1
|
Holtz N, Albertson RC. Variable Craniofacial Shape and Development among Multiple Cave-Adapted Populations of Astyanax mexicanus. Integr Org Biol 2024; 6:obae030. [PMID: 39234027 PMCID: PMC11372417 DOI: 10.1093/iob/obae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024] Open
Abstract
Astyanax mexicanus is a freshwater fish species with blind cave morphs and sighted surface morphs. Like other troglodytic species, independently evolved cave-dwelling A. mexicanus populations share several stereotypic phenotypes, including the expansion of certain sensory systems, as well as the loss of eyes and pigmentation. Here, we assess the extent to which there is also parallelism in craniofacial development across cave populations. Since multiple forces may be acting upon variation in the A. mexicanus system, including phylogenetic history, selection, and developmental constraint, several outcomes are possible. For example, eye regression may have triggered a conserved series of compensatory developmental events, in which case we would expect to observe highly similar craniofacial phenotypes across cave populations. Selection for cave-specific foraging may also lead to the evolution of a conserved craniofacial phenotype, especially in regions of the head directly associated with feeding. Alternatively, in the absence of a common axis of selection or strong developmental constraints, craniofacial shape may evolve under neutral processes such as gene flow, drift, and bottlenecking, in which case patterns of variation should reflect the evolutionary history of A. mexicanus. Our results found that cave-adapted populations do share certain anatomical features; however, they generally did not support the hypothesis of a conserved craniofacial phenotype across caves, as nearly every pairwise comparison was statistically significant, with greater effect sizes noted between more distantly related cave populations with little gene flow. A similar pattern was observed for developmental trajectories. We also found that morphological disparity was lower among all three cave populations versus surface fish, suggesting eye loss is not associated with increased variation, which would be consistent with a release of developmental constraint. Instead, this pattern reflects the relatively low genetic diversity within cave populations. Finally, magnitudes of craniofacial integration were found to be similar among all groups, meaning that coordinated development among anatomical units is robust to eye loss in A. mexicanus. We conclude that, in contrast to many conserved phenotypes across cave populations, global craniofacial shape is more variable, and patterns of shape variation are more in line with population structure than developmental architecture or selection.
Collapse
Affiliation(s)
- N Holtz
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - R C Albertson
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Berning D, Heerema H, Gross JB. The spatiotemporal and genetic architecture of extraoral taste buds in Astyanax cavefish. Commun Biol 2024; 7:951. [PMID: 39107459 PMCID: PMC11303775 DOI: 10.1038/s42003-024-06635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Intense environmental pressures can yield both regressive and constructive traits through complex evolutionary mechanisms. Although regression is well-studied, the biological bases of constructive features are less well understood. Cave-dwelling Astyanax fish harbor prolific extraoral taste buds on their heads, which are absent in conspecific surface-dwellers. Here, we present novel ontogenetic data demonstrating extraoral taste buds appear gradually and late in life history. This appearance is similar but non-identical in different cavefish populations, where patterning has evolved to permit taste bud re-specification across the endoderm-ectoderm germ layer boundary. Quantitative genetic analyses revealed that spatially distinct taste buds on the head are primarily mediated by two different cave-dominant loci. While the precise function of this late expansion on to the head is unknown, the appearance of extraoral taste buds coincides with a dietary shift from live-foods to bat guano, suggesting an adaptive mechanism to detect nutrition in food-starved caves. This work provides fundamental insight to a constructive evolutionary feature, arising late in life history, promising a new window into unresolved features of vertebrate sensory organ development.
Collapse
Affiliation(s)
- Daniel Berning
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Halle Heerema
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Riddle MR, Nguyen NK, Nave M, Peuß R, Maldonado E, Rohner N, Tabin CJ. Host evolution shapes gut microbiome composition in Astyanax mexicanus. Ecol Evol 2024; 14:e11192. [PMID: 38571802 PMCID: PMC10985381 DOI: 10.1002/ece3.11192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
The ecological and genetic changes that underlie the evolution of host-microbe interactions remain elusive, primarily due to challenges in disentangling the variables that alter microbiome composition. To understand the impact of host habitat, host genetics, and evolutionary history on microbial community structure, we examined gut microbiomes of river- and three cave-adapted morphotypes of the Mexican tetra, Astyanax mexicanus, in their natural environments and under controlled laboratory conditions. Field-collected samples were dominated by very few taxa and showed considerable interindividual variation. We found that lab-reared fish exhibited increased microbiome richness and distinct composition compared to their wild counterparts, underscoring the significant influence of habitat. Most notably, however, we found that morphotypes reared on the same diet throughout life developed distinct microbiomes suggesting that genetic loci resulting from cavefish evolution shape microbiome composition. We observed stable differences in Fusobacteriota abundance between morphotypes and demonstrated that this could be used as a trait for quantitative trait loci mapping to uncover the genetic basis of microbial community structure.
Collapse
Affiliation(s)
| | | | | | - Robert Peuß
- Institute for Evolution and BiodiversityUniversity of MünsterMünsterGermany
| | - Ernesto Maldonado
- Institute of Marine Sciences and LimnologyUniversidad Nacional Autonoma de Mexico, UNAMPuerto MorelosMexico
| | - Nicolas Rohner
- Stowers Institute for Medical ResearchKansas CityMissouriUSA
| | | |
Collapse
|
4
|
Wiese J, Richards E, Kowalko JE, McGaugh SE. Loci associated with cave-derived traits concentrate in specific regions of the Mexican cavefish genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587360. [PMID: 38585759 PMCID: PMC10996652 DOI: 10.1101/2024.03.29.587360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A major goal of modern evolutionary biology is connecting phenotypic evolution with its underlying genetic basis. The Mexican cavefish (Astyanax mexicanus), a characin fish species comprised of a surface ecotype and a cave-derived ecotype, is well suited as a model to study the genetic mechanisms underlying adaptation to extreme environments. Here we map 206 previously published quantitative trait loci (QTL) for cave-derived traits in A. mexicanus to the newest version of the surface fish genome assembly, AstMex3. This analysis revealed that QTL cluster in the genome more than expected by chance, and this clustering is not explained by the distribution of genes in the genome. To investigate whether certain characteristics of the genome facilitate phenotypic evolution, we tested whether genomic characteristics, such as highly mutagenic CpG sites, are reliable predictors of the sites of trait evolution but did not find any significant trends. Finally, we combined the QTL map with previously collected expression and selection data to identify a list of 36 candidate genes that may underlie the repeated evolution of cave phenotypes, including rgrb which is predicted to be involved in phototransduction. We found this gene has disrupted exons in all non-hybrid cave populations but intact reading frames in surface fish. Overall, our results suggest specific "evolutionary hotspots" in the genome may play significant roles in driving adaptation to the cave environment in Astyanax mexicanus and demonstrate how this compiled dataset can facilitate our understanding of the genetic basis of repeated evolution in the Mexican cavefish.
Collapse
Affiliation(s)
- Jonathan Wiese
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN
| | - Emilie Richards
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN
| | | | - Suzanne E McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN
| |
Collapse
|
5
|
Ponnimbaduge Perera P, Perez Guerra D, Riddle MR. The Mexican Tetra, Astyanax mexicanus, as a Model System in Cell and Developmental Biology. Annu Rev Cell Dev Biol 2023; 39:23-44. [PMID: 37437210 DOI: 10.1146/annurev-cellbio-012023-014003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Our understanding of cell and developmental biology has been greatly aided by a focus on a small number of model organisms. However, we are now in an era where techniques to investigate gene function can be applied across phyla, allowing scientists to explore the diversity and flexibility of developmental mechanisms and gain a deeper understanding of life. Researchers comparing the eyeless cave-adapted Mexican tetra, Astyanax mexicanus, with its river-dwelling counterpart are revealing how the development of the eyes, pigment, brain, cranium, blood, and digestive system evolves as animals adapt to new environments. Breakthroughs in our understanding of the genetic and developmental basis of regressive and constructive trait evolution have come from A. mexicanus research. They include understanding the types of mutations that alter traits, which cellular and developmental processes they affect, and how they lead to pleiotropy. We review recent progress in the field and highlight areas for future investigations that include evolution of sex differentiation, neural crest development, and metabolic regulation of embryogenesis.
Collapse
Affiliation(s)
| | | | - Misty R Riddle
- Department of Biology, University of Nevada, Reno, Nevada, USA;
| |
Collapse
|
6
|
Powers AK, Hyacinthe C, Riddle MR, Kim YK, Amaismeier A, Thiel K, Martineau B, Ferrante E, Moran RL, McGaugh SE, Boggs TE, Gross JB, Tabin CJ. Genetic mapping of craniofacial traits in the Mexican tetra reveals loci associated with bite differences between cave and surface fish. BMC Ecol Evol 2023; 23:41. [PMID: 37626324 PMCID: PMC10463419 DOI: 10.1186/s12862-023-02149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The Mexican tetra, Astyanax mexicanus, includes interfertile surface-dwelling and cave-dwelling morphs, enabling powerful studies aimed at uncovering genes involved in the evolution of cave-associated traits. Compared to surface fish, cavefish harbor several extreme traits within their skull, such as a protruding lower jaw, a wider gape, and an increase in tooth number. These features are highly variable between individual cavefish and even across different cavefish populations. RESULTS To investigate these traits, we created a novel feeding behavior assay wherein bite impressions could be obtained. We determined that fish with an underbite leave larger bite impressions with an increase in the number of tooth marks. Capitalizing on the ability to produce hybrids from surface and cavefish crosses, we investigated genes underlying these segregating orofacial traits by performing Quantitative Trait Loci (QTL) analysis with F2 hybrids. We discovered significant QTL for bite (underbite vs. overbite) that mapped to a single region of the Astyanax genome. Within this genomic region, multiple genes exhibit coding region mutations, some with known roles in bone development. Further, we determined that there is evidence that this genomic region is under natural selection. CONCLUSIONS This work highlights cavefish as a valuable genetic model for orofacial patterning and will provide insight into the genetic regulators of jaw and tooth development.
Collapse
Affiliation(s)
- Amanda K Powers
- Department of Genetics, Blavatnik Institute at Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Carole Hyacinthe
- Department of Genetics, Blavatnik Institute at Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Misty R Riddle
- Department of Biology, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557, USA
| | - Young Kwang Kim
- Harvard School of Dental Medicine, 188 Longwood Ave., Boston, MA, 02115, USA
| | - Alleigh Amaismeier
- Department of Biology, Xavier University, 3800 Victory Pkwy., Cincinnati, OH, 45207, USA
| | - Kathryn Thiel
- Department of Biology, Xavier University, 3800 Victory Pkwy., Cincinnati, OH, 45207, USA
| | - Brian Martineau
- Department of Genetics, Blavatnik Institute at Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Emma Ferrante
- Department of Genetics, Blavatnik Institute at Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Rachel L Moran
- Department of Biology, Texas A & M University, 100 Butler Hall, College Station, TX, 77843, USA
| | - Suzanne E McGaugh
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1500 Gortner Ave., Saint Paul, MN, 55108, USA
| | - Tyler E Boggs
- Department of Biological Sciences, University of Cincinnati, 312 College Dr., Cincinnati, OH, 45221, USA
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, 312 College Dr., Cincinnati, OH, 45221, USA
| | - Clifford J Tabin
- Department of Genetics, Blavatnik Institute at Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Gross JB, Powers AK. Reinterpreting the work of Charles Breder: Sensory neuromasts and orbital skeleton variation in eyeless Astyanax cavefish. Dev Biol 2023; 493:13-16. [PMID: 36347313 DOI: 10.1016/j.ydbio.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
Charles Breder, a pioneering researcher of blind Mexican cavefish was the first to note extreme variation in the facial skeleton of this intriguing subterranean-dwelling organism. Using a system of polar coordinate plots, he identified substantial dysmorphic changes affecting bones of the orbital skeleton. A complication of his landmark publication from 1944 was an error in the number of orbital bones depicted for this species. Intriguingly, however, he proposed an unknown "organizing force" likely influences final bone position and associated dysmorphia. At the time this was merely hypothetical. Roughly eight decades since its publication, however, insights into sensory influences on facial bone development may explain dysmorphia and variation in bone numbers for Astyanax cavefish. A morphological association between mechano-sensory neuromasts of the lateral line and dermal bones of the facial skeleton had been appreciated in the classical literature, but the polarity of this interaction has long remained unclear. Here, we propose that sensory-skeletal integration between sensory neuromasts and bones explain the incomplete numbers of bones, and dysmorphic features such as fusion between neighboring elements. We propose that in closely-related surface fish (and most teleost fish) this developmental coupling enables the sensory and skeletal systems to become integrated into a functional unit over the course of life history. In this opinion article, we discuss the relevance of this (poorly understood) phenomenon as a potential evolutionary source of variation in the facial bone structures of taxa across deep geologic time. We provide three potential explanations for the error in Breder's drawings, that may be explained by natural developmental variation documented in other related species. Moreover, we argue that the natural variation in this "evolutionary" model system is useful for explaining diverse cranial features by uniting aberrations occurring during embryogenesis with long-term adult dysmorphia.
Collapse
Affiliation(s)
- Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Amanda K Powers
- Department of Genetics, Blavatnik Institute at Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| |
Collapse
|
8
|
Gross JB, Berning D, Phelps A, Luc H. An analysis of lateralized neural crest marker expression across development in the Mexican tetra, Astyanax mexicanus. Front Cell Dev Biol 2023; 11:1074616. [PMID: 36875772 PMCID: PMC9975491 DOI: 10.3389/fcell.2023.1074616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The biological basis of lateralized cranial aberrations can be rooted in early asymmetric patterning of developmental tissues. However, precisely how development impacts natural cranial asymmetries remains incompletely understood. Here, we examined embryonic patterning of the cranial neural crest at two phases of embryonic development in a natural animal system with two morphotypes: cave-dwelling and surface-dwelling fish. Surface fish are highly symmetric with respect to cranial form at adulthood, however adult cavefish harbor diverse cranial asymmetries. To examine if lateralized aberrations of the developing neural crest underpin these asymmetries, we used an automated technique to quantify the area and expression level of cranial neural crest markers on the left and right sides of the embryonic head. We examined the expression of marker genes encoding both structural proteins and transcription factors at two key stages of development: 36 hpf (∼mid-migration of the neural crest) and 72 hpf (∼early differentiation of neural crest derivatives). Interestingly, our results revealed asymmetric biases at both phases of development in both morphotypes, however consistent lateral biases were less common in surface fish as development progressed. Additionally, this work provides the information on neural crest development, based on whole-mount expression patterns of 19 genes, between stage-matched cave and surface morphs. Further, this study revealed 'asymmetric' noise as a likely normative component of early neural crest development in natural Astyanax fish. Mature cranial asymmetries in cave morphs may arise from persistence of asymmetric processes during development, or as a function of asymmetric processes occurring later in the life history.
Collapse
Affiliation(s)
- Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Daniel Berning
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Ayana Phelps
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Heidi Luc
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
9
|
Espinasa L, Diamant R, Mesquita M, Lindquist JM, Powers AM, Helmreich J. Laterality in cavefish: Left or right foraging behavior in Astyanax mexicanus. SUBTERRANEAN BIOLOGY 2022. [DOI: 10.3897/subtbiol.44.86565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolution of foraging behaviors is key to colonizing challenging habitats such as a cave’s dark environment. Vibration attraction behavior (VAB) gives fish the ability to swim in the darkness toward a vibration stimulus produced by many prey crustaceans and insects. VAB evolved in the blind Mexican cave tetra, Astyanax mexicanus. VAB is regulated by an increased number of mechanosensory neuromasts, particularly in the eye orbital region. However, VAB in Astyanax is only correlated with the number of neuromasts on the left side. Astyanax also have a bent skull preferentially to the left and a QTL signal for the right-side number of neuromasts. We conducted field studies in five different cave populations for four years. Results support that all cave populations can express behavioral lateralization or preponderance of side to examine a vibrating object. The percentage of individuals favoring one side may change among pools and years. In one cave population (Pachón), for one year, this “handedness” was expressed by preferentially using the right side of their face. On the contrary, in most years and pools, Tinaja, Sabinos, Molino, and Toro cave populations explored preferentially using their left side. This suggests that if there is an adaptative effect, it selects for asymmetry on itself, and not necessarily for which side is the one to be specialized. Results also showed that the laterality varied depending on how responsive an individual fish was, perhaps due to its nutritional, motivational state, or mode of stimuli most relevant at the time for the fish.
Collapse
|
10
|
Oliva C, Hinz NK, Robinson W, Barrett Thompson AM, Booth J, Crisostomo LM, Zanineli S, Tanner M, Lloyd E, O'Gorman M, McDole B, Paz A, Kozol R, Brown EB, Kowalko JE, Fily Y, Duboue ER, Keene AC. Characterizing the genetic basis of trait evolution in the Mexican cavefish. Evol Dev 2022; 24:131-144. [PMID: 35924750 PMCID: PMC9786752 DOI: 10.1111/ede.12412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022]
Abstract
Evolution in response to a change in ecology often coincides with various morphological, physiological, and behavioral traits. For most organisms little is known about the genetic and functional relationship between evolutionarily derived traits, representing a critical gap in our understanding of adaptation. The Mexican tetra, Astyanax mexicanus, consists of largely independent populations of fish that inhabit at least 30 caves in Northeast Mexico, and a surface fish population, that inhabit the rivers of Mexico and Southern Texas. The recent application of molecular genetic approaches combined with behavioral phenotyping have established A. mexicanus as a model for studying the evolution of complex traits. Cave populations of A. mexicanus are interfertile with surface populations and have evolved numerous traits including eye degeneration, insomnia, albinism, and enhanced mechanosensory function. The interfertility of different populations from the same species provides a unique opportunity to define the genetic relationship between evolved traits and assess the co-evolution of behavioral and morphological traits with one another. To define the relationships between morphological and behavioral traits, we developed a pipeline to test individual fish for multiple traits. This pipeline confirmed differences in locomotor activity, prey capture, and startle reflex between surface and cavefish populations. To measure the relationship between traits, individual F2 hybrid fish were characterized for locomotor behavior, prey-capture behavior, startle reflex, and morphological attributes. Analysis revealed an association between body length and slower escape reflex, suggesting a trade-off between increased size and predator avoidance in cavefish. Overall, there were few associations between individual behavioral traits, or behavioral and morphological traits, suggesting independent genetic changes underlie the evolution of the measured behavioral and morphological traits. Taken together, this approach provides a novel system to identify genetic underpinnings of naturally occurring variation in morphological and behavioral traits.
Collapse
Affiliation(s)
- Camila Oliva
- NIH U‐RISE ProgramFlorida Atlantic UniversityJupiterFloridaUSA
| | | | - Wayne Robinson
- NIH U‐RISE ProgramFlorida Atlantic UniversityJupiterFloridaUSA
| | | | - Julianna Booth
- NIH U‐RISE ProgramFlorida Atlantic UniversityJupiterFloridaUSA
| | | | | | - Maureen Tanner
- NIH U‐RISE ProgramFlorida Atlantic UniversityJupiterFloridaUSA
| | - Evan Lloyd
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA,Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Morgan O'Gorman
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA,Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Brittnee McDole
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Alexandra Paz
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Rob Kozol
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Elizabeth B. Brown
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Johanna E. Kowalko
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA,Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Yaouen Fily
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Erik R. Duboue
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Alex C. Keene
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA,Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
11
|
Lafuente E, Lürig MD, Rövekamp M, Matthews B, Buser C, Vorburger C, Räsänen K. Building on 150 Years of Knowledge: The Freshwater Isopod Asellus aquaticus as an Integrative Eco-Evolutionary Model System. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.748212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Interactions between organisms and their environments are central to how biological diversity arises and how natural populations and ecosystems respond to environmental change. These interactions involve processes by which phenotypes are affected by or respond to external conditions (e.g., via phenotypic plasticity or natural selection) as well as processes by which organisms reciprocally interact with the environment (e.g., via eco-evolutionary feedbacks). Organism-environment interactions can be highly dynamic and operate on different hierarchical levels, from genes and phenotypes to populations, communities, and ecosystems. Therefore, the study of organism-environment interactions requires integrative approaches and model systems that are suitable for studies across different hierarchical levels. Here, we introduce the freshwater isopod Asellus aquaticus, a keystone species and an emerging invertebrate model system, as a prime candidate to address fundamental questions in ecology and evolution, and the interfaces therein. We review relevant fields of research that have used A. aquaticus and draft a set of specific scientific questions that can be answered using this species. Specifically, we propose that studies on A. aquaticus can help understanding (i) the influence of host-microbiome interactions on organismal and ecosystem function, (ii) the relevance of biotic interactions in ecosystem processes, and (iii) how ecological conditions and evolutionary forces facilitate phenotypic diversification.
Collapse
|
12
|
Riddle MR, Hu CK. Fish models for investigating nutritional regulation of embryonic development. Dev Biol 2021; 476:101-111. [PMID: 33831748 DOI: 10.1016/j.ydbio.2021.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/13/2023]
Abstract
In recent decades, biologist have focused on the spatiotemporal regulation and function of genes to understand embryogenesis. It is clear that maternal diet impacts fetal development but how nutrients, like lipids and vitamins, modify developmental programs is not completely understood. Fish are useful research organisms for such investigations. Most species of fish produce eggs that develop outside the mother, dependent on a finite amount of yolk to form and grow. The developing embryo is a closed system that can be readily biochemically analyzed, easily visualized, and manipulated to understand the role of nutrients in tissue specification, organogenesis, and growth. Natural variation in yolk composition observed across fish species may be related to unique developmental strategies. In this review, we discuss the reasons that teleost fishes are powerful models to understand nutritional control of development and highlight three species that are particularly valuable for future investigations: the zebrafish, Danio rerio, the African Killifish, Nothobranchius furzeri, and the Mexican tetra, Astyanax mexicanus. This review is a part of a special issue on nutritional, hormonal, and metabolic drivers of development.
Collapse
Affiliation(s)
- Misty R Riddle
- Department of Biology, University of Nevada, Reno, Reno, NV, USA.
| | - Chi-Kuo Hu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
13
|
Zogbaum L, Friend PG, Albertson RC. Plasticity and genetic basis of cichlid gill arch anatomy reveal novel roles for Hedgehog signaling. Mol Ecol 2021; 30:761-774. [PMID: 33278044 DOI: 10.1111/mec.15766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 01/10/2023]
Abstract
Teleost gill arches are exquisitely evolved to maximize foraging efficiency, and include structures for the capture, filtering, and processing of prey. While both plasticity and a genetic basis for gill arch traits have been noted, the relative contributions of genetics and the environment in shaping these structures remains poorly understood. East African cichlids are particularly useful in this line of study due to their highly diverse and plastic feeding apparatus. Here we explore the gene-by-environmental effects on cichlid GRs by rearing pure bred species and their F3 hybrids in different foraging environments. We find that anatomical differences between species are dependent on the environment. The genetic architecture of these traits is also largely distinct between foraging environments. We did, however, note a few genomic "hotspots" where multiple traits map to a common region. One of these, for GR number across multiple arches, maps to the ptch1 locus, a key component of the Hedgehog (Hh) pathway that has previously been implicated in cichlid oral jaw shape and plasticity. Since Hh signalling has not previously been implicated in GR development, we explored functional roles for this pathway. Using a small molecule inhibitor in cichlids, as well as zebrafish transgenic systems, we demonstrate that Hh levels negatively regulate GR number, and are both necessary and sufficient to maintain plasticity in this trait. In all these data underscore the critical importance of the environment in determining the relationship between genotype and phenotype, and provide a molecular inroad to better understand the origins of variation in this important foraging-related trait.
Collapse
Affiliation(s)
| | | | - R Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
14
|
Powers AK, Boggs TE, Gross JB. An Asymmetric Genetic Signal Associated with Mechanosensory Expansion in Cave-Adapted Fish. Symmetry (Basel) 2020; 12:1951. [PMID: 33614165 PMCID: PMC7894647 DOI: 10.3390/sym12121951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A key challenge in contemporary biology is connecting genotypic variation to phenotypic diversity. Quantitative genetics provides a powerful technique for identifying regions of the genome that covary with phenotypic variation. Here, we present a quantitative trait loci (QTL) analysis of a natural freshwater fish system, Astyanax mexicanus, that harbors two morphs corresponding to a cave and surface fish. Following their divergence ~500 Kya, cavefish have adapted to the extreme pressures of the subterranean biome. As a consequence, cavefish have lost numerous features, but evolved gains for a variety of constructive features including behavior. Prior work found that sensory tissues (neuromasts) present in the "eye orbit" region of the skull associate with sensitivity to vibrations in water. This augmented sensation is believed to facilitate foraging behavior in the complete darkness of a cave, and may impact on evolved lateral swimming preference. To this point, however, it has remained unclear how morphological variation integrates with behavioral variation through heritable factors. Using a QTL approach, we discovered the genetic architecture of neuromasts present in the eye orbit region, demonstrating that this feature is under genetic control. Interestingly, linked loci were asymmetric-signals were detected using only data collected from the right, but not left, side of the face. This finding may explain enhanced sensitivity and/or feedback of water movements mediating a lateral swimming preference. The locus we discovered based on neuromast position maps near established QTL for eye size and a facial bone morphology, raising the intriguing possibility that eye loss, sensory expansion, and the cranial skeleton may be integrated for evolving adaptive behaviors. Thus, this work will further our understanding of the functional consequence of key loci that influence the evolutionary origin of changes impacting morphology, behavior, and adaptation.
Collapse
Affiliation(s)
- Amanda K. Powers
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02138, USA
| | - Tyler E. Boggs
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45227, USA
| | - Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45227, USA
| |
Collapse
|
15
|
Pierre C, Pradère N, Froc C, Ornelas-García P, Callebert J, Rétaux S. A mutation in monoamine oxidase (MAO) affects the evolution of stress behavior in the blind cavefish Astyanax mexicanus. J Exp Biol 2020; 223:jeb226092. [PMID: 32737213 DOI: 10.1242/jeb.226092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 08/26/2023]
Abstract
The neurotransmitter serotonin controls a variety of physiological and behavioral processes. In humans, mutations affecting monoamine oxidase (MAO), the serotonin-degrading enzyme, are highly deleterious. Yet, blind cavefish of the species Astyanax mexicanus carry a partial loss-of-function mutation in MAO (P106L) and thrive in their subterranean environment. Here, we established four fish lines, corresponding to the blind cave-dwelling and the sighted river-dwelling morphs of this species, with or without the mutation, in order to decipher the exact contribution of mao P106L in the evolution of cavefish neurobehavioral traits. Unexpectedly, although mao P106L appeared to be an excellent candidate for the genetic determinism of the loss of aggressive and schooling behaviors in cavefish, we demonstrated that it was not the case. Similarly, the anatomical variations in monoaminergic systems observed between cavefish and surface fish brains were independent from mao P106L, and rather due to other, morph-dependent developmental processes. However, we found that mao P106L strongly affected anxiety-like behaviors. Cortisol measurements showed lower basal levels and an increased amplitude of stress response after a change of environment in fish carrying the mutation. Finally, we studied the distribution of the P106L mao allele in wild populations of cave and river A. mexicanus, and discovered that the mutant allele was present - and sometimes fixed - in all populations inhabiting caves of the Sierra de El Abra. The possibility that this partial loss-of-function mao allele evolves under a selective or a neutral regime in the particular cave environment is discussed.
Collapse
Affiliation(s)
- Constance Pierre
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Naomie Pradère
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Cynthia Froc
- Amatrace platform, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Patricia Ornelas-García
- Departamento de Zoología, Instituto de Biología, Universidad Autónoma de México, CP 04510, Mexico City, Mexico
| | - Jacques Callebert
- Service Biochimie et Biologie Moléculaire, Hôpital Lariboisière, 75475 Paris, France
| | - Sylvie Rétaux
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Abstract
The small teleost fish Astyanax mexicanus has emerged as an outstanding model for studying many biological topics in the context of evolution. A major attribute is conspecific surface dwelling (surface fish) and blind cave dwelling (cavefish) morphs that can be raised in the laboratory and spawn large numbers of transparent and synchronously developing embryos. More than 30 cavefish populations have been discovered, mostly in northeastern Mexico, and some are thought to have evolved independently from surface fish ancestors, providing excellent models of parallel and convergent evolution. Cavefish have evolved eye and pigmentation regression, as well as modifications in brain morphology, behaviors, heart regenerative capacity, metabolic processes, and craniofacial organization. Thus, the Astyanax model provides researchers with natural "mutants" to study life in the challenging cave environment. The application of powerful genetic approaches based on hybridization between the two morphs and between the different cavefish populations are key advantages for deciphering the developmental and genetic mechanisms regulating trait evolution. QTL analysis has revealed the genetic architectures of gained and lost traits. In addition, some cavefish traits resemble human diseases, offering novel models for biomedical research. Astyanax research is supported by genome assemblies, transcriptomes, tissue and organ transplantation, gene manipulation and editing, and stable transgenesis, and benefits from a welcoming and interactive research community that conducts integrated community projects and sponsors the International Astyanax Meeting (AIM).
Collapse
Affiliation(s)
- William R. Jeffery
- Department of Biology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
17
|
McGaugh SE, Kowalko JE, Duboué E, Lewis P, Franz-Odendaal TA, Rohner N, Gross JB, Keene AC. Dark world rises: The emergence of cavefish as a model for the study of evolution, development, behavior, and disease. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:397-404. [PMID: 32638529 DOI: 10.1002/jez.b.22978] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022]
Abstract
A central question in biology is how naturally occurring genetic variation accounts for morphological and behavioral diversity within a species. The Mexican tetra, Astyanax mexicanus, has been studied for nearly a century as a model for investigating trait evolution. In March of 2019, researchers representing laboratories from around the world met at the Sixth Astyanax International Meeting in Santiago de Querétaro, Mexico. The meeting highlighted the expanding applications of cavefish to investigations of diverse aspects of basic biology, including development, evolution, and disease-based applications. A broad range of integrative approaches are being applied in this system, including the application of state-of-the-art functional genetic assays, brain imaging, and genome sequencing. These advances position cavefish as a model organism for addressing fundamental questions about the genetics and evolution underlying the impressive trait diversity among individual populations within this species.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota
| | - Johanna E Kowalko
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Erik Duboué
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Peter Lewis
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Alex C Keene
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida
| |
Collapse
|
18
|
Sears CR, Boggs TE, Gross JB. Dark-rearing uncovers novel gene expression patterns in an obligate cave-dwelling fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:518-529. [PMID: 32372488 DOI: 10.1002/jez.b.22947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 01/01/2023]
Abstract
Extreme environments often result in the evolution of dramatic adaptive features. The Mexican tetra, Astyanax mexicanus, includes 30 different populations of cave-dwelling forms that live in perpetual darkness. As a consequence, many populations have evolved eye loss, reduced pigmentation, and amplification of nonvisual sensory systems. Closely-related surface-dwelling morphs demonstrate typical vision, pigmentation, and sensation. Transcriptomic assessments in this system have revealed important developmental changes associated with the cave morph, however, they have not accounted for photic rearing conditions. Prior studies reared individuals under a 12:12 hr light/dark (LD) cycle. Here, we reared cavefish under constant darkness (DD) for 5+ years. From these experimental individuals, we performed mRNA sequencing and compared gene expression of surface fish reared under LD conditions to cavefish reared under DD conditions to identify photic-dependent gene expression differences. Gene Ontology enrichment analyses revealed a number of previously underappreciated cave-associated changes impacting blood physiology and olfaction. We further evaluated the position of differentially expressed genes relative to QTL positions from prior studies and found several candidate genes associated with these ecologically relevant lighting conditions. In sum, this work highlights photic conditions as a key environmental factor impacting gene expression patterns in blind cave-dwelling fish.
Collapse
Affiliation(s)
- Connor R Sears
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Tyler E Boggs
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
19
|
Berning D, Adams H, Luc H, Gross JB. In-Frame Indel Mutations in the Genome of the Blind Mexican Cavefish, Astyanax mexicanus. Genome Biol Evol 2020; 11:2563-2573. [PMID: 31418011 PMCID: PMC6751357 DOI: 10.1093/gbe/evz180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2019] [Indexed: 12/23/2022] Open
Abstract
Organisms living in the subterranean biome evolve extreme characteristics including vision loss and sensory expansion. Despite prior work linking certain genes to Mendelian traits, the genetic basis for complex cave-associated traits remains unknown. Moreover, it is unclear if certain forms of genetic variation (e.g., indels, copy number variants) are more common in regressive evolution. Progress in this area has been limited by a lack of suitable natural model systems and genomic resources. In recent years, the Mexican tetra, Astyanax mexicanus, has advanced as a model for cave biology and regressive evolution. Here, we present the results of a genome-wide screen for in-frame indels using alignments of RNA-sequencing reads to the draft cavefish genome. Mutations were discovered in three genes associated with blood physiology (mlf1, plg, and wdr1), two genes associated with growth factor signaling (ghrb, rnf126), one gene linked to collagen defects (mia3), and one gene which may have a global epigenetic impact on gene expression (mki67). With one exception, polymorphisms were shared between Pachón and Tinaja cavefish lineages, and different from the surface-dwelling lineage. We confirmed the presence of mutations using direct Sanger sequencing and discovered remarkably similar developmental expression in both morphs despite substantial coding sequence alterations. Further, three mutated genes mapped near previously established quantitative trait loci associated with jaw size, condition factor, lens size, and neuromast variation. This work reveals previously unappreciated traits evolving in this species under environmental pressures (e.g., blood physiology) and provides insight to genetic changes underlying convergence of organisms evolving in complete darkness.
Collapse
Affiliation(s)
- Daniel Berning
- Department of Biological Sciences, University of Cincinnati
| | - Hannah Adams
- Department of Biological Sciences, University of Cincinnati
| | - Heidi Luc
- Department of Biological Sciences, University of Cincinnati
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati
| |
Collapse
|
20
|
Powers AK, Berning DJ, Gross JB. Parallel evolution of regressive and constructive craniofacial traits across distinct populations of Astyanax mexicanus cavefish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:450-462. [PMID: 32030873 DOI: 10.1002/jez.b.22932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/17/2019] [Accepted: 01/21/2020] [Indexed: 01/15/2023]
Abstract
Life in complete darkness has driven the evolution of a suite of troglobitic features in the blind Mexican cavefish Astyanax mexicanus, such as eye and pigmentation loss. While regressive evolution is a hallmark of obligate cave-dwelling organisms, constructive (or augmented) traits commonly arise as well. The cavefish cranium has undergone extensive changes compared with closely-related surface fish. These alterations are rooted in both cranial bones and surrounding sensory tissues such as enhancements in the gustatory and lateral line systems. Cavefish also harbor numerous cranial bone asymmetries: fluctuating asymmetry of individual bones and directional asymmetry in a dorsal bend of the skull. This asymmetry is mirrored by the asymmetrical patterning of mechanosensory neuromasts. We explored the relationship between facial bones and neuromasts using in vivo fluorescent colabeling and microcomputed tomography. We found an increase in neuromast density within dermal bone boundaries across three distinct populations of cavefish compared to surface-dwelling fish. We also show that eye loss disrupts early neuromast patterning, which in turn impacts the development of dermal bones. While cavefish exhibit alterations in cranial bone and neuromast patterning, each population varied in the severity. This variation may reflect observed differences in behavior across populations. For instance, a bend in the dorsal region of the skull may expose neuromasts to water flow on the opposite side of the face, enhancing sensory input and spatial mapping in the dark.
Collapse
Affiliation(s)
- Amanda K Powers
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, Massachusetts
| | - Daniel J Berning
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
21
|
Ma L, Ng M, van der Weele CM, Yoshizawa M, Jeffery WR. Dual roles of the retinal pigment epithelium and lens in cavefish eye degeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:438-449. [PMID: 31930686 DOI: 10.1002/jez.b.22923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/04/2019] [Accepted: 12/21/2019] [Indexed: 01/03/2023]
Abstract
Astyanax mexicanus consists of two forms, a sighted surface dwelling form (surface fish) and a blind cave-dwelling form (cavefish). Embryonic eyes are initially formed in cavefish but they are subsequently arrested in growth and degenerate during larval development. Previous lens transplantation studies have shown that the lens plays a central role in cavefish eye loss. However, several lines of evidence suggest that additional factors, such as the retinal pigment epithelium (RPE), which is morphologically altered in cavefish, could also be involved in the eye regression process. To explore the role of the RPE in cavefish eye degeneration, we generated an albino eyed (AE) strain by artificial selection for hybrid individuals with large eyes and a depigmented RPE. The AE strain exhibited an RPE lacking pigment granules and showed reduced expression of the RPE specific enzyme retinol isomerase, allowing eye development to be studied by lens ablation in an RPE background resembling cavefish. We found that lens ablation in the AE strain had stronger negative effects on eye growth than in surface fish, suggesting that an intact RPE is required for normal eye development. We also found that the AE strain develops a cartilaginous sclera lacking boney ossicles, a trait similar to cavefish. Extrapolation of the results to cavefish suggests that the RPE and lens have dual roles in eye degeneration, and that deficiencies in the RPE may be associated with evolutionary changes in scleral ossification.
Collapse
Affiliation(s)
- Li Ma
- Department of Biology, University of Maryland, College Park, Maryland
| | - Mandy Ng
- Department of Biology, University of Maryland, College Park, Maryland
| | | | - Masato Yoshizawa
- Department of Biology, University of Maryland, College Park, Maryland
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, Maryland
| |
Collapse
|
22
|
Soares D, Niemiller ML. Extreme Adaptation in Caves. Anat Rec (Hoboken) 2018; 303:15-23. [PMID: 30537183 DOI: 10.1002/ar.24044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/31/2022]
Abstract
Cave adaptation leads to unique anatomical specializations in many taxonomic groups. As the role of vision is reduced or disappears in a subterranean environment, other specializations arise to allow the organism to successfully detect and interact with their environment. A suite of unique, convergent phenotypes associated with subterranean adaptation has emerged (termed troglomorphy), with reduction or loss of pigmentation and eyes being the most conspicuous. Two vertebrate groups that have successfully colonized and adapted to subterranean environments are cavefishes and cave salamanders. There are many shared troglomorphic anatomical characters shared between these two groups, and we describe herein the morphological traits that are unique to fishes and salamanders that are adapted to caves and other subterranean habitats. Troglobionts, animals strictly bound and adapted to underground habitats, are outcomes of not just regressive evolution, but also constructive adaptation. There are skeletal changes, such as broadening and flattening of the head, as well as hypertrophy of non-visual modalities. Cavefishes and salamanders have lost eyes and pigmentation, but also enhanced mechanosenzation, chemosenzation and, in some cases, electroreception. Both cavefishes and cave salamanders have become important models in the study of the ecology, behavior, and evolution of subterranean colonization and adaptation. However, our knowledge is primarily limited to a few taxa and many questions remain to be studied. Anat Rec, 2018. © 2018 American Association for Anatomy.
Collapse
Affiliation(s)
- Daphne Soares
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey
| | - Matthew L Niemiller
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, Alabama
| |
Collapse
|
23
|
Gross JB, Powers AK. A Natural Animal Model System of Craniofacial Anomalies: The Blind Mexican Cavefish. Anat Rec (Hoboken) 2018; 303:24-29. [PMID: 30365238 DOI: 10.1002/ar.23998] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/26/2018] [Accepted: 04/19/2018] [Indexed: 12/27/2022]
Abstract
Natural model systems evolving under extreme environmental pressures provide the opportunity to advance our knowledge of how the craniofacial complex evolves in nature. Unlike traditional models, natural systems are less inbred, and, therefore, better model the complex variation of the human population. Owing to the nature of certain craniofacial aberrations in blind Mexican cavefish, we suggest that this organism can provide new insights to a variety of craniofacial changes. Diverse cranial features have evolved in natural cave-dwelling Astyanax fish, which have thrived in the unforgiving darkness and nutrient-poor environment of the cave for countless generations. While the genetic and environmental underpinnings of various cranial anomalies have been investigated for decades, a comprehensive characterization of their molecular and developmental origins remains incomplete. Cavefish provide numerous advantages given the availability of genomic resources, developmental and molecular tools, and the presence of a normative surface-dwelling "ancestral" surrogate for comparative studies. By leveraging the frequency of abnormal and asymmetric cranial features in cavefish, we anticipate advances in our knowledge of the etiologies of irregular cranial features. Extreme adaptations in cavefish are expected to offer new insights into the complex and multifactorial nature of craniofacial disorders and facial asymmetry. Anat Rec, 2018. © 2018 American Association for Anatomy.
Collapse
Affiliation(s)
- Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Rieveschl Hall Room 711B, Cincinnati, Ohio
| | - Amanda K Powers
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Rieveschl Hall Room 711B, Cincinnati, Ohio
| |
Collapse
|
24
|
Atukorala ADS, Bhatia V, Ratnayake R. Craniofacial skeleton of MEXICAN tetra (Astyanax mexicanus): As a bone disease model. Dev Dyn 2018; 248:153-161. [PMID: 30450697 DOI: 10.1002/dvdy.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
A small fresh water fish, the Mexican tetra (Astyanax mexicanus) is a novel animal model in evolutionary developmental biology. The existence of morphologically distinct surface and cave morphs of this species allows simultaneous comparative analysis of phenotypic changes at different life stages. The cavefish harbors many favorable constructive traits (i.e., large jaws with an increased number of teeth, neuromast cells, enlarged olfactory pits and excess storage of adipose tissues) and regressive traits (i.e., reduced eye structures and pigmentation) which are essential for cave adaptation. A wide spectrum of natural craniofacial morphologies can be observed among the different cave populations. Recently, the Mexican tetra has been identified as a human disease model. The fully sequenced genome along with modern genome editing tools has allowed researchers to generate transgenic and targeted gene knockouts with phenotypes that resemble human pathological conditions. This review will discuss the anatomy of the craniofacial skeleton of A. mexicanus with a focus on morphologically variable facial bones, jaws that house continuously replacing teeth and pharyngeal skeleton. Furthermore, the possible applications of this model animal in identifying human congenital and metabolic skeletal disorders is addressed. Developmental Dynamics 248:153-161, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Atukorallaya Devi Sewvandini Atukorala
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vikram Bhatia
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ravindra Ratnayake
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
25
|
Carlson BM, Klingler IB, Meyer BJ, Gross JB. Genetic analysis reveals candidate genes for activity QTL in the blind Mexican tetra, Astyanax mexicanus. PeerJ 2018; 6:e5189. [PMID: 30042884 PMCID: PMC6054784 DOI: 10.7717/peerj.5189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/15/2018] [Indexed: 12/30/2022] Open
Abstract
Animal models provide useful tools for exploring the genetic basis of morphological, physiological and behavioral phenotypes. Cave-adapted species are particularly powerful models for a broad array of phenotypic changes with evolutionary, developmental and clinical relevance. Here, we explored the genetic underpinnings of previously characterized differences in locomotor activity patterns between the surface-dwelling and Pachón cave-dwelling populations of Astyanax mexicanus. We identified multiple novel QTL underlying patterns in overall levels of activity (velocity), as well as spatial tank use (time spent near the top or bottom of the tank). Further, we demonstrated that different regions of the genome mediate distinct patterns in velocity and tank usage. We interrogated eight genomic intervals underlying these activity QTL distributed across six linkage groups. In addition, we employed transcriptomic data and draft genomic resources to generate and evaluate a list of 36 potential candidate genes. Interestingly, our data support the candidacy of a number of genes, but do not suggest that differences in the patterns of behavior observed here are the result of alterations to certain candidate genes described in other species (e.g., teleost multiple tissue opsins, melanopsins or members of the core circadian clockwork). This study expands our knowledge of the genetic architecture underlying activity differences in surface and cavefish. Future studies will help define the role of specific genes in shaping complex behavioral phenotypes in Astyanax and other vertebrate taxa.
Collapse
Affiliation(s)
- Brian M Carlson
- Department of Biology, The College of Wooster, Wooster, OH, United States of America
| | - Ian B Klingler
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States of America
| | - Bradley J Meyer
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States of America
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States of America
| |
Collapse
|
26
|
Fernandes VFL, Macaspac C, Lu L, Yoshizawa M. Evolution of the developmental plasticity and a coupling between left mechanosensory neuromasts and an adaptive foraging behavior. Dev Biol 2018; 441:262-271. [PMID: 29782817 DOI: 10.1016/j.ydbio.2018.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 11/30/2022]
Abstract
Many animal species exhibit laterality in sensation and behavioral responses, namely, the preference for using either the left or right side of the sensory system. For example, some fish use their left eye when observing social stimuli, whereas they use their right eye to observe novel objects. However, it is largely unknown whether such laterality in sensory-behavior coupling evolves during rapid adaptation processes. Here, in the Mexican tetra, Astyanax mexicanus, we investigate the laterality in the relationship between an evolved adaptive behavior, vibration attraction behavior (VAB), and its main sensors, mechanosensory neuromasts. A. mexicanus has a surface-dwelling form and cave-dwelling forms (cavefish), whereby a surface fish ancestor colonized the new environment of a cave, eventually evolving cave-type morphologies such as increased numbers of neuromasts at the cranium. These neuromasts are known to regulate VAB, and it is known that, in teleosts, the budding (increasing) process of neuromasts is accompanied with dermal bone formation. This bone formation is largely regulated by endothelin signaling. To assess the evolutionary relationship between bone formation, neuromast budding, and VAB, we treated 1-3 month old juvenile fish with endothelin receptor antagonists. This treatment significantly increased cranial neuromasts in both surface and cavefish, and the effect was significantly more pronounced in cavefish. Antagonist treatment also increased the size of dermal bones in cavefish, but neuromast enhancement was observed earlier than dermal bone formation, suggesting that endothelin signaling may independently regulate neuromast development and bone formation. In addition, although we did not detect a major change in VAB level under this antagonist treatment, cavefish did show a positive correlation of VAB with the number of neuromasts on their left side but not their right. This laterality in correlation was observed when VAB emerged during cavefish development, but it was not seen in surface fish under any conditions tested, suggesting this laterality emerged through an evolutionary process. Above all, cavefish showed higher developmental plasticity in neuromast number and bone formation, and they showed an asymmetric correlation between the number of left-right neuromasts and VAB.
Collapse
Affiliation(s)
| | - Christian Macaspac
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Louise Lu
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Masato Yoshizawa
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
27
|
Facial bone fragmentation in blind cavefish arises through two unusual ossification processes. Sci Rep 2018; 8:7015. [PMID: 29725043 PMCID: PMC5934472 DOI: 10.1038/s41598-018-25107-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023] Open
Abstract
The precise mechanisms underlying cranial bone development, evolution and patterning remain incompletely characterised. This poses a challenge to understanding the etiologies of craniofacial malformations evolving in nature. Capitalising on natural variation, “evolutionary model systems” provide unique opportunities to identify underlying causes of aberrant phenotypes as a complement to studies in traditional systems. Mexican blind cavefish are a prime evolutionary model for cranial disorders since they frequently exhibit extreme alterations to the skull and lateral asymmetries. These aberrations occur in stark contrast to the normal cranial architectures of closely related surface-dwelling fish, providing a powerful comparative paradigm for understanding cranial bone formation. Using a longitudinal and in vivo analytical approach, we discovered two unusual ossification processes in cavefish that underlie the development of ‘fragmented’ and asymmetric cranial bones. The first mechanism involves the sporadic appearance of independent bony elements that fail to fuse together later in development. The second mechanism involves the “carving” of channels in the mature bone, a novel form of post-ossification remodeling. In the extreme cave environment, these novel mechanisms may have evolved to augment sensory input, and may indirectly result in a trade-off between sensory expansion and cranial bone development.
Collapse
|
28
|
Powers AK, Boggs TE, Gross JB. Canal neuromast position prefigures developmental patterning of the suborbital bone series in Astyanax cave- and surface-dwelling fish. Dev Biol 2018; 441:252-261. [PMID: 29630866 DOI: 10.1016/j.ydbio.2018.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 01/30/2023]
Abstract
Developmental patterning is a complex biological phenomenon, involving integrated cellular and molecular signaling across diverse tissues. In Astyanax cavefish, the lateral line sensory system is dramatically expanded in a region of the cranium marked by significant bone abnormalities. This system provides the opportunity to understand how facial bone patterning can become altered through sensory system changes. Here we investigate a classic postulation that mechanosensory receptor neuromasts seed intramembranous facial bones in aquatic vertebrates. Using an in vivo staining procedure across individual life history, we observed infraorbital canal neuromasts serving as sites of ossification for suborbital bones. The manner in which cavefish departed from the stereotypical and symmetrical canal neuromast patterns of closely-related surface-dwelling fish were associated with specific changes to the suborbital bone complex. For instance, bony fusion, rarely observed in surface fish, was associated with shorter distances between canal neuromasts in cavefish, suggesting that closer canal neuromasts result in bony fusions. Additionally, cavefish lacking the sixth suborbital bone (SO6) uniformly lacked the associated (sixth) canal neuromast. This study suggests that patterning of canal neuromasts may impact spatial position of suborbital bones across development. The absence of an eye and subsequent orbital collapse in cavefish appears to influence positional information normally inherent to the infraorbital canal. These alterations result in coordinated changes to adult neuromast and bone structures. This work highlights complex interactions between visual, sensory and bony tissues during development that explain certain abnormal craniofacial features in cavefish.
Collapse
Affiliation(s)
- Amanda K Powers
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Tyler E Boggs
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
29
|
Raffini F, Fruciano C, Meyer A. Morphological and genetic correlates in the left–right asymmetric scale-eating cichlid fish of Lake Tanganyika. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Francesca Raffini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse, Konstanz, Germany
- International Max Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, Konstanz, Germany
| | - Carmelo Fruciano
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse, Konstanz, Germany
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse, Konstanz, Germany
- International Max Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, Konstanz, Germany
- Radcliffe Institute for Advance Study, Harvard University, Cambridge, MA, USA
| |
Collapse
|
30
|
Stahl BA, Gross JB. A Comparative Transcriptomic Analysis of Development in Two Astyanax Cavefish Populations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:515-532. [PMID: 28612405 DOI: 10.1002/jez.b.22749] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/24/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022]
Abstract
Organisms that are isolated into extreme environments often evolve extreme phenotypes. However, global patterns of dynamic gene expression changes that accompany dramatic environmental changes remain largely unknown. The blind Mexican cavefish, Astyanax mexicanus, has evolved a number of severe cave-associated phenotypes including loss of vision and pigmentation, craniofacial bone fusions, increased fat storage, reduced sleep, and amplified nonvisual sensory systems. Interestingly, surface-dwelling forms have repeatedly entered different caves throughout Mexico, providing a natural set of "replicate" instances of cave isolation. These surrogate "ancestral" surface-dwelling forms persist in nearby rivers, enabling direct comparisons to the "derived" cave-dwelling form. We evaluated changes associated with subterranean isolation by measuring differential gene expression in two geographically distinct cave-dwelling populations (Pachón and Tinaja). To understand the impact of these expression changes on development, we performed RNA-sequencing across four critical stages during which troglomorphic traits first appear in cavefish embryos. Gene ontology (GO) studies revealed similar functional profiles evolved in both independent cave lineages. However, enrichment studies indicated that similar GO profiles were occasionally mediated by different genes. Certain "master" regulators, such as Otx2 and Mitf, appear to be important loci for cave adaptation, as remarkably similar patterns of expression were identified in both independent cave lineages. This work reveals that adaptation to an extreme environment, in two distinct cavefish lineages, evolves through a combination of unique and shared gene expression patterns. Shared expression profiles reflect common environmental pressures, while unique expression likely reflects the fact that similar adaptive traits evolve through diverse genetic mechanisms.
Collapse
Affiliation(s)
- Bethany A Stahl
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
31
|
Powers AK, Davis EM, Kaplan SA, Gross JB. Cranial asymmetry arises later in the life history of the blind Mexican cavefish, Astyanax mexicanus. PLoS One 2017; 12:e0177419. [PMID: 28486546 PMCID: PMC5423691 DOI: 10.1371/journal.pone.0177419] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/26/2017] [Indexed: 12/17/2022] Open
Abstract
As a consequence of adaptation to the cave environment, the blind Mexican cavefish, Astyanax mexicanus, has evolved several cranial aberrations including changes to bone sizes, shapes and presence of numerous lateral asymmetries. Prior studies of cranial asymmetry in cavefish focused strictly on adult specimens. Thus, the extent to which these asymmetries emerge in adulthood, or earlier in the life history of cavefish, was unknown. We performed a geometric morphometric analysis of shape variation in the chondrocranium and osteocranium across life history in two distinct cavefish populations and surface-dwelling fish. The cartilaginous skull in juveniles was bilaterally symmetric and chondrocranial shape was conserved in all three populations. In contrast, bony skull shapes segregated into significantly distinct groups in adults. Cavefish demonstrated significant asymmetry for the bones surrounding the collapsed eye orbit, and the opercle bone posterior to the eye orbit. Interestingly, we discovered that cavefish also exhibit directional “bends” in skull shape, almost always biased to the left. In sum, this work reveals that asymmetric craniofacial aberrations emerge later in the cavefish life history. These abnormalities may mirror asymmetries in the lateral line sensory system, reflect a ‘handedness’ in cavefish swimming behavior, or evolve through neutral processes.
Collapse
Affiliation(s)
- Amanda K. Powers
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Erin M. Davis
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Shane A. Kaplan
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
32
|
Lyon A, Powers AK, Gross JB, O’Quin KE. Two - three loci control scleral ossicle formation via epistasis in the cavefish Astyanax mexicanus. PLoS One 2017; 12:e0171061. [PMID: 28182695 PMCID: PMC5300192 DOI: 10.1371/journal.pone.0171061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/16/2017] [Indexed: 11/28/2022] Open
Abstract
The sclera is the protective outer layer of the eye. In fishes, birds, and reptiles, the sclera may be reinforced with additional bony elements called scleral ossicles. Teleost fish vary in the number and size of scleral ossicles; however, the genetic mechanisms responsible for this variation remain poorly understood. In this study, we examine the inheritance of scleral ossicles in the Mexican tetra, Astyanax mexicanus, which exhibits both a cave morph and a surface fish morph. As these morphs and their hybrids collectively exhibit zero, one, and two scleral ossicles, they represent a microcosm of teleost scleral ossicle diversity. Our previous research in F2 hybrids of cavefish from Pachón cave and surface fish from Texas suggested that three genes likely influence the formation of scleral ossicles in this group through an epistatic threshold model of inheritance, though our sample size was small. In this study, we expand our sample size using additional hybrids of Pachón cavefish and Mexican surface fish to (1) confirm the threshold model of inheritance, (2) refine the number of genes responsible for scleral ossicle formation, and (3) increase our power to detect quantitative trait loci (QTL) for this trait. To answer these three questions, we scored surface fish and cavefish F2 hybrids for the presence of zero, one, or two scleral ossicles. We then analyzed their distribution among the F2 hybrids using a chi-square (χ2) test, and used a genetic linkage map of over 100 microsatellite markers to identify QTL responsible for scleral ossicle number. We found that inheritance of scleral ossicles follows an epistatic threshold model of inheritance controlled by two genes, which contrasts the three-locus model estimated from our previous study. Finally, the combined analysis of hybrids from both crosses identified two strong QTL for scleral ossicle number on linkage groups 4.2 and 21, and a weaker QTL on linkage group 4.1. Scleral ossification remains a complex trait with limited knowledge of its genetic basis. This study provides new insight into the number and location of genes controlling the formation of scleral ossicles in a teleost fish species.
Collapse
Affiliation(s)
- Anastasia Lyon
- Biology Program, Centre College, Danville, KY, United States of America
| | - Amanda K. Powers
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States of America
| | - Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States of America
| | - Kelly E. O’Quin
- Biology Program, Centre College, Danville, KY, United States of America
- * E-mail:
| |
Collapse
|
33
|
Gross JB, Gangidine A, Powers AK. Asymmetric Facial Bone Fragmentation Mirrors Asymmetric Distribution of Cranial Neuromasts in Blind Mexican Cavefish. Symmetry (Basel) 2016; 8. [PMID: 28078105 PMCID: PMC5221661 DOI: 10.3390/sym8110118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Craniofacial asymmetry is a convergent trait widely distributed across animals that colonize the extreme cave environment. Although craniofacial asymmetry can be discerned easily, other complex phenotypes (such as sensory organ position and numerical variation) are challenging to score and compare. Certain bones of the craniofacial complex demonstrate substantial asymmetry, and co-localize to regions harboring dramatically expanded numbers of mechanosensory neuromasts. To determine if a relationship exists between this expansion and bone fragmentation in cavefish, we developed a quantitative measure of positional symmetry across the left-right axis. We found that three different cave-dwelling populations were significantly more asymmetric compared to surface-dwelling fish. Moreover, cave populations did not differ in the degree of neuromast asymmetry. This work establishes a method for quantifying symmetry of a complex phenotype, and demonstrates that facial bone fragmentation mirrors the asymmetric distribution of neuromasts in different cavefish populations. Further developmental studies will provide a clearer picture of the developmental and cellular changes that accompany this extreme phenotype, and help illuminate the genetic basis for facial asymmetry in vertebrates.
Collapse
Affiliation(s)
- Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
- Correspondence: ; Tel.: +1-513-556-9708
| | - Andrew Gangidine
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
- Department of Geology, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Amanda K. Powers
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
34
|
Werren JH, Cohen LB, Gadau J, Ponce R, Baudry E, Lynch JA. Dissection of the complex genetic basis of craniofacial anomalies using haploid genetics and interspecies hybrids in Nasonia wasps. Dev Biol 2016; 415:391-405. [PMID: 26721604 PMCID: PMC4914427 DOI: 10.1016/j.ydbio.2015.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/13/2015] [Accepted: 12/21/2015] [Indexed: 11/25/2022]
Abstract
The animal head is a complex structure where numerous sensory, structural and alimentary structures are concentrated and integrated, and its ontogeny requires precise and delicate interactions among genes, cells, and tissues. Thus, it is perhaps unsurprising that craniofacial abnormalities are among the most common birth defects in people, or that these defects have a complex genetic basis involving interactions among multiple loci. Developmental processes that depend on such epistatic interactions become exponentially more difficult to study in diploid organisms as the number of genes involved increases. Here, we present hybrid haploid males of the wasp species pair Nasonia vitripennis and Nasonia giraulti, which have distinct male head morphologies, as a genetic model of craniofacial development that possesses the genetic advantages of haploidy, along with many powerful genomic tools. Viable, fertile hybrids can be made between the species, and quantitative trail loci related to shape differences have been identified. In addition, a subset of hybrid males show head abnormalities, including clefting at the midline and asymmetries. Crucially, epistatic interactions among multiple loci underlie several developmental differences and defects observed in the F2 hybrid males. Furthermore, we demonstrate an introgression of a chromosomal region from N. giraulti into N. vitripennis that shows an abnormality in relative eye size, which maps to a region containing a major QTL for this trait. Therefore, the genetic sources of head morphology can, in principle, be identified by positional cloning. Thus, Nasonia is well positioned to be a uniquely powerful model invertebrate system with which to probe both development and complex genetics of craniofacial patterning and defects.
Collapse
Affiliation(s)
- John H Werren
- Department of Biology, University of Rochester, Rochester, NY 14627, United States.
| | - Lorna B Cohen
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Juergen Gadau
- School of Life Sciences, Arizona State University, Tempe, AZ 85285, United States
| | - Rita Ponce
- Department of Biology, University of Rochester, Rochester, NY 14627, United States
| | - Emmanuelle Baudry
- Department of Biology, University of Rochester, Rochester, NY 14627, United States; Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Jeremy A Lynch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, United States.
| |
Collapse
|
35
|
Gross JB, Powers AK, Davis EM, Kaplan SA. A pleiotropic interaction between vision loss and hypermelanism in Astyanax mexicanus cave x surface hybrids. BMC Evol Biol 2016; 16:145. [PMID: 27363593 PMCID: PMC4929771 DOI: 10.1186/s12862-016-0716-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cave-dwelling animals evolve various traits as a consequence of life in darkness. Constructive traits (e.g., enhanced non-visual sensory systems) presumably arise under strong selective pressures. The mechanism(s) driving regression of features, however, are not well understood. Quantitative trait locus (QTL) analyses in Astyanax mexicanus Pachón cave x surface hybrids revealed phenotypic effects associated with vision and pigmentation loss. Vision QTL were uniformly associated with reductions in the homozygous cave condition, however pigmentation QTL demonstrated mixed phenotypic effects. This implied pigmentation might be lost through both selective and neutral forces. Alternatively, in this report, we examined if a pleiotropic interaction may exist between vision and pigmentation since vision loss has been shown to result in darker skin in other fish and amphibian model systems. RESULTS We discovered that certain members of Pachón x surface pedigrees are significantly darker than surface-dwelling fish. All of these "hypermelanic" individuals demonstrated severe visual system malformations suggesting they may be blind. A vision-mediated behavioral assay revealed that these fish, in stark contrast to surface fish, behaved the same as blind cavefish. Further, hypermelanic melanophores were larger and more dendritic in morphology compared to surface fish melanophores. However, hypermelanic melanophores responded normally to melanin-concentrating hormone suggesting darkening stemmed from vision loss, rather than a defect in pigment cell function. Finally, a number of genomic regions were coordinately associated with both reduced vision and increased pigmentation. CONCLUSIONS This work suggests hypermelanism in hybrid Astyanax results from blindness. This finding provides an alternative explanation for phenotypic effect studies of pigmentation QTL as stemming (at least in part) from environmental, rather than exclusively genetic, interactions between two regressive phenotypes. Further, this analysis reveals persistence of background adaptation in Astyanax. As the eye was lost in cave-dwelling forms, enhanced pigmentation resulted. Given the extreme cave environment, which is often devoid of nutrition, enhanced pigmentation may impose an energetic cost. Such an energetic cost would be selected against, as a means of energy conservation. Thus, the pleiotropic interaction between vision loss and pigmentation may reveal an additional selective pressure favoring the loss of pigmentation in cave-dwelling animals.
Collapse
Affiliation(s)
- Joshua B. Gross
- />Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45223 USA
- />Department of Biological Sciences, University of Cincinnati, Rieveschl Hall Room 711B, 312 Clifton Court, Cincinnati, Ohio 45221 USA
| | - Amanda K. Powers
- />Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45223 USA
| | - Erin M. Davis
- />Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45223 USA
| | - Shane A. Kaplan
- />Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45223 USA
| |
Collapse
|
36
|
Kowalko JE, Ma L, Jeffery WR. Genome Editing in Astyanax mexicanus Using Transcription Activator-like Effector Nucleases (TALENs). J Vis Exp 2016. [PMID: 27404092 DOI: 10.3791/54113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Identifying alleles of genes underlying evolutionary change is essential to understanding how and why evolution occurs. Towards this end, much recent work has focused on identifying candidate genes for the evolution of traits in a variety of species. However, until recently it has been challenging to functionally validate interesting candidate genes. Recently developed tools for genetic engineering make it possible to manipulate specific genes in a wide range of organisms. Application of this technology in evolutionarily relevant organisms will allow for unprecedented insight into the role of candidate genes in evolution. Astyanax mexicanus (A. mexicanus) is a species of fish with both surface-dwelling and cave-dwelling forms. Multiple independent lines of cave-dwelling forms have evolved from ancestral surface fish, which are interfertile with one another and with surface fish, allowing elucidation of the genetic basis of cave traits. A. mexicanus has been used for a number of evolutionary studies, including linkage analysis to identify candidate genes responsible for a number of traits. Thus, A. mexicanus is an ideal system for the application of genome editing to test the role of candidate genes. Here we report a method for using transcription activator-like effector nucleases (TALENs) to mutate genes in surface A. mexicanus. Genome editing using TALENs in A. mexicanus has been utilized to generate mutations in pigmentation genes. This technique can also be utilized to evaluate the role of candidate genes for a number of other traits that have evolved in cave forms of A. mexicanus.
Collapse
Affiliation(s)
| | - Li Ma
- Department of Biological Sciences, University of Cincinnati
| | | |
Collapse
|
37
|
Casane D, Rétaux S. Evolutionary Genetics of the Cavefish Astyanax mexicanus. ADVANCES IN GENETICS 2016; 95:117-59. [PMID: 27503356 DOI: 10.1016/bs.adgen.2016.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Blind and depigmented fish belonging to the species Astyanax mexicanus are outstanding models for evolutionary genetics. During their evolution in the darkness of caves, they have undergone a number of changes at the morphological, physiological, and behavioral levels, but they can still breed with their river-dwelling conspecifics. The fertile hybrids between these two morphotypes allow forward genetic approaches, from the search of quantitative trait loci to the identification of the mutations underlying the evolution of troglomorphism. We review here the past 30years of evolutionary genetics on Astyanax: from the first crosses and the discovery of convergent evolution of different Astyanax cavefish populations to the most recent evolutionary transcriptomics and genomics studies that have provided researchers with potential candidate genes to be tested using functional genetic approaches. Although significant progress has been made and some genes have been identified, cavefish have not yet fully revealed the secret of their adaptation to the absence of light. In particular, the genetic determinism of their loss of eyes seems complex and still puzzles researchers. We also discuss future research directions, including searches for the origin of cave alleles and searches for selection genome-wide, as well as the necessary but missing information on the timing of cave colonization by surface fish.
Collapse
Affiliation(s)
- D Casane
- Laboratory EGCE, CNRS and University of Paris-Sud, Gif-sur-Yvette, France; Paris Diderot University, Sorbonne Paris Cité, France
| | - S Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Sud, Gif-sur-Yvette, France
| |
Collapse
|
38
|
Gross JB, Stahl BA, Powers AK, Carlson BM. Natural bone fragmentation in the blind cave-dwelling fish, Astyanax mexicanus: candidate gene identification through integrative comparative genomics. Evol Dev 2016; 18:7-18. [PMID: 26153732 PMCID: PMC5226847 DOI: 10.1111/ede.12131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Animals that colonize dark and nutrient-poor subterranean environments evolve numerous extreme phenotypes. These include dramatic changes to the craniofacial complex, many of which are under genetic control. These phenotypes can demonstrate asymmetric genetic signals wherein a QTL is detected on one side of the face but not the other. The causative gene(s) underlying QTL are difficult to identify with limited genomic resources. We approached this task by searching for candidate genes mediating fragmentation of the third suborbital bone (SO3) directly inferior to the orbit of the eye. We integrated positional genomic information using emerging Astyanax resources, and linked these intervals to homologous (syntenic) regions of the Danio rerio genome. We identified a discrete, approximately 6 Mb, conserved region wherein the gene causing SO3 fragmentation likely resides. We interrogated this interval for genes demonstrating significant differential expression using mRNA-seq analysis of cave and surface morphs across life history. We then assessed genes with known roles in craniofacial evolution and development based on GO term annotation. Finally, we screened coding sequence alterations in this region, identifying two key genes: transforming growth factor β3 (tgfb3) and bone morphogenetic protein 4 (bmp4). Of these candidates, tgfb3 is most promising as it demonstrates significant differential expression across multiple stages of development, maps close (<1 Mb) to the fragmentation critical locus, and is implicated in a variety of other animal systems (including humans) in non-syndromic clefting and malformations of the cranial sutures. Both abnormalities are analogous to the failure-to-fuse phenotype that we observe in SO3 fragmentation. This integrative approach will enable discovery of the causative genetic lesions leading to complex craniofacial features analogous to human craniofacial disorders. This work underscores the value of cave-dwelling fish as a powerful evolutionary model of craniofacial disease, and demonstrates the power of integrative system-level studies for informing the genetic basis of craniofacial aberrations in nature.
Collapse
Affiliation(s)
- Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| | - Bethany A. Stahl
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| | - Amanda K. Powers
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| | - Brian M. Carlson
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| |
Collapse
|
39
|
Gross JB, Meyer B, Perkins M. The rise of Astyanax cavefish. Dev Dyn 2015; 244:1031-1038. [PMID: 25601346 PMCID: PMC4508244 DOI: 10.1002/dvdy.24253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/08/2015] [Accepted: 01/10/2015] [Indexed: 01/01/2023] Open
Abstract
Numerous animals have invaded subterranean caverns and evolved remarkably similar features. These features include loss of vision and pigmentation, and gains in nonvisual sensation. This broad convergence echoes smaller-scale convergence, in which members of the same species repeatedly evolve the same cave-associated phenotypes. The blind Mexican tetra of the Sierra de El Abra region of northeastern Mexico has a complex origin, having recurrently colonized subterranean environments through numerous invasions of surface-dwelling fish. These colonizations likely occurred ∼1-5 MYa. Despite evidence of historical and contemporary gene flow between cave and surface forms, the cave-associated phenotype appears to remain quite stable in nature. This model system has provided insight to the mechanisms of phenotypic regression, the genetic basis for constructive trait evolution, and the origin of behavioral novelties. Here, we document the rise of this model system from its discovery by a Mexican surveyor in 1936, to a powerful system for cave biology and contemporary genetic research. The recently sequenced genome provides exciting opportunities for future research, and will help resolve several long-standing biological problems. Developmental Dynamics 244:1031-1038, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joshua B Gross
- University of Cincinnati, Department of Biological Sciences, Cincinnati Ohio
| | - Bradley Meyer
- University of Cincinnati, Department of Biological Sciences, Cincinnati Ohio
| | - Molly Perkins
- University of Cincinnati, Department of Biological Sciences, Cincinnati Ohio
| |
Collapse
|
40
|
Konec M, Prevorčnik S, Sarbu SM, Verovnik R, Trontelj P. Parallels between two geographically and ecologically disparate cave invasions by the same species, Asellus aquaticus
(Isopoda, Crustacea). J Evol Biol 2015; 28:864-75. [DOI: 10.1111/jeb.12610] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 11/28/2022]
Affiliation(s)
- M. Konec
- Department of Biology; Biotechnical Faculty; University of Ljubljana; Ljubljana Slovenia
| | - S. Prevorčnik
- Department of Biology; Biotechnical Faculty; University of Ljubljana; Ljubljana Slovenia
| | - S. M. Sarbu
- Grupul de Explorari Subacvatice si Speologice; Bucureşti Romania
| | - R. Verovnik
- Department of Biology; Biotechnical Faculty; University of Ljubljana; Ljubljana Slovenia
| | - P. Trontelj
- Department of Biology; Biotechnical Faculty; University of Ljubljana; Ljubljana Slovenia
- Museum für Naturkunde; Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin; Berlin Germany
| |
Collapse
|
41
|
Yoshizawa M, Robinson BG, Duboué ER, Masek P, Jaggard JB, O'Quin KE, Borowsky RL, Jeffery WR, Keene AC. Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish. BMC Biol 2015; 13:15. [PMID: 25761998 PMCID: PMC4364459 DOI: 10.1186/s12915-015-0119-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sleep is characterized by extended periods of quiescence and reduced responsiveness to sensory stimuli. Animals ranging from insects to mammals adapt to environments with limited food by suppressing sleep and enhancing their response to food cues, yet little is known about the genetic and evolutionary relationship between these processes. The blind Mexican cavefish, Astyanax mexicanus is a powerful model for elucidating the genetic mechanisms underlying behavioral evolution. A. mexicanus comprises an extant ancestral-type surface dwelling morph and at least five independently evolved cave populations. Evolutionary convergence on sleep loss and vibration attraction behavior, which is involved in prey seeking, have been documented in cavefish raising the possibility that enhanced sensory responsiveness underlies changes in sleep. RESULTS We established a system to study sleep and vibration attraction behavior in adult A. mexicanus and used high coverage quantitative trait loci (QTL) mapping to investigate the functional and evolutionary relationship between these traits. Analysis of surface-cave F2 hybrid fish and an outbred cave population indicates that independent genetic factors underlie changes in sleep/locomotor activity and vibration attraction behavior. High-coverage QTL mapping with genotyping-by-sequencing technology identify two novel QTL intervals that associate with locomotor activity and include the narcolepsy-associated tp53 regulating kinase. These QTLs represent the first genomic localization of locomotor activity in cavefish and are distinct from two QTLs previously identified as associating with vibration attraction behavior. CONCLUSIONS Taken together, these results localize genomic regions underlying sleep/locomotor and sensory changes in cavefish populations and provide evidence that sleep loss evolved independently from enhanced sensory responsiveness.
Collapse
Affiliation(s)
- Masato Yoshizawa
- Department of Biology, University of Nevada, Reno, Reno, NV, 89557, USA. .,Department of Biology, University of Hawaii, Manoa, Honolulu, HI, 96822, USA.
| | - Beatriz G Robinson
- Department of Biology, University of Nevada, Reno, Reno, NV, 89557, USA.
| | - Erik R Duboué
- Department of Biology, New York University, New York, NY, 10012, USA. .,Present address: Carnegie Institution for Science, Department of Embryology, Baltimore, MD, 21218, USA.
| | - Pavel Masek
- Department of Biology, University of Nevada, Reno, Reno, NV, 89557, USA.
| | - James B Jaggard
- Department of Biology, University of Nevada, Reno, Reno, NV, 89557, USA.
| | - Kelly E O'Quin
- Department of Biology, Centre College, Danville, KY, 40422, USA.
| | | | - William R Jeffery
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| | - Alex C Keene
- Department of Biology, University of Nevada, Reno, Reno, NV, 89557, USA.
| |
Collapse
|
42
|
Carlson BM, Onusko SW, Gross JB. A high-density linkage map for Astyanax mexicanus using genotyping-by-sequencing technology. G3 (BETHESDA, MD.) 2014; 5:241-51. [PMID: 25520037 PMCID: PMC4321032 DOI: 10.1534/g3.114.015438] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022]
Abstract
The Mexican tetra, Astyanax mexicanus, is a unique model system consisting of cave-adapted and surface-dwelling morphotypes that diverged >1 million years (My) ago. This remarkable natural experiment has enabled powerful genetic analyses of cave adaptation. Here, we describe the application of next-generation sequencing technology to the creation of a high-density linkage map. Our map comprises more than 2200 markers populating 25 linkage groups constructed from genotypic data generated from a single genotyping-by-sequencing project. We leveraged emergent genomic and transcriptomic resources to anchor hundreds of anonymous Astyanax markers to the genome of the zebrafish (Danio rerio), the most closely related model organism to our study species. This facilitated the identification of 784 distinct connections between our linkage map and the Danio rerio genome, highlighting several regions of conserved genomic architecture between the two species despite ~150 My of divergence. Using a Mendelian cave-associated trait as a proof-of-principle, we successfully recovered the genomic position of the albinism locus near the gene Oca2. Further, our map successfully informed the positions of unplaced Astyanax genomic scaffolds within particular linkage groups. This ability to identify the relative location, orientation, and linear order of unaligned genomic scaffolds will facilitate ongoing efforts to improve on the current early draft and assemble future versions of the Astyanax physical genome. Moreover, this improved linkage map will enable higher-resolution genetic analyses and catalyze the discovery of the genetic basis for cave-associated phenotypes.
Collapse
Affiliation(s)
- Brian M Carlson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221
| | - Samuel W Onusko
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221
| |
Collapse
|
43
|
Braasch I, Peterson SM, Desvignes T, McCluskey BM, Batzel P, Postlethwait JH. A new model army: Emerging fish models to study the genomics of vertebrate Evo-Devo. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:316-41. [PMID: 25111899 DOI: 10.1002/jez.b.22589] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 01/08/2023]
Abstract
Many fields of biology--including vertebrate Evo-Devo research--are facing an explosion of genomic and transcriptomic sequence information and a multitude of fish species are now swimming in this "genomic tsunami." Here, we first give an overview of recent developments in sequencing fish genomes and transcriptomes that identify properties of fish genomes requiring particular attention and propose strategies to overcome common challenges in fish genomics. We suggest that the generation of chromosome-level genome assemblies--for which we introduce the term "chromonome"--should be a key component of genomic investigations in fish because they enable large-scale conserved synteny analyses that inform orthology detection, a process critical for connectivity of genomes. Orthology calls in vertebrates, especially in teleost fish, are complicated by divergent evolution of gene repertoires and functions following two rounds of genome duplication in the ancestor of vertebrates and a third round at the base of teleost fish. Second, using examples of spotted gar, basal teleosts, zebrafish-related cyprinids, cavefish, livebearers, icefish, and lobefin fish, we illustrate how next generation sequencing technologies liberate emerging fish systems from genomic ignorance and transform them into a new model army to answer longstanding questions on the genomic and developmental basis of their biodiversity. Finally, we discuss recent progress in the genetic toolbox for the major fish models for functional analysis, zebrafish, and medaka, that can be transferred to many other fish species to study in vivo the functional effect of evolutionary genomic change as Evo-Devo research enters the postgenomic era.
Collapse
Affiliation(s)
- Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | | | | | | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | |
Collapse
|