1
|
Gray WJ, Rakes LM, Cole C, Gunter A, He G, Morgan S, Walsh-Antzak CR, Yates JA, Erickson PA. Rapid wing size evolution in African fig flies ( Zaprionus indianus) following temperate colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623845. [PMID: 39605430 PMCID: PMC11601493 DOI: 10.1101/2024.11.15.623845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Invasive species often encounter novel selective pressures in their invaded range, and understanding their potential for rapid evolution is critical for developing effective management strategies. Zaprionus indianus is an invasive drosophilid native to Africa that reached Florida in 2005 and likely re-establishes temperate North American populations each year. We addressed two evolutionary questions in this system: first, do populations evolve phenotypic changes in the generations immediately following colonization of temperate environments? Second, does Z. indianus evolve directional phenotypic changes along a latitudinal cline? We established isofemale lines from wild collections across space and time and measured twelve ecologically relevant phenotypes, using a reference population as a control. Z. indianus evolved smaller wings following colonization, suggesting early colonizers have larger wings, but smaller wings are favorable after colonization. No other phenotypes changed significantly following colonization or across latitudes, but we did see significant post-colonization changes in principal components of all phenotypes. We documented substantial laboratory evolution and effects of the laboratory environment across multiple phenotypes, emphasizing the importance of controlling for both possibilities when conducting common garden studies. Our results demonstrate the potential for rapid adaptation in Z. indianus, which could contribute to its success and expansion throughout invaded ecosystems.
Collapse
Affiliation(s)
- Weston J. Gray
- Department of Biology, University of Richmond, Richmond, VA, USA
| | - Logan M. Rakes
- Department of Biology, University of Richmond, Richmond, VA, USA
| | - Christine Cole
- Department of Biology, University of Richmond, Richmond, VA, USA
| | - Ansleigh Gunter
- Department of Biology, University of Richmond, Richmond, VA, USA
| | - Guanting He
- Department of Biology, University of Richmond, Richmond, VA, USA
| | - Samantha Morgan
- Department of Biology, University of Richmond, Richmond, VA, USA
| | | | - Jillian A. Yates
- Department of Biology, University of Richmond, Richmond, VA, USA
| | | |
Collapse
|
2
|
Korb J. Termites and other social insects as emerging model organisms of ageing research: how to achieve a long lifespan and a high fecundity. J Exp Biol 2024; 227:jeb246497. [PMID: 39535049 DOI: 10.1242/jeb.246497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Social insects (termites, ants and some bees and wasps) are emerging model organisms of ageing research. In this Commentary, I outline which advantages they offer compared with other organisms. These include the co-occurrence of extraordinarily long-lived, highly fecund queens together with short-lived workers within colonies that share the same genetic background. I then summarize which new insights have been gained so far from social insect studies. Research on social insects has led to the development of a universal mechanistic framework underlying the regulation of ageing and other life-history trade-offs in insects: the TI-J-LiFe network (short for TOR/IIS-juvenile hormone-lifespan/fecundity). Because of its conservative nature, this network can be extended to also incorporate vertebrates. Current data for social insect models suggest that molecular re-wirings along the I-J-Fe (IIS-juvenile hormone-fecundity) axis of the network can explain the concurrent long lifespans and high fecundity of queens. During social evolution, pathways that foster a high fecundity have apparently been uncoupled from mechanisms that shorten lifespan in solitary insects. Thus, fecundity-related vitellogenesis is uncoupled from life-shortening high juvenile hormone (JH)-titres in the honeybee and from insulin/insulin-like growth factor signalling (IIS) activity in ants. In termites, similarly, vitellogenesis seems tissue-specifically unlinked from JH signalling and IIS activity might have lost life-shortening consequences. However, as in solitary animals, the downstream processes (Li of the TI-J-LiFe network) that cause actual ageing (e.g. oxidative stress, transposable element activity, telomere attrition) seem to differ between species and environments. These results show how apparently hard-wired mechanisms underlying life-history trade-offs can be overcome during evolution.
Collapse
Affiliation(s)
- Judith Korb
- Evolutionary Biology & Ecology, University of Freiburg, D-79104 Freiburg, Germany
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0810, Australia
| |
Collapse
|
3
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Gardeux V, Bevers RPJ, David FPA, Rosschaert E, Rochepeau R, Deplancke B. DGRPool, a web tool leveraging harmonized Drosophila Genetic Reference Panel phenotyping data for the study of complex traits. eLife 2024; 12:RP88981. [PMID: 39431984 PMCID: PMC11493408 DOI: 10.7554/elife.88981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Genome-wide association studies have advanced our understanding of complex traits, but studying how a GWAS variant can affect a specific trait in the human population remains challenging due to environmental variability. Drosophila melanogaster is in this regard an excellent model organism for studying the relationship between genetic and phenotypic variation due to its simple handling, standardized growth conditions, low cost, and short lifespan. The Drosophila Genetic Reference Panel (DGRP) in particular has been a valuable tool for studying complex traits, but proper harmonization and indexing of DGRP phenotyping data is necessary to fully capitalize on this resource. To address this, we created a web tool called DGRPool (dgrpool.epfl.ch), which aggregates phenotyping data of 1034 phenotypes across 135 DGRP studies in a common environment. DGRPool enables users to download data and run various tools such as genome-wide (GWAS) and phenome-wide (PheWAS) association studies. As a proof-of-concept, DGRPool was used to study the longevity phenotype and uncovered both established and unexpected correlations with other phenotypes such as locomotor activity, starvation resistance, desiccation survival, and oxidative stress resistance. DGRPool has the potential to facilitate new genetic and molecular insights of complex traits in Drosophila and serve as a valuable, interactive tool for the scientific community.
Collapse
Affiliation(s)
- Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Roel PJ Bevers
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Fabrice PA David
- Swiss Institute of BioinformaticsLausanneSwitzerland
- Bioinformatics Competence Center, EPFLLausanneSwitzerland
| | - Emily Rosschaert
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Laboratory of Behavioral and Developmental Genetics, Center for Human Genetics, KU LeuvenLeuvenBelgium
| | - Romain Rochepeau
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| |
Collapse
|
5
|
Croft L, Matheson P, Butterworth NJ, McGaughran A. Fitness consequences of population bottlenecks in an invasive blowfly. Mol Ecol 2024; 33:e17492. [PMID: 39136044 DOI: 10.1111/mec.17492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Invasive species often undergo demographic bottlenecks that cause a decrease in genetic diversity and associated reductions in population fitness. Despite this, they manage to thrive in novel environments. Investigating the effects of inbreeding and genetic bottlenecks on population fitness for invasive species is, therefore, key to understanding how they may survive in new environments. We used the blowfly Calliphora vicina (Sciences, Mathématiques et Physique, 1830, 2, 1), which is native to Europe and was introduced to Australia and New Zealand, to examine the effects of genetic diversity on population fitness. We first collected 59 samples from 15 populations across New Zealand and one in Australia, and used 20,501 biallelic SNPs to investigate population genomic diversity, structure and admixture. We then explored the impacts of repeated experimental bottlenecks on population fitness by creating inbred and outbred lines of C. vicina and measuring a variety of fitness traits. In wild-caught samples, we found low overall genetic diversity, signals of genetic admixture and limited (<3%) genetic differentiation between North and South Island populations, with genetic links between the South Island and Australia. Following experimental bottlenecks, we found significant reductions in fitness for inbred lines. However, fitness effects were not felt equally across all phenotypic traits. Moreover, they were not enough to cause population collapse in any experimental line, suggesting that C. vicina (when under relaxed selection, as in laboratory settings) may be able to compensate for population bottlenecks even when highly inbred. Our results demonstrate the value of a tractable experimental system for investigating processes that may facilitate or hamper biological invasion.
Collapse
Affiliation(s)
- Lilly Croft
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| | - Paige Matheson
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| | | | - Angela McGaughran
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
6
|
Mackay TFC, Anholt RRH. Pleiotropy, epistasis and the genetic architecture of quantitative traits. Nat Rev Genet 2024; 25:639-657. [PMID: 38565962 PMCID: PMC11330371 DOI: 10.1038/s41576-024-00711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Pleiotropy (whereby one genetic polymorphism affects multiple traits) and epistasis (whereby non-linear interactions between genetic polymorphisms affect the same trait) are fundamental aspects of the genetic architecture of quantitative traits. Recent advances in the ability to characterize the effects of polymorphic variants on molecular and organismal phenotypes in human and model organism populations have revealed the prevalence of pleiotropy and unexpected shared molecular genetic bases among quantitative traits, including diseases. By contrast, epistasis is common between polymorphic loci associated with quantitative traits in model organisms, such that alleles at one locus have different effects in different genetic backgrounds, but is rarely observed for human quantitative traits and common diseases. Here, we review the concepts and recent inferences about pleiotropy and epistasis, and discuss factors that contribute to similarities and differences between the genetic architecture of quantitative traits in model organisms and humans.
Collapse
Affiliation(s)
- Trudy F C Mackay
- Center for Human Genetics, Clemson University, Greenwood, SC, USA.
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA.
| | - Robert R H Anholt
- Center for Human Genetics, Clemson University, Greenwood, SC, USA.
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA.
| |
Collapse
|
7
|
Hoffmann AA, Cooper BS. Describing endosymbiont-host interactions within the parasitism-mutualism continuum. Ecol Evol 2024; 14:e11705. [PMID: 38975267 PMCID: PMC11224498 DOI: 10.1002/ece3.11705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
Endosymbionts are widespread in arthropods, living in host cells with effects that extend from parasitic to mutualistic. Newly acquired endosymbionts tend to be parasitic, but vertical transmission favors coevolution toward mutualism, with hosts sometimes developing dependency. Endosymbionts negatively affecting host fitness may still spread by impacting host reproductive traits, referred to as reproductive "manipulation," although costs for hosts are often assumed rather than demonstrated. For cytoplasmic incompatibility (CI) that involves endosymbiont-mediated embryo death, theory predicts directional shifts away from "manipulation" toward reduced CI strength; moreover, CI-causing endosymbionts need to increase host fitness to initially spread. In nature, endosymbiont-host interactions and dynamics are complex, often depending on environmental conditions and evolutionary history. We advocate for capturing this complexity through appropriate datasets, rather than relying on terms like "manipulation." Such imprecision can lead to the misclassification of endosymbionts along the parasitism-mutualism continuum.
Collapse
Affiliation(s)
- Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Brandon S. Cooper
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
8
|
Dos Santos CH, Gustani EC, Machado LPDB, Mateus RP. Dietary Variation Effect on Life History Traits and Energy Storage in Neotropical Species of Drosophila (Diptera; Drosophilidae). NEOTROPICAL ENTOMOLOGY 2024; 53:578-595. [PMID: 38687423 DOI: 10.1007/s13744-024-01147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/08/2024] [Indexed: 05/02/2024]
Abstract
The ability of an organism to respond to nutritional stress can be a plastic character under the action of natural selection, affecting several characteristics, including life history and energy storage. The genus Drosophila (Diptera; Drosophilidae) presents high variability regarding natural resource exploration. However, most works on this theme have studied the model species D. melanogaster Meigen, 1830 and little is known about Neotropical drosophilids. Here we evaluate the effects of three diets, with different carbohydrate-to-protein ratios, on life history (viability and development time) and metabolic pools (triglycerides, glycogen, and total soluble protein contents) of three Neotropical species of Drosophila: D. maculifrons Duda, 1927; D. ornatifrons Duda, 1927, both of the subgenus Drosophila Sturtevant, 1939, and D. willistoni Sturtevant, 1916 of the subgenus Sophophora Sturtevant, 1939. Our results showed that only D. willistoni was viable on all diets, D. maculifrons was not viable on the sugary diet, while D. ornatifrons was barely viable on this diet. The sugary diet increased the development time of D. willistoni and D. ornatifrons, and D. willistoni glycogen content. Thus, the viability of D. maculifrons and D. ornatifrons seems to depend on a certain amount of protein and/or a low concentration of carbohydrate in the diet. A more evident effect of the diets on triglyceride and protein pools was detected in D. ornatifrons, which could be related to the adult attraction to dung and carrion baited pitfall as food resource tested in nature. Our results demonstrated that the evolutionary history and differential adaptations to natural macronutrient resources are important to define the amplitude of response that a species can present when faced with dietary variation.
Collapse
Affiliation(s)
- Camila Heloise Dos Santos
- Evolutionary Biology Graduate Program, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil
| | | | - Luciana Paes de Barros Machado
- Evolutionary Biology Graduate Program, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil
- Laboratory of Genetics and Evolution, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil
| | - Rogério Pincela Mateus
- Evolutionary Biology Graduate Program, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil.
- Laboratory of Genetics and Evolution, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil.
| |
Collapse
|
9
|
Zakharenko LP, Bobrovskikh MA, Gruntenko NE, Petrovskii DV, Verevkin EG, Putilov AA. Two Old Wild-Type Strains of Drosophila melanogaster Can Serve as an Animal Model of Faster and Slower Aging Processes. INSECTS 2024; 15:329. [PMID: 38786885 PMCID: PMC11122303 DOI: 10.3390/insects15050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Drosophila melanogaster provides a powerful platform to study the physiology and genetics of aging, i.e., the mechanisms underpinnings healthy aging, age-associated disorders, and acceleration of the aging process under adverse environmental conditions. Here, we tested the responses of daily rhythms to age-accelerated factors in two wild-type laboratory-adapted strains, Canton-S and Harwich. METHODS On the example of the 24 h patterns of locomotor activity and sleep, we documented the responses of these two strains to such factors as aging, high temperature, carbohydrate diet, and diet with different doses of caffeine-benzoate sodium. RESULTS The strains demonstrated differential responses to these factors. Moreover, compared to Canton-S, Harwich showed a reduced locomotor activity, larger amount of sleep, faster rate of development, smaller body weight, lower concentrations of main sugars, lower fecundity, and shorter lifespan. CONCLUSIONS It might be recommended to use at least two strains, one with a relatively fast and another with a relatively slow aging process, for the experimental elaboration of relationships between genes, environment, behavior, physiology, and health.
Collapse
Affiliation(s)
| | | | | | | | | | - Arcady A. Putilov
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, The Russian Academy of Sciences, Novosibirsk 630090, Russia; (L.P.Z.); (M.A.B.); (N.E.G.); (D.V.P.); (E.G.V.)
| |
Collapse
|
10
|
Pawar S, Huxley PJ, Smallwood TRC, Nesbit ML, Chan AHH, Shocket MS, Johnson LR, Kontopoulos DG, Cator LJ. Variation in temperature of peak trait performance constrains adaptation of arthropod populations to climatic warming. Nat Ecol Evol 2024; 8:500-510. [PMID: 38273123 DOI: 10.1038/s41559-023-02301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
The capacity of arthropod populations to adapt to long-term climatic warming is currently uncertain. Here we combine theory and extensive data to show that the rate of their thermal adaptation to climatic warming will be constrained in two fundamental ways. First, the rate of thermal adaptation of an arthropod population is predicted to be limited by changes in the temperatures at which the performance of four key life-history traits can peak, in a specific order of declining importance: juvenile development, adult fecundity, juvenile mortality and adult mortality. Second, directional thermal adaptation is constrained due to differences in the temperature of the peak performance of these four traits, with these differences expected to persist because of energetic allocation and life-history trade-offs. We compile a new global dataset of 61 diverse arthropod species which provides strong empirical evidence to support these predictions, demonstrating that contemporary populations have indeed evolved under these constraints. Our results provide a basis for using relatively feasible trait measurements to predict the adaptive capacity of diverse arthropod populations to geographic temperature gradients, as well as ongoing and future climatic warming.
Collapse
Affiliation(s)
- Samraat Pawar
- Department of Life Sciences, Imperial College London, Ascot, UK.
| | - Paul J Huxley
- Department of Life Sciences, Imperial College London, Ascot, UK.
- Department of Statistics, Virginia Tech, Blacksburg, VA, USA.
| | - Thomas R C Smallwood
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Miles L Nesbit
- Department of Life Sciences, Imperial College London, Ascot, UK
- The Pirbright Institute, Woking, UK
| | - Alex H H Chan
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Marta S Shocket
- Department of Geography, University of Florida, Gainesville, FL, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Tech, Blacksburg, VA, USA
| | | | - Lauren J Cator
- Department of Life Sciences, Imperial College London, Ascot, UK.
| |
Collapse
|
11
|
Padilla Perez DJ. Geographic and seasonal variation of the for gene reveal signatures of local adaptation in Drosophila melanogaster. J Evol Biol 2024; 37:201-211. [PMID: 38301664 DOI: 10.1093/jeb/voad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/18/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024]
Abstract
In the early 1980s, the observation that Drosophila melanogaster larvae differed in their foraging behaviour laid the foundation for the work that would later lead to the discovery of the foraging gene (for) and its associated foraging phenotypes, rover and sitter. Since then, the molecular characterization of the for gene and our understanding of the mechanisms that maintain its phenotypic variants in the laboratory have progressed enormously. However, the significance and dynamics of such variation are yet to be investigated in nature. With the advent of next-generation sequencing, it is now possible to identify loci underlying the adaptation of populations in response to environmental variation. Here, I present the results of a genotype-environment association analysis that quantifies variation at the for gene among samples of D. melanogaster structured across space and time. These samples consist of published genomes of adult flies collected worldwide, and at least twice per site of collection (during spring and fall). Both an analysis of genetic differentiation based on Fst values and an analysis of population structure revealed an east-west gradient in allele frequency. This gradient may be the result of spatially varying selection driven by the seasonality of precipitation. These results support the hypothesis that different patterns of gene flow as expected under models of isolation by distance and potentially isolation by environment are driving genetic differentiation among populations. Overall, this study is essential for understanding the mechanisms underlying the evolution of foraging behaviour in D. melanogaster.
Collapse
|
12
|
Strunov A, Schönherr C, Kapun M. Wolbachia effects on thermal preference of natural Drosophila melanogaster are influenced by host genetic background, Wolbachia type, and bacterial titer. Environ Microbiol 2024; 26:e16579. [PMID: 38192184 DOI: 10.1111/1462-2920.16579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
Temperature plays a fundamental role in the fitness of all organisms. In particular, it strongly affects metabolism and reproduction in ectotherms that have limited physiological capabilities to regulate their body temperature. The influence of temperature variation on the physiology and behaviour of ectotherms is well studied but we still know little about the influence of symbiotic interactions on thermal preference (Tp ) of the host. A growing number of studies focusing on the Wolbachia-Drosophila host-symbiont system found that Wolbachia can influence Tp in Drosophila laboratory strains. Here, we investigated the effect of Wolbachia on Tp in wild-type D. melanogaster flies recently collected from nature. Consistent with previous data, we found reduced Tp compared to an uninfected control in one of two fly strains infected with the wMelCS Wolbachia type. Additionally, we, for the first time, found that Wolbachia titer variation influences the thermal preference of the host fly. These data indicate that the interaction of Wolbachia and Drosophila resulting in behavioural variation is strongly influenced by the genetic background of the host and symbiont. More studies are needed to better understand the evolutionary significance of Tp variation influenced by Wolbachia in natural Drosophila populations.
Collapse
Affiliation(s)
- Anton Strunov
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Charlotte Schönherr
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Martin Kapun
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Central Research Laboratories, Natural History Museum of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Qi Z, Lu P, Long X, Cao X, Wu M, Xin K, Xue T, Gao X, Huang Y, Wang Q, Jiang C, Xu JR, Liu H. Adaptive advantages of restorative RNA editing in fungi for resolving survival-reproduction trade-offs. SCIENCE ADVANCES 2024; 10:eadk6130. [PMID: 38181075 PMCID: PMC10776026 DOI: 10.1126/sciadv.adk6130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
RNA editing in various organisms commonly restores RNA sequences to their ancestral state, but its adaptive advantages are debated. In fungi, restorative editing corrects premature stop codons in pseudogenes specifically during sexual reproduction. We characterized 71 pseudogenes and their restorative editing in Fusarium graminearum, demonstrating that restorative editing of 16 pseudogenes is crucial for germ tissue development in fruiting bodies. Our results also revealed that the emergence of premature stop codons is facilitated by restorative editing and that premature stop codons corrected by restorative editing are selectively favored over ancestral amino acid codons. Furthermore, we found that ancestral versions of pseudogenes have antagonistic effects on reproduction and survival. Restorative editing eliminates the survival costs of reproduction caused by antagonistic pleiotropy and provides a selective advantage in fungi. Our findings highlight the importance of restorative editing in the evolution of fungal complex multicellularity and provide empirical evidence that restorative editing serves as an adaptive mechanism enabling the resolution of genetic trade-offs.
Collapse
Affiliation(s)
- Zhaomei Qi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ping Lu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyuan Long
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyu Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengchun Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiyun Xin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tuan Xue
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinlong Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qinhu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Huiquan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
14
|
Cheng S, Jacobs CGC, Mogollón Pérez EA, Chen D, van de Sanden JT, Bretscher KM, Verweij F, Bosman JS, Hackmann A, Merks RMH, van den Heuvel J, van der Zee M. A life-history allele of large effect shortens developmental time in a wild insect population. Nat Ecol Evol 2024; 8:70-82. [PMID: 37957313 DOI: 10.1038/s41559-023-02246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023]
Abstract
Developmental time is a key life-history trait with large effects on Darwinian fitness. In many insects, developmental time is currently under strong selection to minimize ecological mismatches in seasonal timing induced by climate change. The genetic basis of responses to such selection, however, is poorly understood. To address this problem, we set up a long-term evolve-and-resequence experiment in the beetle Tribolium castaneum and selected replicate, outbred populations for fast or slow embryonic development. The response to this selection was substantial and embryonic developmental timing of the selection lines started to diverge during dorsal closure. Pooled whole-genome resequencing, gene expression analysis and an RNAi screen pinpoint a 222 bp deletion containing binding sites for Broad and Tramtrack upstream of the ecdysone degrading enzyme Cyp18a1 as a main target of selection. Using CRISPR/Cas9 to reconstruct this allele in the homogenous genetic background of a laboratory strain, we unravel how this single deletion advances the embryonic ecdysone peak inducing dorsal closure and show that this allele accelerates larval development but causes a trade-off with fecundity. Our study uncovers a life-history allele of large effect and reveals the evolvability of developmental time in a natural insect population.
Collapse
Affiliation(s)
- Shixiong Cheng
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Elisa A Mogollón Pérez
- Institute of Biology, Leiden University, Leiden, the Netherlands
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Daipeng Chen
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | - Joep T van de Sanden
- Institute of Biology, Leiden University, Leiden, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | | | - Femke Verweij
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Jelle S Bosman
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Amke Hackmann
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Roeland M H Merks
- Institute of Biology, Leiden University, Leiden, the Netherlands
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | - Joost van den Heuvel
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | | |
Collapse
|
15
|
Dos Santos CH, Dos Santos KAV, Machado LPDB, Mateus RP. Life History Traits and Metabolic Pool Variation in Neotropical Species of Drosophila (Diptera, Drosophilidae). Zool Stud 2023; 62:e56. [PMID: 38628160 PMCID: PMC11019369 DOI: 10.6620/zs.2023.62-56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 11/20/2023] [Indexed: 04/26/2024]
Abstract
The differential exploration of natural resources by Drosophila species has effects on fitness, with changes in life history and metabolic traits. There is a lack of research on the variation in these characters in different environments in Neotropical species of Drosophila. The purpose of this study was to evaluate the profile of life history traits, including viability, development time, and dry weight (as a measure of size), as well as the metabolic pools of triglyceride, glycogen, and protein, in populations from the southern and southeastern regions of Brazil of four Neotropical Drosophila species: D. willistoni, of the Sophophora subgenus, and D. mercatorum, D. maculifrons, and D. ornatifrons, which belong to the Drosophila subgenus. Life history and metabolic traits showed interpopulational variation in at least one species. When significant differences in life history parameters occurred, species of the same subgenus presented similar profiles, i.e., southern populations were larger, less viable, and showed longer development time. This was also observed for triglyceride. However, for the other two metabolic pools (glycogen and total proteins), D. maculifrons and D. ornatifrons presented inverse patterns to the other two species, with the highest values in southeastern populations and the lowest in southern populations. These populational variations indicate plasticity of the examined life history traits, which allows distinctive responses to different environmental conditions shared by speciesof the same subgenus. Nevertheless, interspecific comparisons did not reflect phylogenetic relationships, with the highest viability being found for D. willistoni and D. mercatorum, which is probably correlated to the ability of these species to explore a broader variety of habitats. On the other hand, the storage capability of metabolic pools seems to be species specific, determined by the adaptive history to the quality and availability of resources, with D. mercatorum (low) and D. ornatifrons (high) having opposing capacities to store metabolites from their diets.
Collapse
Affiliation(s)
- Camila Heloise Dos Santos
- UNICENTRO, CEDETEG, Universidade Estadual do Centro-Oeste, LaGEv, Laboratório de Genética e Evolução do Departamento de Ciências Biológicas, Élio Antonio Dalla Vecchia Alley, 838, Vila Carli, Guarapuava-PR 85040-167, Brazil. E-mail: (Mateus); (CH dos Santos); (KAV dos Santos); (de Barros Machado)
| | - Karoline Aparecida Vieira Dos Santos
- UNICENTRO, CEDETEG, Universidade Estadual do Centro-Oeste, LaGEv, Laboratório de Genética e Evolução do Departamento de Ciências Biológicas, Élio Antonio Dalla Vecchia Alley, 838, Vila Carli, Guarapuava-PR 85040-167, Brazil. E-mail: (Mateus); (CH dos Santos); (KAV dos Santos); (de Barros Machado)
| | - Luciana Paes de Barros Machado
- UNICENTRO, CEDETEG, Universidade Estadual do Centro-Oeste, LaGEv, Laboratório de Genética e Evolução do Departamento de Ciências Biológicas, Élio Antonio Dalla Vecchia Alley, 838, Vila Carli, Guarapuava-PR 85040-167, Brazil. E-mail: (Mateus); (CH dos Santos); (KAV dos Santos); (de Barros Machado)
| | - Rogério Pincela Mateus
- UNICENTRO, CEDETEG, Universidade Estadual do Centro-Oeste, LaGEv, Laboratório de Genética e Evolução do Departamento de Ciências Biológicas, Élio Antonio Dalla Vecchia Alley, 838, Vila Carli, Guarapuava-PR 85040-167, Brazil. E-mail: (Mateus); (CH dos Santos); (KAV dos Santos); (de Barros Machado)
| |
Collapse
|
16
|
Adonyeva NV, Efimov VM, Gruntenko NE. The Effect of Genotype Combinations of Wolbachia and Its Drosophila melanogaster Host on Fertility, Developmental Rate and Heat Stress Resistance of Flies. INSECTS 2023; 14:928. [PMID: 38132601 PMCID: PMC10743879 DOI: 10.3390/insects14120928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
The best-known effect of the intracellular bacterium Wolbachia is its mostly negative influence on the reproduction of the host. However, there is evidence of a positive influence of Wolbachia on the host's resistance to stress, pathogens, and viruses. Here, we analyzed the effects of two Wolbachia strains belonging to wMel and wMelCS genotypes on D. melanogaster traits, such as fertility, survival under acute heat stress, and developmental rate. We found that D. melanogaster lines under study differ significantly in the above-mentioned characteristics, both when the natural infection was preserved, and when it was eliminated. One of Wolbachia strains, wMel, did not affect any of the studied traits. Another strain, wMelPlus, had a significant effect on the development time. Moreover, this effect is observed not only in the line in which it was discovered but also in the one it was transferred to. When transferred to a new line, wMelPlus also caused changes in survival under heat stress. Thus, it could be concluded that Wolbachia-Drosophila interaction depends on the genotypes of both the host and the symbiont, but some Wolbachia effects could depend not on the genotypes, but on the fact of recent transfer of the symbiont.
Collapse
Affiliation(s)
- Natalya V. Adonyeva
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia; (N.V.A.); (V.M.E.)
| | - Vadim M. Efimov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia; (N.V.A.); (V.M.E.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nataly E. Gruntenko
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia; (N.V.A.); (V.M.E.)
| |
Collapse
|
17
|
Abstract
Organismal development requires the reproducible unfolding of an ordered sequence of discrete steps (cell fate determination, migration, tissue folding, etc.) in both time and space. Here, we review the mechanisms that grant temporal specificity to developmental steps, including molecular clocks and timers. Individual timing mechanisms must be coordinated with each other to maintain the overall developmental sequence. However, phenotypic novelties can also arise through the modification of temporal patterns over the course of evolution. Two main types of variation in temporal patterning characterize interspecies differences in developmental time: allochrony, where the overall developmental sequence is either accelerated or slowed down while maintaining the relative duration of individual steps, and heterochrony, where the duration of specific developmental steps is altered relative to the rest. New advances in in vitro modeling of mammalian development using stem cells have recently enabled the revival of mechanistic studies of allochrony and heterochrony. In both cases, differences in the rate of basic cellular functions such as splicing, translation, protein degradation, and metabolism seem to underlie differences in developmental time. In the coming years, these studies should identify the genetic differences that drive divergence in developmental time between species.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA;
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA;
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
18
|
Venkatasubramani AV, Ichinose T, Kanno M, Forne I, Tanimoto H, Peleg S, Imhof A. The fruit fly acetyltransferase chameau promotes starvation resilience at the expense of longevity. EMBO Rep 2023; 24:e57023. [PMID: 37724628 PMCID: PMC10561354 DOI: 10.15252/embr.202357023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Proteins involved in cellular metabolism and molecular regulation can extend lifespan of various organisms in the laboratory. However, any improvement in aging would only provide an evolutionary benefit if the organisms were able to survive under non-ideal conditions. We have previously shown that Drosophila melanogaster carrying a loss-of-function allele of the acetyltransferase chameau (chm) has an increased healthy lifespan when fed ad libitum. Here, we show that loss of chm and reduction in its activity results in a substantial reduction in weight and a decrease in starvation resistance. This phenotype is caused by failure to properly regulate the genes and proteins required for energy storage and expenditure. The previously observed increase in survival time thus comes with the inability to prepare for and cope with nutrient stress. As the ability to survive in environments with restricted food availability is likely a stronger evolutionary driver than the ability to live a long life, chm is still present in the organism's genome despite its apparent negative effect on lifespan.
Collapse
Affiliation(s)
- Anuroop Venkateswaran Venkatasubramani
- Department of Molecular Biology, Biomedical Center Munich, Faculty of MedicineLMU MunichMartinsriedGermany
- Graduate School of Quantitative Biosciences (QBM)LMU MunichMunichGermany
| | - Toshiharu Ichinose
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
- Frontier Research Institute for Interdisciplinary SciencesTohoku UniversitySendaiJapan
| | - Mai Kanno
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Ignasi Forne
- Protein Analysis Unit, Faculty of Medicine, Biomedical Center MunichLMU MunichMartinsriedGermany
| | - Hiromu Tanimoto
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Shahaf Peleg
- Research Group Epigenetics, Metabolism and LongevityInstitute for Farm Animal BiologyDummerstorfGermany
| | - Axel Imhof
- Department of Molecular Biology, Biomedical Center Munich, Faculty of MedicineLMU MunichMartinsriedGermany
- Protein Analysis Unit, Faculty of Medicine, Biomedical Center MunichLMU MunichMartinsriedGermany
| |
Collapse
|
19
|
Höllinger I, Wölfl B, Hermisson J. A theory of oligogenic adaptation of a quantitative trait. Genetics 2023; 225:iyad139. [PMID: 37550847 PMCID: PMC10550320 DOI: 10.1093/genetics/iyad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/20/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023] Open
Abstract
Rapid phenotypic adaptation is widespread in nature, but the underlying genetic dynamics remain controversial. Whereas population genetics envisages sequential beneficial substitutions, quantitative genetics assumes a collective response through subtle shifts in allele frequencies. This dichotomy of a monogenic and a highly polygenic view of adaptation raises the question of a middle ground, as well as the factors controlling the transition. Here, we consider an additive quantitative trait with equal locus effects under Gaussian stabilizing selection that adapts to a new trait optimum after an environmental change. We present an analytical framework based on Yule branching processes to describe how phenotypic adaptation is achieved by collective changes in allele frequencies at the underlying loci. In particular, we derive an approximation for the joint allele-frequency distribution conditioned on the trait mean as a comprehensive descriptor of the adaptive architecture. Depending on the model parameters, this architecture reproduces the well-known patterns of sequential, monogenic sweeps, or of subtle, polygenic frequency shifts. Between these endpoints, we observe oligogenic architecture types that exhibit characteristic patterns of partial sweeps. We find that a single compound parameter, the population-scaled background mutation rate Θbg, is the most important predictor of the type of adaptation, while selection strength, the number of loci in the genetic basis, and linkage only play a minor role.
Collapse
Affiliation(s)
- Ilse Höllinger
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
| | - Benjamin Wölfl
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
- Vienna Graduate School of Population Genetics, University of Vienna and Veterinary Medical University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Joachim Hermisson
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| |
Collapse
|
20
|
Polak M, Bose J, Benoit JB, Singh H. Heritability and preadult survivorship costs of ectoparasite resistance in the naturally occurring Drosophila-Gamasodes mite system. Evolution 2023; 77:2068-2080. [PMID: 37393947 DOI: 10.1093/evolut/qpad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/06/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
Our understanding of the evolutionary significance of ectoparasites in natural communities is limited by a paucity of information concerning the mechanisms and heritability of resistance to this ubiquitous group of organisms. Here, we report the results of artificial selection for increasing ectoparasite resistance in replicate lines of Drosophila melanogaster derived from a field-fresh population. Resistance, as ability to avoid infestation by naturally co-occurring Gamasodes queenslandicus mites, increased significantly in response to selection and realized heritability (SE) was estimated to be 0.11 (0.0090). Deployment of energetically expensive bursts of flight from the substrate was a main mechanism of host resistance that responded to selection, aligning with previously documented metabolic costs of fly behavioral defenses. Host body size, which affects parasitism rate in some fly-mite systems, was not shifted by selection. In contrast, resistant lines expressed significant reductions in larva-to-adult survivorship with increasing toxic (ammonia) stress, identifying an environmentally modulated preadult cost of resistance. Flies selected for resistance to G. queenslandicus were also more resistant to a different mite, Macrocheles subbadius, suggesting that we documented genetic variation and a pleiotropic cost of broad-spectrum behavioral immunity against ectoparasites. The results demonstrate significant evolutionary potential of resistance to an ecologically important class of parasites.
Collapse
Affiliation(s)
- Michal Polak
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Joy Bose
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Harmanpreet Singh
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
21
|
Santos J, Matos M, Flatt T, Chelo IM. Microbes are potential key players in the evolution of life histories and aging in Caenorhabditis elegans. Ecol Evol 2023; 13:e10537. [PMID: 37753311 PMCID: PMC10518755 DOI: 10.1002/ece3.10537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Microbes can have profound effects on host fitness and health and the appearance of late-onset diseases. Host-microbe interactions thus represent a major environmental context for healthy aging of the host and might also mediate trade-offs between life-history traits in the evolution of host senescence. Here, we have used the nematode Caenorhabditis elegans to study how host-microbe interactions may modulate the evolution of life histories and aging. We first characterized the effects of two non-pathogenic and one pathogenic Escherichia coli strains, together with the pathogenic Serratia marcescens DB11 strain, on population growth rates and survival of C. elegans from five different genetic backgrounds. We then focused on an outbred C. elegans population, to understand if microbe-specific effects on the reproductive schedule and in traits such as developmental rate and survival were also expressed in the presence of males and standing genetic variation, which could be relevant for the evolution of C. elegans and other nematode species in nature. Our results show that host-microbe interactions have a substantial host-genotype-dependent impact on the reproductive aging and survival of the nematode host. Although both pathogenic bacteria reduced host survival in comparison with benign strains, they differed in how they affected other host traits. Host fertility and population growth rate were affected by S. marcescens DB11 only during early adulthood, whereas this occurred at later ages with the pathogenic E. coli IAI1. In both cases, these effects were largely dependent on the host genotypes. Given such microbe-specific genotypic differences in host life history, we predict that the evolution of reproductive schedules and senescence might be critically contingent on host-microbe interactions in nature.
Collapse
Affiliation(s)
- Josiane Santos
- cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteLisboaPortugal
- Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Margarida Matos
- cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteLisboaPortugal
- Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Thomas Flatt
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Ivo M. Chelo
- cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteLisboaPortugal
- Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| |
Collapse
|
22
|
Hu D, Li W, Wang J, Peng Y, Yun Y, Peng Y. Interaction of High Temperature Stress and Wolbachia Infection on the Biological Characteristic of Drosophila melanogaster. INSECTS 2023; 14:558. [PMID: 37367374 DOI: 10.3390/insects14060558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/28/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
It was reported that temperature affects the distribution of Wolbachia in the host, but only a few papers reported the effect of the interaction between high temperature and Wolbachia on the biological characteristic of the host. Here, we set four treatment Drosophila melanogaster groups: Wolbachia-infected flies in 25 °C (W+M), Wolbachia-infected flies in 31 °C (W+H), Wolbachia-uninfected flies in 25 °C (W-M), Wolbachia-uninfected flies in 31 °C (W-H), and detected the interaction effect of temperature and Wolbachia infection on the biological characteristic of D. melanogaster in F1, F2 and F3 generations. We found that both temperature and Wolbachia infection had significant effects on the development and survival rate of D. melanogaster. High temperature and Wolbachia infection had interaction effect on hatching rate, developmental durations, emergence rate, body weight and body length of F1, F2 and F3 flies, and the interaction effect also existed on oviposition amount of F3 flies, and on pupation rate of F2 and F3 flies. High temperature stress reduced the Wolbachia vertical transmission efficiency between generations. These results indicated that high temperature stress and Wolbachia infection had negative effects on the morphological development of D. melanogaster.
Collapse
Affiliation(s)
- Die Hu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wanning Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ju Wang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yaqi Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| |
Collapse
|
23
|
Szlachcic E, Dańko MJ, Czarnoleski M. Rapamycin supplementation of Drosophila melanogaster larvae results in less viable adults with smaller cells. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230080. [PMID: 37351490 PMCID: PMC10282583 DOI: 10.1098/rsos.230080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
The intrinsic sources of mortality relate to the ability to meet the metabolic demands of tissue maintenance and repair, ultimately shaping ageing patterns. Anti-ageing mechanisms compete for resources with other functions, including those involved in maintaining functional plasma membranes. Consequently, organisms with smaller cells and more plasma membranes should devote more resources to membrane maintenance, leading to accelerated intrinsic mortality and ageing. To investigate this unexplored trade-off, we reared Drosophila melanogaster larvae on food with or without rapamycin (a TOR pathway inhibitor) to produce small- and large-celled adult flies, respectively, and measured their mortality rates. Males showed higher mortality than females. As expected, small-celled flies (rapamycin) showed higher mortality than their large-celled counterparts (control), but only in early adulthood. Contrary to predictions, the median lifespan was similar between the groups. Rapamycin administered to adults prolongs life; thus, the known direct physiological effects of rapamycin cannot explain our results. Instead, we invoke indirect effects of rapamycin, manifested as reduced cell size, as a driver of increased early mortality. We conclude that cell size differences between organisms and the associated burdens of plasma membrane maintenance costs may be important but overlooked factors influencing mortality patterns in nature.
Collapse
Affiliation(s)
- Ewa Szlachcic
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Maciej J. Dańko
- Max Planck Institute for Demographic Research, Rostock, Germany
| | - Marcin Czarnoleski
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
24
|
Rau V, Flatt T, Korb J. The remoulding of dietary effects on the fecundity / longevity trade-off in a social insect. BMC Genomics 2023; 24:244. [PMID: 37147612 PMCID: PMC10163710 DOI: 10.1186/s12864-023-09335-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND In many organisms increased reproductive effort is associated with a shortened life span. This trade-off is reflected in conserved molecular pathways that link nutrient-sensing with fecundity and longevity. Social insect queens apparently defy the fecundity / longevity trade-off as they are both, extremely long-lived and highly fecund. Here, we have examined the effects of a protein-enriched diet on these life-history traits and on tissue-specific gene expression in a termite species of low social complexity. RESULTS On a colony level, we did not observe reduced lifespan and increased fecundity, effects typically seen in solitary model organisms, after protein enrichment. Instead, on the individual level mortality was reduced in queens that consumed more of the protein-enriched diet - and partially also in workers - while fecundity seemed unaffected. Our transcriptome analyses supported our life-history results. Consistent with life span extension, the expression of IIS (insulin/insulin-like growth factor 1 signalling) components was reduced in fat bodies after protein enrichment. Interestingly, however, genes involved in reproductive physiology (e.g., vitellogenin) were largely unaffected in fat body and head transcriptomes. CONCLUSION These results suggest that IIS is decoupled from downstream fecundity-associated pathways, which can contribute to the remoulding of the fecundity/longevity trade-off in termites as compared to solitary insects.
Collapse
Affiliation(s)
- Veronika Rau
- Evolutionary Biology & Ecology, University of Freiburg, Hauptstrasse 1, 79104, Freiburg (Brsg.), Germany.
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Judith Korb
- Evolutionary Biology & Ecology, University of Freiburg, Hauptstrasse 1, 79104, Freiburg (Brsg.), Germany.
- RIEL, Charles Darwin University Casuarina Campus, Ellengowan Drive, Darwin, NT0811, Australia.
| |
Collapse
|
25
|
Grochau-Wright ZI, Nedelcu AM, Michod RE. The Genetics of Fitness Reorganization during the Transition to Multicellularity: The Volvocine regA-like Family as a Model. Genes (Basel) 2023; 14:genes14040941. [PMID: 37107699 PMCID: PMC10137558 DOI: 10.3390/genes14040941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The evolutionary transition from single-celled to multicellular individuality requires organismal fitness to shift from the cell level to a cell group. This reorganization of fitness occurs by re-allocating the two components of fitness, survival and reproduction, between two specialized cell types in the multicellular group: soma and germ, respectively. How does the genetic basis for such fitness reorganization evolve? One possible mechanism is the co-option of life history genes present in the unicellular ancestors of a multicellular lineage. For instance, single-celled organisms must regulate their investment in survival and reproduction in response to environmental changes, particularly decreasing reproduction to ensure survival under stress. Such stress response life history genes can provide the genetic basis for the evolution of cellular differentiation in multicellular lineages. The regA-like gene family in the volvocine green algal lineage provides an excellent model system to study how this co-option can occur. We discuss the origin and evolution of the volvocine regA-like gene family, including regA-the gene that controls somatic cell development in the model organism Volvox carteri. We hypothesize that the co-option of life history trade-off genes is a general mechanism involved in the transition to multicellular individuality, making volvocine algae and the regA-like family a useful template for similar investigations in other lineages.
Collapse
Affiliation(s)
| | - Aurora M Nedelcu
- Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Richard E Michod
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
26
|
Lyman RF, Lyman RA, Yamamoto A, Huang W, Harbison ST, Zhou S, Anholt RRH, Mackay TFC. Natural genetic variation in a dopamine receptor is associated with variation in female fertility in Drosophila melanogaster. Proc Biol Sci 2023; 290:20230375. [PMID: 37040806 PMCID: PMC10089713 DOI: 10.1098/rspb.2023.0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Fertility is a major component of fitness but its genetic architecture remains poorly understood. Using a full diallel cross of 50 Drosophila Genetic Reference Panel inbred lines with whole genome sequences, we found substantial genetic variation in fertility largely attributable to females. We mapped genes associated with variation in female fertility by genome-wide association analysis of common variants in the fly genome. Validation of candidate genes by RNAi knockdown confirmed the role of the dopamine 2-like receptor (Dop2R) in promoting egg laying. We replicated the Dop2R effect in an independently collected productivity dataset and showed that the effect of the Dop2R variant was mediated in part by regulatory gene expression variation. This study demonstrates the strong potential of genome-wide association analysis in this diverse panel of inbred strains and subsequent functional analyses for understanding the genetic architecture of fitness traits.
Collapse
Affiliation(s)
- Richard F Lyman
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Rachel A Lyman
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Akihiko Yamamoto
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Wen Huang
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Susan T Harbison
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Shanshan Zhou
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Robert R H Anholt
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Trudy F C Mackay
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
27
|
Steiner UK, Tuljapurkar S. Adaption, neutrality and life-course diversity. Ecol Lett 2023; 26:540-548. [PMID: 36756864 DOI: 10.1111/ele.14174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Heterogeneity among individuals in fitness components is what selection acts upon. Evolutionary theories predict that selection in constant environments acts against such heterogeneity. But observations reveal substantial non-genetic and also non-environmental variability in phenotypes. Here, we examine whether there is a relationship between selection pressure and phenotypic variability by analysing structured population models based on data from a large and diverse set of species. Our findings suggest that non-genetic, non-environmental variation is in general neither truly neutral, selected for, nor selected against. We find much variations among species and populations within species, with mean patterns suggesting nearly neutral evolution of life-course variability. Populations that show greater diversity of life courses do not show, in general, increased or decreased population growth rates. Our analysis suggests we are only at the beginning of understanding the evolution and maintenance of non-genetic non-environmental variation.
Collapse
|
28
|
Zakharenko LP, Petrovskii DV, Bobrovskikh MA, Gruntenko NE, Yakovleva EY, Markov AV, Putilov AA. Motus Vita Est: Fruit Flies Need to Be More Active and Sleep Less to Adapt to Either a Longer or Harder Life. Clocks Sleep 2023; 5:98-115. [PMID: 36975551 PMCID: PMC10047790 DOI: 10.3390/clockssleep5010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Activity plays a very important role in keeping bodies strong and healthy, slowing senescence, and decreasing morbidity and mortality. Drosophila models of evolution under various selective pressures can be used to examine whether increased activity and decreased sleep duration are associated with the adaptation of this nonhuman species to longer or harder lives. Methods: For several years, descendants of wild flies were reared in a laboratory without and with selection pressure. To maintain the “salt” and “starch” strains, flies from the wild population (called “control”) were reared on two adverse food substrates. The “long-lived” strain was maintained through artificial selection for late reproduction. The 24 h patterns of locomotor activity and sleep in flies from the selected and unselected strains (902 flies in total) were studied in constant darkness for at least, 5 days. Results: Compared to the control flies, flies from the selected strains demonstrated enhanced locomotor activity and reduced sleep duration. The most profound increase in locomotor activity was observed in flies from the starch (short-lived) strain. Additionally, the selection changed the 24 h patterns of locomotor activity and sleep. For instance, the morning and evening peaks of locomotor activity were advanced and delayed, respectively, in flies from the long-lived strain. Conclusion: Flies become more active and sleep less in response to various selection pressures. These beneficial changes in trait values might be relevant to trade-offs among fitness-related traits, such as body weight, fecundity, and longevity.
Collapse
Affiliation(s)
- Lyudmila P. Zakharenko
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, The Russian Academy of Sciences, Novosibirsk 630000, Russia
| | - Dmitrii V. Petrovskii
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, The Russian Academy of Sciences, Novosibirsk 630000, Russia
| | - Margarita A. Bobrovskikh
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, The Russian Academy of Sciences, Novosibirsk 630000, Russia
| | - Nataly E. Gruntenko
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, The Russian Academy of Sciences, Novosibirsk 630000, Russia
| | | | - Alexander V. Markov
- Department of Biological Evolution, The Moscow State University, Moscow 101000, Russia
- Borisyak Paleontological Institute of the Russian Academy of Sciences, Moscow 101000, Russia
| | - Arcady A. Putilov
- Research Group for Math-Modeling of Biomedical Systems, Research Institute for Molecular Biology and Biophysics of the Federal Research Centre for Fundamental and Translational Medicine, Novosibirsk 630000, Russia
- Laboratory of Sleep/Wake Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 101000, Russia
- Correspondence: ; Tel.: +49-30-53674643 or +49-30-61290031
| |
Collapse
|
29
|
Hoedjes KM, Kostic H, Flatt T, Keller L. A Single Nucleotide Variant in the PPARγ-homolog Eip75B Affects Fecundity in Drosophila. Mol Biol Evol 2023; 40:7005670. [PMID: 36703226 PMCID: PMC9922802 DOI: 10.1093/molbev/msad018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Single nucleotide polymorphisms are the most common type of genetic variation, but how these variants contribute to the adaptation of complex phenotypes is largely unknown. Experimental evolution and genome-wide association studies have demonstrated that variation in the PPARγ-homolog Eip75B has associated with longevity and life-history differences in the fruit fly Drosophila melanogaster. Using RNAi knockdown, we first demonstrate that reduced expression of Eip75B in adult flies affects lifespan, egg-laying rate, and egg volume. We then tested the effects of a naturally occurring SNP within a cis-regulatory domain of Eip75B by applying two complementary approaches: a Mendelian randomization approach using lines of the Drosophila Genetic Reference Panel, and allelic replacement using precise CRISPR/Cas9-induced genome editing. Our experiments reveal that this natural polymorphism has a significant pleiotropic effect on fecundity and egg-to-adult viability, but not on longevity or other life-history traits. Our results provide a rare functional validation at the nucleotide level and identify a natural allelic variant affecting fitness and life-history adaptation.
Collapse
Affiliation(s)
| | - Hristina Kostic
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
30
|
Synaptic Development in Diverse Olfactory Neuron Classes Uses Distinct Temporal and Activity-Related Programs. J Neurosci 2023; 43:28-55. [PMID: 36446587 PMCID: PMC9838713 DOI: 10.1523/jneurosci.0884-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Developing neurons must meet core molecular, cellular, and temporal requirements to ensure the correct formation of synapses, resulting in functional circuits. However, because of the vast diversity in neuronal class and function, it is unclear whether or not all neurons use the same organizational mechanisms to form synaptic connections and achieve functional and morphologic maturation. Moreover, it remains unknown whether neurons united in a common goal and comprising the same sensory circuit develop on similar timescales and use identical molecular approaches to ensure the formation of the correct number of synapses. To begin to answer these questions, we took advantage of the Drosophila antennal lobe (AL), a model olfactory circuit with remarkable genetic access and synapse-level resolution. Using tissue-specific genetic labeling of active zones, we performed a quantitative analysis of synapse formation in multiple classes of neurons of both sexes throughout development and adulthood. We found that olfactory receptor neurons (ORNs), projection neurons (PNs), and local interneurons (LNs) each have unique time courses of synaptic development, addition, and refinement, demonstrating that each class follows a distinct developmental program. This raised the possibility that these classes may also have distinct molecular requirements for synapse formation. We genetically altered neuronal activity in each neuronal subtype and observed differing effects on synapse number based on the neuronal class examined. Silencing neuronal activity in ORNs, PNs, and LNs impaired synaptic development but only in ORNs did enhancing neuronal activity influence synapse formation. ORNs and LNs demonstrated similar impairment of synaptic development with enhanced activity of a master kinase, GSK-3β, suggesting that neuronal activity and GSK-3β kinase activity function in a common pathway. ORNs also, however, demonstrated impaired synaptic development with GSK-3β loss-of-function, suggesting additional activity-independent roles in development. Ultimately, our results suggest that the requirements for synaptic development are not uniform across all neuronal classes with considerable diversity existing in both their developmental time frames and molecular requirements. These findings provide novel insights into the mechanisms of synaptic development and lay the foundation for future work determining their underlying etiologies.SIGNIFICANCE STATEMENT Distinct olfactory neuron classes in Drosophila develop a mature synaptic complement over unique timelines and using distinct activity-dependent and molecular programs, despite having the same generalized goal of olfactory sensation.
Collapse
|
31
|
Flasz B, Dziewięcka M, Ajay AK, Tarnawska M, Babczyńska A, Kędziorski A, Napora-Rutkowski Ł, Ziętara P, Świerczek E, Augustyniak M. Age- and Lifespan-Dependent Differences in GO Caused DNA Damage in Acheta domesticus. Int J Mol Sci 2022; 24:ijms24010290. [PMID: 36613733 PMCID: PMC9820743 DOI: 10.3390/ijms24010290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The rising applicability of graphene oxide (GO) should be preceded by detailed tests confirming its safety and lack of toxicity. Sensitivity to GO of immature, or with different survival strategy, individuals has not been studied so far. Therefore, in the present research, we focused on the GO genotoxic effects, examining selected parameters of DNA damage (total DNA damage, double-strand breaks-DSB, 8-hydroxy-2'-deoxyguanosine-8-OHdG, abasic site-AP sites), DNA damage response parameters, and global methylation in the model organism Acheta domesticus. Special attention was paid to various life stages and lifespans, using wild (H), and selected for longevity (D) strains. DNA damage was significantly affected by stage and/or strain and GO exposure. Larvae and young imago were generally more sensitive than adults, revealing more severe DNA damage. Especially in the earlier life stages, the D strain reacted more intensely/inversely than the H strain. In contrast, DNA damage response parameters were not significantly related to stage and/or strain and GO exposure. Stage-dependent DNA damage, especially DSB and 8-OHdG, with the simultaneous lack or subtle activation of DNA damage response parameters, may result from the general life strategy of insects. Predominantly fast-living and fast-breeding organisms can minimize energy-demanding repair mechanisms.
Collapse
Affiliation(s)
- Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Amrendra K. Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Łukasz Napora-Rutkowski
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Chybie, Poland
| | - Patrycja Ziętara
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
- Correspondence: ; Tel.: +48-32-359-1235
| |
Collapse
|
32
|
Smith CM, Chicas-Mosier AM, Appel AG, Fadamiro HY. Gravid Periplaneta americana (Blattodea: Blattidae) Fails to Detect or Respond to the Presence of the Oothecal Parasitoid Aprostocetus hagenowii (Hymenoptera: Eulophidae). ENVIRONMENTAL ENTOMOLOGY 2022; 51:1086-1093. [PMID: 36373594 DOI: 10.1093/ee/nvac096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Several families of parasitic Hymenoptera have evolved traits that allow them to exploit cockroach oothecae. Cockroaches may bury and conceal their oothecae to prevent parasitoid attack. However, these protective measures require additional investment by females. We hypothesized that gravid cockroaches would reduce parental care in the absence of oothecal parasitoids and increase care when parasitoids were detected. Behavior bioassays consisted of glass jars containing a gravid American cockroach, Periplaneta americana (L.) (Blattodea: Blattidae), expanded polystyrene (EPS), and a dog food pellet. A fruit fly (Drosophila melanogaster Meigen) (Diptera: Drosophilidae) or parasitoid Aprostocetus hagenowii (Ratzburg) (Hymenoptera: Eulophidae) was added for the fly and parasitoid treatments, respectively. There was no significant difference among treatments in the proportion of oothecae buried or in mean cover of oothecae with EPS particles. Cover had no effect on parasitism success or failure. Electroantennogram (EAG) assays using P. americana antennae were also conducted. The EAG responses to dead parasitoid stimuli (0.111-0.124 mV) were significantly (p < 0.05) greater than the negative control, but responses to living parasitoid stimuli (0.075-0.089 mV) were nonsignificant. These findings suggest that burial and concealment of oothecae is a general defensive behavior employed regardless of the presence or absence of a natural enemy. The results also indicate that gravid P. americana are unable to detect, and therefore, differentiate A. hagenowii from other insects and that A. hagenowii can successfully locate and parasitize oothecae completely concealed with EPS particles.
Collapse
Affiliation(s)
- C M Smith
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849-5413, USA
| | - A M Chicas-Mosier
- Center for Environmentally Beneficial Catalysis, University of Kansas, Building A, 1501 Wakarusa Drive, Lawrence, KS 66047, USA
| | - A G Appel
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849-5413, USA
| | - H Y Fadamiro
- Department of Entomology, Texas A&M University, 404 Heep Ste 2475, College Station, TX 77843-2475, USA
| |
Collapse
|
33
|
Yan S, Li N, Guo Y, Chen Y, Ji C, Yin M, Shen J, Zhang J. Chronic exposure to the star polycation (SPc) nanocarrier in the larval stage adversely impairs life history traits in Drosophila melanogaster. J Nanobiotechnology 2022; 20:515. [PMID: 36482441 PMCID: PMC9730587 DOI: 10.1186/s12951-022-01705-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nanomaterials are widely used as pesticide adjuvants to increase pesticide efficiency and minimize environmental pollution. But it is increasingly recognized that nanocarrier is a double-edged sword, as nanoparticles are emerging as new environmental pollutants. This study aimed to determine the biotoxicity of a widely applied star polycation (SPc) nanocarrier using Drosophila melanogaster, the fruit fly, as an in vivo model. RESULTS The lethal concentration 50 (LC50) value of SPc was identified as 2.14 g/L toward third-instar larvae and 26.33 g/L for adults. Chronic exposure to a sub lethal concentration of SPc (1 g/L) in the larval stage showed long-lasting adverse effects on key life history traits. Exposure to SPc at larval stage adversely impacted the lifespan, fertility, climbing ability as well as stresses resistance of emerged adults. RNA-sequencing analysis found that SPc resulted in aberrant expression of genes involved in metabolism, innate immunity, stress response and hormone production in the larvae. Orally administrated SPc nanoparticles were mainly accumulated in intestine cells, while systemic responses were observed. CONCLUSIONS These findings indicate that SPc nanoparticles are hazardous to fruit flies at multiple levels, which could help us to develop guidelines for further large-scale application.
Collapse
Affiliation(s)
- Shuo Yan
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Na Li
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Yuankang Guo
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Yao Chen
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Chendong Ji
- grid.48166.3d0000 0000 9931 8406State Key Lab of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Meizhen Yin
- grid.48166.3d0000 0000 9931 8406State Key Lab of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Jie Shen
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Junzheng Zhang
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
34
|
Delineating Purinergic Signaling in Drosophila. Int J Mol Sci 2022; 23:ijms232315196. [PMID: 36499534 PMCID: PMC9738970 DOI: 10.3390/ijms232315196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Simplistic models can aid in discovering what is important in the context of normal and pathological behavior. First recognized as a genetic model more than 100 years ago, to date, fruit flies (Drosophila melanogaster) still remain an astonishingly good laboratory stand-in for scientists to study development and physiology and to investigate the molecular mechanisms of human diseases. This is because fruit flies indeed represent a simplistic model. Furthermore, about 75% of human disease-related genes have their counterparts in the Drosophila genome, added to the fact that fruit flies are inexpensive and extremely easy to maintain, being invertebrates and, moreover, lacking any ethical concern issues. Purinergic signaling is, by definition, mediated by extracellular purinergic ligands, among which ATP represents the prototype molecule. A key feature that has progressively emerged when dissecting the purinergic mechanisms is the multilayer and dynamic nature of the signaling sustained by purinergic ligands. Indeed, these last are sequentially metabolized by several different ectonucleotidases, which generate the ligands that simultaneously activate several different purinergic receptors. Since significant purinergic actions have also been described in Drosophila, the aim of the present work is to provide a comprehensive picture of the purinergic events occurring in fruit flies.
Collapse
|
35
|
Duxbury EML, Carlsson H, Sales K, Sultanova Z, Immler S, Chapman T, Maklakov AA. Multigenerational downregulation of insulin/IGF-1 signaling in adulthood improves lineage survival, reproduction, and fitness in Caenorhabditis elegans supporting the developmental theory of ageing. Evolution 2022; 76:2829-2845. [PMID: 36199198 PMCID: PMC10092551 DOI: 10.1111/evo.14640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/18/2022] [Accepted: 09/08/2022] [Indexed: 01/22/2023]
Abstract
Adulthood-only downregulation of insulin/IGF-1 signaling (IIS), an evolutionarily conserved pathway regulating resource allocation between somatic maintenance and reproduction, increases life span without fecundity cost in the nematode, Caenorhabditis elegans. However, long-term multigenerational effects of reduced IIS remain unexplored and are proposed to carry costs for offspring quality. To test this hypothesis, we ran a mutation accumulation (MA) experiment and downregulated IIS in half of the 400 MA lines by silencing daf-2 gene expression using RNA interference (RNAi) across 40 generations. Contrary to the prediction, adulthood-only daf-2 RNAi reduced extinction of MA lines both under UV-induced and spontaneous MA. Fitness of the surviving UV-induced MA lines was higher under daf-2 RNAi. Reduced IIS increased intergenerational F1 offspring fitness under UV stress but had no quantifiable transgenerational effects. Functional hrde-1 was required for the benefits of multigenerational daf-2 RNAi. Overall, we found net benefit to fitness from multigenerational reduction of IIS and the benefits became more apparent under stress. Because reduced daf-2 expression during development carries fitness costs, we suggest that our findings are best explained by the developmental theory of ageing, which maintains that the decline in the force of selection with age results in poorly regulated gene expression in adulthood.
Collapse
Affiliation(s)
- Elizabeth M L Duxbury
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Hanne Carlsson
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Kris Sales
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Zahida Sultanova
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Alexei A Maklakov
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
36
|
Singh K, Arun Samant M, Prasad NG. Evolution of cross-tolerance in Drosophila melanogaster as a result of increased resistance to cold stress. Sci Rep 2022; 12:19536. [PMID: 36376445 PMCID: PMC9663562 DOI: 10.1038/s41598-022-23674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Cold stress is a critical environmental challenge that affects an organism's fitness-related traits. In Drosophila, increased resistance to specific environmental stress may lead to increased resistance to other kinds of stress. In the present study, we aimed to understand whether increased cold stress resistance in Drosophila melanogaster can facilitate their ability to tolerate other environmental stresses. For the current study, we used successfully selected replicate populations of D. melanogaster against cold shock and their control population. These selected populations have evolved several reproductive traits, including increased egg viability, mating frequency, male mating ability, ability to sire progenies, and faster recovery for mating latency under cold shock conditions. In the present work, we investigated egg viability and mating frequency with and without heat and cold shock conditions in the selected and their control populations. We also examined resistance to cold shock, heat shock, desiccation, starvation, and survival post-challenge with Staphylococcus succinus subsp. succinus PK-1 in the selected and their control populations. After cold-shock treatment, we found a 1.25 times increase in egg viability and a 1.57 times increase in mating frequency in the selected populations compared to control populations. Moreover, more males (0.87 times) and females (1.66 times) of the selected populations survived under cold shock conditions relative to their controls. After being subjected to heat shock, the selected population's egg viability and mating frequency increased by 0.30 times and 0.57 times, respectively, compared to control populations. Additionally, more selected males (0.31 times) and females (0.98 times) survived under heat shock conditions compared to the control populations. Desiccation resistance slightly increased in the females of the selected populations relative to their control, but we observed no change in the case of males. Starvation resistance decreased in males and females of the selected populations compared to their controls. Our findings suggest that the increased resistance to cold shock correlates with increased tolerance to heat stress, but this evolved resistance comes at a cost, with decreased tolerance to starvation.
Collapse
Affiliation(s)
- Karan Singh
- grid.458435.b0000 0004 0406 1521Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Ajitgarh, Punjab 140306 India ,grid.137628.90000 0004 1936 8753Present Address: Department of Cell Biology, NYU Grossman School of Medicine, 595 Medical Science Building, 550 First Ave, New York, NY 10016 USA
| | - Manas Arun Samant
- grid.458435.b0000 0004 0406 1521Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Ajitgarh, Punjab 140306 India
| | - Nagaraj Guru Prasad
- grid.458435.b0000 0004 0406 1521Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Ajitgarh, Punjab 140306 India
| |
Collapse
|
37
|
Hoedjes KM, Kostic H, Keller L, Flatt T. Natural alleles at the Doa locus underpin evolutionary changes in Drosophila lifespan and fecundity. Proc Biol Sci 2022; 289:20221989. [PMID: 36350205 PMCID: PMC9653240 DOI: 10.1098/rspb.2022.1989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
'Evolve and resequence' (E&R) studies in Drosophila melanogaster have identified many candidate loci underlying the evolution of ageing and life history, but experiments that validate the effects of such candidates remain rare. In a recent E&R study we have identified several alleles of the LAMMER kinase Darkener of apricot (Doa) as candidates for evolutionary changes in lifespan and fecundity. Here, we use two complementary approaches to confirm a functional role of Doa in life-history evolution. First, we used transgenic RNAi to study the effects of Doa at the whole-gene level. Ubiquitous silencing of expression in adult flies reduced both lifespan and fecundity, indicating pleiotropic effects. Second, to characterize segregating variation at Doa, we examined four candidate single nucleotide polymorphisms (SNPs; Doa-1, -2, -3, -4) using a genetic association approach. Three candidate SNPs had effects that were qualitatively consistent with expectations based on our E&R study: Doa-2 pleiotropically affected both lifespan and late-life fecundity; Doa-1 affected lifespan (but not fecundity); and Doa-4 affected late-life fecundity (but not lifespan). Finally, the last candidate allele (Doa-3) also affected lifespan, but in the opposite direction from predicted.
Collapse
Affiliation(s)
- Katja M. Hoedjes
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hristina Kostic
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland,Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
38
|
Han B, Wei Q, Amiri E, Hu H, Meng L, Strand MK, Tarpy DR, Xu S, Li J, Rueppell O. The molecular basis of socially induced egg-size plasticity in honey bees. eLife 2022; 11:80499. [PMID: 36346221 PMCID: PMC9747152 DOI: 10.7554/elife.80499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Reproduction involves the investment of resources into offspring. Although variation in reproductive effort often affects the number of offspring, adjustments of propagule size are also found in numerous species, including the Western honey bee, Apis mellifera. However, the proximate causes of these adjustments are insufficiently understood, especially in oviparous species with complex social organization in which adaptive evolution is shaped by kin selection. Here, we show in a series of experiments that queens predictably and reversibly increase egg size in small colonies and decrease egg size in large colonies, while their ovary size changes in the opposite direction. Additional results suggest that these effects cannot be solely explained by egg-laying rate and are due to the queens' perception of colony size. Egg-size plasticity is associated with quantitative changes of 290 ovarian proteins, most of which relate to energy metabolism, protein transport, and cytoskeleton. Based on functional and network analyses, we further study the small GTPase Rho1 as a candidate regulator of egg size. Spatio-temporal expression analysis via RNAscope and qPCR supports an important role of Rho1 in egg-size determination, and subsequent RNAi-mediated gene knockdown confirmed that Rho1 has a major effect on egg size in honey bees. These results elucidate how the social environment of the honey bee colony may be translated into a specific cellular process to adjust maternal investment into eggs. It remains to be studied how widespread this mechanism is and whether it has consequences for population dynamics and epigenetic influences on offspring phenotype in honey bees and other species.
Collapse
Affiliation(s)
- Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Biology, University of North Carolina Greensboro, Greensboro, United States
| | - Qiaohong Wei
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Esmaeil Amiri
- Department of Biology, University of North Carolina Greensboro, Greensboro, United States.,Delta Research and Extension Center, Mississippi State University, Stoneville, United States
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Micheline K Strand
- Biological and Biotechnology Sciences Branch, U.S. Army Research Office, DEVCOM-ARL, Baltimore, United States
| | - David R Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, Canada
| | - Shufa Xu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
39
|
Önder BŞ, Aksoy CF. Seasonal variation in wing size and shape of Drosophila melanogaster reveals rapid adaptation to environmental changes. Sci Rep 2022; 12:14622. [PMID: 36028640 PMCID: PMC9418266 DOI: 10.1038/s41598-022-18891-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Populations in seasonal fluctuating environments receive multiple environmental cues and must deal with this heterogenic environment to survive and reproduce. An enlarged literature shows that this situation can be resolved through rapid adaptation in Drosophila melanogaster populations. Long-term monitoring of a population in its natural habitat and quantitative measurement of its responses to seasonal environmental changes are important for understanding the adaptive response of D. melanogaster to temporal variable selection. Here, we use inbred lines of a D. melanogaster population collected at monthly intervals between May to October over a temporal scale spanning three consecutive years to understand the variation in wing size and wing shape over these timepoints. The wing size and shape of this population changed significantly between months and a seasonal cycle of this traits is repeated for three years. Our results suggest that the effects of environmental variables that generated variation in body size between populations such as latitudinal clines, are a selective pressure in a different manner in terms of seasonal variation. Temperature related variable have a significant nonlinear relation to this fluctuating pattern in size and shape, whereas precipitation and humidity have a sex-specific effect which is more significant in males.
Collapse
Affiliation(s)
- Banu Şebnem Önder
- Genetic Variation and Adaptation Laboratory, Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey.
| | - Cansu Fidan Aksoy
- Genetic Variation and Adaptation Laboratory, Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
40
|
Malacrinò A, Brengdahl MI, Kimber CM, Mital A, Shenoi VN, Mirabello C, Friberg U. Ageing desexualizes the Drosophila brain transcriptome. Proc Biol Sci 2022; 289:20221115. [PMID: 35946149 PMCID: PMC9364003 DOI: 10.1098/rspb.2022.1115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
General evolutionary theory predicts that individuals in low condition should invest less in sexual traits compared to individuals in high condition. Whether this positive association between condition and investment also holds between young (high condition) and senesced (low condition) individuals is however less clear, since elevated investment into reproduction may be beneficial when individuals approach the end of their life. To address how investment into sexual traits changes with age, we study genes with sex-biased expression in the brain, the tissue from which sexual behaviours are directed. Across two distinct populations of Drosophila melanogaster, we find that old brains display fewer sex-biased genes, and that expression of both male-biased and female-biased genes converges towards a sexually intermediate phenotype owing to changes in both sexes with age. We further find that sex-biased genes in general show heightened age-dependent expression in comparison to unbiased genes and that age-related changes in the sexual brain transcriptome are commonly larger in males than females. Our results hence show that ageing causes a desexualization of the fruit fly brain transcriptome and that this change mirrors the general prediction that low condition individuals should invest less in sexual phenotypes.
Collapse
Affiliation(s)
- Antonino Malacrinò
- Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität Münster, Münster, Germany,Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | | | | | - Avani Mital
- IFM Biology, Linköping University, 581 83 Linköping, Sweden
| | | | - Claudio Mirabello
- Department of Physics, Chemistry and Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Linköping University, 581 83 Linköping, Sweden
| | - Urban Friberg
- IFM Biology, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
41
|
Strunov A, Lerch S, Blanckenhorn WU, Miller WJ, Kapun M. Complex effects of environment and Wolbachia infections on the life history of Drosophila melanogaster hosts. J Evol Biol 2022; 35:788-802. [PMID: 35532932 PMCID: PMC9321091 DOI: 10.1111/jeb.14016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/29/2022]
Abstract
Wolbachia bacteria are common endosymbionts of many arthropods found in gonads and various somatic tissues. They manipulate host reproduction to enhance their transmission and confer complex effects on fitness-related traits. Some of these effects can serve to increase the survival and transmission efficiency of Wolbachia in the host population. The Wolbachia-Drosophila melanogaster system represents a powerful model to study the evolutionary dynamics of host-microbe interactions and infections. Over the past decades, there has been a replacement of the ancestral wMelCS Wolbachia variant by the more recent wMel variant in worldwide D. melanogaster populations, but the reasons remain unknown. To investigate how environmental change and genetic variation of the symbiont affect host developmental and adult life-history traits, we compared effects of both Wolbachia variants and uninfected controls in wild-caught D. melanogaster strains at three developmental temperatures. While Wolbachia did not influence any developmental life-history traits, we found that both lifespan and fecundity of host females were increased without apparent fitness trade-offs. Interestingly, wMelCS-infected flies were more fecund than uninfected and wMel-infected flies. By contrast, males infected with wMel died sooner, indicating sex-specific effects of infection that are specific to the Wolbachia variant. Our study uncovered complex temperature-specific effects of Wolbachia infections, which suggests that symbiont-host interactions in nature are strongly dependent on the genotypes of both partners and the thermal environment.
Collapse
Affiliation(s)
- Anton Strunov
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Sina Lerch
- Department of Cell and Developmental BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaWienAustria
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Wolfgang J. Miller
- Department of Cell and Developmental BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaWienAustria
| | - Martin Kapun
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Department of Cell and Developmental BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaWienAustria
- Natural History Museum of ViennaWienAustria
| |
Collapse
|
42
|
Shenoi VN, Brengdahl MI, Grace JL, Eriksson B, Rydén P, Friberg U. A genome-wide test for paternal indirect genetic effects on lifespan in Drosophila melanogaster. Proc Biol Sci 2022; 289:20212707. [PMID: 35538781 PMCID: PMC9091837 DOI: 10.1098/rspb.2021.2707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Exposing sires to various environmental manipulations has demonstrated that paternal effects can be non-trivial also in species where male investment in offspring is almost exclusively limited to sperm. Whether paternal effects also have a genetic component (i.e. paternal indirect genetic effects (PIGEs)) in such species is however largely unknown, primarily because of methodological difficulties separating indirect from direct effects of genes. PIGEs may nevertheless be important since they have the capacity to contribute to evolutionary change. Here we use Drosophila genetics to construct a breeding design that allows testing nearly complete haploid genomes (more than 99%) for PIGEs. Using this technique, we estimate the variance in male lifespan due to PIGEs among four populations and compare this to the total paternal genetic variance (the sum of paternal indirect and direct genetic effects). Our results indicate that a substantial part of the total paternal genetic variance results from PIGEs. A screen of 38 haploid genomes, randomly sampled from a single population, suggests that PIGEs also influence variation in lifespan within populations. Collectively, our results demonstrate that PIGEs may constitute an underappreciated source of phenotypic variation.
Collapse
Affiliation(s)
| | | | - Jaime L. Grace
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660, USA
| | - Björn Eriksson
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, Box 102, 230 53 Alnarp, Sweden
| | - Patrik Rydén
- Department of Mathematics and Mathematical Statistics, Umeå University, 901 87 Umeå, Sweden,Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden
| | - Urban Friberg
- IFM Biology, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
43
|
Meshrif WS, Elkayal SH, Soliman MA, Seif AI, Roeder T. Metabolic and immunological responses of Drosophila melanogaster to dietary restriction and bacterial infection differ substantially between genotypes in a population. Ecol Evol 2022; 12:e8960. [PMID: 35646322 PMCID: PMC9130643 DOI: 10.1002/ece3.8960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
To respond to changing environmental conditions, a population may either shift toward better‐adapted genotypes or adapt on an individual level. The present work aimed to quantify the relevance of these two processes by comparing the responses of defined Drosophila melanogaster populations to different stressors. To do this, we infected two homogeneous populations (isofemale lines), which differ significantly in fitness, and a synthetic heterogeneous population with a specific pathogen and/or exposed them to food restriction. Pectobacterium carotovorum was used to infect Drosophila larvae either fed standard or protein‐restricted diet. In particular, the two homogeneous groups, which diverged in their fitness, showed considerable differences in all parameters assessed (survivorship, protein and lipid contents, phenol‐oxidase (PO) activity, and antibacterial rate). Under fully nutritious conditions, larvae of the homogeneous population with low fitness exhibited lower survivorship and protein levels, as well as higher PO activity and antibacterial rate compared with the fitter population. A protein‐restricted diet and bacterial infection provoked a decrease in survivorship, and antibacterial rate in most populations. Bacterial infection elicited an opposite response in protein and lipid content in both isofemale lines tested. Interestingly, the heterogeneous population showed a complex response pattern. The response of the heterogeneous population followed the fit genotype in terms of survival and antibacterial activity but followed the unfit genotype in terms of PO activity. In conclusion, our results show that defined genotypes exhibit highly divergent responses to varying stressors that are difficult to predict. Furthermore, the responses of heterogeneous populations do not follow a fixed pattern showing a very high degree of plasticity and differences between different genotypes.
Collapse
Affiliation(s)
- Wesam S Meshrif
- Department of Zoology Faculty of Science Tanta University Tanta Egypt
| | - Sandy H Elkayal
- Faculty of Pharmacy Pharmaceutical Services Center Tanta University Tanta Egypt
| | - Mohamed A Soliman
- Department of Zoology Faculty of Science Tanta University Tanta Egypt
| | - Amal I Seif
- Department of Zoology Faculty of Science Tanta University Tanta Egypt
| | - Thomas Roeder
- Department of Molecular Physiology Zoological Institute Kiel University Kiel Germany.,Airway Research Center North German Center for Lung Research Kiel Germany
| |
Collapse
|
44
|
Rudman SM, Greenblum SI, Rajpurohit S, Betancourt NJ, Hanna J, Tilk S, Yokoyama T, Petrov DA, Schmidt P. Direct observation of adaptive tracking on ecological time scales in Drosophila. Science 2022; 375:eabj7484. [PMID: 35298245 PMCID: PMC10684103 DOI: 10.1126/science.abj7484] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Direct observation of evolution in response to natural environmental change can resolve fundamental questions about adaptation, including its pace, temporal dynamics, and underlying phenotypic and genomic architecture. We tracked the evolution of fitness-associated phenotypes and allele frequencies genome-wide in 10 replicate field populations of Drosophila melanogaster over 10 generations from summer to late fall. Adaptation was evident over each sampling interval (one to four generations), with exceptionally rapid phenotypic adaptation and large allele frequency shifts at many independent loci. The direction and basis of the adaptive response shifted repeatedly over time, consistent with the action of strong and rapidly fluctuating selection. Overall, we found clear phenotypic and genomic evidence of adaptive tracking occurring contemporaneously with environmental change, thus demonstrating the temporally dynamic nature of adaptation.
Collapse
Affiliation(s)
- Seth M. Rudman
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| | - Sharon I. Greenblum
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biological and Life Sciences, Ahmedabad University, Ahmedabad 380009, GJ, India
| | | | - Jinjoo Hanna
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susanne Tilk
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tuya Yokoyama
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
45
|
Kozeretska I, Serga S, Kovalenko P, Gorobchyshyn V, Convey P. Belgica antarctica (Diptera: Chironomidae): A natural model organism for extreme environments. INSECT SCIENCE 2022; 29:2-20. [PMID: 33913258 DOI: 10.1111/1744-7917.12925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Belgica antarctica (Diptera: Chironomidae), a brachypterous midge endemic to the maritime Antarctic, was first described in 1900. Over more than a century of study, a vast amount of information has been compiled on the species (3 750 000 Google search results as of January 10, 2021), encompassing its ecology and biology, life cycle and reproduction, polytene chromosomes, physiology, biochemistry and, increasingly, omics. In 2014, B. antarctica's genome was sequenced, further boosting research. Certain developmental stages can be cultured successfully in the laboratory. Taken together, this wealth of information allows the species to be viewed as a natural model organism for studies of adaptation and function in extreme environments.
Collapse
Affiliation(s)
- Iryna Kozeretska
- National Antarctic Scientific Center of Ukraine, 01601, Taras Shevchenko blv., 16, Kyiv, Ukraine
| | - Svitlana Serga
- National Antarctic Scientific Center of Ukraine, 01601, Taras Shevchenko blv., 16, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Department General and Medical Genetics, 01601, Volodymyrska str., 64/13, Kyiv, Ukraine
| | - Pavlo Kovalenko
- State Institution «Institute for Evolutionary Ecology of the National Academy of Sciences of Ukraine», Department of Population Dynamics, 03143, Lebedeva str., 37, Kyiv, Ukraine
| | - Volodymyr Gorobchyshyn
- State Institution «Institute for Evolutionary Ecology of the National Academy of Sciences of Ukraine», Department of Population Dynamics, 03143, Lebedeva str., 37, Kyiv, Ukraine
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, United Kingdom
| |
Collapse
|
46
|
Saggere RMS, Lee CWJ, Chan ICW, Durnford DG, Nedelcu AM. A life-history trade-off gene with antagonistic pleiotropic effects on reproduction and survival in limiting environments. Proc Biol Sci 2022; 289:20212669. [PMID: 35078364 PMCID: PMC8790358 DOI: 10.1098/rspb.2021.2669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Although life-history trade-offs are central to life-history evolution, their mechanistic basis is often unclear. Traditionally, trade-offs are understood in terms of competition for limited resources among traits within an organism, which could be mediated by signal transduction pathways at the level of cellular metabolism. Nevertheless, trade-offs are also thought to be produced as a consequence of the performance of one activity generating negative consequences for other traits, or the result of genes or pathways that simultaneously regulate two life-history traits in opposite directions (antagonistic pleiotropy), independent of resource allocation. Yet examples of genes with antagonistic effects on life-history traits are limited. This study provides direct evidence for a gene-RLS1, that is involved in increasing survival in nutrient-limiting environments at a cost to immediate reproduction in the single-celled photosynthetic alga, Chlamydomonas reinhardtii. Specifically, we show that RLS1 mutants are unable to properly suppress their reproduction in phosphate-deprived conditions. Although these mutants have an immediate reproductive advantage relative to the parental strain, their long-term survival is negatively affected. Our data suggest that RLS1 is a bona fide life-history trade-off gene that suppresses immediate reproduction and ensures survival by downregulating photosynthesis in limiting environments, as part of the general acclimation response to nutrient deprivation in photosynthetic organisms.
Collapse
Affiliation(s)
- Rani M. S. Saggere
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick, Canada E3B 5A3
| | - Christopher W. J. Lee
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick, Canada E3B 5A3
| | - Irina C. W. Chan
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick, Canada E3B 5A3
| | - Dion G. Durnford
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick, Canada E3B 5A3
| | - Aurora M. Nedelcu
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick, Canada E3B 5A3
| |
Collapse
|
47
|
Promislow DEL, Flatt T, Bonduriansky R. The Biology of Aging in Insects: From Drosophila to Other Insects and Back. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:83-103. [PMID: 34590891 PMCID: PMC8940561 DOI: 10.1146/annurev-ento-061621-064341] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
An enormous amount of work has been done on aging in Drosophila melanogaster, a classical genetic and molecular model system, but also in numerous other insects. However, these two extensive bodies of work remain poorly integrated to date. Studies in Drosophila often explore genetic, developmental, physiological, and nutrition-related aspects of aging in the lab, while studies in other insects often explore ecological, social, and somatic aspects of aging in both lab and natural populations. Alongside exciting genomic and molecular research advances in aging in Drosophila, many new studies have also been published on aging in various other insects, including studies on aging in natural populations of diverse species. However, no broad synthesis of these largely separate bodies of work has been attempted. In this review, we endeavor to synthesize these two semi-independent literatures to facilitate collaboration and foster the exchange of ideas and research tools. While lab studies of Drosophila have illuminated many fundamental aspects of senescence, the stunning diversity of aging patterns among insects, especially in the context of their rich ecology, remains vastlyunderstudied. Coupled with field studies and novel, more easily applicable molecular methods, this represents a major opportunity for deepening our understanding of the biology of aging in insects and beyond.
Collapse
Affiliation(s)
- Daniel E L Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA;
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - Thomas Flatt
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland;
| | - Russell Bonduriansky
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, New South Wales 2052, Australia;
| |
Collapse
|
48
|
Kapun M, Nunez JCB, Bogaerts-Márquez M, Murga-Moreno J, Paris M, Outten J, Coronado-Zamora M, Tern C, Rota-Stabelli O, Guerreiro MPG, Casillas S, Orengo DJ, Puerma E, Kankare M, Ometto L, Loeschcke V, Onder BS, Abbott JK, Schaeffer SW, Rajpurohit S, Behrman EL, Schou MF, Merritt TJS, Lazzaro BP, Glaser-Schmitt A, Argyridou E, Staubach F, Wang Y, Tauber E, Serga SV, Fabian DK, Dyer KA, Wheat CW, Parsch J, Grath S, Veselinovic MS, Stamenkovic-Radak M, Jelic M, Buendía-Ruíz AJ, Gómez-Julián MJ, Espinosa-Jimenez ML, Gallardo-Jiménez FD, Patenkovic A, Eric K, Tanaskovic M, Ullastres A, Guio L, Merenciano M, Guirao-Rico S, Horváth V, Obbard DJ, Pasyukova E, Alatortsev VE, Vieira CP, Vieira J, Torres JR, Kozeretska I, Maistrenko OM, Montchamp-Moreau C, Mukha DV, Machado HE, Lamb K, Paulo T, Yusuf L, Barbadilla A, Petrov D, Schmidt P, Gonzalez J, Flatt T, Bergland AO. Drosophila Evolution over Space and Time (DEST): A New Population Genomics Resource. Mol Biol Evol 2021; 38:5782-5805. [PMID: 34469576 PMCID: PMC8662648 DOI: 10.1093/molbev/msab259] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in >20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This data set, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental metadata. A web-based genome browser and web portal provide easy access to the SNP data set. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan data set. Our resource will enable population geneticists to analyze spatiotemporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.
Collapse
Affiliation(s)
- Martin Kapun
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Switzerland
- Department of Cell & Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Joaquin C B Nunez
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | - Jesús Murga-Moreno
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Margot Paris
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Joseph Outten
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | - Courtney Tern
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Omar Rota-Stabelli
- Center Agriculture Food Environment, University of Trento, San Michele all' Adige, Italy
| | | | - Sònia Casillas
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Dorcas J Orengo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Eva Puerma
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Lino Ometto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Banu S Onder
- Department of Biology, Hacettepe University, Ankara, Turkey
| | | | - Stephen W Schaeffer
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Emily L Behrman
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Janelia Research Campus, Ashburn, VA, USA
| | - Mads F Schou
- Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Biology, Lund University, Lund, Sweden
| | - Thomas J S Merritt
- Department of Chemistry & Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Amanda Glaser-Schmitt
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Eliza Argyridou
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Fabian Staubach
- Department of Evolution and Ecology, University of Freiburg, Freiburg, Germany
| | - Yun Wang
- Department of Evolution and Ecology, University of Freiburg, Freiburg, Germany
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Svitlana V Serga
- Department of General and Medical Genetics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, Ukraine
| | - Daniel K Fabian
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Kelly A Dyer
- Department of Genetics, University of Georgia, Athens, GA, USA
| | | | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sonja Grath
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | - Mihailo Jelic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | - Aleksandra Patenkovic
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Eric
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Tanaskovic
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Anna Ullastres
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Lain Guio
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Miriam Merenciano
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Sara Guirao-Rico
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Vivien Horváth
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Darren J Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Elena Pasyukova
- Institute of Molecular Genetics of the National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Vladimir E Alatortsev
- Institute of Molecular Genetics of the National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Cristina P Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | | | - Iryna Kozeretska
- Department of General and Medical Genetics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, Ukraine
| | - Oleksandr M Maistrenko
- Department of General and Medical Genetics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Dmitry V Mukha
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Heather E Machado
- Department of Biology, Stanford University, Stanford, CA, USA
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Keric Lamb
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Tânia Paulo
- Departamento de Biologia Animal, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Leeban Yusuf
- Center for Biological Diversity, University of St. Andrews, St Andrews, United Kingdom
| | - Antonio Barbadilla
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Dmitri Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Paul Schmidt
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Josefa Gonzalez
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alan O Bergland
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
49
|
Rodrigues MA, Merckelbach A, Durmaz E, Kerdaffrec E, Flatt T. Transcriptomic evidence for a trade-off between germline proliferation and immunity in Drosophila. Evol Lett 2021; 5:644-656. [PMID: 34917403 PMCID: PMC8645197 DOI: 10.1002/evl3.261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 11/08/2022] Open
Abstract
Life-history theory posits that investment into reproduction might occur at the expense of investment into somatic maintenance, including immune function. If so, reduced or curtailed reproductive effort might be expected to increase immunity. In support of this notion, work in Caenorhabditis elegans has shown that worms lacking a germline exhibit improved immunity, but whether the antagonistic relation between germline proliferation and immunity also holds for other organisms is less well understood. Here, we report that transgenic ablation of germ cells in late development or early adulthood in Drosophila melanogaster causes elevated baseline expression and increased induction of Toll and Imd immune genes upon bacterial infection, as compared to fertile flies with an intact germline. We also identify immune genes whose expression after infection differs between fertile and germline-less flies in a manner that is conditional on their mating status. We conclude that germline activity strongly impedes the expression and inducibility of immune genes and that this physiological trade-off might be evolutionarily conserved.
Collapse
Affiliation(s)
| | | | - Esra Durmaz
- Department of BiologyUniversity of FribourgCH‐1700 FribourgSwitzerland
| | - Envel Kerdaffrec
- Department of BiologyUniversity of FribourgCH‐1700 FribourgSwitzerland
| | - Thomas Flatt
- Department of BiologyUniversity of FribourgCH‐1700 FribourgSwitzerland
| |
Collapse
|
50
|
Burny C, Nolte V, Dolezal M, Schlötterer C. Highly Parallel Genomic Selection Response in Replicated Drosophila melanogaster Populations with Reduced Genetic Variation. Genome Biol Evol 2021; 13:evab239. [PMID: 34694407 PMCID: PMC8599828 DOI: 10.1093/gbe/evab239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Many adaptive traits are polygenic and frequently more loci contributing to the phenotype are segregating than needed to express the phenotypic optimum. Experimental evolution with replicated populations adapting to a new controlled environment provides a powerful approach to study polygenic adaptation. Because genetic redundancy often results in nonparallel selection responses among replicates, we propose a modified evolve and resequence (E&R) design that maximizes the similarity among replicates. Rather than starting from many founders, we only use two inbred Drosophila melanogaster strains and expose them to a very extreme, hot temperature environment (29 °C). After 20 generations, we detect many genomic regions with a strong, highly parallel selection response in 10 evolved replicates. The X chromosome has a more pronounced selection response than the autosomes, which may be attributed to dominance effects. Furthermore, we find that the median selection coefficient for all chromosomes is higher in our two-genotype experiment than in classic E&R studies. Because two random genomes harbor sufficient variation for adaptive responses, we propose that this approach is particularly well-suited for the analysis of polygenic adaptation.
Collapse
Affiliation(s)
- Claire Burny
- Institut für Populationsgenetik, Vetmeduni Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Austria
| | - Marlies Dolezal
- Plattform Bioinformatik und Biostatistik, Vetmeduni Vienna, Wien, Austria
| | | |
Collapse
|