department of Medicine and Department of Molecular Genetics and Microbiology, Division of Infectious Diseases, Duke University, Durham, NC, 27710, USA
| | - G Dougan
- Wellcome Trust-Cambridge Centre for Global Health Research, Cambridge, CB2 0XY, UK
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, Cambridgeshire, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0SP, UK
| | - S Baker
- Wellcome Trust Asia Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
- Wellcome Trust-Cambridge Centre for Global Health Research, Cambridge, CB2 0XY, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0SP, UK
| | - S Harris
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, Cambridgeshire, UK
| | - J N Day
- Wellcome Trust Asia Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Ho Chi Minh City, Vietnam.
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
42
|
Florek M, Król J, Woźniak-Biel A. Atypical URA5 gene restriction fragment length polymorphism banding profile in Cryptococcus neoformans strains. Folia Microbiol (Praha) 2019; 64:857-860. [PMID: 30963417 PMCID: PMC6861435 DOI: 10.1007/s12223-019-00699-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
URA5-RFLP is one of the most widely used genotyping methods relating to Cryptococcus neoformans and C. gattii consensus genotype nomenclature. In order to identify a molecular type, this method uses a visual comparison of digested PCR products of tested and reference strains, therefore any anomaly in RFLP patterns of studied isolates makes recognition difficult or impossible. This report describes a strain of VNIV type showing an atypical URA5-RFLP pattern as well as a group of AD hybrids displaying the same anomaly. The atypical RFLP pattern is the result of a point mutation and emergence of a new restriction site. Emergence of the allele presenting a new banding pattern may lead to misidentification using the URA5-RFLP technique; the results of this study as well as the literature data may suggest the spread of the allele in the environment.
Collapse
Affiliation(s)
- Magdalena Florek
- Department of Pathology, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland.
| | - Jarosław Król
- Department of Pathology, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| | - Anna Woźniak-Biel
- Department of Epizootiology and Clinic of Birds and Exotic Animals, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366, Wrocław, Poland
| |
Collapse
|
43
|
Acheson ES, Galanis E, Bartlett K, Mak S, Klinkenberg B. Searching for clues for eighteen years: Deciphering the ecological determinants of Cryptococcus gattii on Vancouver Island, British Columbia. Med Mycol 2018; 56:129-144. [PMID: 28525610 DOI: 10.1093/mmy/myx037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 04/06/2017] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus gattii emerged on Vancouver Island in 1999 for unknown reasons, causing human and animal fatalities and illness. The apparent emergence of this fungus in another temperate area, this time in the Pacific Northwest, suggests the fungus may have expanded its ecological niche. Yet studies that directly examine the potential roles of climatic and land use changes on C. gattii are still lacking. We aim to summarize the existing global literature on the ecology of C. gattii, with particular focus on the gap in knowledge surrounding the potential effects of climatic and land use changes. We systematically reviewed English peer-reviewed literature on the ecological determinants of C. gattii. We included studies published from January 1970 through June 2016 and identified 56 relevant studies for our review. We identified environmental isolations of C. gattii from 18 countries, spanning 72 separate regions across six continents. Fifty-three tree species were associated with C. gattii, spanning 10 climate classifications and 36 terrestrial ecoregions. No studies directly tested the potential effects of climatic changes (including climatic oscillations and global climate change) on C. gattii, while only one study directly assessed those of land use change. To improve model predictions of current and future distributions of C. gattii, more focus is needed on the potential effects of climatic and land use changes to help decrease the public health risk. The apparent emergence of C. gattii in British Columbia is also an opportunity to explore the factors behind emerging infectious diseases in Canada and elsewhere.
Collapse
Affiliation(s)
- Emily Sohanna Acheson
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, Canada, V6T 1Z2
| | - Eleni Galanis
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada, V5Z 4R4.,School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Karen Bartlett
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Sunny Mak
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada, V5Z 4R4
| | - Brian Klinkenberg
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, Canada, V6T 1Z2
| |
Collapse
|
44
|
Phenotypic Variability Correlates with Clinical Outcome in Cryptococcus Isolates Obtained from Botswanan HIV/AIDS Patients. mBio 2018; 9:mBio.02016-18. [PMID: 30352938 PMCID: PMC6199498 DOI: 10.1128/mbio.02016-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pathogenic species of Cryptococcus cause hundreds of thousands of deaths annually. Considerable phenotypic variation is exhibited during infection, including increased capsule size, capsule shedding, giant cells (≥15 μm), and micro cells (≤1 μm). We examined 70 clinical isolates of Cryptococcus neoformans and Cryptococcus tetragattii from HIV/AIDS patients in Botswana to determine whether the capacity to produce morphological variants was associated with clinical parameters. Isolates were cultured under conditions designed to simulate in vivo stresses. Substantial variation was seen across morphological and clinical data. Giant cells were more common in C. tetragattii, while micro cells and shed capsule occurred in C. neoformans only. Phenotypic variables fell into two groups associated with differing symptoms. The production of "large" phenotypes (greater cell and capsule size and giant cells) was associated with higher CD4 count and was negatively correlated with intracranial pressure indicators, suggesting that these are induced in early stage infection. "Small" phenotypes (micro cells and shed capsule) were associated with lower CD4 counts, negatively correlated with meningeal inflammation indicators, and positively correlated with intracranial pressure indicators, suggesting that they are produced later during infection and may contribute to immune suppression and promote proliferation and dissemination. These trends persisted at the species level, indicating that they were not driven by association with particular Cryptococcus species. Isolates possessing giant cells, micro cells, and shed capsule were rare, but strikingly, they were associated with patient death (P = 0.0165). Our data indicate that pleomorphism is an important driver in Cryptococcus infection.IMPORTANCE Cryptococcosis results in hundreds of thousands of deaths annually, predominantly in sub-Saharan Africa. Cryptococcus is an encapsulated yeast, and during infection, cells have the capacity for substantial morphological changes, including capsule enlargement and shedding and variations in cell shape and size. In this study, we examined 70 Cryptococcus isolates causing meningitis in HIV/AIDS patients in Botswana in order to look for associations between phenotypic variation and clinical symptoms. Four variant phenotypes were seen across strains: giant cells of ≥15 µm, micro cells of ≤1 µm, shed extracellular capsule, and irregularly shaped cells. We found that "large" and "small" phenotypes were associated with differing disease symptoms, indicating that their production may be important during the disease process. Overall, our study indicates that Cryptococcus strains that can switch on cell types under different situations may be more able to sustain infection and resist the host response.
Collapse
|
45
|
Samarasinghe H, Xu J. Hybrids and hybridization in the Cryptococcus neoformans and Cryptococcus gattii species complexes. INFECTION GENETICS AND EVOLUTION 2018; 66:245-255. [PMID: 30342094 DOI: 10.1016/j.meegid.2018.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/28/2018] [Accepted: 10/16/2018] [Indexed: 12/29/2022]
Abstract
The basidiomycetous yeasts of the Cryptococcus neoformans and Cryptococcus gattii species complexes (CNSC and CGSC respectively) are the causative agents of cryptococcosis, a set of life-threatening diseases affecting the central nervous system, lungs, skin, and other body sites of humans and other mammals. Both the CNSC and CGSC can be subdivided into varieties, serotypes, molecular types, and lineages based on structural variations, molecular characteristics and genetic sequences. Hybridization between the haploid lineages within and between the two species complexes is known to occur in natural and clinical settings, giving rise to intraspecific and interspecific diploid/aneuploid hybrid strains. Since their initial discovery in 1977, cryptococcal hybrids have been increasingly discovered in both clinical and environmental settings with over 30% of all cryptococcal infections in some regions of Europe being caused by hybrid strains. This review summarizes the major findings to date on cryptococcal hybrids, including their possible origins, prevalence, genomic profiles and phenotypic characteristics. Our analyses suggest that CNSC and CGSC can be an excellent model system for studying fungal hybridization.
Collapse
Affiliation(s)
- Himeshi Samarasinghe
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
46
|
Rocha DFS, Cruz KS, Santos CSDS, Menescal LSF, Neto JRDS, Pinheiro SB, Silva LM, Trilles L, Braga de Souza JV. MLST reveals a clonal population structure for Cryptococcus neoformans molecular type VNI isolates from clinical sources in Amazonas, Northern-Brazil. PLoS One 2018; 13:e0197841. [PMID: 29883489 PMCID: PMC5993295 DOI: 10.1371/journal.pone.0197841] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
Cryptococcosis is considered endemic in Amazonas state, occurring more frequently in individuals with AIDS, who are predominantly infected by Cryptococcus neoformans molecular type VNI. Infections by Cryptococcus gattii VGII predominate in immunocompetent hosts from the American continent and are associated with outbreaks in North America, particularly the subtypes VGIIa and VGIIb, which are also present in the Brazilian Amazon region. Despite few environmental studies, several aspects of the molecular epidemiology of this disease in Amazonas remain unclear, including the limited use of multilocus sequence typing (MLST) to evaluate the genetic population structure of clinical isolates, mainly C. neoformans. Therefore, we used MLST to identify the sequence types of 38 clinical isolates of C. neoformans VNI and C. gattii VGII and used phylogenetic analysis to evaluate their genetic relationship to global isolates. Records of 30 patients were analyzed to describe the current scenario of cryptococcosis in the region and their associations with the different subtypes. Broth microdilution was also performed to determine the susceptibility profile to the antifungals amphotericin B, fluconazole and itraconazole. MLST identified that patients with HIV (n = 26) were exclusively affected by VNI strains with ST93, and among the VGII strains (n = 4), three STs (ST5, ST172 and the new ST445) were identified. An in-hospital lethality of 54% was observed in the HIV group, and there were no significant differences in the clinical aspects of the disease between the HIV and non-HIV groups of patients. In addition, all isolates were susceptible to the antifungals tested. Therefore, in Amazonas state, VNI isolates are a genetically monotypic group, with ST93 being highly important in HIV individuals.
Collapse
Affiliation(s)
- Diego Fernando Silva Rocha
- Medical Mycology Laboratory, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Mycology Laboratory, Coordination of Society, Environment and Health of National Research Institute of Amazonia, Manaus, Amazonas, Brazil
| | - Katia Santana Cruz
- Medical Mycology Laboratory, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | | | | | - João Ricardo da Silva Neto
- Medical Mycology Laboratory, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Silviane Bezerra Pinheiro
- Mycology Laboratory, Coordination of Society, Environment and Health of National Research Institute of Amazonia, Manaus, Amazonas, Brazil
| | - Lucyane Mendes Silva
- Mycology Laboratory, Coordination of Society, Environment and Health of National Research Institute of Amazonia, Manaus, Amazonas, Brazil
| | - Luciana Trilles
- National Institute of Infectology Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro city, Rio de Janeiro, Brazil
| | - João Vicente Braga de Souza
- Mycology Laboratory, Coordination of Society, Environment and Health of National Research Institute of Amazonia, Manaus, Amazonas, Brazil
- * E-mail:
| |
Collapse
|
47
|
Desjardins CA, Giamberardino C, Sykes SM, Yu CH, Tenor JL, Chen Y, Yang T, Jones AM, Sun S, Haverkamp MR, Heitman J, Litvintseva AP, Perfect JR, Cuomo CA. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. Genome Res 2018; 27:1207-1219. [PMID: 28611159 PMCID: PMC5495072 DOI: 10.1101/gr.218727.116] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/01/2017] [Indexed: 12/23/2022]
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes approximately 625,000 deaths per year from nervous system infections. Here, we leveraged a unique, genetically diverse population of C. neoformans from sub-Saharan Africa, commonly isolated from mopane trees, to determine how selective pressures in the environment coincidentally adapted C. neoformans for human virulence. Genome sequencing and phylogenetic analysis of 387 isolates, representing the global VNI and African VNB lineages, highlighted a deep, nonrecombining split in VNB (herein, VNBI and VNBII). VNBII was enriched for clinical samples relative to VNBI, while phenotypic profiling of 183 isolates demonstrated that VNBI isolates were significantly more resistant to oxidative stress and more heavily melanized than VNBII isolates. Lack of melanization in both lineages was associated with loss-of-function mutations in the BZP4 transcription factor. A genome-wide association study across all VNB isolates revealed sequence differences between clinical and environmental isolates in virulence factors and stress response genes. Inositol transporters and catabolism genes, which process sugars present in plants and the human nervous system, were identified as targets of selection in all three lineages. Further phylogenetic and population genomic analyses revealed extensive loss of genetic diversity in VNBI, suggestive of a history of population bottlenecks, along with unique evolutionary trajectories for mating type loci. These data highlight the complex evolutionary interplay between adaptation to natural environments and opportunistic infections, and that selection on specific pathways may predispose isolates to human virulence.
Collapse
Affiliation(s)
| | - Charles Giamberardino
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sean M Sykes
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Chen-Hsin Yu
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jennifer L Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yuan Chen
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Timothy Yang
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Alexander M Jones
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Miriam R Haverkamp
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Anastasia P Litvintseva
- Mycotic Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Christina A Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
48
|
Andrade-Silva LE, Ferreira-Paim K, Ferreira TB, Vilas-Boas A, Mora DJ, Manzato VM, Fonseca FM, Buosi K, Andrade-Silva J, Prudente BDS, Araujo NE, Sales-Campos H, da Silva MV, Júnior VR, Meyer W, Silva-Vergara ML. Genotypic analysis of clinical and environmental Cryptococcus neoformans isolates from Brazil reveals the presence of VNB isolates and a correlation with biological factors. PLoS One 2018; 13:e0193237. [PMID: 29505557 PMCID: PMC5837091 DOI: 10.1371/journal.pone.0193237] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/07/2018] [Indexed: 11/19/2022] Open
Abstract
Cryptococcal infections are mainly caused by members of the Cryptococcus neoformans species complex (molecular types VNI, VNII, VNB, VNIV and the AD hybrid VNIII). PCR of the mating type loci and MLST typing using the ISHAM-MLST consensus scheme were used to evaluate the genetic relationship of 102 (63 clinical and 39 environmental) C. neoformans isolates from Uberaba, Brazil and to correlate the obtained genotypes with clinical, antifungal susceptibility and virulence factor data. All isolates were mating type alpha. MLST identified 12 known and five new sequence types (ST). Fourteen STs were identified within the VNI isolates, with ST93 (57/102, 56%) and ST77 (19/102, 19%) being the most prevalent. From the nine VNII isolates previously identify by URA5-RFLP only four (ST40) were confirmed by MLST. The remaining five grouped within the VNB clade in the phylogenetic analysis corresponding to the sequence type ST504. Other two environmental isolates also grouped within VNB clade with the new sequence type ST527. The four VNII/ST40 isolates were isolated from CSF. The two VNIV sequence types (ST11 and ST160) were isolated from blood cultures. Two of six patients evaluated with more than one isolates had mixed infections. Amongst the VNI isolates 4 populations were identified, which showed differences in their susceptibility profiles, clinical outcome and virulence factors. These results reinforce that ST93 is the most prevalent ST in HIV-infected patients in the Southeastern region of Brazil. The finding of the VNB molecular type amongst environmental Brazilian isolates highlights that this genotype is not restricted to the African continent.
Collapse
Affiliation(s)
- Leonardo Euripedes Andrade-Silva
- Infectious Disease Department, Triangulo Mineiro Federal University, Uberaba, Brazil
- Clinical Pathology Department, Triangulo Mineiro Federal University, Uberaba, Brazil
| | - Kennio Ferreira-Paim
- Infectious Disease Department, Triangulo Mineiro Federal University, Uberaba, Brazil
- Clinical Pathology Department, Triangulo Mineiro Federal University, Uberaba, Brazil
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Sydney Medical School-Westmead Hospital, The University of Sydney, Westmead Institute for Medical Research, Sydney, Australia
| | | | - Anderson Vilas-Boas
- Infectious Disease Department, Triangulo Mineiro Federal University, Uberaba, Brazil
| | - Delio José Mora
- Infectious Disease Department, Triangulo Mineiro Federal University, Uberaba, Brazil
| | | | | | - Kelli Buosi
- Infectious Disease Department, Triangulo Mineiro Federal University, Uberaba, Brazil
| | - Juliana Andrade-Silva
- Infectious Disease Department, Triangulo Mineiro Federal University, Uberaba, Brazil
| | | | - Natalia Evelyn Araujo
- Infectious Disease Department, Triangulo Mineiro Federal University, Uberaba, Brazil
| | | | | | | | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Sydney Medical School-Westmead Hospital, The University of Sydney, Westmead Institute for Medical Research, Sydney, Australia
| | | |
Collapse
|
49
|
Cuomo CA, Rhodes J, Desjardins CA. Advances in Cryptococcus genomics: insights into the evolution of pathogenesis. Mem Inst Oswaldo Cruz 2018. [PMID: 29513784 PMCID: PMC5851040 DOI: 10.1590/0074-02760170473] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Cryptococcus species are the causative agents of cryptococcal meningitis, a significant source of mortality in immunocompromised individuals. Initial work on the molecular epidemiology of this fungal pathogen utilized genotyping approaches to describe the genetic diversity and biogeography of two species, Cryptococcus neoformans and Cryptococcus gattii. Whole genome sequencing of representatives of both species resulted in reference assemblies enabling a wide array of downstream studies and genomic resources. With the increasing availability of whole genome sequencing, both species have now had hundreds of individual isolates sequenced, providing fine-scale insight into the evolution and diversification of Cryptococcus and allowing for the first genome-wide association studies to identify genetic variants associated with human virulence. Sequencing has also begun to examine the microevolution of isolates during prolonged infection and to identify variants specific to outbreak lineages, highlighting the potential role of hyper-mutation in evolving within short time scales. We can anticipate that further advances in sequencing technology and sequencing microbial genomes at scale, including metagenomics approaches, will continue to refine our view of how the evolution of Cryptococcus drives its success as a pathogen.
Collapse
Affiliation(s)
| | - Johanna Rhodes
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | | |
Collapse
|
50
|
Investigating Clinical Issues by Genotyping of Medically Important Fungi: Why and How? Clin Microbiol Rev 2017; 30:671-707. [PMID: 28490578 DOI: 10.1128/cmr.00043-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genotyping studies of medically important fungi have addressed elucidation of outbreaks, nosocomial transmissions, infection routes, and genotype-phenotype correlations, of which secondary resistance has been most intensively investigated. Two methods have emerged because of their high discriminatory power and reproducibility: multilocus sequence typing (MLST) and microsatellite length polymorphism (MLP) using short tandem repeat (STR) markers. MLST relies on single-nucleotide polymorphisms within the coding regions of housekeeping genes. STR polymorphisms are based on the number of repeats of short DNA fragments, mostly outside coding regions, and thus are expected to be more polymorphic and more rapidly evolving than MLST markers. There is no consensus on a universal typing system. Either one or both of these approaches are now available for Candida spp., Aspergillus spp., Fusarium spp., Scedosporium spp., Cryptococcus neoformans, Pneumocystis jirovecii, and endemic mycoses. The choice of the method and the number of loci to be tested depend on the clinical question being addressed. Next-generation sequencing is becoming the most appropriate method for fungi with no MLP or MLST typing available. Whatever the molecular tool used, collection of clinical data (e.g., time of hospitalization and sharing of similar rooms) is mandatory for investigating outbreaks and nosocomial transmission.
Collapse
|