1
|
Xu C, Li Z, Lyu C, Hu Y, McLaughlin CN, Wong KKL, Xie Q, Luginbuhl DJ, Li H, Udeshi ND, Svinkina T, Mani DR, Han S, Li T, Li Y, Guajardo R, Ting AY, Carr SA, Li J, Luo L. Molecular and cellular mechanisms of teneurin signaling in synaptic partner matching. Cell 2024; 187:5081-5101.e19. [PMID: 38996528 DOI: 10.1016/j.cell.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionarily conserved teneurins are transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurins' functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of a teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching.
Collapse
Affiliation(s)
- Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Cheng Lyu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yixin Hu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Colleen N McLaughlin
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Kenneth Kin Lam Wong
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tanya Svinkina
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Tongchao Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yang Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Guajardo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Chaudhary V, Kumar M, Chauhan C, Sirohi U, Srivastav AL, Rani L. Strategies for mitigation of pesticides from the environment through alternative approaches: A review of recent developments and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120326. [PMID: 38387349 DOI: 10.1016/j.jenvman.2024.120326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Chemical-based peticides are having negative impacts on both the healths of human beings and plants as well. The World Health Organisation (WHO), reported that each year, >25 million individuals in poor nations are having acute pesticide poisoning cases along with 20,000 fatal injuries at global level. Normally, only ∼0.1% of the pesticide reaches to the intended targets, and rest amount is expected to come into the food chain/environment for a longer period of time. Therefore, it is crucial to reduce the amounts of pesticides present in the soil. Physical or chemical treatments are either expensive or incapable to do so. Hence, pesticide detoxification can be achieved through bioremediation/biotechnologies, including nano-based methodologies, integrated approaches etc. These are relatively affordable, efficient and environmentally sound methods. Therefore, alternate strategies like as advanced biotechnological tools like as CRISPR Cas system, RNAi and genetic engineering for development of insects and pest resistant plants which are directly involved in the development of disease- and pest-resistant plants and indirectly reduce the use of pesticides. Omics tools and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation of pesticides also discussed from the literatures. Overall, the review focuses on the most recent advancements in bioremediation methods to lessen the effects of pesticides along with the role of microorganisms in pesticides elimination. Further, pesticide detection is also a big challenge which can be done by using HPLC, GC, SERS, and LSPR ELISA etc. which have also been described in this review.
Collapse
Affiliation(s)
- Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, Uttar-Pradesh, India
| | - Mukesh Kumar
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Chetan Chauhan
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Ujjwal Sirohi
- National Institute of Plant Genome Research, New Delhi, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Lata Rani
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
3
|
Loehlin DW, McClain GL, Xu M, Kedia R, Root E. Demonstration of in vivo engineered tandem duplications of varying sizes using CRISPR and recombinases in Drosophila melanogaster. G3 (BETHESDA, MD.) 2023; 13:jkad155. [PMID: 37462278 PMCID: PMC10542505 DOI: 10.1093/g3journal/jkad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/08/2023] [Accepted: 06/09/2023] [Indexed: 07/28/2023]
Abstract
Tandem gene duplicates are important parts of eukaryotic genome structure, yet the phenotypic effects of new tandem duplications are not well-understood, in part owing to a lack of techniques to build and modify them. We introduce a method, Recombinase-Mediated Tandem Duplication, to engineer specific tandem duplications in vivo using CRISPR and recombinases. We describe construction of four different tandem duplications of the Alcohol Dehydrogenase (Adh) gene in Drosophila melanogaster, with duplicated block sizes ranging from 4.2 to 20.7 kb. Flies with the Adh duplications show elevated ADH enzyme activity over unduplicated single copies. This approach to engineering duplications is combinatoric, opening the door to systematic study of the relationship between the structure of tandem duplications and their effects on expression.
Collapse
Affiliation(s)
- David W Loehlin
- Biology Department, Williams College, Williamstown, MA 01267, USA
| | | | - Manting Xu
- Biology Department, Williams College, Williamstown, MA 01267, USA
| | - Ria Kedia
- Biology Department, Williams College, Williamstown, MA 01267, USA
| | - Elise Root
- Biology Department, Williams College, Williamstown, MA 01267, USA
| |
Collapse
|
4
|
Sun R, Raban R, Akbari OS. CRISPR-Cas9 Methods and Key Considerations in the Production of Aedes aegypti Mutant Strains. Cold Spring Harb Protoc 2023; 2023:607-613. [PMID: 36931732 PMCID: PMC10901255 DOI: 10.1101/pdb.top107693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Since the characterization of the CRISPR-Cas9 system in prokaryotes, it has become the prime choice in gene editing because of its exceptional flexibility, ease of use, high efficiency, and superior specificity. As a result, CRISPR-Cas9-mediated gene-editing technologies have enabled researchers not only to engineer transgenic animal strains with site-directed insertions more efficiently but also to generate desired mutants for previously intractable species. One such species is the invasive yellow fever mosquito, Aedes aegypti, which is notorious for its ability to transmit many blood-borne human pathogens. Methods for developing new transgenic strains of the yellow fever mosquito may aid in the effort to control its populations and provide significant benefits for the public. Here, we provide an overview of injection and noninjection methods for generating transgenic mosquitoes and also highlight important experimental design features.
Collapse
Affiliation(s)
- Ruichen Sun
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - Robyn Raban
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
5
|
Son W, Chung KW. Targeted recombination of homologous chromosomes using CRISPR-Cas9. FEBS Open Bio 2023; 13:1658-1666. [PMID: 37462508 PMCID: PMC10476559 DOI: 10.1002/2211-5463.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
CRISPR mutagenesis is an efficient way to disrupt specific target genes in many model organisms. We previously devised a targeted CRISPR recombination method to generate intragenic recombinants of alleles in Drosophila. Here, we assessed the applicability of CRISPR targeting-induced recombination to different genetic loci. We compared the ectopic recombination rates in the male germline by CRISPR targeting at two neighboring genetic loci within the genomic region that consists of the repressed chromatin domain of the Lobe gene, and the transcriptionally active domain of PRAS40. Targeting around the transcription initiation of PRAS40 resulted in higher recombination rates of homologous chromosomes than targeting at the Lobe intron. Based on the efficient homologous recombination by CRISPR targeting observed around transcriptionally active loci, we further investigated targeted recombination between P-elements that are inserted at different genomic locations. Male recombination by CRISPR targeting of P-elements located proximally and distally to the ebony gene produced recombinants deficient for the intervening region of ebony transcription. Taken together, we suggest that targeted homologous recombination by CRISPR targeting may have specific genetic applications, such as generation of allelic combinations or chromosomal variations.
Collapse
Affiliation(s)
- Wonseok Son
- Department of Biological Sciences and BK21 Team for Field‐oriented BioCore Human Resources DevelopmentKongju National UniversityGongjuSouth Korea
| | - Ki Wha Chung
- Department of Biological Sciences and BK21 Team for Field‐oriented BioCore Human Resources DevelopmentKongju National UniversityGongjuSouth Korea
| |
Collapse
|
6
|
Vasquez OE, Allen AM, So AKC, Nguyen QH, Krause HM, Levine JD, Sokolowski MB. Characterizing the Protein Isoforms of foraging ( for), the PKGI Ortholog in Drosophila melanogaster. Int J Mol Sci 2023; 24:10219. [PMID: 37373366 DOI: 10.3390/ijms241210219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The foraging (for) gene of Drosophila melanogaster encodes a cGMP-dependent protein kinase (PKG), which is a major effector of the cGMP signaling pathway involved in the regulation of behaviour and metabolic traits. Despite being well studied at the transcript level, little is known about the for gene at the protein level. Here, we provide a detailed characterization of the for gene protein (FOR) products and present new tools for their study, including five isoform-specific antibodies and a transgenic strain that carries an HA-labelled for allele (forBAC::HA). Our results showed that multiple FOR isoforms were expressed in the larval and adult stages of D. melanogaster and that the majority of whole-body FOR expression arises from three (P1, P1α, and P3) of eight putative protein isoforms. We found that FOR expression differed between the larval and adult stages and between the dissected larval organs we analyzed, which included the central nervous system (CNS), fat body, carcass, and intestine. Moreover, we showed that the FOR expression differed between two allelic variants of the for gene, namely, fors (sitter) and forR (rover), that are known to differ in many food-related traits. Together, our in vivo identification of FOR isoforms and the existence of temporal, spatial, and genetic differences in their expression lay the groundwork for determining their functional significance.
Collapse
Affiliation(s)
- Oscar E Vasquez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Aaron M Allen
- Centre for Neural Circuits and Behaviour, Oxford University, Oxford OX1 3SR, UK
| | - Anthony K-C So
- Department of Biology, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Quynh H Nguyen
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Henry M Krause
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Joel D Levine
- Department of Biology, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| |
Collapse
|
7
|
Bui KC, Kamiyama D. CRISPR/Cas9-mediated knock-in in ebony gene using a PCR product donor template in Drosophila. GENE AND GENOME EDITING 2023; 5:100025. [PMID: 37426904 PMCID: PMC10327816 DOI: 10.1016/j.ggedit.2023.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
CRISPR/Cas9 technology has been a powerful tool for gene editing in Drosophila, particularly for knocking in base-pair mutations or a variety of gene cassettes into endogenous gene loci. Among the Drosophila community, there has been a concerted effort to establish CRISPR/Cas9-mediated knock-in protocols that decrease the amount of time spent on molecular cloning. Here, we report the CRISPR/Cas9-mediated insertion of a ~50 base-pair sequence into the ebony gene locus, using a linear double-stranded DNA (PCR product) donor template By circumventing the cloning step of the donor template, our approach suggests the PCR product as a useful alternative knock-in donor format.
Collapse
|
8
|
Shekhar S, Moehlman AT, Park B, Ewnetu M, Tracy C, Titos I, Pawłowski K, Tagliabracci VS, Krämer H. Allnighter pseudokinase-mediated feedback links proteostasis and sleep in Drosophila. Nat Commun 2023; 14:2932. [PMID: 37217484 DOI: 10.1038/s41467-023-38485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
In nervous systems, retrograde signals are key for organizing circuit activity and maintaining neuronal homeostasis. We identify the conserved Allnighter (Aln) pseudokinase as a cell non-autonomous regulator of proteostasis responses necessary for normal sleep and structural plasticity of Drosophila photoreceptors. In aln mutants exposed to extended ambient light, proteostasis is dysregulated and photoreceptors develop striking, but reversible, dysmorphology. The aln gene is widely expressed in different neurons, but not photoreceptors. However, secreted Aln protein is retrogradely endocytosed by photoreceptors. Inhibition of photoreceptor synaptic release reduces Aln levels in lamina neurons, consistent with secreted Aln acting in a feedback loop. In addition, aln mutants exhibit reduced night time sleep, providing a molecular link between dysregulated proteostasis and sleep, two characteristics of ageing and neurodegenerative diseases.
Collapse
Affiliation(s)
- Shashank Shekhar
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX; O'Donnell Brain Institute, Dallas, USA.
| | - Andrew T Moehlman
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX; O'Donnell Brain Institute, Dallas, USA
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Brenden Park
- Department of Molecular Biology UT Southwestern Medical Center, Dallas, TX, USA
| | - Michael Ewnetu
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX; O'Donnell Brain Institute, Dallas, USA
| | - Charles Tracy
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX; O'Donnell Brain Institute, Dallas, USA
| | - Iris Titos
- Molecular Medicine Program, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Krzysztof Pawłowski
- Department of Molecular Biology UT Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-776, Poland
| | - Vincent S Tagliabracci
- Department of Molecular Biology UT Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Maryland, USA
| | - Helmut Krämer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX; O'Donnell Brain Institute, Dallas, USA.
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Parisi MJ, Aimino MA, Mosca TJ. A conditional strategy for cell-type-specific labeling of endogenous excitatory synapses in Drosophila. CELL REPORTS METHODS 2023; 3:100477. [PMID: 37323572 PMCID: PMC10261928 DOI: 10.1016/j.crmeth.2023.100477] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/28/2023] [Accepted: 04/19/2023] [Indexed: 06/17/2023]
Abstract
Chemical neurotransmission occurs at specialized contacts where neurotransmitter release machinery apposes neurotransmitter receptors to underlie circuit function. A series of complex events underlies pre- and postsynaptic protein recruitment to neuronal connections. To better study synaptic development in individual neurons, we need cell-type-specific strategies to visualize endogenous synaptic proteins. Although presynaptic strategies exist, postsynaptic proteins remain less studied because of a paucity of cell-type-specific reagents. To study excitatory postsynapses with cell-type specificity, we engineered dlg1[4K], a conditionally labeled marker of Drosophila excitatory postsynaptic densities. With binary expression systems, dlg1[4K] labels central and peripheral postsynapses in larvae and adults. Using dlg1[4K], we find that distinct rules govern postsynaptic organization in adult neurons, multiple binary expression systems can concurrently label pre- and postsynapse in a cell-type-specific manner, and neuronal DLG1 can sometimes localize presynaptically. These results validate our strategy for conditional postsynaptic labeling and demonstrate principles of synaptic organization.
Collapse
Affiliation(s)
- Michael J. Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael A. Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Kalamakis G, Platt RJ. CRISPR for neuroscientists. Neuron 2023:S0896-6273(23)00306-9. [PMID: 37201524 DOI: 10.1016/j.neuron.2023.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/14/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Genome engineering technologies provide an entry point into understanding and controlling the function of genetic elements in health and disease. The discovery and development of the microbial defense system CRISPR-Cas yielded a treasure trove of genome engineering technologies and revolutionized the biomedical sciences. Comprising diverse RNA-guided enzymes and effector proteins that evolved or were engineered to manipulate nucleic acids and cellular processes, the CRISPR toolbox provides precise control over biology. Virtually all biological systems are amenable to genome engineering-from cancer cells to the brains of model organisms to human patients-galvanizing research and innovation and giving rise to fundamental insights into health and powerful strategies for detecting and correcting disease. In the field of neuroscience, these tools are being leveraged across a wide range of applications, including engineering traditional and non-traditional transgenic animal models, modeling disease, testing genomic therapies, unbiased screening, programming cell states, and recording cellular lineages and other biological processes. In this primer, we describe the development and applications of CRISPR technologies while highlighting outstanding limitations and opportunities.
Collapse
Affiliation(s)
- Georgios Kalamakis
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Department of Chemistry, University of Basel, Petersplatz 1, 4003 Basel, Switzerland; NCCR MSE, Mattenstrasse 24a, 4058 Basel, Switzerland; Botnar Research Center for Child Health, Mattenstrasse 24a, 4058 Basel, Switzerland.
| |
Collapse
|
11
|
Hakes AC, Gavis ER. Plasticity of Drosophila germ granules during germ cell development. PLoS Biol 2023; 21:e3002069. [PMID: 37053289 PMCID: PMC10128949 DOI: 10.1371/journal.pbio.3002069] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/25/2023] [Accepted: 03/07/2023] [Indexed: 04/15/2023] Open
Abstract
Compartmentalization of RNAs and proteins into membraneless structures called granules is a ubiquitous mechanism for organizing and regulating cohorts of RNAs. Germ granules are ribonucleoprotein (RNP) assemblies required for germline development across the animal kingdom, but their regulatory roles in germ cells are not fully understood. We show that after germ cell specification, Drosophila germ granules enlarge through fusion and this growth is accompanied by a shift in function. Whereas germ granules initially protect their constituent mRNAs from degradation, they subsequently target a subset of these mRNAs for degradation while maintaining protection of others. This functional shift occurs through the recruitment of decapping and degradation factors to the germ granules, which is promoted by decapping activators and renders these structures P body-like. Disrupting either the mRNA protection or degradation function results in germ cell migration defects. Our findings reveal plasticity in germ granule function that allows them to be repurposed at different stages of development to ensure population of the gonad by germ cells. Additionally, these results reveal an unexpected level of functional complexity whereby constituent RNAs within the same granule type can be differentially regulated.
Collapse
Affiliation(s)
- Anna C Hakes
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
12
|
Hassan S, Ganai BA. Deciphering the recent trends in pesticide bioremediation using genome editing and multi-omics approaches: a review. World J Microbiol Biotechnol 2023; 39:151. [PMID: 37029313 DOI: 10.1007/s11274-023-03603-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Pesticide pollution in recent times has emerged as a grave environmental problem contaminating both aquatic and terrestrial ecosystems owing to their widespread use. Bioremediation using gene editing and system biology could be developed as an eco-friendly and proficient tool to remediate pesticide-contaminated sites due to its advantages and greater public acceptance over the physical and chemical methods. However, it is indispensable to understand the different aspects associated with microbial metabolism and their physiology for efficient pesticide remediation. Therefore, this review paper analyses the different gene editing tools and multi-omics methods in microbes to produce relevant evidence regarding genes, proteins and metabolites associated with pesticide remediation and the approaches to contend against pesticide-induced stress. We systematically discussed and analyzed the recent reports (2015-2022) on multi-omics methods for pesticide degradation to elucidate the mechanisms and the recent advances associated with the behaviour of microbes under diverse environmental conditions. This study envisages that CRISPR-Cas, ZFN and TALEN as gene editing tools utilizing Pseudomonas, Escherichia coli and Achromobacter sp. can be employed for remediation of chlorpyrifos, parathion-methyl, carbaryl, triphenyltin and triazophos by creating gRNA for expressing specific genes for the bioremediation. Similarly, systems biology accompanying multi-omics tactics revealed that microbial strains from Paenibacillus, Pseudomonas putida, Burkholderia cenocepacia, Rhodococcus sp. and Pencillium oxalicum are capable of degrading deltamethrin, p-nitrophenol, chlorimuron-ethyl and nicosulfuron. This review lends notable insights into the research gaps and provides potential solutions for pesticide remediation by using different microbe-assisted technologies. The inferences drawn from the current study will help researchers, ecologists, and decision-makers gain comprehensive knowledge of value and application of systems biology and gene editing in bioremediation assessments.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
13
|
Alamos S, Reimer A, Westrum C, Turner MA, Talledo P, Zhao J, Luu E, Garcia HG. Minimal synthetic enhancers reveal control of the probability of transcriptional engagement and its timing by a morphogen gradient. Cell Syst 2023; 14:220-236.e3. [PMID: 36696901 PMCID: PMC10125799 DOI: 10.1016/j.cels.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/03/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023]
Abstract
How enhancers interpret morphogen gradients to generate gene expression patterns is a central question in developmental biology. Recent studies have proposed that enhancers can dictate whether, when, and at what rate promoters engage in transcription, but the complexity of endogenous enhancers calls for theoretical models with too many free parameters to quantitatively dissect these regulatory strategies. To overcome this limitation, we established a minimal promoter-proximal synthetic enhancer in embryos of Drosophila melanogaster. Here, a gradient of the Dorsal activator is read by a single Dorsal DNA binding site. Using live imaging to quantify transcriptional activity, we found that a single binding site can regulate whether promoters engage in transcription in a concentration-dependent manner. By modulating the binding-site affinity, we determined that a gene's decision to transcribe and its transcriptional onset time can be explained by a simple model where the promoter traverses multiple kinetic barriers before transcription can ensue.
Collapse
Affiliation(s)
- Simon Alamos
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Armando Reimer
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA
| | - Clay Westrum
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Meghan A Turner
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Paul Talledo
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Jiaxi Zhao
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Emma Luu
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Hernan G Garcia
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA; Department of Physics, University of California at Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
14
|
Duan T, Thyagarajan S, Amoiroglou A, Rogers GC, Geyer PK. Analysis of a rare progeria variant of Barrier-to-autointegration factor in Drosophila connects centromere function to tissue homeostasis. Cell Mol Life Sci 2023; 80:73. [PMID: 36842139 PMCID: PMC9968693 DOI: 10.1007/s00018-023-04721-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/27/2023]
Abstract
Barrier-to-autointegration factor (BAF/BANF) is a nuclear lamina protein essential for nuclear integrity, chromatin structure, and genome stability. Whereas complete loss of BAF causes lethality in multiple organisms, the A12T missense mutation of the BANF1 gene in humans causes a premature aging syndrome, called Néstor-Guillermo Progeria Syndrome (NGPS). Here, we report the first in vivo animal investigation of progeroid BAF, using CRISPR editing to introduce the NGPS mutation into the endogenous Drosophila baf gene. Progeroid BAF adults are born at expected frequencies, demonstrating that this BAF variant retains some function. However, tissue homeostasis is affected, supported by studies of the ovary, a tissue that depends upon BAF for stem cell survival and continuous oocyte production. We find that progeroid BAF causes defects in germline stem cell mitosis that delay anaphase progression and compromise chromosome segregation. We link these defects to decreased recruitment of centromeric proteins of the kinetochore, indicating dysfunction of cenBAF, a localized pool of dephosphorylated BAF produced by Protein Phosphatase PP4. We show that DNA damage increases in progenitor germ cells, which causes germ cell death due to activation of the DNA damage transducer kinase Chk2. Mitotic defects appear widespread, as aberrant chromosome segregation and increased apoptosis occur in another tissue. Together, these data highlight the importance of BAF in establishing centromeric structures critical for mitosis. Further, these studies link defects in cenBAF function to activation of a checkpoint that depletes progenitor reserves critical for tissue homeostasis, aligning with phenotypes of NGPS patients.
Collapse
Affiliation(s)
- Tingting Duan
- Department of Biochemistry and Molecular Biology, University of Iowa, 3135E MERF, Iowa City, IA, 52242, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Srikantha Thyagarajan
- Department of Biochemistry and Molecular Biology, University of Iowa, 3135E MERF, Iowa City, IA, 52242, USA
| | - Anastasia Amoiroglou
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Pamela K Geyer
- Department of Biochemistry and Molecular Biology, University of Iowa, 3135E MERF, Iowa City, IA, 52242, USA.
| |
Collapse
|
15
|
Duan T, Rodriguez-Tirado F, Geyer PK. Immunohistochemical Analysis of Nuclear Lamina Structures in the Drosophila Ovary Using CRISPR-Tagged Genes. Methods Mol Biol 2023; 2626:109-134. [PMID: 36715902 DOI: 10.1007/978-1-0716-2970-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Drosophila ovary represents an outstanding model for investigating tissue homeostasis. Females continuously produce oocytes throughout their lifetime. However, as females age, fecundity declines, in part, due to changes in ovarian niche function and germline stem cell (GSC) homeostasis. Understanding the dynamics of GSC maintenance will provide needed insights into how coordinated tissue homeostasis is lost during aging. Critical regulators of GSC maintenance are proteins that reside in the nuclear lamina (NL), including the NL proteins emerin and Barrier-to-Autointegration Factor (BAF). Continued investigation of how emerin, BAF, and other NL proteins contribute to GSC function depends upon the availability of antibodies for NL proteins, a limiting resource. In this chapter, we discuss strategies for using clustered regularly interspaced short palindromic repeats (CRISPR) genomic editing to produce endogenously tagged NL genes to circumvent this obstacle, using the generation of the gfp-baf allele as an example. We describe strategies for validation of tagged alleles. Finally, we outline methods for immunohistochemical analysis of resulting tagged-NL proteins.
Collapse
Affiliation(s)
- Tingting Duan
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Felipe Rodriguez-Tirado
- Department of Biochemistry and Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Pamela K Geyer
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
16
|
Mele S, Martelli F, Lin J, Kanca O, Christodoulou J, Bellen HJ, Piper MDW, Johnson TK. Drosophila as a diet discovery tool for treating amino acid disorders. Trends Endocrinol Metab 2023; 34:85-105. [PMID: 36567227 DOI: 10.1016/j.tem.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Amino acid disorders (AADs) are a large group of rare inherited conditions that collectively impact one in 6500 live births, often resulting in rapid neurological decline and death during infancy. For several AADs, including phenylketonuria, dietary modification prevents physiological deterioration and ameliorates symptoms. Despite this remarkable potential for treatment success, dietary therapy for most AADs remains largely unexplored. Although animal models have provided novel insights into AAD mechanisms, few have been used for therapeutic diet discovery. Here, we find that of all the animal models, Drosophila is particularly well suited for nutrigenomic disease modelling, having amino acid pathways conserved with humans, exceptional genetic tractability, and the unique availability of a synthetic customisable diet.
Collapse
Affiliation(s)
- Sarah Mele
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - John Christodoulou
- Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
17
|
Venken KJ, Matinyan N, Gonzalez Y, Dierick HA. Serial Recombineering Cloning to Build Selectable and Tagged Genomic P[acman] BAC Clones for Selection Transgenesis and Functional Gene Analysis using Drosophila melanogaster. Curr Protoc 2023; 3:e675. [PMID: 36757632 PMCID: PMC9923880 DOI: 10.1002/cpz1.675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Transgenes with genomic DNA fragments that encompass genes of interest are the gold standard for complementing null alleles in rescue experiments in the fruit fly Drosophila melanogaster. Of particular interest are genomic DNA clones available as bacterial artificial chromosomes (BACs) or fosmids from publicly available genomic DNA libraries. Genes contained within BAC and fosmid clones can be easily modified by recombineering cloning to insert peptide or protein tags to localize, visualize, or manipulate gene products, and to create point mutations or deletions for structure-function analysis of the inserted genes. However, since transgenesis efficiency is inversely correlated with transgene size, obtaining transgenic animals for increasingly larger BAC and fosmid clones requires increasingly laborious screening efforts using the transgenesis marker commonly used for these transgenes, the dominant eye color marker white+ . We recently described a drug-based selectable genetic platform for Drosophila melanogaster, which included four resistance markers that allow direct selection of transgenic animals, eliminating the need to identify transgenic progeny by laborious phenotypic screening. By integrating these resistance markers into BAC transgenes, we were able to isolate animals containing large transgenes by direct selection, avoiding laborious screening. Here we present procedures on how to upgrade BAC clones by serial recombineering cloning to build both selectable and tagged BAC transgenes, for selection transgenesis and functional gene analysis, respectively. We illustrate these procedures using a BAC clone encompassing the gene encoding the synaptic vesicle protein, cysteine string protein. We demonstrate that the modified BAC clone, serially recombineered with a selectable marker for selection transgenesis and an N-terminal green fluorescent protein tag for gene expression analysis, is functional by showing the expression pattern obtained after successful selection transgenesis. The protocols cover: (1) cloning and preparation of the recombineering templates needed for serial recombineering cloning to incorporate selectable markers and protein tags; (2) preparing electrocompetent cells needed to perform serial recombineering cloning; and (3) the serial recombineering workflow to generate both selectable and tagged genomic BAC reporter transgenes for selection transgenesis and functional gene analysis in Drosophila melanogaster. The protocols we describe can be easily adapted to incorporate any of four selectable markers, protein tags, or any other modification for structure-function analysis of the genes present within any of the BAC or fosmid clones. A protocol for generating transgenic animals using serially recombineered BAC clones is presented in an accompanying Current Protocols article (Venken, Matinyan, Gonzalez, & Dierick, 2023a). © 2023 Wiley Periodicals LLC. Basic Protocol 1: Cloning and preparation of recombineering templates used for serial recombineering cloning. Basic Protocol 2: Making electrocompetent cells of the bacterial strains used to perform serial recombineering cloning or induction of plasmid copy number. Basic Protocol 3: Serial recombineering cloning to generate both selectable and tagged genomic P[acman] BAC reporter transgenes for selection transgenesis and gene expression analysis in Drosophila melanogaster.
Collapse
Affiliation(s)
- Koen J.T. Venken
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Integrative Molecular Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- McNair Medical Institute at The Robert and Janice McNair Foundation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nick Matinyan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Integrative Molecular Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yezabel Gonzalez
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Herman A. Dierick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
18
|
Venken KJ, Matinyan N, Gonzalez Y, Dierick HA. Multiplexed Transgenic Selection and Counterselection Strategies to Expedite Genetic Manipulation Workflows Using Drosophila melanogaster. Curr Protoc 2023; 3:e652. [PMID: 36757287 PMCID: PMC9923875 DOI: 10.1002/cpz1.652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
We recently described a set of four selectable and two counterselectable markers that provide resistance and sensitivity, respectively, against their corresponding drugs using the model organism Drosophila melanogaster. The four selectable markers provide animals with resistance against G418 sulfate, puromycin HCl, blasticidin S, or hygromycin B, whereas the two counterselection markers make animals sensitive to ganciclovir/acyclovir or 5-fluorocytosine. Unlike classical phenotypic markers, whether visual or fluorescent, which require extensive screening of progeny of a genetic cross for desired genotypes, resistance and sensitivity markers eliminate this laborious procedure by directly selecting for, or counterselecting against, the desired genotypes. We demonstrated the usefulness of these markers with three applications: 1) generating dual transgenic animals for binary overexpression (e.g., GAL4/UAS) analysis in a single step through the process of co-injection, followed by co-selection resulting in co-transgenesis; 2) obtaining balancer chromosomes that are both selectable and counterselectable to manipulate crossing schemes for, or against, the presence of the modified balancer chromosome; and 3) making both selectable and fluorescently tagged P[acman] BAC transgenic animals for gene expression and proteomic analysis. Here, we describe detailed procedures for how to use these drug-based selection and counterselection markers in the fruit fly D. melanogaster when making dual transgenic animals for binary overexpression as an example. Dual transgenesis integrates site-specifically into two sites in the genome in a single step, namely both components of the binary GAL4/UAS overexpression system, via a G418 sulfate-selectable GAL4 transactivator plasmid and a blasticidin S-selectable UAS responder plasmid. The process involves co-injecting the two plasmids, followed by co-selection using G418 sulfate and blasticidin S, resulting in co-transgenesis of the two plasmids in the fly genome. We demonstrate the functionality of the procedure based on the expression pattern obtained after dual transgenesis of the two plasmids. We provide protocols on how to prepare drugged fly food vials, determine the effective drug concentration for markers used during transgenic selection and counterselection strategies, and prepare and confirm plasmid DNA for microinjection, followed by the microinjection procedure itself and setting up crossing schemes to isolate desired progeny through selection and/or counterselection. These protocols can be easily adapted to any combination of the six selectable and counterselectable markers we described or any new marker that is resistant or sensitive to a novel drug. Protocols on how to build plasmids by synthetic-assembly DNA cloning or modify plasmids by serial recombineering to perform a plethora of selection, counterselection, or any other genetic strategies are presented in two accompanying Current Protocols articles. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Preparing drugged fly food vials for transgenic selection and counterselection strategies using D. melanogaster Basic Protocol 2: Determining the effective drug concentration for resistance and sensitivity markers used during transgenic selection and counterselection strategies using D. melanogaster Basic Protocol 3: Preparing and confirming plasmid DNA for microinjection to perform transgenic selection and counterselection strategies using D. melanogaster Basic Protocol 4: Microinjecting plasmid DNA into fly embryos to perform transgenic selection and counterselection strategies using D. melanogaster Basic Protocol 5: Crossing schemes to isolate desired progeny through transgenic selection and counterselection strategies using D. melanogaster.
Collapse
Affiliation(s)
- Koen J.T. Venken
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Integrative Molecular Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- McNair Medical Institute at The Robert and Janice McNair Foundation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nick Matinyan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Integrative Molecular Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yezabel Gonzalez
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Herman A. Dierick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
19
|
Loehlin DW, McClain GL, Xu M, Kedia R, Root E. Demonstration of in vivo engineered tandem duplications of varying sizes using CRISPR and recombinases in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.08.523181. [PMID: 36711585 PMCID: PMC9881931 DOI: 10.1101/2023.01.08.523181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tandem gene duplicates are important parts of eukaryotic genome structure, yet the phenotypic effects of new tandem duplications are not well-understood, in part owing to a lack of techniques to build and modify them. We introduce a method, Recombinase-Mediated Tandem Duplication (RMTD), to engineer specific tandem duplications in vivo using CRISPR and recombinases. We describe construction of four different tandem duplications of the Alcohol Dehydrogenase ( Adh ) gene in Drosophila melanogaster , with duplicated block sizes ranging from 4.2 kb to 20.7 kb. Flies with the Adh duplications show elevated ADH enzyme activity over unduplicated single copies. This approach to engineering duplications is combinatoric, opening the door to systematic study of the relationship between the structure of tandem duplications and their effects on expression.
Collapse
Affiliation(s)
| | | | - Manting Xu
- Biology Department, Williams College, Williamstown, MA 01267
| | - Ria Kedia
- Biology Department, Williams College, Williamstown, MA 01267
| | - Elise Root
- Biology Department, Williams College, Williamstown, MA 01267
| |
Collapse
|
20
|
Xiu M, Wang Y, Yang D, Zhang X, Dai Y, Liu Y, Lin X, Li B, He J. Using Drosophila melanogaster as a suitable platform for drug discovery from natural products in inflammatory bowel disease. Front Pharmacol 2022; 13:1072715. [PMID: 36545307 PMCID: PMC9760693 DOI: 10.3389/fphar.2022.1072715] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and life-treating inflammatory disease that can occur in multiple parts of the human intestine and has become a worldwide problem with a continually increasing incidence. Because of its mild early symptoms, most of them will not attract people's attention and may cause more serious consequences. There is an urgent need for new therapeutics to prevent disease progression. Natural products have a variety of active ingredients, diverse biological activities, and low toxicity or side effects, which are the new options for preventing and treating the intestinal inflammatory diseases. Because of multiple genetic models, less ethical concerns, conserved signaling pathways with mammals, and low maintenance costs, the fruit fly Drosophila melanogaster has become a suitable model for studying mechanism and treatment strategy of IBD. Here, we review the advantages of fly model as screening platform in drug discovery, describe the conserved molecular pathways as therapetic targets for IBD between mammals and flies, dissect the feasibility of Drosophila model in IBD research, and summarize the natural products for IBD treatment using flies. This review comprehensively elaborates that the benefit of flies as a perfact model to evaluate the therapeutic potential of phytochemicals against IBD.
Collapse
Affiliation(s)
- Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China,Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Yixuan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dan Yang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xueyan Zhang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuting Dai
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Xingyao Lin
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Botong Li
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China,*Correspondence: Jianzheng He,
| |
Collapse
|
21
|
Schöck F, González-Morales N. The insect perspective on Z-disc structure and biology. J Cell Sci 2022; 135:277280. [PMID: 36226637 DOI: 10.1242/jcs.260179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myofibrils are the intracellular structures formed by actin and myosin filaments. They are paracrystalline contractile cables with unusually well-defined dimensions. The sliding of actin past myosin filaments powers contractions, and the entire system is held in place by a structure called the Z-disc, which anchors the actin filaments. Myosin filaments, in turn, are anchored to another structure called the M-line. Most of the complex architecture of myofibrils can be reduced to studying the Z-disc, and recently, important advances regarding the arrangement and function of Z-discs in insects have been published. On a very small scale, we have detailed protein structure information. At the medium scale, we have cryo-electron microscopy maps, super-resolution microscopy and protein-protein interaction networks, while at the functional scale, phenotypic data are available from precise genetic manipulations. All these data aim to answer how the Z-disc works and how it is assembled. Here, we summarize recent data from insects and explore how it fits into our view of the Z-disc, myofibrils and, ultimately, muscles.
Collapse
Affiliation(s)
- Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | | |
Collapse
|
22
|
Becklin KL, Draper GM, Madden RA, Kluesner MG, Koga T, Huang M, Weiss WA, Spector LG, Largaespada DA, Moriarity BS, Webber BR. Developing Bottom-Up Induced Pluripotent Stem Cell Derived Solid Tumor Models Using Precision Genome Editing Technologies. CRISPR J 2022; 5:517-535. [PMID: 35972367 PMCID: PMC9529369 DOI: 10.1089/crispr.2022.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in genome and tissue engineering have spurred significant progress and opportunity for innovation in cancer modeling. Human induced pluripotent stem cells (iPSCs) are an established and powerful tool to study cellular processes in the context of disease-specific genetic backgrounds; however, their application to cancer has been limited by the resistance of many transformed cells to undergo successful reprogramming. Here, we review the status of human iPSC modeling of solid tumors in the context of genetic engineering, including how base and prime editing can be incorporated into "bottom-up" cancer modeling, a term we coined for iPSC-based cancer models using genetic engineering to induce transformation. This approach circumvents the need to reprogram cancer cells while allowing for dissection of the genetic mechanisms underlying transformation, progression, and metastasis with a high degree of precision and control. We also discuss the strengths and limitations of respective engineering approaches and outline experimental considerations for establishing future models.
Collapse
Affiliation(s)
- Kelsie L. Becklin
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Garrett M. Draper
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Rebecca A. Madden
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Mitchell G. Kluesner
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Tomoyuki Koga
- Ludwig Cancer Research San Diego Branch, La Jolla, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Miller Huang
- Department of Pediatrics, University of Southern California, Los Angeles, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles and The Saban Research Institute, Los Angeles, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - William A. Weiss
- Departments of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; and Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Departments of Pediatrics, Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Logan G. Spector
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - David A. Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Branden S. Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Beau R. Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
23
|
Gantz VM, Bier E. Active genetics comes alive: Exploring the broad applications of CRISPR-based selfish genetic elements (or gene-drives): Exploring the broad applications of CRISPR-based selfish genetic elements (or gene-drives). Bioessays 2022; 44:e2100279. [PMID: 35686327 PMCID: PMC9397133 DOI: 10.1002/bies.202100279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/11/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based "active genetic" elements developed in 2015 bypassed the fundamental rules of traditional genetics. Inherited in a super-Mendelian fashion, such selfish genetic entities offered a variety of potential applications including: gene-drives to disseminate gene cassettes carrying desired traits throughout insect populations to control disease vectors or pest species, allelic drives biasing inheritance of preferred allelic variants, neutralizing genetic elements to delete and replace or to halt the spread of gene-drives, split-drives with the core constituent Cas9 endonuclease and guide RNA (gRNA) components inserted at separate genomic locations to accelerate assembly of complex arrays of genetic traits or to gain genetic entry into novel organisms (vertebrates, plants, bacteria), and interhomolog based copying systems in somatic cells to develop tools for treating inherited or infectious diseases. Here, we summarize the substantial advances that have been made on all of these fronts and look forward to the next phase of this rapidly expanding and impactful field.
Collapse
Affiliation(s)
- Valentino M Gantz
- Department of Cell and Developmental Biology, University of California, La Jolla, California, USA
| | - Ethan Bier
- Department of Cell and Developmental Biology, University of California, La Jolla, California, USA
| |
Collapse
|
24
|
Hegde S, Sreejan A, Gadgil CJ, Ratnaparkhi GS. SUMOylation of Dorsal attenuates Toll/NF-κB signaling. Genetics 2022; 221:iyac081. [PMID: 35567478 PMCID: PMC9252280 DOI: 10.1093/genetics/iyac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
In Drosophila, Toll/NF-κB signaling plays key roles in both animal development and in host defense. The activation, intensity, and kinetics of Toll signaling are regulated by posttranslational modifications such as phosphorylation, SUMOylation, or ubiquitination that target multiple proteins in the Toll/NF-κB cascade. Here, we have generated a CRISPR-Cas9 edited Dorsal (DL) variant that is SUMO conjugation resistant. Intriguingly, embryos laid by dlSCR mothers overcome dl haploinsufficiency and complete the developmental program. This ability appears to be a result of higher transcriptional activation by DLSCR. In contrast, SUMOylation dampens DL transcriptional activation, ultimately conferring robustness to the dorso-ventral program. In the larval immune response, dlSCR animals show an increase in crystal cell numbers, stronger activation of humoral defense genes, and high cactus levels. A mathematical model that evaluates the contribution of the small fraction of SUMOylated DL (1-5%) suggests that it acts to block transcriptional activation, which is driven primarily by DL that is not SUMO conjugated. Our findings define SUMO conjugation as an important regulator of the Toll signaling cascade, in both development and host defense. Our results broadly suggest that SUMO attenuates DL at the level of transcriptional activation. Furthermore, we hypothesize that SUMO conjugation of DL may be part of a Ubc9-dependent mechanism that restrains Toll/NF-κB signaling.
Collapse
Affiliation(s)
- Sushmitha Hegde
- Biology, Indian Institute of Science Education & Research, Pune 411008, India
| | - Ashley Sreejan
- Chemical Engineering and Process Development Division, CSIR—National Chemical Laboratory, Pune 411008, India
| | - Chetan J Gadgil
- Chemical Engineering and Process Development Division, CSIR—National Chemical Laboratory, Pune 411008, India
- CSIR—Institute of Genomics and Integrative Biology, New Delhi 110020, India
| | | |
Collapse
|
25
|
Kinetic principles underlying pioneer function of GAGA transcription factor in live cells. Nat Struct Mol Biol 2022; 29:665-676. [PMID: 35835866 PMCID: PMC10177624 DOI: 10.1038/s41594-022-00800-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/27/2022] [Indexed: 11/09/2022]
Abstract
How pioneer factors interface with chromatin to promote accessibility for transcription control is poorly understood in vivo. Here, we directly visualize chromatin association by the prototypical GAGA pioneer factor (GAF) in live Drosophila hemocytes. Single-particle tracking reveals that most GAF is chromatin bound, with a stable-binding fraction showing nucleosome-like confinement residing on chromatin for more than 2 min, far longer than the dynamic range of most transcription factors. These kinetic properties require the full complement of GAF's DNA-binding, multimerization and intrinsically disordered domains, and are autonomous from recruited chromatin remodelers NURF and PBAP, whose activities primarily benefit GAF's neighbors such as Heat Shock Factor. Evaluation of GAF kinetics together with its endogenous abundance indicates that, despite on-off dynamics, GAF constitutively and fully occupies major chromatin targets, thereby providing a temporal mechanism that sustains open chromatin for transcriptional responses to homeostatic, environmental and developmental signals.
Collapse
|
26
|
Roy S, Juste SS, Sneider M, Auradkar A, Klanseck C, Li Z, Julio AHF, Lopez del Amo V, Bier E, Guichard A. Cas9/Nickase-induced allelic conversion by homologous chromosome-templated repair in Drosophila somatic cells. SCIENCE ADVANCES 2022; 8:eabo0721. [PMID: 35776792 PMCID: PMC10883370 DOI: 10.1126/sciadv.abo0721] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Repair of double-strand breaks (DSBs) in somatic cells is primarily accomplished by error-prone nonhomologous end joining and less frequently by precise homology-directed repair preferentially using the sister chromatid as a template. Here, a Drosophila system performs efficient somatic repair of both DSBs and single-strand breaks (SSBs) using intact sequences from the homologous chromosome in a process we refer to as homologous chromosome-templated repair (HTR). Unexpectedly, HTR-mediated allelic conversion at the white locus was more efficient (40 to 65%) in response to SSBs induced by Cas9-derived nickases D10A or H840A than to DSBs induced by fully active Cas9 (20 to 30%). Repair phenotypes elicited by Nickase versus Cas9 differ in both developmental timing (late versus early stages, respectively) and the production of undesired mutagenic events (rare versus frequent). Nickase-mediated HTR represents an efficient and unanticipated mechanism for allelic correction, with far-reaching potential applications in the field of gene editing.
Collapse
Affiliation(s)
- Sitara Roy
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0335, USA
| | - Sara Sanz Juste
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0335, USA
| | - Marketta Sneider
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0335, USA
| | - Ankush Auradkar
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0335, USA
| | - Carissa Klanseck
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0335, USA
| | - Zhiqian Li
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0335, USA
| | - Alison Henrique Ferreira Julio
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, 21941-902 RJ, Brazil
| | - Victor Lopez del Amo
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0335, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0335, USA
- Tata Institute for Genetics and Society-UCSD, La Jolla, CA 92093-0335, USA
| | - Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0335, USA
| |
Collapse
|
27
|
Kanca O, Zirin J, Hu Y, Tepe B, Dutta D, Lin WW, Ma L, Ge M, Zuo Z, Liu LP, Levis RW, Perrimon N, Bellen HJ. An expanded toolkit for Drosophila gene tagging using synthesized homology donor constructs for CRISPR-mediated homologous recombination. eLife 2022; 11:e76077. [PMID: 35723254 PMCID: PMC9239680 DOI: 10.7554/elife.76077] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/19/2022] [Indexed: 11/13/2022] Open
Abstract
Previously, we described a large collection of Drosophila strains that each carry an artificial exon containing a T2AGAL4 cassette inserted in an intron of a target gene based on CRISPR-mediated homologous recombination. These alleles permit numerous applications and have proven to be very useful. Initially, the homologous recombination-based donor constructs had long homology arms (>500 bps) to promote precise integration of large constructs (>5 kb). Recently, we showed that in vivo linearization of the donor constructs enables insertion of large artificial exons in introns using short homology arms (100-200 bps). Shorter homology arms make it feasible to commercially synthesize homology donors and minimize the cloning steps for donor construct generation. Unfortunately, about 58% of Drosophila genes lack a suitable coding intron for integration of artificial exons in all of the annotated isoforms. Here, we report the development of new set of constructs that allow the replacement of the coding region of genes that lack suitable introns with a KozakGAL4 cassette, generating a knock-out/knock-in allele that expresses GAL4 similarly as the targeted gene. We also developed custom vector backbones to further facilitate and improve transgenesis. Synthesis of homology donor constructs in custom plasmid backbones that contain the target gene sgRNA obviates the need to inject a separate sgRNA plasmid and significantly increases the transgenesis efficiency. These upgrades will enable the targeting of nearly every fly gene, regardless of exon-intron structure, with a 70-80% success rate.
Collapse
Affiliation(s)
- Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Duncan Neurological Research Institute, Texas Children HospitalHoustonUnited States
| | - Jonathan Zirin
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Yanhui Hu
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Burak Tepe
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Duncan Neurological Research Institute, Texas Children HospitalHoustonUnited States
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Duncan Neurological Research Institute, Texas Children HospitalHoustonUnited States
| | - Wen-Wen Lin
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Duncan Neurological Research Institute, Texas Children HospitalHoustonUnited States
| | - Liwen Ma
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Duncan Neurological Research Institute, Texas Children HospitalHoustonUnited States
| | - Ming Ge
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Duncan Neurological Research Institute, Texas Children HospitalHoustonUnited States
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Duncan Neurological Research Institute, Texas Children HospitalHoustonUnited States
| | - Lu-Ping Liu
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Robert W Levis
- Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
28
|
Restrepo LJ, DePew AT, Moese ER, Tymanskyj SR, Parisi MJ, Aimino MA, Duhart JC, Fei H, Mosca TJ. γ-secretase promotes Drosophila postsynaptic development through the cleavage of a Wnt receptor. Dev Cell 2022; 57:1643-1660.e7. [PMID: 35654038 DOI: 10.1016/j.devcel.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
Developing synapses mature through the recruitment of specific proteins that stabilize presynaptic and postsynaptic structure and function. Wnt ligands signaling via Frizzled (Fz) receptors play many crucial roles in neuronal and synaptic development, but whether and how Wnt and Fz influence synaptic maturation is incompletely understood. Here, we show that Fz2 receptor cleavage via the γ-secretase complex is required for postsynaptic development and maturation. In the absence of γ-secretase, Drosophila neuromuscular synapses fail to recruit postsynaptic scaffolding and cytoskeletal proteins, leading to behavioral deficits. Introducing presenilin mutations linked to familial early-onset Alzheimer's disease into flies leads to synaptic maturation phenotypes that are identical to those seen in null alleles. This conserved role for γ-secretase in synaptic maturation and postsynaptic development highlights the importance of Fz2 cleavage and suggests that receptor processing by proteins linked to neurodegeneration may be a shared mechanism with aspects of synaptic development.
Collapse
Affiliation(s)
- Lucas J Restrepo
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Alison T DePew
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Elizabeth R Moese
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Stephen R Tymanskyj
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael J Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael A Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Hong Fei
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA.
| |
Collapse
|
29
|
Shah HP, Devergne O. Confocal and Super-Resolution Imaging of Polarized Intracellular Trafficking and Secretion of Basement Membrane Proteins During Drosophila Oogenesis. J Vis Exp 2022:10.3791/63778. [PMID: 35662240 PMCID: PMC10325488 DOI: 10.3791/63778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023] Open
Abstract
The basement membrane (BM) - a specialized sheet of extracellular matrix present at the basal side of epithelial cells - is critical for the establishment and maintenance of epithelial tissue morphology and organ morphogenesis. Moreover, the BM is essential for tissue modeling, serving as a signaling platform, and providing external forces to shape tissues and organs. Despite the many important roles that the BM plays during normal development and pathological conditions, the biological pathways controlling the intracellular trafficking of BM-containing vesicles and how basal secretion leads to the polarized deposition of BM proteins are poorly understood. The follicular epithelium of the Drosophila ovary is an excellent model system to study the basal deposition of BM membrane proteins, as it produces and secretes all major components of the BM. Confocal and super-resolution imaging combined with image processing in fixed tissues allows for the identification and characterization of cellular factors specifically involved in the intracellular trafficking and deposition of BM proteins. This article presents a detailed protocol for staining and imaging BM-containing vesicles and deposited BM using endogenously tagged proteins in the follicular epithelium of the Drosophila ovary. This protocol can be applied to address both qualitative and quantitative questions and it was developed to accommodate high-throughput screening, allowing for the rapid and efficient identification of factors involved in the polarized intracellular trafficking and secretion of vesicles during epithelial tissue development.
Collapse
Affiliation(s)
- Hemin P Shah
- Department of Biological Sciences, Northern Illinois University
| | - Olivier Devergne
- Department of Biological Sciences, Northern Illinois University;
| |
Collapse
|
30
|
Chen N, Zhang Y, Adel M, Kuklin EA, Reed ML, Mardovin JD, Bakthavachalu B, VijayRaghavan K, Ramaswami M, Griffith LC. Local translation provides the asymmetric distribution of CaMKII required for associative memory formation. Curr Biol 2022; 32:2730-2738.e5. [PMID: 35545085 DOI: 10.1016/j.cub.2022.04.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/18/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
How compartment-specific local proteomes are generated and maintained is inadequately understood, particularly in neurons, which display extreme asymmetries. Here we show that local enrichment of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in axons of Drosophila mushroom body neurons is necessary for cellular plasticity and associative memory formation. Enrichment is achieved via enhanced axoplasmic translation of CaMKII mRNA, through a mechanism requiring the RNA-binding protein Mub and a 23-base Mub-recognition element in the CaMKII 3' UTR. Perturbation of either dramatically reduces axonal, but not somatic, CaMKII protein without altering the distribution or amount of mRNA in vivo, and both are necessary and sufficient to enhance axonal translation of reporter mRNA. Together, these data identify elevated levels of translation of an evenly distributed mRNA as a novel strategy for generating subcellular biochemical asymmetries. They further demonstrate the importance of distributional asymmetry in the computational and biological functions of neurons.
Collapse
Affiliation(s)
- Nannan Chen
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Yunpeng Zhang
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Mohamed Adel
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Elena A Kuklin
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Martha L Reed
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Jacob D Mardovin
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Baskar Bakthavachalu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India; School of Basic Science, Indian Institute of Technology Mandi, Mandi, India
| | - K VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India; School of Basic Science, Indian Institute of Technology Mandi, Mandi, India
| | - Mani Ramaswami
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology and School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India; School of Basic Science, Indian Institute of Technology Mandi, Mandi, India
| | - Leslie C Griffith
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA.
| |
Collapse
|
31
|
Zirin J, Bosch J, Viswanatha R, Mohr SE, Perrimon N. State-of-the-art CRISPR for in vivo and cell-based studies in Drosophila. Trends Genet 2022; 38:437-453. [PMID: 34933779 PMCID: PMC9007876 DOI: 10.1016/j.tig.2021.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/31/2022]
Abstract
For more than 100 years, the fruit fly, Drosophila melanogaster, has served as a powerful model organism for biological and biomedical research due to its many genetic and physiological similarities to humans and the availability of sophisticated technologies used to manipulate its genome and genes. The Drosophila research community quickly adopted CRISPR technologies and, in the 8 years since the first clustered regularly interspaced short palindromic repeats (CRISPR) publications in flies, has explored and innovated methods for mutagenesis, precise genome engineering, and beyond. Moreover, the short lifespan and ease of genetics have made Drosophila an ideal testing ground for in vivo applications and refinements of the rapidly evolving set of CRISPR-associated (CRISPR-Cas) tools. Here, we review innovations in delivery of CRISPR reagents, increased efficiency of cutting and homology-directed repair (HDR), and alternatives to standard Cas9-based approaches. While the focus is primarily on in vivo systems, we also describe the role of Drosophila cultured cells as both an indispensable first step in the process of assessing new CRISPR technologies and a platform for genome-wide CRISPR pooled screens.
Collapse
Affiliation(s)
- Jonathan Zirin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Justin Bosch
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Raghuvir Viswanatha
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Abstract
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
33
|
Nandi N, Zaidi Z, Tracy C, Krämer H. A phospho-switch at Acinus-Serine 437 controls autophagic responses to Cadmium exposure and neurodegenerative stress. eLife 2022; 11:72169. [PMID: 35037620 PMCID: PMC8794470 DOI: 10.7554/elife.72169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/14/2022] [Indexed: 12/09/2022] Open
Abstract
Neuronal health depends on quality control functions of autophagy, but mechanisms regulating neuronal autophagy are poorly understood. Previously, we showed that in Drosophila starvation-independent quality control autophagy is regulated by acinus (acn) and the Cdk5-dependent phosphorylation of its serine437 (Nandi et al., 2017). Here, we identify the phosphatase that counterbalances this activity and provides for the dynamic nature of acinus-serine437 (acn-S437) phosphorylation. A genetic screen identified six phosphatases that genetically interacted with an acn gain-of-function model. Among these, loss of function of only one, the PPM-type phosphatase Nil (CG6036), enhanced pS437-acn levels. Cdk5-dependent phosphorylation of acn-S437 in nil1 animals elevates neuronal autophagy and reduces the accumulation of polyQ proteins in a Drosophila Huntington’s disease model. Consistent with previous findings that Cd2+ inhibits PPM-type phosphatases, Cd2+ exposure elevated acn-S437 phosphorylation which was necessary for increased neuronal autophagy and protection against Cd2+-induced cytotoxicity. Together, our data establish the acn-S437 phosphoswitch as critical integrator of multiple stress signals regulating neuronal autophagy.
Collapse
Affiliation(s)
- Nilay Nandi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Zuhair Zaidi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Charles Tracy
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Helmut Krämer
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
34
|
Voelzmann A, Sanchez-Soriano N. Drosophila Primary Neuronal Cultures as a Useful Cellular Model to Study and Image Axonal Transport. Methods Mol Biol 2022; 2431:429-449. [PMID: 35412291 DOI: 10.1007/978-1-0716-1990-2_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of primary neuronal cultures generated from Drosophila tissue provides a powerful model for studies of transport mechanisms. Cultured fly neurons provide similarly detailed subcellular resolution and applicability of pharmacology or fluorescent dyes as mammalian primary neurons. As an experimental advantage for the mechanistic dissection of transport, fly primary neurons can be combined with the fast and highly efficient combinatorial genetics of Drosophila, and genetic tools for the manipulation of virtually every fly gene are readily available. This strategy can be performed in parallel to in vivo transport studies to address relevance of any findings. Here we will describe the generation of primary neuronal cultures from Drosophila embryos and larvae, the use of external fluorescent dyes and genetic tools to label cargo, and the key strategies for live imaging and subsequent analysis.
Collapse
Affiliation(s)
- André Voelzmann
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - Natalia Sanchez-Soriano
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
35
|
Salazar JL, Yang SA, Lin YQ, Li-Kroeger D, Marcogliese PC, Deal SL, Neely GG, Yamamoto S. TM2D genes regulate Notch signaling and neuronal function in Drosophila. PLoS Genet 2021; 17:e1009962. [PMID: 34905536 PMCID: PMC8714088 DOI: 10.1371/journal.pgen.1009962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/28/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
TM2 domain containing (TM2D) proteins are conserved in metazoans and encoded by three separate genes in each model organism species that has been sequenced. Rare variants in TM2D3 are associated with Alzheimer's disease (AD) and its fly ortholog almondex is required for embryonic Notch signaling. However, the functions of this gene family remain elusive. We knocked-out all three TM2D genes (almondex, CG11103/amaretto, CG10795/biscotti) in Drosophila and found that they share the same maternal-effect neurogenic defect. Triple null animals are not phenotypically worse than single nulls, suggesting these genes function together. Overexpression of the most conserved region of the TM2D proteins acts as a potent inhibitor of Notch signaling at the γ-secretase cleavage step. Lastly, Almondex is detected in the brain and its loss causes shortened lifespan accompanied by progressive motor and electrophysiological defects. The functional links between all three TM2D genes are likely to be evolutionarily conserved, suggesting that this entire gene family may be involved in AD.
Collapse
Affiliation(s)
- Jose L. Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Sheng-An Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Yong Qi Lin
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - David Li-Kroeger
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Neurology, BCM, Houston, Texas, United States of America
- Center for Alzheimer’s and Neurodegenerative Diseases, BCM, Houston, Texas, United States of America
| | - Paul C. Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Samantha L. Deal
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
| | - G. Gregory Neely
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Center for Alzheimer’s and Neurodegenerative Diseases, BCM, Houston, Texas, United States of America
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, Texas, United States of America
- Department of Neuroscience, BCM, Houston, Texas, United States of America
| |
Collapse
|
36
|
Conditional CRISPR-Cas Genome Editing in Drosophila to Generate Intestinal Tumors. Cells 2021; 10:cells10113156. [PMID: 34831379 PMCID: PMC8620722 DOI: 10.3390/cells10113156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 01/19/2023] Open
Abstract
CRISPR-Cas has revolutionized genetics and extensive efforts have been made to enhance its editing efficiency by developing increasingly more elaborate tools. Here, we evaluate the CRISPR-Cas9 system in Drosophila melanogaster to assess its ability to induce stem cell-derived tumors in the intestine. We generated conditional tissue-specific CRISPR knockouts using different Cas9 expression vectors with guide RNAs targeting the BMP, Notch, and JNK pathways in intestinal progenitors such as stem cells (ISCs) and enteroblasts (EBs). Perturbing Notch and BMP signaling increased the proliferation of ISCs/EBs and resulted in the formation of intestinal tumors, albeit with different efficiencies. By assessing both the anterior and posterior regions of the midgut, we observed regional differences in ISC/EB proliferation and tumor formation upon mutagenesis. Surprisingly, high continuous expression of Cas9 in ISCs/EBs blocked age-dependent increase in ISCs/EBs proliferation and when combined with gRNAs targeting tumor suppressors, it prevented tumorigenesis. However, no such effects were seen when temporal parameters of Cas9 were adjusted to regulate its expression levels or with a genetically modified version, which expresses Cas9 at lower levels, suggesting that fine-tuning Cas9 expression is essential to avoid deleterious effects. Our findings suggest that modifications to Cas9 expression results in differences in editing efficiency and careful considerations are required when choosing reagents for CRISPR-Cas9 mutagenesis studies. In summary, Drosophila can serve as a powerful model for context-dependent CRISPR-Cas based perturbations and to test genome-editing systems in vivo.
Collapse
|
37
|
Asaoka M, Sakamaki Y, Fukumoto T, Nishimura K, Tomaru M, Takano-Shimizu T, Tanaka D, Kobayashi S. Offspring production from cryopreserved primordial germ cells in Drosophila. Commun Biol 2021; 4:1159. [PMID: 34621004 PMCID: PMC8497528 DOI: 10.1038/s42003-021-02692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 09/17/2021] [Indexed: 11/29/2022] Open
Abstract
There is an urgent need to cryopreserve Drosophila stocks that have been maintained as living cultures for a long time. Long-term culture increases the risk of accidental loss and of unwanted genetic alteration. Here, we report that cryopreserved primordial germ cells (PGCs) can produce F1 progeny when transplanted into hosts. The cryopreserved donor PGCs could form germline stem cells in host gonads and contributed to continuous offspring production. Furthermore, the ability to produce offspring did not appear to vary with either differences between donor strains or cryopreservation duration. Therefore, we propose that our cryopreservation method is feasible for long-term storage of various Drosophila strains. These results underscore the potential usefulness of our cryopreservation method for backing up living stocks to avoid either accidental loss or genetic alteration. Asaoka, Sakamaki, Fukumoto et al. present a more viable method of long-term storage of Drosophila fly strains by cryopreservation of primordial germ cells (PGCs) without any drop in viability. The authors show that PGCs from stage 5 embryos can be transplanted into embryos and properly developed into germline stem cells to produce offspring of both sexes after being revived from storage in liquid nitrogen.
Collapse
Affiliation(s)
- Miho Asaoka
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Yurina Sakamaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Tatsuya Fukumoto
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8602, Japan
| | - Kaori Nishimura
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, 616-8354, Japan
| | - Masatoshi Tomaru
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, 616-8354, Japan
| | - Toshiyuki Takano-Shimizu
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, 616-8354, Japan.
| | - Daisuke Tanaka
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8602, Japan.
| | - Satoru Kobayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan. .,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
38
|
Matinyan N, Karkhanis MS, Gonzalez Y, Jain A, Saltzman A, Malovannaya A, Sarrion-Perdigones A, Dierick HA, Venken KJT. Multiplexed drug-based selection and counterselection genetic manipulations in Drosophila. Cell Rep 2021; 36:109700. [PMID: 34525356 PMCID: PMC8480232 DOI: 10.1016/j.celrep.2021.109700] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/10/2021] [Accepted: 08/20/2021] [Indexed: 01/27/2023] Open
Abstract
The power of Drosophila melanogaster as a model system relies on tractable germline genetic manipulations. Despite Drosophila's expansive genetics toolbox, such manipulations are still accomplished one change at a time and depend predominantly on phenotypic screening. We describe a drug-based genetic platform consisting of four selection and two counterselection markers, eliminating the need to screen for modified progeny. These markers work reliably individually or in combination to produce specific genetic outcomes. We demonstrate three example applications of multiplexed drug-based genetics by generating (1) transgenic animals, expressing both components of binary overexpression systems in a single transgenesis step; (2) dual selectable and counterselectable balancer chromosomes; and (3) selectable, fluorescently tagged P[acman] bacterial artificial chromosome (BAC) strains. We perform immunoprecipitation followed by proteomic analysis on one tagged BAC line, demonstrating our platform's applicability to biological discovery. Lastly, we provide a plasmid library resource to facilitate custom transgene design and technology transfer to other model systems.
Collapse
Affiliation(s)
- Nick Matinyan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Integrative Molecular Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mansi S Karkhanis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yezabel Gonzalez
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antrix Jain
- Advanced Technology Cores, Mass Spectrometry Proteomics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander Saltzman
- Advanced Technology Cores, Mass Spectrometry Proteomics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Advanced Technology Cores, Mass Spectrometry Proteomics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alejandro Sarrion-Perdigones
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Herman A Dierick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Koen J T Venken
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Integrative Molecular Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA; McNair Medical Institute at The Robert and Janice McNair Foundation, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
39
|
Rivard EL, Ludwig AG, Patel PH, Grandchamp A, Arnold SE, Berger A, Scott EM, Kelly BJ, Mascha GC, Bornberg-Bauer E, Findlay GD. A putative de novo evolved gene required for spermatid chromatin condensation in Drosophila melanogaster. PLoS Genet 2021; 17:e1009787. [PMID: 34478447 PMCID: PMC8445463 DOI: 10.1371/journal.pgen.1009787] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/16/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Comparative genomics has enabled the identification of genes that potentially evolved de novo from non-coding sequences. Many such genes are expressed in male reproductive tissues, but their functions remain poorly understood. To address this, we conducted a functional genetic screen of over 40 putative de novo genes with testis-enriched expression in Drosophila melanogaster and identified one gene, atlas, required for male fertility. Detailed genetic and cytological analyses showed that atlas is required for proper chromatin condensation during the final stages of spermatogenesis. Atlas protein is expressed in spermatid nuclei and facilitates the transition from histone- to protamine-based chromatin packaging. Complementary evolutionary analyses revealed the complex evolutionary history of atlas. The protein-coding portion of the gene likely arose at the base of the Drosophila genus on the X chromosome but was unlikely to be essential, as it was then lost in several independent lineages. Within the last ~15 million years, however, the gene moved to an autosome, where it fused with a conserved non-coding RNA and evolved a non-redundant role in male fertility. Altogether, this study provides insight into the integration of novel genes into biological processes, the links between genomic innovation and functional evolution, and the genetic control of a fundamental developmental process, gametogenesis.
Collapse
Affiliation(s)
- Emily L. Rivard
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Andrew G. Ludwig
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Prajal H. Patel
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | | | - Sarah E. Arnold
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | | | - Emilie M. Scott
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Brendan J. Kelly
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Grace C. Mascha
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Erich Bornberg-Bauer
- University of Münster, Münster, Germany
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Geoffrey D. Findlay
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| |
Collapse
|
40
|
Suppression of female fertility in Aedes aegypti with a CRISPR-targeted male-sterile mutation. Proc Natl Acad Sci U S A 2021; 118:2105075118. [PMID: 34031258 DOI: 10.1073/pnas.2105075118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aedes aegypti spread devastating viruses such as dengue, which causes disease among 100 to 400 million people annually. A potential approach to control mosquito disease vectors is the sterile insect technique (SIT). The strategy involves repeated release of large numbers of sterile males, which reduces insect populations because the sterile males mate and thereby suppress the fertility of females that would otherwise mate with fertile males. While SIT has been successful in suppressing certain agricultural pests, it has been less effective in depressing populations of Ae. aegypti This limitation is in part because of the fitness effects resulting from mutagenizing the mosquitoes nonspecifically. Here, we introduced and characterized the impact on female fertility of an Ae. aegypti mutation that disrupts a gene that is specifically expressed in testes. We used CRISPR/Cas9 to generate a null mutation in the Ae. aegypti β2-tubulin (B2t) gene, which eliminates male fertility. When we allowed wild-type females to first mate with B2t mutant males, most of the females did not produce progeny even after being subsequently exposed to wild-type males. We also introduced B2t mutant and wild-type males simultaneously with wild-type females and found that a larger number of B2t mutant males relative to the wild-type males was effective in significantly suppressing female fertility. These results raise the possibility of employing B2t sterile males to improve the efficacy of SIT in suppressing populations of Ae. aegypti through repeated releases and thereby reduce the transmission of viruses by these invasive mosquitoes.
Collapse
|
41
|
Li Z, Marcel N, Devkota S, Auradkar A, Hedrick SM, Gantz VM, Bier E. CopyCatchers are versatile active genetic elements that detect and quantify inter-homolog somatic gene conversion. Nat Commun 2021; 12:2625. [PMID: 33976171 PMCID: PMC8113449 DOI: 10.1038/s41467-021-22927-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/01/2021] [Indexed: 11/08/2022] Open
Abstract
CRISPR-based active genetic elements, or gene-drives, copied via homology-directed repair (HDR) in the germline, are transmitted to progeny at super-Mendelian frequencies. Active genetic elements also can generate widespread somatic mutations, but the genetic basis for such phenotypes remains uncertain. It is generally assumed that such somatic mutations are generated by non-homologous end-joining (NHEJ), the predominant double stranded break repair pathway active in somatic cells. Here, we develop CopyCatcher systems in Drosophila to detect and quantify somatic gene conversion (SGC) events. CopyCatchers inserted into two independent genetic loci reveal unexpectedly high rates of SGC in the Drosophila eye and thoracic epidermis. Focused RNAi-based genetic screens identify several unanticipated loci altering SGC efficiency, one of which (c-MYC), when downregulated, promotes SGC mediated by both plasmid and homologous chromosome-templates in human HEK293T cells. Collectively, these studies suggest that CopyCatchers can serve as effective discovery platforms to inform potential gene therapy strategies.
Collapse
Affiliation(s)
- Zhiqian Li
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Nimi Marcel
- Section of Molecular Biology, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sushil Devkota
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Ankush Auradkar
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Stephen M Hedrick
- Section of Molecular Biology, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Valentino M Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
- Tata Institute for Genetics and Society-UCSD, La Jolla, CA, USA.
| |
Collapse
|
42
|
Mariyappa D, Luhur A, Overton D, Zelhof AC. Generation of Drosophila attP containing cell lines using CRISPR-Cas9. G3-GENES GENOMES GENETICS 2021; 11:6272517. [PMID: 33963853 PMCID: PMC8496291 DOI: 10.1093/g3journal/jkab161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/01/2021] [Indexed: 11/14/2022]
Abstract
The generation of Drosophila stable cell lines have become invaluable for complementing in vivo experiments and as tools for genetic screens. Recent advances utilizing attP/PhiC31 integrase system has permitted the creation of Drosophila cells in which recombination mediated cassette exchange (RMCE) can be utilized to generate stably integrated transgenic cell lines that contain a single copy of the transgene at the desired locus. Current techniques, besides being laborious and introducing extraneous elements, are limited to a handful of cell lines of embryonic origin. Nonetheless, with well over 100 Drosophila cell lines available, including an ever-increasing number CRISPR/Cas9 modified cell lines, a more universal methodology is needed to generate a stably integrated transgenic line from any one of the available Drosophila melanogaster cell lines. Here we describe a toolkit and procedure that combines CRISPR/Cas9 and the PhiC31 integrase system. We have generated and isolated single cell clones containing an Actin5C::dsRed cassette flanked by attP sites into the genome of Kc167 and S2R+ cell lines that mimic the in vivo attP sites located at 25C6 and 99F8 of the Drosophila genome. Furthermore, we tested the functionality of the attP docking sites utilizing two independent GFP expressing constructs flanked by attB sites that permit RMCE and therefore the insertion of any DNA of interest. Lastly, to demonstrate the universality of our methodology and existing constructs, we have successfully integrated the Actin5C::dsRed cassette flanked by attP sites into two different CNS cell lines, ML-DmBG2-c2 and ML-DmBG3-c2. Overall, the reagents and methodology reported here permit the efficient generation of stable transgenic cassettes with minimal change in the cellular genomes in existing D. melanogaster cell lines.
Collapse
Affiliation(s)
- Daniel Mariyappa
- Drosophila Genomics Resource Center, Indiana University, Bloomington, Indiana 47405, USA.,Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Arthur Luhur
- Drosophila Genomics Resource Center, Indiana University, Bloomington, Indiana 47405, USA.,Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Danielle Overton
- Drosophila Genomics Resource Center, Indiana University, Bloomington, Indiana 47405, USA.,Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Andrew C Zelhof
- Drosophila Genomics Resource Center, Indiana University, Bloomington, Indiana 47405, USA.,Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
43
|
Koreman GT, Xu Y, Hu Q, Zhang Z, Allen SE, Wolfner MF, Wang B, Han C. Upgraded CRISPR/Cas9 tools for tissue-specific mutagenesis in Drosophila. Proc Natl Acad Sci U S A 2021; 118:e2014255118. [PMID: 33782117 PMCID: PMC8040800 DOI: 10.1073/pnas.2014255118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CRISPR/Cas9 has emerged as a powerful technology for tissue-specific mutagenesis. However, tissue-specific CRISPR/Cas9 tools currently available in Drosophila remain deficient in three significant ways. First, many existing gRNAs are inefficient, such that further improvements of gRNA expression constructs are needed for more efficient and predictable mutagenesis in both somatic and germline tissues. Second, it has been difficult to label mutant cells in target tissues with current methods. Lastly, application of tissue-specific mutagenesis at present often relies on Gal4-driven Cas9, which hampers the flexibility and effectiveness of the system. Here, we tackle these deficiencies by building upon our previous CRISPR-mediated tissue-restricted mutagenesis (CRISPR-TRiM) tools. First, we significantly improved gRNA efficiency in somatic tissues by optimizing multiplexed gRNA design. Similarly, we also designed efficient dual-gRNA vectors for the germline. Second, we developed methods to positively and negatively label mutant cells in tissue-specific mutagenesis by incorporating co-CRISPR reporters into gRNA expression vectors. Lastly, we generated genetic reagents for convenient conversion of existing Gal4 drivers into tissue-specific Cas9 lines based on homology-assisted CRISPR knock-in. In this way, we expand the choices of Cas9 for CRISPR-TRiM analysis to broader tissues and developmental stages. Overall, our upgraded CRISPR/Cas9 tools make tissue-specific mutagenesis more versatile, reliable, and effective in Drosophila These improvements may be also applied to other model systems.
Collapse
Affiliation(s)
- Gabriel T Koreman
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Yineng Xu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Qinan Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Zijing Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Sarah E Allen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Bei Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853;
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Chun Han
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853;
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
44
|
Doherty CA, Diegmiller R, Kapasiawala M, Gavis ER, Shvartsman SY. Coupled oscillators coordinate collective germline growth. Dev Cell 2021; 56:860-870.e8. [PMID: 33689691 PMCID: PMC8265018 DOI: 10.1016/j.devcel.2021.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/03/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Developing oocytes need large supplies of macromolecules and organelles. A conserved strategy for accumulating these products is to pool resources of oocyte-associated germline nurse cells. In Drosophila, these cells grow more than 100-fold to boost their biosynthetic capacity. No previously known mechanism explains how nurse cells coordinate growth collectively. Here, we report a cell cycle-regulating mechanism that depends on bidirectional communication between the oocyte and nurse cells, revealing the oocyte as a critical regulator of germline cyst growth. Transcripts encoding the cyclin-dependent kinase inhibitor, Dacapo, are synthesized by the nurse cells and actively localized to the oocyte. Retrograde movement of the oocyte-synthesized Dacapo protein to the nurse cells generates a network of coupled oscillators that controls the cell cycle of the nurse cells to regulate cyst growth. We propose that bidirectional nurse cell-oocyte communication establishes a growth-sensing feedback mechanism that regulates the quantity of maternal resources loaded into the oocyte.
Collapse
Affiliation(s)
- Caroline A Doherty
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Rocky Diegmiller
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08540, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540, USA
| | - Manisha Kapasiawala
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08540, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540, USA
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA.
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08540, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA.
| |
Collapse
|
45
|
Trivedi D. Using CRISPR-Cas9-based genome engineering tools in Drosophila melanogaster. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 180:85-121. [PMID: 33934839 DOI: 10.1016/bs.pmbts.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drosophila melanogaster has been used as a model organism for over a century. Mutant-based analyses have been used extensively to understand the genetic basis of different cellular processes, including development, neuronal function and diseases. Most of the earlier genetic mutants and specific tools were generated by random insertions and deletion strategies and then mapped to specific genomic loci. Since all genomic regions are not equally accessible to random mutations and insertions, many genes still remain uncharacterized. Low efficiency of targeted genomic manipulation approaches that rely on homologous recombination, and difficulty in generating resources for sequence-specific endonucleases, such as ZFNs (Zinc Finger Nucleases) and TALENs (Transcription Activator-Like Effector Nucleases), could not make these gene targeting techniques very popular. However, recently RNA directed DNA endonucleases, such as CRISPR-Cas, have transformed genome engineering owing to their comparative ease, versatility, and low expense. With the added advantage of preexisting genetic tools, CRISPR-Cas-based manipulations are being extensively used in Drosophila melanogaster and simultaneously being fine-tuned for specific experimental requirements. In this chapter, I will discuss various uses of CRISPR-Cas-based genetic engineering and specific design methods in Drosophila melanogaster. I will summarize various already available tools that are being utilized in conjunction with CRISPR-Cas technology to generate specific genetic manipulation and are being optimized to address specific questions. Finally, I will discuss the future directions of Drosophila genetics research and how CRISPR-Cas can be utilized to target specific questions, addressing which has not been possible thus far.
Collapse
Affiliation(s)
- Deepti Trivedi
- National Centre for Biological Sciences-TIFR, Bengaluru, India.
| |
Collapse
|
46
|
Chon C, Chon G, Matsui Y, Zeng H, Lai ZC, Liu A. Efficient multiplexed genome engineering with a polycistronic tRNA and CRISPR guide-RNA reveals an important role of detonator in reproduction of Drosophila melanogaster. PLoS One 2021; 16:e0245454. [PMID: 33444382 PMCID: PMC7808601 DOI: 10.1371/journal.pone.0245454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/03/2021] [Indexed: 11/18/2022] Open
Abstract
Genome association studies in human and genetic studies in mouse implicated members of the transmembrane protein 132 (TMEM132) family in multiple conditions including panic disorder, hearing loss, limb and kidney malformation. However, the presence of five TMEM132 paralogs in mammalian genomes makes it extremely challenging to reveal the full requirement for these proteins in vivo. In contrast, there is only one TMEM132 homolog, detonator (dtn), in the genome of fruit fly Drosophila melanogaster, enabling straightforward research into its in vivo function. In the current study, we generate multiple loss-of-function dtn mutant fly strains through a polycistronic tRNA-gRNA approach, and show that most embryos lacking both maternal and paternal dtn fail to hatch into larvae, indicating an essential role of dtn in Drosophila reproduction.
Collapse
Affiliation(s)
- Cristin Chon
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| | - Grace Chon
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| | - Yurika Matsui
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| | - Huiqing Zeng
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| | - Zhi-Chun Lai
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| | - Aimin Liu
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| |
Collapse
|
47
|
Bosch JA, Birchak G, Perrimon N. Precise genome engineering in Drosophila using prime editing. Proc Natl Acad Sci U S A 2021; 118:e2021996118. [PMID: 33443210 PMCID: PMC7817132 DOI: 10.1073/pnas.2021996118] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Precise genome editing is a valuable tool to study gene function in model organisms. Prime editing, a precise editing system developed in mammalian cells, does not require double-strand breaks or donor DNA and has low off-target effects. Here, we applied prime editing for the model organism Drosophila melanogaster and developed conditions for optimal editing. By expressing prime editing components in cultured cells or somatic cells of transgenic flies, we precisely introduce premature stop codons in three classical visible marker genes, ebony, white, and forked Furthermore, by restricting editing to germ cells, we demonstrate efficient germ-line transmission of a precise edit in ebony to 36% of progeny. Our results suggest that prime editing is a useful system in Drosophila to study gene function, such as engineering precise point mutations, deletions, or epitope tags.
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115;
| | - Gabriel Birchak
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115;
- HHMI, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
48
|
Askjaer P, Harr JC. Genetic approaches to revealing the principles of nuclear architecture. Curr Opin Genet Dev 2020; 67:52-60. [PMID: 33338753 DOI: 10.1016/j.gde.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
The spatial organization of chromosomes inside the eukaryotic nucleus is important for DNA replication, repair and gene expression. During development of multicellular organisms, different compendiums of genes are either repressed or activated to produce specific cell types. Genetic manipulation of tractable organisms is invaluable to elucidate chromosome configuration and the underlying mechanisms. Systematic inhibition of genes through RNA interference and, more recently, CRISPR/Cas9-based screens have identified new proteins with significant roles in nuclear organization. Coupling this with advances in imaging techniques, such as multiplexed DNA fluorescence in situ hybridization, and with tissue-specific genome profiling by DNA adenine methylation identification has increased our knowledge about the immense complexity and dynamics of the nucleus.
Collapse
Affiliation(s)
- Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville 41013, Spain.
| | - Jennifer C Harr
- Department of Biological Sciences, St. Mary's University, One Camino Santa Maria, San Antonio, TX, 78228, USA.
| |
Collapse
|
49
|
Handler AM, Schetelig MF. The hAT-family transposable element, hopper, from Bactrocera dorsalis is a functional vector for insect germline transformation. BMC Genet 2020; 21:137. [PMID: 33339497 PMCID: PMC7747358 DOI: 10.1186/s12863-020-00942-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background The hopper hAT-family transposable element isolated from the Oriental fruit fly, Bactrocera dorsalis, is distantly related to both the Drosophila hobo element and the Activator element from maize. The original 3120 bp hopperBd-Kah element isolated from the Kahuku wild-type strain was highly degenerate and appeared to have a mutated transposase and terminal sequences, while a second 3131 bp element, hopperBd-we, isolated from a white eye mutant strain had an intact transposase reading frame and terminal sequences consistent with function. Results The hopperBd-we element was tested for function by its ability to mediate germline transformation in two dipteran species other than B. dorsalis. This was achieved by creating a binary vector/helper transformation system by linking the hopperBd-we transposase reading frame to a D. melanogaster hsp70 promoter for a heat-inducible transposase helper plasmid, and creating vectors marked with the D. melanogaster mini-white+ or polyubiquitin-regulated DsRed fluorescent protein markers. Conclusions Both vectors were successfully used to transform D. melanogaster, and the DsRed vector was also used to transform the Caribbean fruit fly, Anastrepha suspensa, indicating a wide range of hopper function in dipteran species and, potentially, non-dipteran species. This vector provides a new tool for insect genetic modification for both functional genomic analysis and the control of insect populations.
Collapse
Affiliation(s)
- Alfred M Handler
- USDA/ARS, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA.
| | - Marc F Schetelig
- Department of Insect Biotechnology in Plant Protection, Justus-Liebig University Gießen, Winchesterstr. 2, 35394, Gießen, Germany
| |
Collapse
|
50
|
Tsurumi A, Li WX. Aging mechanisms-A perspective mostly from Drosophila. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10026. [PMID: 36619249 PMCID: PMC9744567 DOI: 10.1002/ggn2.10026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 01/11/2023]
Abstract
A mechanistic understanding of the natural aging process, which is distinct from aging-related disease mechanisms, is essential for developing interventions to extend lifespan or healthspan. Here, we discuss current trends in aging research and address conceptual and experimental challenges in the field. We examine various molecular markers implicated in aging with an emphasis on the role of heterochromatin and epigenetic changes. Studies in model organisms have been advantageous in elucidating conserved genetic and epigenetic mechanisms and assessing interventions that affect aging. We highlight the use of Drosophila, which allows controlled studies for evaluating genetic and environmental contributors to aging conveniently. Finally, we propose the use of novel methodologies and future strategies using Drosophila in aging research.
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of SurgeryMassachusetts General Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Microbiology and ImmunologyHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Hospitals for Children‐Boston®BostonMassachusettsUSA
| | - Willis X. Li
- Department of MedicineUniversity of California at San DiegoLa JollaCaliforniaUSA
| |
Collapse
|