1
|
Gardeux V, Bevers RPJ, David FPA, Rosschaert E, Rochepeau R, Deplancke B. DGRPool, a web tool leveraging harmonized Drosophila Genetic Reference Panel phenotyping data for the study of complex traits. eLife 2024; 12:RP88981. [PMID: 39431984 PMCID: PMC11493408 DOI: 10.7554/elife.88981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Genome-wide association studies have advanced our understanding of complex traits, but studying how a GWAS variant can affect a specific trait in the human population remains challenging due to environmental variability. Drosophila melanogaster is in this regard an excellent model organism for studying the relationship between genetic and phenotypic variation due to its simple handling, standardized growth conditions, low cost, and short lifespan. The Drosophila Genetic Reference Panel (DGRP) in particular has been a valuable tool for studying complex traits, but proper harmonization and indexing of DGRP phenotyping data is necessary to fully capitalize on this resource. To address this, we created a web tool called DGRPool (dgrpool.epfl.ch), which aggregates phenotyping data of 1034 phenotypes across 135 DGRP studies in a common environment. DGRPool enables users to download data and run various tools such as genome-wide (GWAS) and phenome-wide (PheWAS) association studies. As a proof-of-concept, DGRPool was used to study the longevity phenotype and uncovered both established and unexpected correlations with other phenotypes such as locomotor activity, starvation resistance, desiccation survival, and oxidative stress resistance. DGRPool has the potential to facilitate new genetic and molecular insights of complex traits in Drosophila and serve as a valuable, interactive tool for the scientific community.
Collapse
Affiliation(s)
- Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Roel PJ Bevers
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Fabrice PA David
- Swiss Institute of BioinformaticsLausanneSwitzerland
- Bioinformatics Competence Center, EPFLLausanneSwitzerland
| | - Emily Rosschaert
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Laboratory of Behavioral and Developmental Genetics, Center for Human Genetics, KU LeuvenLeuvenBelgium
| | - Romain Rochepeau
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| |
Collapse
|
2
|
Delclos PJ, Adhikari K, Mai AB, Hassan O, Oderhowho AA, Sriskantharajah V, Trinh T, Meisel R. Trans regulation of an odorant binding protein by a proto-Y chromosome affects male courtship in house fly. eLife 2024; 13:e90349. [PMID: 39422654 PMCID: PMC11488852 DOI: 10.7554/elife.90349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
The male-limited inheritance of Y chromosomes favors alleles that increase male fitness, often at the expense of female fitness. Determining the mechanisms underlying these sexually antagonistic effects is challenging because it can require studying Y-linked alleles while they still segregate as polymorphisms. We used a Y chromosome polymorphism in the house fly, Musca domestica, to address this challenge. Two male determining Y chromosomes (YM and IIIM) segregate as stable polymorphisms in natural populations, and they differentially affect multiple traits, including male courtship performance. We identified differentially expressed genes encoding odorant binding proteins (in the Obp56h family) as candidate agents for the courtship differences. Through network analysis and allele-specific expression measurements, we identified multiple genes on the house fly IIIM chromosome that could serve as trans regulators of Obp56h gene expression. One of those genes is homologous to Drosophila melanogaster CG2120, which encodes a transcription factor that binds near Obp56h. Upregulation of CG2120 in D. melanogaster nervous tissues reduces copulation latency, consistent with this transcription factor acting as a negative regulator of Obp56h expression. The transcription factor gene, which we name speed date, demonstrates a molecular mechanism by which a Y-linked gene can evolve male-beneficial effects.
Collapse
Affiliation(s)
- Pablo J Delclos
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Kiran Adhikari
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Alexander B Mai
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Oluwatomi Hassan
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | | | | | - Tammie Trinh
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Richard Meisel
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| |
Collapse
|
3
|
Bylino OV, Ogienko AA, Batin MA, Georgiev PG, Omelina ES. Genetic, Environmental, and Stochastic Components of Lifespan Variability: The Drosophila Paradigm. Int J Mol Sci 2024; 25:4482. [PMID: 38674068 PMCID: PMC11050664 DOI: 10.3390/ijms25084482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Lifespan is a complex quantitative trait involving genetic and non-genetic factors as well as the peculiarities of ontogenesis. As with all quantitative traits, lifespan shows considerable variation within populations and between individuals. Drosophila, a favourite object of geneticists, has greatly advanced our understanding of how different forms of variability affect lifespan. This review considers the role of heritable genetic variability, phenotypic plasticity and stochastic variability in controlling lifespan in Drosophila melanogaster. We discuss the major historical milestones in the development of the genetic approach to study lifespan, the breeding of long-lived lines, advances in lifespan QTL mapping, the environmental factors that have the greatest influence on lifespan in laboratory maintained flies, and the mechanisms, by which individual development affects longevity. The interplay between approaches to study ageing and lifespan limitation will also be discussed. Particular attention will be paid to the interaction of different types of variability in the control of lifespan.
Collapse
Affiliation(s)
- Oleg V. Bylino
- Department of Regulation of Genetic Processes, Laboratory of Molecular Organization of the Genome, Institute of Gene Biology RAS, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anna A. Ogienko
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Mikhail A. Batin
- Open Longevity, 15260 Ventura Blvd., Sherman Oaks, Los Angeles, CA 91403, USA
| | - Pavel G. Georgiev
- Department of Regulation of Genetic Processes, Laboratory of Molecular Organization of the Genome, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Evgeniya S. Omelina
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Yu H, Nong X, Huang W, Bhanumas C, Deng X, Ding Y, Liu W. Odorant-Binding and Chemosensory Proteins in Fig Wasps: Evolutionary Insights From Comparative Studies. J Mol Evol 2024; 92:42-60. [PMID: 38280051 DOI: 10.1007/s00239-023-10152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/22/2023] [Indexed: 01/29/2024]
Abstract
Fig wasps (Agaonidae; Hymenoptera) are the only pollinating insects of fig trees (Ficus; Moraceae), forming the most closely and highly specific mutualism with the host. We used transcriptome sequences of 25 fig wasps from six genera to explore the evolution of key molecular components of fig wasp chemosensory genes: odorant-binding proteins (OBPs) and chemosensory proteins (CSPs). We identified a total 321 OBPs and 240 CSPs, with each species recording from 6 to 27 OBP genes and 6-19 CSP genes. 318 OBP genes are clustered into 17 orthologous groups and can be divided into two groups: PBP sensitive to pheromone and GOBP sensitive to general odor molecules, such as alcohols, esters, acids, ketones, and terpenoids. 240 CSP genes are clustered into 12 orthologous groups, which can be divided into three major groups and have functions, such as olfactory, tissue formation and/or regeneration, developmental, and some specific and unknown function. The gene sequences of most orthologous groups vary greatly among species and are consistent with the phylogenetic relationships between fig wasps. Strong purifying selection of both OBP and CSP genes was detected, as shown by low ω values. A positive selection was detected in one locus in CSP1. In conclusion, the evolution of chemosensory proteins OBPs and CSPs in fig wasps is relatively conservative, and they play an indispensable role in the life activities of fig wasps. Our results provide a starting point for understanding the molecular basis of the chemosensory systems of fig wasps.
Collapse
Affiliation(s)
- Hui Yu
- Plant Resources Conservation and Sustainable Utilization, The Chinese Academy of Sciences, Guangzhou, 510650, China.
- Guangdong Provincial Key Laboratory of Applied Botany, The Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Xiaojue Nong
- Plant Resources Conservation and Sustainable Utilization, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Weicheng Huang
- Plant Resources Conservation and Sustainable Utilization, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | - Xiaoxia Deng
- Plant Resources Conservation and Sustainable Utilization, The Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yamei Ding
- Plant Resources Conservation and Sustainable Utilization, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Wanzhen Liu
- Plant Resources Conservation and Sustainable Utilization, The Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
5
|
Li ET, Wu HJ, Qin JH, Luo J, Li KB, Cao YZ, Zhang S, Peng Y, Yin J. Involvement of Holotrichia parallela odorant-binding protein 3 in the localization of oviposition sites. Int J Biol Macromol 2023; 242:124744. [PMID: 37148950 DOI: 10.1016/j.ijbiomac.2023.124744] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Organic fertilizers-derived volatiles attract Holotrichia parallela during oviposition. However, the mechanisms underlying the perception of oviposition cues in H. parallela remain unclear. Here, H. parallela odorant-binding protein 3 (HparOBP3) was identified as a key OBP. Bioinformatics analysis showed that HparOBP3 clustered together with Holotrichia oblita OBP8. HparOBP3 was mainly expressed in the antennae of both sexes. Recombinant HparOBP3 exhibited distinct binding affinities towards 22 compounds released by organic fertilizers. After 48 h of RNA interference (RNAi), the expression of HparOBP3 in male and female antennae was decreased by 90.77 % and 82.30 %, respectively. In addition, silencing of HparOBP3 significantly reduced the electrophysiological responses and tropism of males to cis-3-hexen-1-ol, 1-hexanol, and (Z)-β-ocimene as well as females to cis-3-hexen-1-ol, 1-hexanol, benzaldehyde, and (Z)-β-ocimene. Molecular docking indicated that hydrophobic residues Leu-83, Leu-87, Phe-108, and Ile-120 of HparOBP3 were important amino acids for interacting with ligands. Mutation of the key residue, Leu-83, significantly diminished the binding ability of HparOBP3. Furthermore, acrylic plastic arena bioassays showed that the attraction and oviposition indexes of organic fertilizers to H. parallela were reduced by 55.78 % and 60.11 %, respectively, after silencing HparOBP3. These results suggest that HparOBP3 is essential in mediating the oviposition behavior of H. parallela.
Collapse
Affiliation(s)
- Er-Tao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China
| | - Han-Jia Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China; Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Jian-Hui Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China
| | - Jing Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China
| | - Ke-Bin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China.
| | - Ya-Zhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China.
| | - Shuai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China.
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China.
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
6
|
Aguilar P, Dag B, Carazo P, Sultanova Z. Sex-specific paternal age effects on offspring quality in Drosophila melanogaster. J Evol Biol 2023; 36:720-729. [PMID: 36946550 DOI: 10.1111/jeb.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 03/23/2023]
Abstract
Advanced paternal age has been repeatedly shown to modulate offspring quality via male- and/or female-driven processes, and there are theoretical reasons to expect that some of these effects can be sex-specific. For example, sex allocation theory predicts that, when mated with low-condition males, mothers should invest more in their daughters compared to their sons. This is because male fitness is generally more condition-dependent and more variable than female fitness, which makes it less risky to invest in female offspring. Here, we explore whether paternal age can affect the quality and quantity of offspring in a sex-specific way using Drosophila melanogaster as a model organism. In order to understand the contribution of male-driven processes on paternal age effects, we also measured the seminal vesicle size of young and older males and explored its relationship with reproductive success and offspring quality. Older males had lower competitive reproductive success, as expected, but there was no difference between the offspring sex ratio of young and older males. However, we found that paternal age caused an increase in offspring quality (i.e., offspring weight), and that this increase was more marked in daughters than sons. We discuss different male- and female-driven processes that may explain such sex-specific paternal age effects.
Collapse
Affiliation(s)
- Prem Aguilar
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Berfin Dag
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, Istanbul, Turkey
| | - Pau Carazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Valencia, Spain
| | - Zahida Sultanova
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
7
|
Anholt RRH, Mackay TFC. The genetic architecture of behavioral canalization. Trends Genet 2023:S0168-9525(23)00033-1. [PMID: 36878820 DOI: 10.1016/j.tig.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Behaviors are components of fitness and contribute to adaptive evolution. Behaviors represent the interactions of an organism with its environment, yet innate behaviors display robustness in the face of environmental change, which we refer to as 'behavioral canalization'. We hypothesize that positive selection of hub genes of genetic networks stabilizes the genetic architecture for innate behaviors by reducing variation in the expression of interconnected network genes. Robustness of these stabilized networks would be protected from deleterious mutations by purifying selection or suppressing epistasis. We propose that, together with newly emerging favorable mutations, epistatically suppressed mutations can generate a reservoir of cryptic genetic variation that could give rise to decanalization when genetic backgrounds or environmental conditions change to allow behavioral adaptation.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA.
| | - Trudy F C Mackay
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| |
Collapse
|
8
|
Mokashi SS, Shankar V, Johnstun JA, Mackay TFC, Anholt RRH. Pleiotropic fitness effects of a Drosophila odorant-binding protein. G3 (BETHESDA, MD.) 2023; 13:jkac307. [PMID: 36454098 PMCID: PMC9911060 DOI: 10.1093/g3journal/jkac307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
Abstract
Insect odorant-binding proteins (OBPs) are members of a rapidly evolving multigene family traditionally thought to facilitate chemosensation. However, studies on Drosophila have shown that members of this family have evolved functions beyond chemosensation, as evident from their expression in reproductive tissues and the brain. Previous studies implicated diverse functions of Obp56h, a member of the largest gene cluster of the D. melanogaster Obp repertoire. Here, we examined the effect of CRISPR/Cas9-mediated deletion of Obp56h on 2 fitness phenotypes, on resistance to starvation stress and heat stress, and on locomotion and sleep phenotypes. Obp56h-/- mutants show a strong sexually dimorphic effect on starvation stress survival, with females being more resistant to starvation stress than the control. In contrast, Obp56h-/- females, but not males, are highly sensitive to heat stress. Both sexes show changes in locomotion and sleep patterns. Transcriptional profiling of RNA from heads of Obp56h-/- flies and the wildtype control reveals differentially expressed genes, including gene products associated with antimicrobial immune responses and members of the Turandot family of stress-induced secreted peptides. In addition, differentially expressed genes of unknown function were identified in both sexes. Genes encoding components of the mitochondrial electron transport chain, cuticular proteins, gene products associated with regulation of feeding behavior (Lst and CCHa2), ribosomal proteins, lncRNAs, snoRNAs, tRNAs, and snRNAs show changes in transcript abundances in Obp56h-/- females. These differentially expressed genes are likely to contribute to Obp56h-mediated effects on the diverse phenotypes that arise upon deletion of this OBP.
Collapse
Affiliation(s)
- Sneha S Mokashi
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Vijay Shankar
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Joel A Johnstun
- Department of Biological Sciences, Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - Trudy F C Mackay
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| |
Collapse
|
9
|
Pavković-Lučić S, Trajković J, Miličić D, Anđelković B, Lučić L, Savić T, Vujisić L. "Scent of a fruit fly": Cuticular chemoprofiles after mating in differently fed Drosophila melanogaster (Diptera: Drosophilidae) strains. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21866. [PMID: 35020218 DOI: 10.1002/arch.21866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
In the world of complex smells in natural environment, feeding and mating represent two important olfactory-guided behaviors in Drosophila melanogaster (Diptera: Drosophilidae). Diet affects the chemoprofile composition of the individuals, which, indirectly, may significantly affect their mating success. In this study, chemoprofiles of recently mated flies belonging to four D. melanogaster strains, which were fed for many generations on different substrates (standard cornmeal-S strain; banana-B strain; carrot-C strain; tomato-T strain) were identified and quantified. In total, 67 chemical compounds were identified: 48 compounds were extracted from males maintained on banana and carrot, and 47 compounds from males maintained on cornmeal and tomato substrates, while total of 60 compounds were identified in females from all strains. The strains and the sexes significantly differed in qualitative nature of their chemoprofiles after mating. Significant differences in the relative amount of three major male pheromones (cis-vaccenyl acetate-cVA, (Z)-7-pentacosene, and (Z)-7-tricosene) and in female pheromone (Z,Z)-7,11-nonacosadiene among strains were also recorded. Furthermore, multivariate analysis of variance (MANOVA) pointed to significant differences between virgin and mated individuals of all strains and within both sexes. Differences in some of the well known sex pheromones were also identified when comparing their relative amount before and after mating. The presence of typical male pheromones in females, and vice versa may indicate their bidirectional transfer during copulation. Our results confirm significant effect of mating status on cuticular hydrocarbon (CHC) phenotypes in differently fed D. melanogaster flies.
Collapse
Affiliation(s)
| | | | - Dragana Miličić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | - Luka Lučić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tatjana Savić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
10
|
Montino A, Balakrishnan K, Dippel S, Trebels B, Neumann P, Wimmer EA. Mutually Exclusive Expression of Closely Related Odorant-Binding Proteins 9A and 9B in the Antenna of the Red Flour Beetle Tribolium castaneum. Biomolecules 2021; 11:1502. [PMID: 34680135 PMCID: PMC8533528 DOI: 10.3390/biom11101502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/01/2023] Open
Abstract
Olfaction is crucial for insects to find food sources, mates, and oviposition sites. One of the initial steps in olfaction is facilitated by odorant-binding proteins (OBPs) that translocate hydrophobic odorants through the aqueous olfactory sensilla lymph to the odorant receptor complexes embedded in the dendritic membrane of olfactory sensory neurons. The Tribolium castaneum (Coleoptera, Tenebrionidae) OBPs encoded by the gene pair TcasOBP9A and TcasOBP9B represent the closest homologs to the well-studied Drosophila melanogaster OBP Lush (DmelOBP76a), which mediates pheromone reception. By an electroantennographic analysis, we can show that these two OBPs are not pheromone-specific but rather enhance the detection of a broad spectrum of organic volatiles. Both OBPs are expressed in the antenna but in a mutually exclusive pattern, despite their homology and gene pair character by chromosomal location. A phylogenetic analysis indicates that this gene pair arose at the base of the Cucujiformia, which dates the gene duplication event to about 200 Mio years ago. Therefore, this gene pair is not the result of a recent gene duplication event and the high sequence conservation in spite of their expression in different sensilla is potentially the result of a common function as co-OBPs.
Collapse
Affiliation(s)
- Alice Montino
- GZMB, Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Ernst-Caspari-Haus, Georg-August-University Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany; (A.M.); (S.D.)
- Goettingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, Georg-August University School of Science, University of Goettingen, 37077 Goettingen, Germany
| | - Karthi Balakrishnan
- Department of Forest Zoology and Forest Conservation, Buesgen-Institute, Georg-August-University Goettingen, Buesgenweg 3, 37077 Goettingen, Germany;
| | - Stefan Dippel
- GZMB, Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Ernst-Caspari-Haus, Georg-August-University Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany; (A.M.); (S.D.)
- Department of Biology—Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany;
| | - Björn Trebels
- Department of Biology—Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany;
| | - Piotr Neumann
- GZMB, Department of Molecular Structural Biology, Institute of Microbiology & Genetics, Ernst-Caspari-Haus, Georg-August-University Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany;
| | - Ernst A. Wimmer
- GZMB, Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Ernst-Caspari-Haus, Georg-August-University Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany; (A.M.); (S.D.)
- Goettingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, Georg-August University School of Science, University of Goettingen, 37077 Goettingen, Germany
| |
Collapse
|
11
|
Hoffman JM, Dudeck SK, Patterson HK, Austad SN. Sex, mating and repeatability of Drosophila melanogaster longevity. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210273. [PMID: 34457337 PMCID: PMC8371361 DOI: 10.1098/rsos.210273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/26/2021] [Indexed: 05/25/2023]
Abstract
Costs of reproduction are seemingly ubiquitous across the animal kingdom, and these reproductive costs are generally defined by increased reproduction leading to decreases in other fitness components, often longevity. However, some recent reports question whether reproductive costs exist in every species or population. To provide insight on this issue, we sought to determine the extent to which genetic variation might play a role in one type of reproductive cost-survival-using Drosophila melanogaster. We found, surprisingly, no costs of reproduction nor sex differences in longevity across all 15 genetic backgrounds in two cohorts. We did find significant variation within some genotypes, though these were much smaller than expected. We also observed that small laboratory changes lead to significant changes in longevity within genotypes, suggesting that longevity repeatability in flies may be difficult. We finally compared our results to previously published longevities and found that reproducibility is similar to what we saw in our own laboratory, further suggesting that stochasticity is a strong component of fruit fly lifespan. Overall, our results suggest that there are still large gaps in our knowledge about the effects of sex and mating, as well as genetic background and laboratory conditions on lifespan reproducibility.
Collapse
Affiliation(s)
- Jessica M. Hoffman
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Steven N. Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
12
|
Johnstun JA, Shankar V, Mokashi SS, Sunkara LT, Ihearahu UE, Lyman RL, Mackay TFC, Anholt RRH. Functional Diversification, Redundancy, and Epistasis among Paralogs of the Drosophila melanogaster Obp50a-d Gene Cluster. Mol Biol Evol 2021; 38:2030-2044. [PMID: 33560417 PMCID: PMC8097280 DOI: 10.1093/molbev/msab004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Large multigene families, such as the insect odorant-binding proteins (OBPs), are thought to arise through functional diversification after repeated gene duplications. Whereas many OBPs function in chemoreception, members of this family are also expressed in tissues outside chemosensory organs. Paralogs of the Obp50 gene cluster are expressed in metabolic and male reproductive tissues, but their functions and interrelationships remain unknown. Here, we report the genetic dissection of four members of the Obp50 cluster, which are in close physical proximity without intervening genes. We used CRISPR technology to excise the entire cluster while introducing a PhiC31 reintegration site to reinsert constructs in which different combinations of the constituent Obp genes were either intact or rendered inactive. We performed whole transcriptome sequencing and assessed sexually dimorphic changes in transcript abundances (transcriptional niches) associated with each gene-edited genotype. Using this approach, we were able to estimate redundancy, additivity, diversification, and epistasis among Obp50 paralogs. We analyzed the effects of gene editing of this cluster on organismal phenotypes and found a significant skewing of sex ratios attributable to Obp50a, and sex-specific effects on starvation stress resistance attributable to Obp50d. Thus, there is functional diversification within the Obp50 cluster with Obp50a contributing to development and Obp50d to stress resistance. The deletion-reinsertion approach we applied to the Obp50 cluster provides a general paradigm for the genetic dissection of paralogs of multigene families.
Collapse
Affiliation(s)
- Joel A Johnstun
- Department of Biological Sciences, Program in Genetics and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | - Vijay Shankar
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Sneha S Mokashi
- Department of Biological Sciences, Program in Genetics and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Lakshmi T Sunkara
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Ugonna E Ihearahu
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC, USA
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Roberta L Lyman
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Trudy F C Mackay
- Department of Biological Sciences, Program in Genetics and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Robert R H Anholt
- Department of Biological Sciences, Program in Genetics and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC, USA
| |
Collapse
|
13
|
Kabaka JM, Wachira BM, Mang’era CM, Rono MK, Hassanali A, Okoth SO, Oduol VO, Macharia RW, Murilla GA, Mireji PO. Expansions of chemosensory gene orthologs among selected tsetse fly species and their expressions in Glossina morsitans morsitans tsetse fly. PLoS Negl Trop Dis 2020; 14:e0008341. [PMID: 32589659 PMCID: PMC7347240 DOI: 10.1371/journal.pntd.0008341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 07/09/2020] [Accepted: 05/01/2020] [Indexed: 01/02/2023] Open
Abstract
Tsetse fly exhibit species-specific olfactory uniqueness potentially underpinned by differences in their chemosensory protein repertoire. We assessed 1) expansions of chemosensory protein orthologs in Glossina morsitans morsitans, Glossina pallidipes, Glossina austeni, Glossina palpalis gambiensis, Glossina fuscipes fuscipes and Glossina brevipalpis tsetse fly species using Café analysis (to identify species-specific expansions) and 2) differential expressions of the orthologs and associated proteins in male G. m. morsitans antennae and head tissues using RNA-Seq approaches (to establish associated functional molecular pathways). We established accelerated and significant (P<0.05, λ = 2.60452e-7) expansions of gene families in G. m. morsitans Odorant receptor (Or)71a, Or46a, Ir75a,d, Ionotropic receptor (Ir) 31a, Ir84a, Ir64a and Odorant binding protein (Obp) 83a-b), G. pallidipes Or67a,c, Or49a, Or92a, Or85b-c,f and Obp73a, G. f. fuscipes Ir21a, Gustatory receptor (Gr) 21a and Gr63a), G. p. gambiensis clumsy, Ir25a and Ir8a, and G. brevipalpis Ir68a and missing orthologs in each tsetse fly species. Most abundantly expressed transcripts in male G. m. morsitans included specific Or (Orco, Or56a, 65a-c, Or47b, Or67b, GMOY012254, GMOY009475, and GMOY006265), Gr (Gr21a, Gr63a, GMOY013297 and GMOY013298), Ir (Ir8a, Ir25a and Ir41a) and Obp (Obp19a, lush, Obp28a, Obp83a-b Obp44a, GMOY012275 and GMOY013254) orthologs. Most enriched biological processes in the head were associated with vision, muscle activity and neuropeptide regulations, amino acid/nucleotide metabolism and circulatory system processes. Antennal enrichments (>90% of chemosensory transcripts) included cilium-associated mechanoreceptors, chemo-sensation, neuronal controlled growth/differentiation and regeneration/responses to stress. The expanded and tsetse fly species specific orthologs includes those associated with known tsetse fly responsive ligands (4-methyl phenol, 4-propyl phenol, acetic acid, butanol and carbon dioxide) and potential tsetse fly species-specific responsive ligands (2-oxopentanoic acid, phenylacetaldehyde, hydroxycinnamic acid, 2-heptanone, caffeine, geosmin, DEET and (cVA) pheromone). Some of the orthologs can potentially modulate several tsetse fly species-specific behavioral (male-male courtship, hunger/host seeking, cool avoidance, hygrosensory and feeding) phenotypes. The putative tsetse fly specific chemosensory gene orthologs and their respective ligands provide candidate gene targets and kairomones for respective downstream functional genomic and field evaluations that can effectively expand toolbox of species-specific tsetse fly attractants, repellents and other tsetse fly behavioral modulators.
Collapse
Affiliation(s)
- Joy M. Kabaka
- Biotechnology Research Institute—Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, Ruiru Campus, Nairobi, Kenya
| | - Benson M. Wachira
- Biotechnology Research Institute—Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- Department of Chemistry, School of Pure and Applied Sciences, Kenyatta University, Ruiru Campus, Nairobi, Kenya
| | - Clarence M. Mang’era
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro Campus, Egerton, Kenya
| | - Martin K. Rono
- Centre for Geographic Medicine Research—Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Ahmed Hassanali
- Department of Chemistry, School of Pure and Applied Sciences, Kenyatta University, Ruiru Campus, Nairobi, Kenya
| | - Sylvance O. Okoth
- Biotechnology Research Institute—Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Vincent O. Oduol
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Rosaline W. Macharia
- Center for Bioinformatics and Biotechnology, University of Nairobi, Nairobi, Kenya
| | - Grace A. Murilla
- Biotechnology Research Institute—Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Paul O. Mireji
- Biotechnology Research Institute—Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- Centre for Geographic Medicine Research—Coast, Kenya Medical Research Institute, Kilifi, Kenya
| |
Collapse
|
14
|
The Drosophila Post-mating Response: Gene Expression and Behavioral Changes Reveal Perdurance and Variation in Cross-Tissue Interactions. G3-GENES GENOMES GENETICS 2020; 10:967-983. [PMID: 31907222 PMCID: PMC7056969 DOI: 10.1534/g3.119.400963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Examining cross-tissue interactions is important for understanding physiology and homeostasis. In animals, the female gonad produces signaling molecules that act distally. We examine gene expression in Drosophila melanogaster female head tissues in 1) virgins without a germline compared to virgins with a germline, 2) post-mated females with and without a germline compared to virgins, and 3) post-mated females mated to males with and without a germline compared to virgins. In virgins, the absence of a female germline results in expression changes in genes with known roles in nutrient homeostasis. At one- and three-day(s) post-mating, genes that change expression are enriched with those that function in metabolic pathways, in all conditions. We systematically examine female post-mating impacts on sleep, food preference and re-mating, in the strains and time points used for gene expression analyses and compare to published studies. We show that post-mating, gene expression changes vary by strain, prompting us to examine variation in female re-mating. We perform a genome-wide association study that identifies several DNA polymorphisms, including four in/near Wnt signaling pathway genes. Together, these data reveal how gene expression and behavior in females are influenced by cross-tissue interactions, by examining the impact of mating, fertility, and genotype.
Collapse
|
15
|
Anholt RRH. Chemosensation and Evolution of Drosophila Host Plant Selection. iScience 2020; 23:100799. [PMID: 31923648 PMCID: PMC6951304 DOI: 10.1016/j.isci.2019.100799] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/01/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
The ability to respond to chemosensory cues is critical for survival of most organisms. Among insects, Drosophila melanogaster has the best characterized olfactory system, and the availability of genome sequences of 30 Drosophila species provides an ideal scenario for studies on evolution of chemosensation. Gene duplications of chemoreceptor genes allow for functional diversification of the rapidly evolving chemoreceptor repertoire. Although some species of the genus Drosophila are generalists for host plant selection, rapid evolution of olfactory receptors, gustatory receptors, odorant-binding proteins, and cytochrome P450s has enabled diverse host specializations of different members of the genus. Here, I review diversification of the chemoreceptor repertoire among members of the genus Drosophila along with co-evolution of detoxification mechanisms that may have enabled occupation of diverse host plant ecological niches.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA.
| |
Collapse
|
16
|
Anholt RRH. Evolution of Epistatic Networks and the Genetic Basis of Innate Behaviors. Trends Genet 2020; 36:24-29. [PMID: 31706688 PMCID: PMC6925314 DOI: 10.1016/j.tig.2019.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/20/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023]
Abstract
Instinctive behaviors are genetically programmed behaviors that occur independent of experience. How genetic programs that give rise to the manifestation of such behaviors evolve remains an unresolved question. I propose that evolution of species-specific innate behaviors is accomplished through progressive modifications of pre-existing genetic networks composed of allelic variants. I hypothesize that changes in frequencies of one or more constituent allelic variants within the network leads to changes in gene network connectivity and the emergence of a reorganized network that can support the emergence of a novel behavioral phenotype and becomes stabilized when key allelic variants are driven to fixation.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA.
| |
Collapse
|
17
|
Xiao S, Sun JS, Carlson JR. Robust olfactory responses in the absence of odorant binding proteins. eLife 2019; 8:51040. [PMID: 31651397 PMCID: PMC6814364 DOI: 10.7554/elife.51040] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/17/2019] [Indexed: 01/22/2023] Open
Abstract
Odorant binding proteins (Obps) are expressed at extremely high levels in the antennae of insects, and have long been believed essential for carrying hydrophobic odorants to odor receptors. Previously we found that when one functional type of olfactory sensillum in Drosophila was depleted of its sole abundant Obp, it retained a robust olfactory response (Larter et al., 2016). Here we have deleted all the Obp genes that are abundantly expressed in the antennal basiconic sensilla. All of six tested sensillum types responded robustly to odors of widely diverse chemical or temporal structure. One mutant gave a greater physiological and behavioral response to an odorant that affects oviposition. Our results support a model in which many sensilla can respond to odorants in the absence of Obps, and many Obps are not essential for olfactory response, but that some Obps can modulate olfactory physiology and the behavior that it drives.
Collapse
Affiliation(s)
- Shuke Xiao
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Jennifer S Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
18
|
Brain transcriptome changes in the aging Drosophila melanogaster accompany olfactory memory performance deficits. PLoS One 2018; 13:e0209405. [PMID: 30576353 PMCID: PMC6303037 DOI: 10.1371/journal.pone.0209405] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
Cognitive decline is a common occurrence of the natural aging process in animals and studying age-related changes in gene expression in the brain might shed light on disrupted molecular pathways that play a role in this decline. The fruit fly is a useful neurobiological model for studying aging due to its short generational time and relatively small brain size. We investigated age-dependent changes in the Drosophila melanogaster whole-brain transcriptome by comparing 5-, 20-, 30- and 40-day-old flies of both sexes. We used RNA-Sequencing of dissected brain samples followed by differential expression, temporal clustering, co-expression network and gene ontology enrichment analyses. We found an overall decline in expression of genes from the mitochondrial oxidative phosphorylation pathway that occurred as part of aging. We also detected, in females, a pattern of continuously declining expression for many neuronal function genes, which was unexpectedly reversed later in life. This group of genes was highly enriched in memory-impairing genes previously identified through an RNAi screen. We also identified deficits in short-term olfactory memory performance in older flies of both sexes, some of which matched the timing of certain changes in the brain transcriptome. Our study provides the first transcriptome profile of aging brains from fruit flies of both sexes, and it will serve as an important resource for those who study aging and cognitive decline in this model.
Collapse
|
19
|
Yang H, Cai Y, Zhuo Z, Yang W, Yang C, Zhang J, Yang Y, Wang B, Guan F. Transcriptome analysis in different developmental stages of Batocera horsfieldi (Coleoptera: Cerambycidae) and comparison of candidate olfactory genes. PLoS One 2018; 13:e0192730. [PMID: 29474419 PMCID: PMC5825065 DOI: 10.1371/journal.pone.0192730] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/29/2018] [Indexed: 11/29/2022] Open
Abstract
The white-striped longhorn beetle Batocera horsfieldi (Coleoptera: Cerambycidae) is a polyphagous wood-boring pest that causes substantial damage to the lumber industry. Moreover olfactory proteins are crucial components to function in related processes, but the B. horsfieldi genome is not readily available for olfactory proteins analysis. In the present study, developmental transcriptomes of larvae from the first instar to the prepupal stage, pupae, and adults (females and males) from emergence to mating were built by RNA sequencing to establish a genetic background that may help understand olfactory genes. Approximately 199 million clean reads were obtained and assembled into 171,664 transcripts, which were classified into 23,380, 26,511, 22,393, 30,270, and 87, 732 unigenes for larvae, pupae, females, males, and combined datasets, respectively. The unigenes were annotated against NCBI’s non-redundant nucleotide and protein sequences, Swiss-Prot, Gene Ontology (GO), Pfam, Clusters of Eukaryotic Orthologous Groups (KOG), and KEGG Orthology (KO) databases. A total of 43,197 unigenes were annotated into 55 sub-categories under the three main GO categories; 25,237 unigenes were classified into 26 functional KOG categories, and 25,814 unigenes were classified into five functional KEGG Pathway categories. RSEM software identified 2,983, 3,097, 870, 2,437, 5,161, and 2,882 genes that were differentially expressed between larvae and males, larvae and pupae, larvae and females, males and females, males and pupae, and females and pupae, respectively. Among them, genes encoding seven candidate odorant binding proteins (OBPs) and three chemosensory proteins (CSPs) were identified. RT-PCR and RT-qPCR analyses showed that BhorOBP3, BhorCSP2, and BhorOBPC1/C3/C4 were highly expressed in the antenna of males, indicating these genes may may play key roles in foraging and host-orientation in B. horsfieldi. Our results provide valuable molecular information about the olfactory system in B. horsfieldi and will help guide future functional studies on olfactory genes.
Collapse
Affiliation(s)
- Hua Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Cai
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhihang Zhuo
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
- * E-mail:
| | - Chunping Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jin Zhang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yang Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Baoxin Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, China
| | - Fengrong Guan
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Brown EB, Patterson C, Pancoast R, Rollmann SM. Artificial selection for odor-guided behavior in Drosophila reveals changes in food consumption. BMC Genomics 2017; 18:867. [PMID: 29132294 PMCID: PMC5683340 DOI: 10.1186/s12864-017-4233-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/23/2017] [Indexed: 11/20/2022] Open
Abstract
Background The olfactory system enables organisms to detect chemical cues in the environment and can signal the availability of food or the presence of a predator. Appropriate behavioral responses to these chemical cues are therefore important for organismal survival and can influence traits such as organismal life span and food consumption. However, understanding the genetic mechanisms underlying odor-guided behavior, correlated responses in other traits, and how these constrain or promote their evolution, remain an important challenge. Here, we performed artificial selection for attractive and aversive behavioral responses to four chemical compounds, two aromatics (4-ethylguaiacol and 4-methylphenol) and two esters (methyl hexanoate and ethyl acetate), for thirty generations. Results Artificial selection for odor-guided behavior revealed symmetrical responses to selection for each of the four chemical compounds. We then investigated whether selection for odor-guided behavior resulted in correlated responses in life history traits and/or food consumption. We found changes in food consumption upon selection for behavioral responses to aromatics. In many cases, lines selected for increased attraction to aromatics showed an increase in food consumption. We then performed RNA sequencing of lines selected for responses to 4-ethylguaiacol to identify candidate genes associated with odor-guided behavior and its impact on food consumption. We identified 91 genes that were differentially expressed among lines, many of which were associated with metabolic processes. RNAi-mediated knockdown of select candidate genes further supports their role in odor-guided behavior and/or food consumption. Conclusions This study identifies novel genes underlying variation in odor-guided behavior and further elucidates the genetic mechanisms underlying the interrelationship between olfaction and feeding. Electronic supplementary material The online version of this article (10.1186/s12864-017-4233-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth B Brown
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221-0006, USA
| | - Cody Patterson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221-0006, USA
| | - Rayanne Pancoast
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221-0006, USA.,Department of Biology, Xavier University, Cincinnati, OH, 45207, USA
| | - Stephanie M Rollmann
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221-0006, USA.
| |
Collapse
|
21
|
Pomatto LCD, Wong S, Tower J, Davies KJA. Sexual dimorphism in oxidant-induced adaptive homeostasis in multiple wild-type D. melanogaster strains. Arch Biochem Biophys 2017; 636:57-70. [PMID: 29100984 DOI: 10.1016/j.abb.2017.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 11/24/2022]
Abstract
Sexual dimorphism includes the physical and reproductive differences between the sexes, including differences that are conserved across species, ranging from the common fruit fly, Drosophila melanogaster, to humans. Sex-dependent variations in adaptive homeostasis, and adaptive stress responses may offer insight into the underlying mechanisms for male and female survival differences and into differences in chronic disease incidence and severity in humans. Earlier work showed sex-specific differences in adaptive responses to oxidative stressors in hybrid laboratory strains of D. melanogaster. The present study explored whether this phenomenon is also observed in wild-type D. melanogaster strains Oregon-R (Or-R) and Canton-S (Ca-S), as well as the common mutant reference strain w[1118], in order to better understand whether such findings are descriptive of D. melanogaster in general. Flies of each strain were pretreated with non-damaging, adaptive concentrations of hydrogen peroxide (H2O2) or of different redox cycling agents (paraquat, DMNQ, or menadione). Adaptive homeostasis, and changes in the expression of the Proteasome and overall cellular proteasomal proteolytic capacity were assessed. Redox cycling agents exhibited a male-specific adaptive response, whereas H2O2 exposure provoked female-specific adaptation. These findings demonstrate that different oxidants can elicit sexually dimorphic adaptive homeostatic responses in multiple fly strains. These results (and those contained in a parallel study [1]) highlight the need to address sex as a biological variable in fundamental science, clinical research, and toxicology.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 00089-0191, USA
| | - Sarah Wong
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 00089-0191, USA
| | - John Tower
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 00089-0191, USA,; Molecular and Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 00089-0191, USA,; Molecular and Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
22
|
The road less traveled: from genotype to phenotype in flies and humans. Mamm Genome 2017; 29:5-23. [DOI: 10.1007/s00335-017-9722-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022]
|
23
|
Li Y, Zhou P, Zhang J, Yang D, Li Z, Zhang X, Zhu S, Yu Y, Chen N. Identification of odorant binding proteins in Carpomya vesuviana and their binding affinity to the male-borne semiochemicals and host plant volatiles. JOURNAL OF INSECT PHYSIOLOGY 2017; 100:100-107. [PMID: 28571710 DOI: 10.1016/j.jinsphys.2017.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
Carpomya vesuviana (Costa; Diptera: Tephritidae) is an agricultural pest that causes serious damage to jujube fruits. However, the mechanism of olfaction, which is critical for host identification, is not well understood in this pest. In this study, we have identified for the first time five protein types involved in the olfactory signal transduction of C. vesuviana by using transcriptome sequencing. These include 6 odorant-binding proteins (OBPs), 15 odorant receptors (ORs), 22 gustatory receptors (GRs), 2 chemosensory proteins (CSPs), and 2 sensory neuron membrane proteins (SNMPs). Amino acids alignment and phylogenetic analysis showed that all 6 OBPs have a signal peptide at their respective N-termini with four OBPs belonging with the classic OBPs, and OBP2 and OBP5 belonging to the Minus-C family. OBP3 clustered with the OBP83a/83b clade, which comprised pheromone binding protein related proteins (PBPRPs). Moreover, volatiles from C. vesuviana adults and its host plants were collected and identified by using solid phase microextraction (SPME) and gas-chromatography/mass spectrometry (GC/MS). The results indicated that male adults emitted nonanal, and five other compounds, caryophyllene, chamigrene, camphene, (Z)-3-hexen-1-ol acetate, and ocimene were identified in the fruits of jujubes. Electroantennogram (EAG) assays revealed that adult C. vesuviana responded to all six compounds along with two additional pheromones (geranyl acetate and α-farnesene) from other tephritids and the values ranged from 0.50mV to 1.26mV. To further explore the interaction between OBPs and volatiles, competitive binding assays were carried out. The results showed that only CvesOBP2 had binding affinity to (Z)-3-hexen-1-ol acetate. OBP5 and OBP6 exhibited broad spectrum binding to compounds with relatively low molecular weights, and OBP1 and OBP4 had some affinity to caryophyllene and chamigrene. However, OBP3 exhibited relatively high binding affinity to α-farnesene. The findings of this study provide insights into the olfactory mechanisms and the potential functions of OBPs in the olfactory reception pathway in C. vesuviana. The OBPs identified in this study could be used as potential targets to develop attractants to monitor this insect pest for effective pest control.
Collapse
Affiliation(s)
- Yawei Li
- College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing 100193, China; Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Testing Center of Xinjiang Entry Exit Inspection and Quarantine Portal, Xinjiang 830063, China
| | - Ping Zhou
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Junhua Zhang
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Ding Yang
- College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing 100193, China
| | - Zhihong Li
- College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing 100193, China
| | - Xianglin Zhang
- Testing Center of Xinjiang Entry Exit Inspection and Quarantine Portal, Xinjiang 830063, China
| | - Shuifang Zhu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yanxue Yu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Naizhong Chen
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
24
|
Campanini EB, Congrains C, Torres FR, de Brito RA. Odorant-binding proteins expression patterns in recently diverged species of Anastrepha fruit flies. Sci Rep 2017; 7:2194. [PMID: 28526847 PMCID: PMC5438349 DOI: 10.1038/s41598-017-02371-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/11/2017] [Indexed: 11/21/2022] Open
Abstract
We studied two species of closely related South American fruit flies, Anastrepha fraterculus and Anastrepha obliqua which, despite being able to interbreed, still show some ecological and reproductive differences. Because part of these differences, such as host and mate preferences, may be related to olfactory perception, we focused our investigation on the differential expression of Odorant-binding protein (OBP) gene family, which participate in initial steps of the olfactory signal transduction cascade. We investigated patterns of expression of eight OBP genes by qPCR in male and female head tissues of both species. The expression patterns of these OBPs suggest that some OBP genes are more likely involved with the location of food resources, while others seem to be associated with mate and pheromone perception. Furthermore, the expression patterns obtained at different reproductive stages indicate that OBP expression levels changed significantly after mating in males and females of both species. All eight OBP genes analyzed here showed significant levels of differential expression between A. fraterculus and A. obliqua, suggesting that they may hold important roles in their olfactory perception differences, and consequently, may potentially be involved in their differentiation.
Collapse
Affiliation(s)
- Emeline Boni Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.
| | - Carlos Congrains
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Felipe Rafael Torres
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | |
Collapse
|
25
|
Larter NK, Sun JS, Carlson JR. Organization and function of Drosophila odorant binding proteins. eLife 2016; 5. [PMID: 27845621 PMCID: PMC5127637 DOI: 10.7554/elife.20242] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/14/2016] [Indexed: 01/03/2023] Open
Abstract
Odorant binding proteins (Obps) are remarkable in their number, diversity, and abundance, yet their role in olfactory coding remains unclear. They are widely believed to be required for transporting hydrophobic odorants through an aqueous lymph to odorant receptors. We construct a map of the Drosophila antenna, in which the abundant Obps are mapped to olfactory sensilla with defined functions. The results lay a foundation for an incisive analysis of Obp function. The map identifies a sensillum type that contains a single abundant Obp, Obp28a. Surprisingly, deletion of the sole abundant Obp in these sensilla does not reduce the magnitude of their olfactory responses. The results suggest that this Obp is not required for odorant transport and that this sensillum does not require an abundant Obp. The results further suggest a novel role for this Obp in buffering changes in the odor environment, perhaps providing a molecular form of gain control. DOI:http://dx.doi.org/10.7554/eLife.20242.001 Insects use their sense of smell to find mates, to find food and – in the case of insects that transmit diseases such as malaria and Zika – to find us. If we can understand how insect scent detection works at the molecular and cellular level, we may be able to devise new ways of manipulating the insects’ sense of smell and prevent them from finding us. Insects contain a family of proteins called odorant binding proteins that are intriguing in several ways. They are numerous (there are 52 kinds in the fruit fly Drosophila), they are diverse and some are made in remarkably large amounts in the antennae. Fine hair-like structures known as olfactory sensilla protrude from the surface of the antennae. Odorant binding proteins are widely believed to carry odorant molecules through the fluid inside the sensilla to olfactory neurons, which then send signals that trigger the insect’s response to the scent. Larter et al. have now mapped the most abundant odorant binding proteins to the various olfactory sensilla of Drosophila. This revealed that a type of sensillum known as ab8 contained only one abundant odorant binding protein, called Obp28a. Unexpectedly, Larter et al. found that ab8 sensilla that are deprived of this protein respond strongly to odorant molecules. This result suggests that Obp28a is not required to transport odorants to the neurons in ab8; indeed, it appears that these neurons do not require an abundant odorant binding protein in order to respond to a scent. Instead, Obp28a helps to moderate the effects of sudden changes in the level of an odorant in the environment, so that concentrated odors do not trigger too large a response from the olfactory neurons. The details of the role that Obp28a plays in olfactory sensilla remain to be investigated in future studies, and the map created by Larter et al. also lays a foundation for studying the roles of other odorant binding proteins. The discovery that Obp28a is not needed to transport odorant molecules also raises questions about how insects are able to detect smells. Many odorant molecules repel water, so how do these molecules travel through the fluid in the sensilla if odorant binding proteins are not needed to transport them? DOI:http://dx.doi.org/10.7554/eLife.20242.002
Collapse
Affiliation(s)
- Nikki K Larter
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States.,Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| | - Jennifer S Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States.,Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| |
Collapse
|
26
|
Shorter JR, Dembeck LM, Everett LJ, Morozova TV, Arya GH, Turlapati L, St Armour GE, Schal C, Mackay TFC, Anholt RRH. Obp56h Modulates Mating Behavior in Drosophila melanogaster. G3 (BETHESDA, MD.) 2016; 6:3335-3342. [PMID: 27558663 PMCID: PMC5068952 DOI: 10.1534/g3.116.034595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/18/2016] [Indexed: 11/25/2022]
Abstract
Social interactions in insects are driven by conspecific chemical signals that are detected via olfactory and gustatory neurons. Odorant binding proteins (Obps) transport volatile odorants to chemosensory receptors, but their effects on behaviors remain poorly characterized. Here, we report that RNAi knockdown of Obp56h gene expression in Drosophila melanogaster enhances mating behavior by reducing courtship latency. The change in mating behavior that results from inhibition of Obp56h expression is accompanied by significant alterations in cuticular hydrocarbon (CHC) composition, including reduction in 5-tricosene (5-T), an inhibitory sex pheromone produced by males that increases copulation latency during courtship. Whole genome RNA sequencing confirms that expression of Obp56h is virtually abolished in Drosophila heads. Inhibition of Obp56h expression also affects expression of other chemoreception genes, including upregulation of lush in both sexes and Obp83ef in females, and reduction in expression of Obp19b and Or19b in males. In addition, several genes associated with lipid metabolism, which underlies the production of cuticular hydrocarbons, show altered transcript abundances. Our data show that modulation of mating behavior through reduction of Obp56h is accompanied by altered cuticular hydrocarbon profiles and implicate 5-T as a possible ligand for Obp56h.
Collapse
Affiliation(s)
- John R Shorter
- Department of Biological Sciences, Program in Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Lauren M Dembeck
- Department of Biological Sciences, Program in Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Logan J Everett
- Department of Biological Sciences, Program in Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Tatiana V Morozova
- Department of Biological Sciences, Program in Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Gunjan H Arya
- Department of Biological Sciences, Program in Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Lavanya Turlapati
- Department of Biological Sciences, Program in Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Genevieve E St Armour
- Department of Biological Sciences, Program in Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Coby Schal
- Department of Entomology and Plant Pathology, Program in Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Trudy F C Mackay
- Department of Biological Sciences, Program in Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Robert R H Anholt
- Department of Biological Sciences, Program in Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
27
|
Abstract
Sex differences in longevity can provide insights into novel mechanisms of aging, yet they have been little studied. Surprisingly, sex-specific longevity patterns are best known in wild animals. Evolutionary hypotheses accounting for longevity patterns in natural populations include differential vulnerability to environmental hazards, differential intensity of sexual selection, and distinct patterns of parental care. Mechanistic hypotheses focus on hormones, asymmetric inheritance of sex chromosomes and mitochondria. Virtually all intensively studied species show conditional sex differences in longevity. Humans are the only species in which one sex is known to have a ubiquitous survival advantage. Paradoxically, although women live longer, they suffer greater morbidity particularly late in life. This mortality-morbidity paradox may be a consequence of greater connective tissue responsiveness to sex hormones in women. Human females' longevity advantage may result from hormonal influences on inflammatory and immunological responses, or greater resistance to oxidative damage; current support for these mechanisms is weak.
Collapse
Affiliation(s)
- Steven N Austad
- Department of Biology and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA.
| | - Kathleen E Fischer
- Department of Biology and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA
| |
Collapse
|
28
|
Raad H, Ferveur JF, Ledger N, Capovilla M, Robichon A. Functional Gustatory Role of Chemoreceptors in Drosophila Wings. Cell Rep 2016; 15:1442-1454. [PMID: 27160896 DOI: 10.1016/j.celrep.2016.04.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/16/2016] [Accepted: 04/05/2016] [Indexed: 12/19/2022] Open
Abstract
Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca(2+) levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechanical grooming, which facilitates the contact between tastants and wing chemoreceptors, and the vibrations of flapping wings that nebulize volatile molecules as carboxylic acids. Together, these data demonstrate that the Drosophila wing chemosensory sensilla are a functional taste organ and that they may have a role in the exploration of ecological niches.
Collapse
Affiliation(s)
- Hussein Raad
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06900 Sophia Antipolis. 400 route des Chappes, P.O. Box 167, 06903 Sophia Antipolis, France
| | - Jean-François Ferveur
- UMR CNRS 6265/INRA 1324/Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Neil Ledger
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06900 Sophia Antipolis. 400 route des Chappes, P.O. Box 167, 06903 Sophia Antipolis, France
| | - Maria Capovilla
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06900 Sophia Antipolis. 400 route des Chappes, P.O. Box 167, 06903 Sophia Antipolis, France
| | - Alain Robichon
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06900 Sophia Antipolis. 400 route des Chappes, P.O. Box 167, 06903 Sophia Antipolis, France.
| |
Collapse
|
29
|
Genetic Background, Maternal Age, and Interaction Effects Mediate Rates of Crossing Over in Drosophila melanogaster Females. G3-GENES GENOMES GENETICS 2016; 6:1409-16. [PMID: 26994290 PMCID: PMC4856091 DOI: 10.1534/g3.116.027631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Meiotic recombination is a genetic process that is critical for proper chromosome segregation in many organisms. Despite being fundamental for organismal fitness, rates of crossing over vary greatly between taxa. Both genetic and environmental factors contribute to phenotypic variation in crossover frequency, as do genotype-environment interactions. Here, we test the hypothesis that maternal age influences rates of crossing over in a genotypic-specific manner. Using classical genetic techniques, we estimated rates of crossing over for individual Drosophila melanogaster females from five strains over their lifetime from a single mating event. We find that both age and genetic background significantly contribute to observed variation in recombination frequency, as do genotype-age interactions. We further find differences in the effect of age on recombination frequency in the two genomic regions surveyed. Our results highlight the complexity of recombination rate variation and reveal a new role of genotype by maternal age interactions in mediating recombination rate.
Collapse
|
30
|
Reference genes for accessing differential expression among developmental stages and analysis of differential expression of OBP genes in Anastrepha obliqua. Sci Rep 2016; 6:17480. [PMID: 26818909 PMCID: PMC4730201 DOI: 10.1038/srep17480] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/13/2015] [Indexed: 01/21/2023] Open
Abstract
The West Indian fruit fly, Anastrepha obliqua, is an important agricultural pest in the New World. The use of pesticide-free methods to control invasive species such as this reinforces the search for genes potentially useful in their genetic control. Therefore, the study of chemosensory proteins involved with a range of responses to the chemical environment will help not only on the understanding of the species biology but may also help the development of environmentally friendly pest control strategies. Here we analyzed the expression patterns of three OBP genes, Obp19d_2, Obp56a and Obp99c, across different phases of A. obliqua development by qPCR. In order to do so, we tested eight and identified three reference genes for data normalization, rpl17, rpl18 and ef1a, which displayed stability for the conditions here tested. All OBPs showed differential expression on adults and some differential expression among adult stages. Obp99c had an almost exclusive expression in males and Obp56a showed high expression in virgin females. Thereby, our results provide relevant data not only for other gene expression studies in this species, as well as for the search of candidate genes that may help in the development of new pest control strategies.
Collapse
|
31
|
Ivanov DK, Escott-Price V, Ziehm M, Magwire MM, Mackay TFC, Partridge L, Thornton JM. Longevity GWAS Using the Drosophila Genetic Reference Panel. J Gerontol A Biol Sci Med Sci 2015; 70:1470-8. [PMID: 25922346 PMCID: PMC4631106 DOI: 10.1093/gerona/glv047] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/26/2015] [Indexed: 01/09/2023] Open
Abstract
We used 197 Drosophila melanogaster Genetic Reference Panel (DGRP) lines to perform a genome-wide association analysis for virgin female lifespan, using ~2M common single nucleotide polymorphisms (SNPs). We found considerable genetic variation in lifespan in the DGRP, with a broad-sense heritability of 0.413. There was little power to detect signals at a genome-wide level in single-SNP and gene-based analyses. Polygenic score analysis revealed that a small proportion of the variation in lifespan (~4.7%) was explicable in terms of additive effects of common SNPs (≥2% minor allele frequency). However, several of the top associated genes are involved in the processes previously shown to impact ageing (eg, carbohydrate-related metabolism, regulation of cell death, proteolysis). Other top-ranked genes are of unknown function and provide promising candidates for experimental examination. Genes in the target of rapamycin pathway (TOR; Chrb, slif, mipp2, dredd, RpS9, dm) contributed to the significant enrichment of this pathway among the top-ranked 100 genes (p = 4.79×10(-06)). Gene Ontology analysis suggested that genes involved in carbohydrate metabolism are important for lifespan; including the InterPro term DUF227, which has been previously associated with lifespan determination. This analysis suggests that our understanding of the genetic basis of natural variation in lifespan from induced mutations is incomplete.
Collapse
Affiliation(s)
- Dobril K Ivanov
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | - Valentina Escott-Price
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, UK
| | - Matthias Ziehm
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK. Department of Genetics Evolution and Environment, The Institute of Healthy Ageing, University College London, UK
| | - Michael M Magwire
- Department of Biological Sciences, Program in Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh. Syngenta, Research Triangle Park, North Carolina
| | - Trudy F C Mackay
- Department of Biological Sciences, Program in Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh
| | - Linda Partridge
- Department of Genetics Evolution and Environment, The Institute of Healthy Ageing, University College London, UK. Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
32
|
Shiao MS, Chang JM, Fan WL, Lu MYJ, Notredame C, Fang S, Kondo R, Li WH. Expression Divergence of Chemosensory Genes between Drosophila sechellia and Its Sibling Species and Its Implications for Host Shift. Genome Biol Evol 2015; 7:2843-58. [PMID: 26430061 PMCID: PMC4684695 DOI: 10.1093/gbe/evv183] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Drosophila sechellia relies exclusively on the fruits of Morinda citrifolia, which are toxic to most insects, including its sibling species Drosophila melanogaster and Drosophila simulans. Although several odorant binding protein (Obp) genes and olfactory receptor (Or) genes have been suggested to be associated with the D. sechellia host shift, a broad view of how chemosensory genes have contributed to this shift is still lacking. We therefore studied the transcriptomes of antennae, the main organ responsible for detecting food resource and oviposition, of D. sechellia and its two sibling species. We wanted to know whether gene expression, particularly chemosensory genes, has diverged between D. sechellia and its two sibling species. Using a very stringent definition of differential gene expression, we found a higher percentage of chemosensory genes differentially expressed in the D. sechellia lineage (7.8%) than in the D. simulans lineage (5.4%); for upregulated chemosensory genes, the percentages were 8.8% in D. sechellia and 5.2% in D. simulans. Interestingly, Obp50a exhibited the highest upregulation, an approximately 100-fold increase, and Or85c--previously reported to be a larva-specific gene--showed approximately 20-fold upregulation in D. sechellia. Furthermore, Ir84a (ionotropic receptor 84a), which has been proposed to be associated with male courtship behavior, was significantly upregulated in D. sechellia. We also found expression divergence in most of the chemosensory gene families between D. sechellia and the two sibling species. Our observations suggest that the host shift of D. sechellia was associated with the enrichment of differentially expressed, particularly upregulated, chemosensory genes.
Collapse
Affiliation(s)
- Meng-Shin Shiao
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jia-Ming Chang
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institute of Human Genetics (IGH), UPR 1142, CNRS, Montpellier, France
| | - Wen-Lang Fan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Cedric Notredame
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Shu Fang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Rumi Kondo
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Department of Ecology and Evolution, University of Chicago
| |
Collapse
|
33
|
Ratliff EP, Mauntz RE, Kotzebue RW, Gonzalez A, Achal M, Barekat A, Finley KA, Sparhawk JM, Robinson JE, Herr DR, Harris GL, Joiner WJ, Finley KD. Aging and Autophagic Function Influences the Progressive Decline of Adult Drosophila Behaviors. PLoS One 2015; 10:e0132768. [PMID: 26182057 PMCID: PMC4504520 DOI: 10.1371/journal.pone.0132768] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/19/2015] [Indexed: 12/11/2022] Open
Abstract
Multiple neurological disorders are characterized by the abnormal accumulation of protein aggregates and the progressive impairment of complex behaviors. Our Drosophila studies demonstrate that middle-aged wild-type flies (WT, ~4-weeks) exhibit a marked accumulation of neural aggregates that is commensurate with the decline of the autophagy pathway. However, enhancing autophagy via neuronal over-expression of Atg8a (Atg8a-OE) reduces the age-dependent accumulation of aggregates. Here we assess basal locomotor activity profiles for single- and group-housed male and female WT flies and observed that only modest behavioral changes occurred by 4-weeks of age, with the noted exception of group-housed male flies. Male flies in same-sex social groups exhibit a progressive increase in nighttime activity. Infrared videos show aged group-housed males (4-weeks) are engaged in extensive bouts of courtship during periods of darkness, which is partly repressed during lighted conditions. Together, these nighttime courtship behaviors were nearly absent in young WT flies and aged Atg8a-OE flies. Previous studies have indicated a regulatory role for olfaction in male courtship partner choice. Coincidently, the mRNA expression profiles of several olfactory genes decline with age in WT flies; however, they are maintained in age-matched Atg8a-OE flies. Together, these results suggest that middle-aged male flies develop impairments in olfaction, which could contribute to the dysregulation of courtship behaviors during dark time periods. Combined, our results demonstrate that as Drosophila age, they develop early behavior defects that are coordinate with protein aggregate accumulation in the nervous system. In addition, the nighttime activity behavior is preserved when neuronal autophagy is maintained (Atg8a-OE flies). Thus, environmental or genetic factors that modify autophagic capacity could have a positive impact on neuronal aging and complex behaviors.
Collapse
Affiliation(s)
- Eric P. Ratliff
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, United States of America
- Expression Drug Designs, LLC, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Ruth E. Mauntz
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, United States of America
- Expression Drug Designs, LLC, San Diego, California, United States of America
| | - Roxanne W. Kotzebue
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, United States of America
- Expression Drug Designs, LLC, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Arysa Gonzalez
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, United States of America
- Expression Drug Designs, LLC, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Madhulika Achal
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Ayeh Barekat
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Kaelyn A. Finley
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, United States of America
- Expression Drug Designs, LLC, San Diego, California, United States of America
| | - Jonathan M. Sparhawk
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - James E. Robinson
- Departments of Neurosciences and Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Deron R. Herr
- Expression Drug Designs, LLC, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Greg L. Harris
- Expression Drug Designs, LLC, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - William J. Joiner
- Departments of Neurosciences and Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Kim D. Finley
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, United States of America
- Expression Drug Designs, LLC, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Zhang T, Coates BS, Ge X, Bai S, He K, Wang Z. Male- and Female-Biased Gene Expression of Olfactory-Related Genes in the Antennae of Asian Corn Borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae). PLoS One 2015; 10:e0128550. [PMID: 26062030 PMCID: PMC4463852 DOI: 10.1371/journal.pone.0128550] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 04/28/2015] [Indexed: 11/19/2022] Open
Abstract
The Asian corn borer (ACB), Ostrinia furnacalis (Guenée), is a destructive pest insect of cultivated corn crops, for which antennal-expressed receptors are important to detect olfactory cues for mate attraction and oviposition. Few olfactory related genes were reported in ACB, so we sequenced and characterized the transcriptome of male and female O. furnacalis antennae. Non-normalized male and female O. furnacalis antennal cDNA libraries were sequenced on the Illumina HiSeq 2000 and assembled into a reference transcriptome. Functional gene annotations identified putative olfactory-related genes; 56 odorant receptors (ORs), 23 odorant binding proteins (OBPs), and 10 CSPs. RNA-seq estimates of gene expression respectively showed up- and down-regulation of 79 and 30 genes in female compared to male antennae, which included up-regulation of 8 ORs and 1 PBP gene in male antennae as well as 3 ORs in female antennae. Quantitative real-time RT-PCR analyses validated strong male antennal-biased expression of OfurOR3, 4, 6, 7, 8, 11, 12, 13 and 14 transcripts, whereas OfurOR17 and 18 were specially expressed in female antennae. Sex-biases gene expression described here provides important insight in gene functionalization, and provides candidate genes putatively involved in environmental perception, host plant attraction, and mate recognition.
Collapse
Affiliation(s)
- Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Brad S. Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics Research Unit, Iowa State University, Ames, IA, 50011, United States of America
| | - Xing Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuxiong Bai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- * E-mail:
| |
Collapse
|
35
|
Du Y, Feng B, Li H, Liu C, Zeng J, Pan L, Yu Q. Field Evaluation of Agrotis ipsilon (Lepidoptera: Noctuidae) Pheromone Blends and Their Application to Monitoring Moth Populations in China. ENVIRONMENTAL ENTOMOLOGY 2015; 44:724-733. [PMID: 26313979 DOI: 10.1093/ee/nvv043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/11/2015] [Indexed: 06/04/2023]
Abstract
The attractiveness of a series of mixtures of (Z)-7-dodecenyl acetate (Z7-12:Ac), (Z)-9-tetradecenyl acetate (Z9-14:Ac), and (Z)-11-hexadecenyl acetate (Z11-16:Ac), the Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae) pheromone, were evaluated in four locations in China. The ternary blend of Z7-12:Ac, Z9-14:Ac, and Z11-16:Ac was the complete pheromone blend for A. ipsilon and the ratio of Z7-12:Ac and Z9-14:Ac was optimal at 3:1. The most attractive ratio of Z11-16:Ac to the other components depended on geographic location. The optimal ratio was 3:1:6 in Yunnan and Shanxi, 3:1:2 in Sichuan and ranged from 3:1:2 to 3:1:12 in Shanghai, which differs significantly from the ratio of 3:1:16 in Japan. The dose of the blend in the pheromone lure influenced attractiveness to male moths and was related to the temperature in the test locations. Attractiveness of sugar-acetic acid-baited and pheromone-baited traps to male and female moths was different before and after the start of flowering of the oilseed rape crop; large numbers of female moths were attracted to sugar-acetic acid traps before flowering but none after flowering had started. This was similar for male moths and there was no synergistic effect when sugar-acetic acid solutions and pheromone were used together. These studies suggest that pheromone trapping based on the blends of three components can be an effective tool to improve the efficiency of monitoring of this pest in China.
Collapse
Affiliation(s)
- Yongjun Du
- Institute of Health and Environmental Ecology, Wenzhou Medical University, University Park at Chashan Town, Wenzhou 325035, China.
| | - Bo Feng
- Institute of Health and Environmental Ecology, Wenzhou Medical University, University Park at Chashan Town, Wenzhou 325035, China
| | | | | | - Juan Zeng
- National Extension and Service Center of Agricultural Technology, Beijing 100125, China
| | - Lieming Pan
- Department of Research and Development, NewCon Inc., Ningbo 315860, China
| | - Qing Yu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650031, China
| |
Collapse
|
36
|
Appel M, Scholz CJ, Müller T, Dittrich M, König C, Bockstaller M, Oguz T, Khalili A, Antwi-Adjei E, Schauer T, Margulies C, Tanimoto H, Yarali A. Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster. PLoS One 2015; 10:e0126986. [PMID: 25992709 PMCID: PMC4436303 DOI: 10.1371/journal.pone.0126986] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/09/2015] [Indexed: 01/27/2023] Open
Abstract
Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/ or sequences co-varied with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance-associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hair-like organs distributed across the fly’s body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms.
Collapse
Affiliation(s)
- Mirjam Appel
- Research Group Molecular Systems Biology of Learning, Leibniz Institute of Neurobiology, Magdeburg, Germany
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Claus-Jürgen Scholz
- Laboratory for Microarray Applications, IZKF, University of Würzburg, Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Christian König
- Research Group Molecular Systems Biology of Learning, Leibniz Institute of Neurobiology, Magdeburg, Germany
| | | | - Tuba Oguz
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Afshin Khalili
- Research Group Molecular Systems Biology of Learning, Leibniz Institute of Neurobiology, Magdeburg, Germany
| | - Emmanuel Antwi-Adjei
- Research Group Molecular Systems Biology of Learning, Leibniz Institute of Neurobiology, Magdeburg, Germany
| | - Tamas Schauer
- Department of Physiological Chemistry, Butenandt Institute and LMU Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Carla Margulies
- Department of Physiological Chemistry, Butenandt Institute and LMU Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Hiromu Tanimoto
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Ayse Yarali
- Research Group Molecular Systems Biology of Learning, Leibniz Institute of Neurobiology, Magdeburg, Germany
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
37
|
Arya GH, Magwire MM, Huang W, Serrano-Negron YL, Mackay TFC, Anholt RRH. The genetic basis for variation in olfactory behavior in Drosophila melanogaster. Chem Senses 2015; 40:233-43. [PMID: 25687947 PMCID: PMC4398050 DOI: 10.1093/chemse/bjv001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The genetic underpinnings that contribute to variation in olfactory perception are not fully understood. To explore the genetic basis of variation in olfactory perception, we measured behavioral responses to 14 chemically diverse naturally occurring odorants in 260400 flies from 186 lines of the Drosophila melanogaster Genetic Reference Panel, a population of inbred wild-derived lines with sequenced genomes. We observed variation in olfactory behavior for all odorants. Low to moderate broad-sense heritabilities and the large number of tests for genotype-olfactory phenotype association performed precluded any individual variant from reaching formal significance. However, the top variants (nominal P < 5×10(-5)) were highly enriched for genes involved in nervous system development and function, as expected for a behavioral trait. Further, pathway enrichment analyses showed that genes tagged by the top variants included components of networks centered on cyclic guanosine monophosphate and inositol triphosphate signaling, growth factor signaling, Rho signaling, axon guidance, and regulation of neural connectivity. Functional validation with RNAi and mutations showed that 15 out of 17 genes tested indeed affect olfactory behavior. Our results show that in addition to chemoreceptors, variation in olfactory perception depends on polymorphisms that can result in subtle variations in synaptic connectivity within the nervous system.
Collapse
Affiliation(s)
- Gunjan H Arya
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology, and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA
| | - Michael M Magwire
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology, and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA
| | - Wen Huang
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology, and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA
| | - Yazmin L Serrano-Negron
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology, and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA
| | - Trudy F C Mackay
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology, and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA
| | - Robert R H Anholt
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology, and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA
| |
Collapse
|
38
|
|
39
|
Wang X, Xiong M, Lei C, Zhu F. The developmental transcriptome of the synanthropic fly Chrysomya megacephala and insights into olfactory proteins. BMC Genomics 2015; 16:20. [PMID: 25612629 PMCID: PMC4311427 DOI: 10.1186/s12864-014-1200-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chrysomya megacephala (Fabricius) is a prevalent and synanthropic blowfly which has two sides, for being a pathogenic vector, an efficient pollinator, a promising resource of proteins, lipids, chitosan, biofuel et al., and an important forensic indicator. Moreover olfactory proteins are crucial component to function in related processes. However, the genomic platform of C. megacephala remains relatively unavailable. Developmental transcriptomes of eggs, larvae from 1st instar to before pupa stage and adults from emergence to egg laying period were built by RNA-sequencing to establish sequence background of C. megacephala with special lights on olfactory proteins. RESULTS Clean reads in eggs, larvae and adults were annotated into 59486 transcripts. Transcripts were assembled into 22286, 17180, 18934 and 35900 unigenes in eggs, larvae, adults and the combined datasets, respectively. Unigenes were annotated using Nr (NCBI non-redundant protein sequences), Nt (NCBI non-redundant nucleotide sequences), GO (Gene Ontology), PFAM (Protein family), KOG/COG (Clusters of Orthologous Groups of proteins), Swiss-Prot (A manually annotated and reviewed protein sequence database), and KO (KEGG Orthology). Totally 12196 unigenes were annotated into 51 sub-categories belonging to three main GO categories; 8462 unigenes were classified functionally into 26 categories to KOG classifications; 5160 unigenes were functionally classified into 5 KEGG categories. Moreover, according to RSEM, the number of differentially expressed genes between larvae and eggs, adults and eggs, adults and larvae, and the common differentially expressed genes were 2637, 1804, 2628 and 258, respectively. Among them, 17 odorant-binding proteins (OBPs), 7 chemosensory proteins (CSPs) and 8 ionotropic receptors (IRs) were differently expressed in adults and larvae. Ten were confirmed as significant differentially expressed genes. Furthermore, OBP Cmeg32081-c4 was highly expressed in the female head and Cmeg33593_c0 were up-regulated with the increase of larval age. CONCLUSIONS A comprehensive sequence resource with desirable quality was built by comparative transcriptome of eggs, larvae and adults, enriching the genomic platform of C. megacephala. The identified differentially expressed genes would facilitate the understanding of metamorphosis, development and the fitness to environmental change of C. megacephala. OBP Cmeg32081-c4 and Cmeg33593_c0 might play a crucial role in the interactions between olfactory system and biological processes.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Mei Xiong
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Fen Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
40
|
Dippel S, Oberhofer G, Kahnt J, Gerischer L, Opitz L, Schachtner J, Stanke M, Schütz S, Wimmer EA, Angeli S. Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions. BMC Genomics 2014; 15:1141. [PMID: 25523483 PMCID: PMC4377858 DOI: 10.1186/1471-2164-15-1141] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/09/2014] [Indexed: 11/24/2022] Open
Abstract
Background Chemoreception is based on the senses of smell and taste that are crucial for animals to find new food sources, shelter, and mates. The initial step in olfaction involves the translocation of odorants from the periphery through the aqueous lymph of the olfactory sensilla to the odorant receptors most likely by chemosensory proteins (CSPs) or odorant binding proteins (OBPs). Results To better understand the roles of CSPs and OBPs in a coleopteran pest species, the red flour beetle Tribolium castaneum (Coleoptera, Tenebrionidae), we performed transcriptome analyses of male and female antennae, heads, mouthparts, legs, and bodies, which revealed that all 20 CSPs and 49 of the 50 previously annotated OBPs are transcribed. Only six of the 20 CSP are significantly transcriptionally enriched in the main chemosensory tissues (antenna and/or mouthparts), whereas of the OBPs all eight members of the antenna binding proteins II (ABPII) subgroup, 18 of the 20 classic OBP subgroup, the C + OBP, and only five of the 21 C-OBPs show increased chemosensory tissue expression. By MALDI-TOF-TOF MS protein fingerprinting, we confirmed three CSPs, four ABPIIs, three classic OBPs, and four C-OBPs in the antennae. Conclusions Most of the classic OBPs and all ABPIIs are likely involved in chemoreception. A few are also present in other tissues such as odoriferous glands and testes and may be involved in release or transfer of chemical signals. The majority of the CSPs as well as the C-OBPs are not enriched in antennae or mouthparts, suggesting a more general role in the transport of hydrophobic molecules. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1141) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ernst A Wimmer
- Department of Developmental Biology, Georg-August-University Goettingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany.
| | | |
Collapse
|
41
|
Sagri E, Reczko M, Tsoumani KT, Gregoriou ME, Harokopos V, Mavridou AM, Tastsoglou S, Athanasiadis K, Ragoussis J, Mathiopoulos KD. The molecular biology of the olive fly comes of age. BMC Genet 2014; 15 Suppl 2:S8. [PMID: 25472866 PMCID: PMC4255830 DOI: 10.1186/1471-2156-15-s2-s8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Olive cultivation blends with the history of the Mediterranean countries since ancient times. Even today, activities around the olive tree constitute major engagements of several people in the countryside of both sides of the Mediterranean basin. The olive fly is, beyond doubt, the most destructive pest of cultivated olives. The female fly leaves its eggs in the olive fruit. Upon emergence, the larvae feed on the olive sap, thus destroying the fruit. If untreated, practically all olives get infected. The use of chemical insecticides constitutes the principal olive fly control approach. The Sterile Insect Technique (SIT), an environmentally friendly alternative control method, had been tried in pilot field applications in the 1970's, albeit with no practical success. This was mainly attributed to the low, non-antagonistic quality of the mixed-sex released insects. Many years of experience from successful SIT applications in related species, primarily the Mediterranean fruit fly, Ceratitis capitata, demonstrated that efficient SIT protocols require the availability of fundamental genetic and molecular information. Results Among the primary systems whose understanding can contribute towards novel SIT approaches (or its recently developed alternative RIDL: Release of Insects carrying a Dominant Lethal) is the reproductive, since the ability to manipulate the reproductive system would directly affect the insect's fertility. In addition, the analysis of early embryonic promoters and apoptotic genes would provide tools that confer dominant early-embryonic lethality during mass-rearing. Here we report the identification of several genes involved in these systems through whole transcriptome analysis of female accessory glands (FAGs) and spermathecae, as well as male testes. Indeed, analysis of differentially expressed genes in these tissues revealed higher metabolic activity in testes than in FAGs/spermathecae. Furthermore, at least five olfactory-related genes were shown to be differentially expressed in the female and male reproductive systems analyzed. Finally, the expression profile of the embryonic serendipity-α locus and the pre-apoptotic head involution defective gene were analyzed during embryonic developmental stages. Conclusions Several years of molecular studies on the olive fly can now be combined with new information from whole transcriptome analyses and lead to a deep understanding of the biology of this notorious insect pest. This is a prerequisite for the development of novel embryonic lethality female sexing strains for successful SIT efforts which, combined with improved mass-reared conditions, give new hope for efficient SIT applications for the olive fly.
Collapse
|
42
|
Librado P, Rozas J. Uncovering the functional constraints underlying the genomic organization of the odorant-binding protein genes. Genome Biol Evol 2014; 5:2096-108. [PMID: 24148943 PMCID: PMC3845639 DOI: 10.1093/gbe/evt158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Animal olfactory systems have a critical role for the survival and reproduction of individuals. In insects, the odorant-binding proteins (OBPs) are encoded by a moderately sized gene family, and mediate the first steps of the olfactory processing. Most OBPs are organized in clusters of a few paralogs, which are conserved over time. Currently, the biological mechanism explaining the close physical proximity among OBPs is not yet established. Here, we conducted a comprehensive study aiming to gain insights into the mechanisms underlying the OBP genomic organization. We found that the OBP clusters are embedded within large conserved arrangements. These organizations also include other non-OBP genes, which often encode proteins integral to plasma membrane. Moreover, the conservation degree of such large clusters is related to the following: 1) the promoter architecture of the confined genes, 2) a characteristic transcriptional environment, and 3) the chromatin conformation of the chromosomal region. Our results suggest that chromatin domains may restrict the location of OBP genes to regions having the appropriate transcriptional environment, leading to the OBP cluster structure. However, the appropriate transcriptional environment for OBP and the other neighbor genes is not dominated by reduced levels of expression noise. Indeed, the stochastic fluctuations in the OBP transcript abundance may have a critical role in the combinatorial nature of the olfactory coding process.
Collapse
Affiliation(s)
- Pablo Librado
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
43
|
Younus F, Chertemps T, Pearce SL, Pandey G, Bozzolan F, Coppin CW, Russell RJ, Maïbèche-Coisne M, Oakeshott JG. Identification of candidate odorant degrading gene/enzyme systems in the antennal transcriptome of Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 53:30-43. [PMID: 25038463 DOI: 10.1016/j.ibmb.2014.07.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
The metabolism of volatile signal molecules by odorant degrading enzymes (ODEs) is crucial to the ongoing sensitivity and specificity of chemoreception in various insects, and a few specific esterases, cytochrome P450s, glutathione S-transferases (GSTs) and UDP-glycosyltransferases (UGTs) have previously been implicated in this process. Significant progress has been made in characterizing ODEs in Lepidoptera but very little is known about them in Diptera, including in Drosophila melanogaster, a major insect model. We have therefore carried out a transcriptomic analysis of the antennae of D. melanogaster in order to identify candidate ODEs. Virgin male and female and mated female antennal transcriptomes were determined by RNAseq. As with the Lepidoptera, we found that many esterases, cytochrome P450 enzymes, GSTs and UGTs are expressed in D. melanogaster antennae. As olfactory genes generally show selective expression in the antennae, a comparison to previously published transcriptomes for other tissues has been performed, showing preferential expression in the antennae for one esterase, JHEdup, one cytochrome P450, CYP308a1, and one GST, GSTE4. These largely uncharacterized enzymes are now prime candidates for ODE functions. JHEdup was expressed heterologously and found to have high catalytic activity against a chemically diverse group of known ester odorants for this species. This is a finding consistent with an ODE although it might suggest a general role in clearing several odorants rather than a specific role in clearing a particular odorant. Our findings do not preclude the possibility of odorant degrading functions for other antennally expressed esterases, P450s, GSTs and UGTs but, if so, they suggest that these enzymes also have additional functions in other tissues.
Collapse
Affiliation(s)
- Faisal Younus
- CSIRO Ecosystems Sciences, Black Mountain, Clunies Ross Street, Canberra, ACT 0200, Australia; Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Thomas Chertemps
- Université Pierre et Marie Curie, Institut d'Ecologie et des Sciences de l'Environnement de Paris, F-75252 Paris, France
| | - Stephen L Pearce
- CSIRO Ecosystems Sciences, Black Mountain, Clunies Ross Street, Canberra, ACT 0200, Australia; Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Gunjan Pandey
- CSIRO Ecosystems Sciences, Black Mountain, Clunies Ross Street, Canberra, ACT 0200, Australia
| | - Françoise Bozzolan
- Université Pierre et Marie Curie, Institut d'Ecologie et des Sciences de l'Environnement de Paris, F-75252 Paris, France
| | - Christopher W Coppin
- CSIRO Ecosystems Sciences, Black Mountain, Clunies Ross Street, Canberra, ACT 0200, Australia
| | - Robyn J Russell
- CSIRO Ecosystems Sciences, Black Mountain, Clunies Ross Street, Canberra, ACT 0200, Australia
| | - Martine Maïbèche-Coisne
- Université Pierre et Marie Curie, Institut d'Ecologie et des Sciences de l'Environnement de Paris, F-75252 Paris, France
| | - John G Oakeshott
- CSIRO Ecosystems Sciences, Black Mountain, Clunies Ross Street, Canberra, ACT 0200, Australia.
| |
Collapse
|
44
|
Siciliano P, Scolari F, Gomulski LM, Falchetto M, Manni M, Gabrieli P, Field LM, Zhou JJ, Gasperi G, Malacrida AR. Sniffing out chemosensory genes from the Mediterranean fruit fly, Ceratitis capitata. PLoS One 2014; 9:e85523. [PMID: 24416419 PMCID: PMC3885724 DOI: 10.1371/journal.pone.0085523] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022] Open
Abstract
The Mediterranean fruit fly, Ceratitis capitata (medfly), is an extremely invasive agricultural pest due to its extremely wide host range and its ability to adapt to a broad range of climatic conditions and habitats. Chemosensory behaviour plays an important role in many crucial stages in the life of this insect, such as the detection of pheromone cues during mate pursuit and odorants during host plant localisation. Thus, the analysis of the chemosensory gene repertoire is an important step for the interpretation of the biology of this species and consequently its invasive potential. Moreover, these genes may represent ideal targets for the development of novel, effective control methods and pest population monitoring systems. Expressed sequence tag libraries from C. capitata adult heads, embryos, male accessory glands and testes were screened for sequences encoding putative odorant binding proteins (OBPs). A total of seventeen putative OBP transcripts were identified, corresponding to 13 Classic, three Minus-C and one Plus-C subfamily OBPs. The tissue distributions of the OBP transcripts were assessed by RT-PCR and a subset of five genes with predicted proteins sharing high sequence similarities and close phylogenetic affinities to Drosophila melanogaster pheromone binding protein related proteins (PBPRPs) were characterised in greater detail. Real Time quantitative PCR was used to assess the effects of maturation, mating and time of day on the transcript abundances of the putative PBPRP genes in the principal olfactory organs, the antennae, in males and females. The results of the present study have facilitated the annotation of OBP genes in the recently released medfly genome sequence and represent a significant contribution to the characterisation of the medfly chemosensory repertoire. The identification of these medfly OBPs/PBPRPs permitted evolutionary and functional comparisons with homologous sequences from other tephritids of the genera Bactrocera and Rhagoletis.
Collapse
Affiliation(s)
- Paolo Siciliano
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ludvik M. Gomulski
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco Falchetto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mosè Manni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Paolo Gabrieli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Linda M. Field
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Anna R. Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
45
|
Lavagnino NJ, Arya GH, Korovaichuk A, Fanara JJ. Genetic architecture of olfactory behavior in Drosophila melanogaster: differences and similarities across development. Behav Genet 2013; 43:348-59. [PMID: 23563598 PMCID: PMC3691330 DOI: 10.1007/s10519-013-9592-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 03/18/2013] [Indexed: 01/22/2023]
Abstract
In the holometabolous insect Drosophila melanogaster, genetic, physiological and anatomical aspects of olfaction are well known in the adult stage, while larval stages olfactory behavior has received some attention it has been less studied than its adult counterpart. Most of these studies focus on olfactory receptor (Or) genes that produce peripheral odor recognition. In this paper, through a loss-of-function screen using P-element inserted lines and also by means of expression analyses of larval olfaction candidate genes, we extended the uncovering of the genetic underpinnings of D. melanogaster larval olfactory behavior by demonstrating that larval olfactory behavior is, in addition to Or genes, orchestrated by numerous genes with diverse functions. Also, our results point out that the genetic architecture of olfactory behavior in D. melanogaster presents a dynamic and changing organization across environments and ontogeny.
Collapse
Affiliation(s)
- N J Lavagnino
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
46
|
Primmer CR, Papakostas S, Leder EH, Davis MJ, Ragan MA. Annotated genes and nonannotated genomes: cross-species use of Gene Ontology in ecology and evolution research. Mol Ecol 2013; 22:3216-41. [DOI: 10.1111/mec.12309] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 02/01/2023]
Affiliation(s)
- C. R. Primmer
- Department of Biology; University of Turku; 20014 Turku Finland
| | - S. Papakostas
- Department of Biology; University of Turku; 20014 Turku Finland
| | - E. H. Leder
- Department of Biology; University of Turku; 20014 Turku Finland
| | - M. J. Davis
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Qld 4072 Australia
| | - M. A. Ragan
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Qld 4072 Australia
| |
Collapse
|
47
|
Swarup S, Huang W, Mackay TFC, Anholt RRH. Analysis of natural variation reveals neurogenetic networks for Drosophila olfactory behavior. Proc Natl Acad Sci U S A 2013; 110:1017-22. [PMID: 23277560 PMCID: PMC3549129 DOI: 10.1073/pnas.1220168110] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the relationship between genetic variation and phenotypic variation for quantitative traits is necessary for predicting responses to natural and artificial selection and disease risk in human populations, but is challenging because of large sample sizes required to detect and validate loci with small effects. Here, we used the inbred, sequenced, wild-derived lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to perform three complementary genome-wide association (GWA) studies for natural variation in olfactory behavior. The first GWA focused on single nucleotide polymorphisms (SNPs) associated with mean differences in olfactory behavior in the DGRP, the second was an extreme quantitative trait locus GWA on an outbred advanced intercross population derived from extreme DGRP lines, and the third was for SNPs affecting the variance among DGRP lines. No individual SNP in any analysis was associated with variation in olfactory behavior by using a strict threshold accounting for multiple tests, and no SNP overlapped among the analyses. However, combining the top SNPs from all three analyses revealed a statistically enriched network of genes involved in cellular signaling and neural development. We used mutational and gene expression analyses to validate both candidate genes and network connectivity at a high rate. The lack of replication between the GWA analyses, small marginal SNP effects, and convergence on common cellular networks were likely attributable to epistasis. These results suggest that fully understanding the genotype-phenotype relationship requires a paradigm shift from a focus on single SNPs to pathway associations.
Collapse
Affiliation(s)
- Shilpa Swarup
- Departments of Genetics and
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7614
| | - Wen Huang
- Departments of Genetics and
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7614
| | - Trudy F. C. Mackay
- Departments of Genetics and
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7614
| | - Robert R. H. Anholt
- Departments of Genetics and
- Biology and
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7614
| |
Collapse
|
48
|
Xu J, Baulding J, Palli SR. Proteomics of Tribolium castaneum seminal fluid proteins: identification of an angiotensin-converting enzyme as a key player in regulation of reproduction. J Proteomics 2012. [PMID: 23195916 DOI: 10.1016/j.jprot.2012.11.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Seminal fluid proteins (SFPs) play important roles in regulation of reproduction and behavior. Proteomics approaches were used to identify 13 SFPs, including 3 new proteins in the red flour beetle, Tribolium castaneum. The 13 SFP genes identified code for Serpin, cysteine-rich protein, odorant binding protein-like (OBPL, G10064 and G10065), Kunitz-like protease inhibitor precursor, and WD 40 family protein and are predominantly expressed in the male accessory glands. The genes coding for 13 putative SFPs were knocked down in males; the RNAi males were mated with virgin females, and the number of eggs produced by the mated females was quantified. Knockdown in the expression of the gene coding for a protein similar to angiotensin-converting enzyme 9 (G15465, TcACE) in the males caused a decrease in egg production by the females when compared to the eggs produced by the females mated with control males. In addition, knockdown in the expression of the gene coding for heat shock cognate 70 led to a reduction in the amount of proteins produced by the male accessory glands by 55%. These data suggest that angiotensin-converting enzyme produced in the male seminal vesicles plays important roles in sperm protection during and after transfer to females.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | |
Collapse
|
49
|
Scolari F, Gomulski LM, Ribeiro JMC, Siciliano P, Meraldi A, Falchetto M, Bonomi A, Manni M, Gabrieli P, Malovini A, Bellazzi R, Aksoy S, Gasperi G, Malacrida AR. Transcriptional profiles of mating-responsive genes from testes and male accessory glands of the Mediterranean fruit fly, Ceratitis capitata. PLoS One 2012; 7:e46812. [PMID: 23071645 PMCID: PMC3469604 DOI: 10.1371/journal.pone.0046812] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/05/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Insect seminal fluid is a complex mixture of proteins, carbohydrates and lipids, produced in the male reproductive tract. This seminal fluid is transferred together with the spermatozoa during mating and induces post-mating changes in the female. Molecular characterization of seminal fluid proteins in the Mediterranean fruit fly, Ceratitis capitata, is limited, although studies suggest that some of these proteins are biologically active. METHODOLOGY/PRINCIPAL FINDINGS We report on the functional annotation of 5914 high quality expressed sequence tags (ESTs) from the testes and male accessory glands, to identify transcripts encoding putative secreted peptides that might elicit post-mating responses in females. The ESTs were assembled into 3344 contigs, of which over 33% produced no hits against the nr database, and thus may represent novel or rapidly evolving sequences. Extraction of the coding sequences resulted in a total of 3371 putative peptides. The annotated dataset is available as a hyperlinked spreadsheet. Four hundred peptides were identified with putative secretory activity, including odorant binding proteins, protease inhibitor domain-containing peptides, antigen 5 proteins, mucins, and immunity-related sequences. Quantitative RT-PCR-based analyses of a subset of putative secretory protein-encoding transcripts from accessory glands indicated changes in their abundance after one or more copulations when compared to virgin males of the same age. These changes in abundance, particularly evident after the third mating, may be related to the requirement to replenish proteins to be transferred to the female. CONCLUSIONS/SIGNIFICANCE We have developed the first large-scale dataset for novel studies on functions and processes associated with the reproductive biology of Ceratitis capitata. The identified genes may help study genome evolution, in light of the high adaptive potential of the medfly. In addition, studies of male recovery dynamics in terms of accessory gland gene expression profiles and correlated remating inhibition mechanisms may permit the improvement of pest management approaches.
Collapse
Affiliation(s)
- Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ludvik M. Gomulski
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - José M. C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Paolo Siciliano
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Alice Meraldi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco Falchetto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Angelica Bonomi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mosè Manni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Paolo Gabrieli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Alberto Malovini
- IRCCS, Fondazione Salvatore Maugeri, Pavia, Italy
- Istituto Universitario di Studi Superiori (IUSS), Pavia, Italy
- Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
| | - Riccardo Bellazzi
- Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Anna R. Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
50
|
Stone EA. Joint genotyping on the fly: identifying variation among a sequenced panel of inbred lines. Genome Res 2012; 22:966-74. [PMID: 22367192 PMCID: PMC3337441 DOI: 10.1101/gr.129122.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 02/21/2012] [Indexed: 02/03/2023]
Abstract
High-throughput sequencing is enabling remarkably deep surveys of genomic variation. It is now possible to completely sequence multiple individuals from a single species, yet the identification of variation among them remains an evolving computational challenge. This challenge is compounded for experimental organisms when strains are studied instead of individuals. In response, we present the Joint Genotyper for Inbred Lines (JGIL) as a method for obtaining genotypes and identifying variation among a large panel of inbred strains or lines. JGIL inputs the sequence reads from each line after their alignment to a common reference. Its probabilistic model includes site-specific parameters common to all lines that describe the frequency of nucleotides segregating in the population from which the inbred panel was derived. The distribution of line genotypes is conditional on these parameters and reflects the experimental design. Site-specific error probabilities, also common to all lines, parameterize the distribution of reads conditional on line genotype and realized coverage. Both sets of parameters are estimated per site from the aggregate read data, and posterior probabilities are calculated to decode the genotype of each line. We present an application of JGIL to 162 inbred Drosophila melanogaster lines from the Drosophila Genetic Reference Panel. We explore by simulation the effect of varying coverage, sequencing error, mapping error, and the number of lines. In doing so, we illustrate how JGIL is robust to moderate levels of error. Supported by these analyses, we advocate the importance of modeling the data and the experimental design when possible.
Collapse
Affiliation(s)
- Eric A Stone
- Department of Genetics and Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27603, USA.
| |
Collapse
|