1
|
Chang YT, Huang KC, Pranata R, Chen YL, Chen SN, Cheng YH, Chen RJ. Evaluation of the protective effects of chondroitin sulfate oligosaccharide against osteoarthritis via inactivation of NLRP3 inflammasome by in vivo and in vitro studies. Int Immunopharmacol 2024; 142:113148. [PMID: 39276449 DOI: 10.1016/j.intimp.2024.113148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative arthritis disease linked to aging, obesity, diet, and accumulation of octacalcium phosphate (OCP) crystals in joints. Current research has focused on inflammation and chondrocytes apoptosis as underlying OA mechanisms. Inflammatory cytokines like IL-1β activate matrix metalloproteinase-13 (MMP-13) and aggrecanase (the member of A Disintegrin and Metalloproteinase with Thrombospondin motifs family, ADAMTS), leading to cartilage matrix degradation. The NLRP3 inflammasome also contributes to OA pathogenesis by maturing IL-1β. Natural products like chondroitin sulfate oligosaccharides (oligo-CS) show promise in OA treatment by inhibiting inflammation. Our study evaluates the protective effects of oligo-CS against OA by targeting NLRP3 inflammation. Stimulating human SW1353 chondrocytes and human mononuclear macrophage THP-1 cells with OCP showed increased NLRP3 inflammation initiation, NF-κB pathway activation, and the production of inflammatory cytokines (IL-1β, IL-6) and the metabolic index (MMP-13, ADAMTS-5), leading to cartilage matrix degradation. However, oligo-CS treatment significantly reduced inflammation. In a 28-day in vivo study with C57BL/6 female mice, OCP was injected into their right knee and oligo-CS was orally administered. The OCP group exhibited significant joint space narrowing and chondrocyte loss, while the oligo-CS group maintained cartilage integrity. Oligo-CS groups also regulated gut microbiota composition to a healthier state. Taken together, our findings suggest that oligo-CS can be considered as a protective compound against OA.
Collapse
Affiliation(s)
- Yu-Ting Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuo-Ching Huang
- Division of Nephrology, Department of Internal Medicine, Chi Mei Hospital, Liouying District, Tainan, Taiwan; Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rosita Pranata
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Lin Chen
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, Hsinchu 300, Taiwan.
| | - Ssu-Ning Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Hsuan Cheng
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Ye C, Zhao C, Kuraji R, Gao L, Rangé H, Kamarajan P, Radaic A, Kapila YL. Nisin, a Probiotic Bacteriocin, Modulates the Inflammatory and Microbiome Changes in Female Reproductive Organs Mediated by Polymicrobial Periodontal Infection. Microorganisms 2024; 12:1647. [PMID: 39203489 PMCID: PMC11357294 DOI: 10.3390/microorganisms12081647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Periodontitis-related oral microbial dysbiosis is thought to contribute to adverse pregnancy outcomes (APOs), infertility, and female reproductive inflammation. Since probiotics can modulate periodontitis and oral microbiome dysbiosis, this study examined the effects of a probiotic bacteriocin, nisin, in modulating the reproductive microbiome and inflammation triggered by periodontitis. A total of 24 eight-week-old BALB/cByJ female mice were randomly divided into four treatment groups (control, infection, nisin, and infection+nisin group), with 6 mice per group. A polymicrobial (Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, Fusobacterium nucleatum) mouse model of periodontal disease was used to evaluate the effects of this disease on the female reproductive system, with a focus on the microbiome, local inflammation, and nisin's therapeutic potential in this context. Moreover, 16s RNA sequencing was used to evaluate the changes in the microbiome and RT-PCR was used to evaluate the changes in inflammatory cytokines. Periodontal pathogen DNA was detected in the reproductive organs, and in the heart and aorta at the end of the experimental period, and the DNA was especially elevated in the oral cavity in the infection group. Compared to the control groups, only P. gingivalis was significantly higher in the oral cavity and uterus of the infection groups, and T. forsythia and F. nucleatum were significantly higher in the oral cavity of the infection groups. The infection and nisin treatment group had significantly lower levels of P. gingivalis, T. forsythia, and F. nucleatum in the oral cavity compared with the infection group. Since periodontal pathogen DNA was also detected in the heart and aorta, this suggests potential circulatory system transmission. The polymicrobial infection generally decreased the microbiome diversity in the uterus, which was abrogated by nisin treatment. The polymicrobial infection groups, compared to the control groups, generally had lower Firmicutes and higher Bacteroidota in all the reproductive organs, with similar trends revealed in the heart. However, the nisin treatment group and the infection and nisin group, compared to the control or infection groups, generally had higher Proteobacteria and lower Firmicutes and Bacteroidota in the reproductive organs and the heart. Nisin treatment also altered the microbiome community structure in the reproductive tract to a new state that did not mirror the controls. Periodontal disease, compared to the controls, triggered an increase in inflammatory cytokines (IL-6, TNF-α) in the uterus and oral cavity, which was abrogated by nisin treatment. Polymicrobial periodontal disease alters the reproductive tract's microbial profile, microbiome, and inflammatory status. Nisin modulates the microbial profile and microbiome of the reproductive tract and mitigates the elevated uterine inflammatory cytokines triggered by periodontal disease.
Collapse
Affiliation(s)
- Changchang Ye
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, CA 94143, USA; (C.Y.); (C.Z.); (R.K.); (L.G.); (H.R.); (P.K.); (A.R.)
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chuanjiang Zhao
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, CA 94143, USA; (C.Y.); (C.Z.); (R.K.); (L.G.); (H.R.); (P.K.); (A.R.)
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510275, China
| | - Ryutaro Kuraji
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, CA 94143, USA; (C.Y.); (C.Z.); (R.K.); (L.G.); (H.R.); (P.K.); (A.R.)
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo 102-8159, Japan
| | - Li Gao
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, CA 94143, USA; (C.Y.); (C.Z.); (R.K.); (L.G.); (H.R.); (P.K.); (A.R.)
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510275, China
| | - Hélène Rangé
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, CA 94143, USA; (C.Y.); (C.Z.); (R.K.); (L.G.); (H.R.); (P.K.); (A.R.)
- Department of Periodontology, UFR of Odontology, University of Rennes, 35000 Rennes, France
- Service d’Odontologie, CHU de Rennes, 35000 Rennes, France
| | - Pachiyappan Kamarajan
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, CA 94143, USA; (C.Y.); (C.Z.); (R.K.); (L.G.); (H.R.); (P.K.); (A.R.)
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Allan Radaic
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, CA 94143, USA; (C.Y.); (C.Z.); (R.K.); (L.G.); (H.R.); (P.K.); (A.R.)
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Yvonne L. Kapila
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, CA 94143, USA; (C.Y.); (C.Z.); (R.K.); (L.G.); (H.R.); (P.K.); (A.R.)
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Tong G, Qian H, Li D, Li J, Chen J, Li X, Tan Z. Intestinal Flora Imbalance Induced by Antibiotic Use in Rats. J Inflamm Res 2024; 17:1789-1804. [PMID: 38528993 PMCID: PMC10961240 DOI: 10.2147/jir.s447098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/14/2024] [Indexed: 03/27/2024] Open
Abstract
Aim This study aims to explore the effect of different doses of antibiotics on rats in order to observe alterations in their fecal microbiota, inflammatory changes in the colonic mucosa and four types of inflammatory markers in blood serum. Methods Our methodology involved separating 84 female Sprague Dawley rats into groups A-G, with each group consisting of 12 rats. We collected the rat feces for analysis, using a distinct medium for bacterial cultivation and counting colonies under a microscope. On the 11th and 15th days of the experiment, half of the rats from each group were euthanized and 5 mL of abdominal aortic blood and colon tissues were collected. Inflammations changes of colon were observed and assessed by pathological Hematoxylin Eosin (HE) staining. Enzyme-linked immune sorbent assay (ELISA) was adopted for detecting C-reactive protein (CRP), IL-6, IL1-β and TNF-α. Results Our findings revealed that the initial average weight of the rats did not differ between groups (p>0.05); but significant differences were observed between stool samples, water intake, food intake and weight (p=0.009, <0.001, 0.016 and 0.04, respectively) within two hours after the experiment. Additionally, there were notable differences among the groups in nine tested microbiota before and after weighting methods (all p<0.001). There were no difference in nine microbiota at day 1 (all p>0.05); at day 4 A/B (p=0.044), A/D (p<0.001), A/E (p=0.029); at day 8, all p<0.01, at day 11, only A/F exist significant difference (p<0.001); at day 14 only A/D has difference (p=0.045). Inflammation changes of colon were observed between groups A-G at days 11 and 15. Significant differences between all groups can be observed for CRP, IL-6, IL1-β and TNF-α (p<0.001). Conclusion This study suggests that antibiotics administration can disrupt the balance of bacteria in the rat gut ecosystem, resulting in an inflammatory response in their bloodstream and inducing inflammation changes of colon.
Collapse
Affiliation(s)
- Guojun Tong
- General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, People’s Republic of China
- Central Laboratory, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, People’s Republic of China
| | - Hai Qian
- General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, People’s Republic of China
| | - Dongli Li
- Central Laboratory, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, People’s Republic of China
| | - Jing Li
- Central Laboratory, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, People’s Republic of China
| | - Jing Chen
- Central Laboratory, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, People’s Republic of China
| | - Xiongfeng Li
- Orthopedic Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, People’s Republic of China
| | - Zhenhua Tan
- General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, People’s Republic of China
| |
Collapse
|
4
|
Yue Y, Cui HB, Chu YJ, Zheng GL. Efficacy of Spleen-and-Stomach-Tonifying, Yin-Fire-Purging, and Yang-Raising Decoction Derived from the Trimethylamine N-Oxide Metabolic Pathway of Intestinal Microbiota on Macrovascular Lesions Caused by Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:585-596. [PMID: 38347910 PMCID: PMC10859761 DOI: 10.2147/dmso.s431435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Objective We aimed to analyze the mechanisms underlying spleen-and-stomach-tonifying, yin-fire-purging, and yang-raising decoction derived from the trimethylamine N-oxide (TMAO) metabolic pathway of intestinal microbiota in the treatment of macrovascular lesions caused by type 2 diabetes mellitus (T2DM). Methods Hartley-guinea pigs were randomly divided into 3 groups-the blank, model, and intervention groups. The T2DM combined with atherosclerosis guinea pig models were established in the model and intervention groups. After successful modeling, spleen-and-stomach-tonifying, yin-fire-purging, and yang-raising decoction were administered intragastrically to the intervention group, while the same volume of normal saline was administered via gavage to the blank and model groups. After 6 weeks of continuous gavage, guinea pigs were sacrificed in all groups, the colon contents were obtained, and the diversity and structural differences of intestinal microbiota were analyzed via bioinformatics. Serum was collected to detect differences in lipids, TMAO, oxidative stress, and inflammation markers between groups. Results Compared to the blank group, the species diversity of the intestinal microbiota in the model and intervention groups was significantly reduced. Based on the results of Analysis of Similarities and Multiple Response Permutation Procedure, the microbiota structure of the intervention group was closer to that of the blank group. After modeling, the blood lipid levels of guinea pigs increased significantly, and drug intervention significantly reduced the levels of TC, TG, and LDL-C (P < 0.05). TMAO expression was significantly increased after modeling (P < 0.05), while drug intervention reduced TMAO expression (P < 0.05). Compared to the model group, drug intervention significantly increased the concentrations of SOD while decreasing the concentrations of MDA, ICAM-1, VCAM-1, IL-6, and hs-CRP. Conclusion Spleen-and-stomach-tonifying, yin-fire-purging, and yang-raising decoction can reduce the risk of macrovascular lesions in T2DM, and its mechanism may be associated with its ability to regulate the TMAO metabolic pathway of intestinal microbiota.
Collapse
Affiliation(s)
- Yue Yue
- Department of Endocrinology, The 983 Hospital of the Joint Logistics Force of the Chinese People’s Liberation Army, Tianjin, People’s Republic of China
| | - Han-Bo Cui
- Department of Diabetes, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, People’s Republic of China
| | - Yue-Jie Chu
- Department of Diabetes, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, People’s Republic of China
| | - Gui-Ling Zheng
- Department of Endocrinology, The 983 Hospital of the Joint Logistics Force of the Chinese People’s Liberation Army, Tianjin, People’s Republic of China
| |
Collapse
|
5
|
Tamura M, Watanabe J, Noguchi T, Nishikawa T. High poly-γ-glutamic acid-containing natto improves lipid metabolism and alters intestinal microbiota in mice fed a high-fat diet. J Clin Biochem Nutr 2024; 74:47-56. [PMID: 38292115 PMCID: PMC10822762 DOI: 10.3164/jcbn.23-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/10/2023] [Indexed: 02/01/2024] Open
Abstract
Several beneficial effects of poly-γ-glutamic acid (γ-PGA) have been reported. To test whether natto, a fermented soy food rich in γ-PGA, can improve intestinal microbiota content and lipid metabolism in a high-fat diet, we compared the intestinal microbiota content, plasma, liver, and fecal contents, and changes in gene expression in the livers and large intestines of a group of mice fed a high-fat diet supplemented with cooked soybeans (SC group) and a group fed a high-fat diet supplemented with natto (NA group) for 42 days; high-fat diet-fed mice were used as a control (Con group). Hepatic lipid levels were significantly lower, the fecal bile acid and lipid levels were significantly greater, and the Bacteroidetes/Firmicutes ratio was significantly higher in the SC and NA groups as compared to Con group. Additionally, plasma glucose and triglyceride levels, the expression of liver fatty acid synthase, and the relative abundance of Lactobacillaceae was significantly higher in the NA group than in the Con group. Although both natto and cooked soybeans impacted the metabolic response to a high-fat diet, the addition of natto had a greater effect on glucose and lipid metabolism. γ-PGA may play an important role in natto functionality.
Collapse
Affiliation(s)
- Motoi Tamura
- Food Research Institute of National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Jun Watanabe
- Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Tomotsugu Noguchi
- Industrial Technology Innovation Center of Ibaraki Prefecture, 3781-1 Nagaoka, Ibaraki-machi, Ibaraki 311-3195, Japan
| | | |
Collapse
|
6
|
Yavorov-Dayliev D, Milagro FI, Ayo J, Oneca M, Goyache I, López-Yoldi M, Aranaz P. Glucose-lowering effects of a synbiotic combination containing Pediococcus acidilactici in C. elegans and mice. Diabetologia 2023; 66:2117-2138. [PMID: 37584728 PMCID: PMC10542285 DOI: 10.1007/s00125-023-05981-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 08/17/2023]
Abstract
AIMS/HYPOTHESIS Modulation of gut microbiota has emerged as a promising strategy to treat or prevent the development of different metabolic diseases, including type 2 diabetes and obesity. Previous data from our group suggest that the strain Pediococcus acidilactici CECT9879 (pA1c) could be an effective probiotic for regulating glucose metabolism. Hence, the objectives of this study were to verify the effectiveness of pA1c on glycaemic regulation in diet-induced obese mice and to evaluate whether the combination of pA1c with other normoglycaemic ingredients, such as chromium picolinate (PC) and oat β-glucans (BGC), could increase the efficacy of this probiotic on the regulation of glucose and lipid metabolism. METHODS Caenorhabditis elegans was used as a screening model to describe the potential synbiotic activities, together with the underlying mechanisms of action. In addition, 4-week-old male C57BL/6J mice were fed with a high-fat/high-sucrose diet (HFS) for 6 weeks to induce hyperglycaemia and obesity. Mice were then divided into eight groups (n=12 mice/group) according to dietary supplementation: control-diet group; HFS group; pA1c group (1010 colony-forming units/day); PC; BGC; pA1c+PC+BGC; pA1c+PC; and pA1c+BGC. Supplementations were maintained for 10 weeks. Fasting blood glucose was determined and an IPGTT was performed prior to euthanasia. Fat depots, liver and other organs were weighed, and serum biochemical variables were analysed. Gene expression analyses were conducted by real-time quantitative PCR. Sequencing of the V3-V4 region of the 16S rRNA gene from faecal samples of each group was performed, and differential abundance for family, genera and species was analysed by ALDEx2R package. RESULTS Supplementation with the synbiotic (pA1c+PC+BGC) counteracted the effect of the high glucose by modulating the insulin-IGF-1 signalling pathway in C. elegans, through the reversal of the glucose nuclear localisation of daf-16. In diet-induced obese mice, all groups supplemented with the probiotic significantly ameliorated glucose tolerance after an IPGTT, demonstrating the glycaemia-regulating effect of pA1c. Further, mice supplemented with pA1c+PC+BGC exhibited lower fasting blood glucose, a reduced proportion of visceral adiposity and a higher proportion of muscle tissue, together with an improvement in the brown adipose tissue in comparison with the HFS group. Besides, the effect of the HFS diet on steatosis and liver damage was normalised by the synbiotic. Gene expression analyses demonstrated that the synbiotic activity was mediated not only by modulation of the insulin-IGF-1 signalling pathway, through the overexpression of GLUT-1 and GLUT-4 mediators, but also by a decreased expression of proinflammatory cytokines such as monocyte chemotactic protein-1. 16S metagenomics demonstrated that the synbiotic combinations allowed an increase in the concentration of P. acidilactici, together with improvements in the intestinal microbiota such as a reduction in Prevotella and an increase in Akkermansia muciniphila. CONCLUSIONS/INTERPRETATION Our data suggest that the combination of pA1c with PC and BGC could be a potential synbiotic for blood glucose regulation and may help to fight insulin resistance, diabetes and obesity.
Collapse
Affiliation(s)
- Deyan Yavorov-Dayliev
- Genbioma Aplicaciones SL, Navarra, Spain
- Fac Pharm & Nutr, Dept Nutr Food Sci & Physiol, University of Navarra, Pamplona, Spain
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Fermín I Milagro
- Fac Pharm & Nutr, Dept Nutr Food Sci & Physiol, University of Navarra, Pamplona, Spain.
- Center for Nutrition Research, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Josune Ayo
- Genbioma Aplicaciones SL, Navarra, Spain
| | | | - Ignacio Goyache
- Fac Pharm & Nutr, Dept Nutr Food Sci & Physiol, University of Navarra, Pamplona, Spain
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Miguel López-Yoldi
- Fac Pharm & Nutr, Dept Nutr Food Sci & Physiol, University of Navarra, Pamplona, Spain
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Paula Aranaz
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
7
|
Tong A, Wang D, Liu X, Li Z, Zhao R, Liu B, Zhao C. The Potential Hypoglycemic Competence of Low Molecular Weight Polysaccharides Obtained from Laminaria japonica. Foods 2023; 12:3809. [PMID: 37893702 PMCID: PMC10605990 DOI: 10.3390/foods12203809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to assess the hypoglycemic efficacy of low molecular weight polysaccharides fractions obtained from Laminaria japonica (LJOO) in a model of type 2 diabetes mellitus (T2DM) constructed using mice. Biochemical parameters were measured after 4 weeks of continuous gavage, and fasting blood glucose (FBG) concentrations were analyzed. Pathological changes in tissues were assessed. The intestinal contents were obtained for 16S rDNA high-throughput sequencing analysis and detection of short-chain fatty acids (SCFAs). LJOO lowered FBG and insulin concentrations. It altered the gut microbiota composition, as evidenced by enriched probiotic bacteria, along with an increase in the Bacteroidetes/Firmicutes ratio and a decrease in the population of harmful bacteria. LJOO stimulated the growth of SCFA-producing bacteria, thereby increasing cecal SCFAs levels. LJOO can potentially aid in alleviating T2DM and related gut microbiota dysbiosis. LJOO may be used as a food supplement for patients with T2DM.
Collapse
Affiliation(s)
- Aijun Tong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (A.T.); (Z.L.)
- Marine Food Research and Development Center, Fuzhou Ocean Research Institute, Fuzhou 350002, China
| | - Dengwei Wang
- Department of Chronic and Noncommunicable Disease Control and Prevention, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, China;
| | - Xiaoyan Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China;
| | - Zhiqun Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (A.T.); (Z.L.)
- Marine Food Research and Development Center, Fuzhou Ocean Research Institute, Fuzhou 350002, China
| | - Runfan Zhao
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (A.T.); (Z.L.)
- Marine Food Research and Development Center, Fuzhou Ocean Research Institute, Fuzhou 350002, China
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (A.T.); (Z.L.)
- Marine Food Research and Development Center, Fuzhou Ocean Research Institute, Fuzhou 350002, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Liu S, Kuang X, Song X, Li H, Shao X, Gao T, Guo X, Li S, Liu R, Li K, Li D. Effects of lipid extract from blue mussel (Mytilus edulis) on gut microbiota, and its relationship with glycemic traits in type 2 diabetes mellitus patients: a double-blind randomized controlled trial. Food Funct 2023; 14:8922-8932. [PMID: 37721038 DOI: 10.1039/d3fo01491f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Studies have shown that blue mussel lipid extract (BMLE) can improve the glycemic traits, inflammatory cytokines, and lipid profile of patients with type 2 diabetes mellitus (T2DM) in China. Gut microbiota is closely related to T2DM. This study aims to explore whether BMLE can improve the glycemic status of T2DM patients by regulating gut microbiota in a 60-day double-blind randomized controlled trial. A total of 133 T2DM subjects were randomized into BMLE (n = 44), fish oil (FO) (n = 44), and corn oil (CO) (n = 45) groups. The participants were asked to take two corresponding oil capsules (0.8 g per capsule each) every day. The faecal microbiota, glycemic traits, and other cardiometabolic factors were analyzed at baseline and endpoint. The α diversity estimators of Ace and Chao1 decreased significantly in all three groups, but there was no significant difference between the groups. Eight bacteria decreased significantly in the BMLE group but not in the FO and CO groups: unclassified_Clostridia_UCG_014, unclassified_Bacteroidia, Erysipelotrichaceae, and uncultured_Ruminococcaceae_bacterium at the family level and unclassified_Bacteroidia, uncultured_Ruminococcaceae_bacterium, unclassified_Clostridia_UCG_014, and Turicibacter at genus level. In the BMLE group, the change in the relative abundance of Erysipelotrichaceae was positively correlated with the changes in the homeostatic model assessment of insulin resistance (HOMA-IR) (r = 0.454, p < 0.01) and fasting insulin (r = 0.414, p < 0.01). The change in the relative abundance of Turicibacter was positively correlated with the changes in HOMA-IR (r = 0.431, p < 0.01), fasting insulin (r = 0.414, p < 0.01), total cholesterol (TC) (r = 0.358, p < 0.05), and triacylglycerol (TG) (r = 0.393 p = 0.013). In conclusion, BMLE might improve glycemic traits by modulating gut microbiota in T2DM patients.
Collapse
Affiliation(s)
- Shiyi Liu
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Xiaotong Kuang
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Xiaolei Song
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Huiying Li
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Xianfeng Shao
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Tianlin Gao
- School of Public Health, Qingdao University, China
| | - Xiaofei Guo
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Shan Li
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Run Liu
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Kelei Li
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| |
Collapse
|
9
|
Ma Q, Noda M, Danshiitsoodol N, Sugiyama M. Fermented Stevia Improves Alcohol Poisoning Symptoms Associated with Changes in Mouse Gut Microbiota. Nutrients 2023; 15:3708. [PMID: 37686739 PMCID: PMC10489940 DOI: 10.3390/nu15173708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
We previously found that the continuous feeding of ethanol caused mice dysbiosis, in which the cecal microbiota were significantly altered, as compared with those in the non-feeding control group, especially in some bacterial genera involved in gut inflammation. In the present study, we have found that the fermented extract of stevia (Stevia rebaudiana) leaves with plant-derived lactic acid bacteria (LABs), Pediococcus pentosaceus LY45, improves the trimethylamine (TMA) productivity of cecal content, which can be used as an indicator of dysbiosis. The following animal experiment also shows that the LY45-fermented stevia extract represses the typical increase in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, which decreased from 1106 to 210 IU/L (p < 0.05) and from 591 to 100 IU/L (p < 0.05), respectively, together with the simultaneously latent TMA productivity (from 1356 to 745 μM, p < 0.05) of cecal content in the ethanol-fed mice. The microbiota analyses have shown that the observed increased alterations in pro-inflammatory genera putative SMB53 (family Clostridiaceae) and Dorea are restored by the fermented stevia extract. Our result indicates that the preliminary bioconversion of herbal medicinal precursors by fermentation with safe microorganisms like LABs is expected to be a hopeful method of producing specific metabolites that may contribute to the reconstruction of gut microbiota.
Collapse
Affiliation(s)
| | | | | | - Masanori Sugiyama
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima 734-8551, Japan; (Q.M.); (M.N.); (N.D.)
| |
Collapse
|
10
|
Pei Y, Wang R, Chen W, Yi S, Huang C, Liang S, Cao H, Xu Y, Tan B. Impaired colonic motility in high-glycemic diet-induced diabetic mice is associated with disrupted gut microbiota and neuromuscular function. Endocr Connect 2023; 12:e230078. [PMID: 37399524 PMCID: PMC10448599 DOI: 10.1530/ec-23-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Background Similar to the high-fat diet (HFD), the high-glycemic diet (HGD) contributes to the development and progression of type 2 diabetes mellitus (T2DM). However, the effect of HGD on gastrointestinal motility in T2DM and its underlying mechanisms remain unclear. Methods Thirty C57BL/6J mice were randomly designated into the normal-feeding diet (NFD) group, HFD group, and HGD group. The plasma glucose, plasma insulin, and gastrointestinal motility were examined. Meanwhile, the tension of isolated colonic smooth muscle rings was calculated, and the gut microbiota was analyzed by 16s rDNA high-throughput sequencing. Result After 16 weeks of HGD feeding, obesity, hyperglycemia, insulin resistance, and constipation were observed in HGD mice. Autonomic contraction frequency of the colonic neuromuscular system and electrical field stimulation-induced contractions were reduced in HGD mice. On the contrary, neuronal nitric oxide synthase activity and neuromuscular relaxation were found to be enhanced. Finally, gut microbiota analysis revealed that Rhodospirillaceae abundance significantly increased at the family level in HGD mice. At the genus level, the abundance of Insolitispirillum increased remarkably, whereas Turicibacter abundance decreased significantly in HGD mice. Conclusion HGD induced constipation in obese diabetic mice, which we speculated that it may be related to neuromuscular dysmotility and intestinal microbiota dysbiosis.
Collapse
Affiliation(s)
- Ying Pei
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanyu Chen
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shulin Yi
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Huang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaochan Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongying Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifei Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Bo Tan
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
JIANG L, FU Q, WANG S, ZHAO J, CHEN Y, LI J, XIAO Y, HUANG W, SUN R, XIAO Y, SHEN A, WANG J, LIU J, FU X, LI Y, ZHAO Y, XUE T. Effects of Shenlian formula on microbiota and inflammatory cytokines in adults with type 2 diabetes: a double-blind randomized clinical trial. J TRADIT CHIN MED 2023; 43:760-769. [PMID: 37454261 PMCID: PMC10320465 DOI: 10.19852/j.cnki.jtcm.20230608.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/23/2022] [Indexed: 07/18/2023]
Abstract
OBJECTIVES To observe the efficacy of Shenlian formula (SL formula, ), which consist of Huanglian () and Renshen (), in the treatment of type 2 diabetes mellitus (T2DM) and explore the effects on gut microbiota and serum inflammatory cytokines. METHODS In a double-blind, randomized, placebo-controlled parallel-group clinical trial, 31 adults with T2DM were randomly allocated to receive the SL formula or placebo for 12 weeks. Body mass index (BMI), blood lipid indices, glycemic biomarkers including glycated hemoglobin (HbA1C), fasting plasma glucose (FPG), postprandial blood glucose (PBG), fasting insulin levels (FIL), fasting C-peptide (C-P), homoeostasis model assessment for insulin resistance (HOMA-IR) and inflammatory cytokines were assessed at baseline and 12 weeks. The contents of gut microbiota were determined by pyrosequencing of the V3-V4 regions of 16S rRNA genes. RESULTS Sixteen cases were allocated in the treatment group and 15 in the placebo group. Compared with the placebo, SL formula resulted in a higher significant reduction in PBG [(?1.318 ± 0.772)(?0.008 ± 1.404) mmol/L, 0.003], BMI [(?0.611 ± 0.524)(0.957 ± 2.212) kg/m, 0.01], FIL [(?1.627 ± 6.268)(3.976 ± 6.85) μIU/mL, 0.02], HOMA-IR [(?0.530 ± 1.461)(1.511 ± 2.288), 0.006], and C-reactive protein (CRP) [(?1.307 ± 0.684)(0.828 ± 0.557) mg/L, 0.04]. In terms of gut microbiota, compared with the placebo, the SL formula resulted in a significant decrease in species richness and evenness. CONCLUSIONS The SL formula showed the efficacy to improve postprandial blood glucose, insulin resistance, BMI and CRP levels. In addition, it could reduce the total number, richness and evenness of species, meanwhile increase the abundance of probiotics to modulate the structure of gut microbiota in patients with T2DM. However, further studies are required for exploring the deeper mechanism of TCM on gut microbiota.
Collapse
Affiliation(s)
- Li JIANG
- Section Ⅱ Department of Endocrinology and Nephropathy, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Qiang FU
- Section Ⅱ Department of Endocrinology and Nephropathy, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Shidong WANG
- Section Ⅱ Department of Endocrinology and Nephropathy, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jinxi ZHAO
- Section Ⅱ Department of Endocrinology and Nephropathy, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yu CHEN
- Section Ⅱ Department of Endocrinology and Nephropathy, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jiayue LI
- Section Ⅱ Department of Endocrinology and Nephropathy, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yonghua XIAO
- Section Ⅱ Department of Endocrinology and Nephropathy, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Weijun HUANG
- Section Ⅱ Department of Endocrinology and Nephropathy, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Ruixi SUN
- Section Ⅱ Department of Endocrinology and Nephropathy, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yao XIAO
- Section Ⅱ Department of Endocrinology and Nephropathy, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Aijia SHEN
- Section Ⅱ Department of Endocrinology and Nephropathy, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Junheng WANG
- Section Ⅱ Department of Endocrinology and Nephropathy, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jiangteng LIU
- Section Ⅱ Department of Endocrinology and Nephropathy, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiaozhe FU
- Section Ⅱ Department of Endocrinology and Nephropathy, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yuanyuan LI
- Section Ⅱ Department of Endocrinology and Nephropathy, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yu ZHAO
- Section Ⅱ Department of Endocrinology and Nephropathy, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Taiqi XUE
- Section Ⅱ Department of Endocrinology and Nephropathy, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
12
|
Guan R, Ma N, Liu G, Wu Q, Su S, Wang J, Geng Y. Ethanol extract of propolis regulates type 2 diabetes in mice via metabolism and gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116385. [PMID: 36931413 DOI: 10.1016/j.jep.2023.116385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Propolis is a traditional natural medicine with various activities such as antioxidant and anti-inflammatory, immunomodulatory, anti-tumour, gastroenteritis treatment and prevention, anti-microbial and parasitic, as well as glucose regulation and anti-diabetes, and is expected to be an anti-diabetic candidate with few side effects, but the mechanism of action of propolis on type 2 diabetes mellitus (T2DM) has not been fully elucidated. AIM OF THE STUDY The purpose of this study was to investigate the mechanism of the effect of ethanol extract of propolis (EEP) on the regulation of blood glucose in T2DM mice. MATERIALS AND METHODS We studied the possible mechanism of EEP on T2DM using an animal model of T2DM induced by a combination of a high-fat diet and intraperitoneal injection of streptozotocin (STZ). The experiment was divided into four groups, namely, the normal group (HC), model group (T2DM), EEP and metformin group (MET). Biochemical indexes and cytokines were measured, and the differences of metabolites in the serum were compared by 1H-NMR. In addition, the diversity of intestinal flora in feces was studied by 16S rDNA amplicon sequencing. RESULTS The results showed that following treatment with EEP and MET, the weight-loss trend of mice was alleviated, and the fasting blood glucose, insulin secretion level, insulin resistance index, C peptide level and oral glucose tolerance level decreased, whereas the insulin sensitivity index increased, thereby EEP effectively alleviated the occurrence of T2DM and insulin resistance. Compared with the T2DM group, the concentrations of pro-inflammatory cytokines interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) decreased significantly in EEP and MET groups, whereas the concentrations of anti-inflammatory cytokine interleukin-10 (IL-10) increased significantly. Metabolomics results revealed that EEP and MET regulate carbohydrate metabolism and restore amino acid and lipid metabolism. Correlation analysis of intestinal flora in mouse feces showed that compared with the HC group, harmful bacteria such as Bilophila, Eubacterium_ventriosum_group, Mucispirillum and Desulfovibrio were found in the T2DM group, whereas the abundance of beneficial bacteria such as Lactobacillus was significantly reduced. Parabacteroides, Akkermansia, Leuconostoc, and Alloprevotella were abundantly present in the EEP group; however, the MET group showed an increase in the genus Parasutterella, which could regulate energy metabolism and insulin sensitivity. CONCLUSIONS The results showed that EEP and MET reduce fasting blood glucose in T2DM mice, followed by alleviating insulin resistance, improving the inflammatory reaction of mice, regulating the metabolism of mice, and affecting the steady state of gut microbiota. However, the overall therapeutic effect of EEP is better than that of MET.
Collapse
Affiliation(s)
- Rui Guan
- Key Laboratory of Food Nutritional Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Ning Ma
- Key Laboratory of Food Nutritional Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Guolong Liu
- Key Laboratory of Food Nutritional Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Qiu Wu
- Key Laboratory of Food Nutritional Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Shufang Su
- Shandong Institute for Food and Drug Control, Jinan, 250014, PR China.
| | - Jun Wang
- Shandong Institute for Food and Drug Control, Jinan, 250014, PR China.
| | - Yue Geng
- Key Laboratory of Food Nutritional Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
13
|
Wang XL, Yu N, Ma YX, Zhou HR, Wang C, Wei S, Miao AJ. Potential effects of Ag ion on the host by changing the structure of its gut microbiota. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131879. [PMID: 37336107 DOI: 10.1016/j.jhazmat.2023.131879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
Silver (Ag) can change the structure of the gut microbiota (GM), but how such change may affect host health is unknown. In this study, mice were exposed to silver acetate daily for 120 days. During this period, Ag accumulation in the liver was measured, its effects on GM structure were analyzed, and potential metabolic changes in liver and serum were examined. Although Ag accumulation remained unchanged in most treatments, the ratio of Firmicutes to Bacteroidetes at the phylum level increased and changes in the relative abundance of 33 genera were detected, suggesting that Ag altered the energy metabolism of mice via changes in the gut GM. In serum and liver, 34 and 72 differentially expressed metabolites were identified, respectively. The KEGG pathways thus enriched mainly included those involving the metabolism of amino acids, organic acids, lipids, and purine. Strong correlations were found between 33 % of the microorganisms with altered relative abundances and 46 % of the differentially expressed metabolites. The resulting clusters yielded two communities responsible for host inflammation and energy metabolism. Overall, these results demonstrate potential effects of Ag on the host, by changing its GM structure, and the need to consider them when evaluating the health risk of Ag.
Collapse
Affiliation(s)
- Xin-Lei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Mail box 24, Xianlin Road 163, Nanjing, Jiangsu Province 210023, China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Mail box 24, Xianlin Road 163, Nanjing, Jiangsu Province 210023, China
| | - Ying-Xue Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Mail box 24, Xianlin Road 163, Nanjing, Jiangsu Province 210023, China
| | - Hao-Ran Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Mail box 24, Xianlin Road 163, Nanjing, Jiangsu Province 210023, China
| | - Chuan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Mail box 24, Xianlin Road 163, Nanjing, Jiangsu Province 210023, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Mail box 24, Xianlin Road 163, Nanjing, Jiangsu Province 210023, China.
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Mail box 24, Xianlin Road 163, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
14
|
Wei Y, Wang L, Liu J. The diabetogenic effects of pesticides: Evidence based on epidemiological and toxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121927. [PMID: 37268216 DOI: 10.1016/j.envpol.2023.121927] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
While the use of pesticides has improved grain productivity and controlled vector-borne diseases, the widespread use of pesticides has resulted in ubiquitous environmental residues that pose health risks to humans. A number of studies have linked pesticide exposure to diabetes and glucose dyshomeostasis. This article reviews the occurrence of pesticides in the environment and human exposure, the associations between pesticide exposures and diabetes based on epidemiological investigations, as well as the diabetogenic effects of pesticides based on the data from in vivo and in vitro studies. The potential mechanisms by which pesticides disrupt glucose homeostasis include induction of lipotoxicity, oxidative stress, inflammation, acetylcholine accumulation, and gut microbiota dysbiosis. The gaps between laboratory toxicology research and epidemiological studies lead to an urgent research need on the diabetogenic effects of herbicides and current-use insecticides, low-dose pesticide exposure research, the diabetogenic effects of pesticides in children, and assessment of toxicity and risks of combined exposure to multiple pesticides with other chemicals.
Collapse
Affiliation(s)
- Yile Wei
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Zhao D, Zhang R, Wang J, Zhang X, Liu K, Zhang H, Liu H. Effect of Limosilactobacillus reuteri ZJF036 on Growth Performance and Gut Microbiota in Juvenile Beagle Dogs. Curr Microbiol 2023; 80:155. [PMID: 36995478 DOI: 10.1007/s00284-023-03276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/18/2023] [Indexed: 03/31/2023]
Abstract
This experiment investigated the effects of Limosilactobacillus reuteri ZJF036 on growth performance, serum biochemical parameters, and gut microbiota in beagle dogs. Sixteen 75 ± 5-day-old healthy male beagles (4.51 ± 1.37 kg) were randomly divided into two groups; the experimental group (L1) and the control group (L0), and then fed with or without a basal diet containing L. reuteri ZJF036 (109 CFU/g), respectively. The results showed that there was no significant difference in daily weight gain between the two groups (P > 0.05). However, we found that L. reuteri ZJF036 decreased Chao1 index and ACE index and increased the relative abundance of Firmicutes and Fusobacteria (P < 0.05) compared to the L0 group. In addition, we also found that the ratio of Firmicutes to Bacteroidetes was decreased in L1 group. Furthermore, the relative abundance of Lactobacillus increased, while that of Turicibacter and Blautia decreased in L1 group (P < 0.05). In conclusion, L. reuteri ZJF036 appeared to regulate the intestinal microbiota of beagle dogs. This study revealed the potential use of L. reuteri ZJBF036 as a probiotic supplement for beagle dogs.
Collapse
Affiliation(s)
- Dehui Zhao
- College of Agriculture, Chifeng University, Chifeng, 024000, People's Republic of China
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, People's Republic of China
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
| | - Ruchun Zhang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
| | - Jinming Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
| | - Xinyu Zhang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
| | - Keyuan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Haihua Zhang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, People's Republic of China
| | - Hanlu Liu
- College of Agriculture, Chifeng University, Chifeng, 024000, People's Republic of China.
| |
Collapse
|
16
|
Wang Y, Song X, Wang Z, Li Z, Geng Y. Effects of Pine Pollen Polysaccharides and Sulfated Polysaccharides on Ulcerative Colitis and Gut Flora in Mice. Polymers (Basel) 2023; 15:polym15061414. [PMID: 36987195 PMCID: PMC10058757 DOI: 10.3390/polym15061414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Polysaccharides are important biological macromolecules in all organisms, and have recently been studied as therapeutic agents for ulcerative colitis (UC). However, the effects of Pinus yunnanensis pollen polysaccharides on ulcerative colitis remains unknown. In this study, dextran sodium sulfate (DSS) was used to induce the UC model to investigate the effects of Pinus yunnanensis pollen polysaccharides (PPM60) and sulfated polysaccharides (SPPM60) on UC. We evaluated the improvement of polysaccharides on UC by analyzing the levels of intestinal cytokines, serum metabolites and metabolic pathways, intestinal flora species diversity, and beneficial and harmful bacteria. The results show that purified PPM60 and its sulfated form SPPM60 effectively alleviated the disease progression of weight loss, colon shortening and intestinal injury in UC mice. On the intestinal immunity level, PPM60 and SPPM60 increased the levels of anti-inflammatory cytokines (IL-2, IL-10, and IL-13) and decreased the levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α). On the serum metabolism level, PPM60 and SPPM60 mainly regulated the abnormal serum metabolism of UC mice by regulating the energy-related and lipid-related metabolism pathways, respectively. On the intestinal flora level, PPM60 and SPPM60 reduced the abundance of harmful bacteria (such as Akkermansia and Aerococcus) and induced the abundance of beneficial bacteria (such as lactobacillus). In summary, this study is the first to evaluate the effects of PPM60 and SPPM60 on UC from the joint perspectives of intestinal immunity, serum metabolomics, and intestinal flora, which may provide an experimental basis for plant polysaccharides as an adjuvant clinical treatment of UC.
Collapse
Affiliation(s)
| | | | | | | | - Yue Geng
- Correspondence: ; Tel.: +86-18853119492
| |
Collapse
|
17
|
Murotomi K, Umeno A, Shichiri M, Tanito M, Yoshida Y. Significance of Singlet Oxygen Molecule in Pathologies. Int J Mol Sci 2023; 24:ijms24032739. [PMID: 36769060 PMCID: PMC9917472 DOI: 10.3390/ijms24032739] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen species, including singlet oxygen, play an important role in the onset and progression of disease, as well as in aging. Singlet oxygen can be formed non-enzymatically by chemical, photochemical, and electron transfer reactions, or as a byproduct of endogenous enzymatic reactions in phagocytosis during inflammation. The imbalance of antioxidant enzymes and antioxidant networks with the generation of singlet oxygen increases oxidative stress, resulting in the undesirable oxidation and modification of biomolecules, such as proteins, DNA, and lipids. This review describes the molecular mechanisms of singlet oxygen production in vivo and methods for the evaluation of damage induced by singlet oxygen. The involvement of singlet oxygen in the pathogenesis of skin and eye diseases is also discussed from the biomolecular perspective. We also present our findings on lipid oxidation products derived from singlet oxygen-mediated oxidation in glaucoma, early diabetes patients, and a mouse model of bronchial asthma. Even in these diseases, oxidation products due to singlet oxygen have not been measured clinically. This review discusses their potential as biomarkers for diagnosis. Recent developments in singlet oxygen scavengers such as carotenoids, which can be utilized to prevent the onset and progression of disease, are also described.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Aya Umeno
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577, Japan
- Correspondence: ; Tel.: +81-72-751-8234
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | | |
Collapse
|
18
|
Shen S, Yang W, Li L, Zhu Y, Yang Y, Ni H, Jiang Z, Zheng M. In vitro fermentation of seaweed polysaccharides and tea polyphenol blends by human intestinal flora and their effects on intestinal inflammation. Food Funct 2023; 14:1133-1147. [PMID: 36594623 DOI: 10.1039/d2fo03390a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A combination of polysaccharides and tea polyphenols can enhance immune activity synergistically, depending on the type and structure of polysaccharides, but the mechanism remains unknown. This study is aimed to investigate the regulating effects of different seaweed polysaccharide (ι-carrageenan, agarose) and tea polyphenol blends on intestinal flora and intestinal inflammation using an in vitro ascending-transverse-descending colon fermentation system and RAW264.7 cell model. The results showed that seaweed polysaccharides in the presence of tea polyphenol were almost completely degraded at transverse colon fermentation for 36 h. Agarose significantly enhanced the butyric acid production content by increasing the abundance of Lachnospiraceae, whereas agarose and tea polyphenol blends did not have a synergistic effect. On the contrary, ι-carrageenan and tea polyphenol blends synergistically increased the abundance of beneficial bacteria (e.g., Bacteroidetes and Bifidobacterium) and promoted the production of short-chain fatty acids (SCFAs), such as isobutyric acid. Such changes tended to alter the impacts of different seaweed polysaccharides and tea polyphenol blends on intestinal inflammation. Among them, ι-carrageenan and tea polyphenol blends were the most effective in inhibiting lipopolysaccharide-induced NO, ROS, IL-6, and TNF-α production in RAW264.7 cells, indicating the alleviated intestinal inflammation. The results suggest that the seaweed polysaccharide and tea polyphenol blends have prebiotic potential and can benefit intestinal health.
Collapse
Affiliation(s)
- Shiqi Shen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
| | - Wenqin Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Yuanfan Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China.,Xiamen Ocean Vocational College, Xiamen 361100, Fujian, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| |
Collapse
|
19
|
Wang W, Sun M, Yu J, Ma X, Han C. Relationship between Components, Intestinal Microbiota, and Mechanism of Hypoglycemic Effect of the Saggy Ink Cap Medicinal Mushroom (Coprinus Comatus, Agaricomycetes): A Review. Int J Med Mushrooms 2023; 25:81-90. [PMID: 37947066 DOI: 10.1615/intjmedmushrooms.2023050474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Coprinus comatus is rich in a variety of nutrients, which has been reported to display a good hypoglycemic effect. However, there is no consensus on the hypoglycemic mechanism of this mushroom. Intestinal microbiota, a complex and intrinsic system, is closely related to metabolism. In this review, we discussed the potential relationship between certain components of C. comatus and intestinal microbiota to illustrate the possible hypoglycemic mechanism of C. comatus through intestinal microbiota. It will provide a new perspective for the study of hypoglycemic mechanism of C. comatus and promote the development and utilization of this mushroom.
Collapse
Affiliation(s)
- Wei Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P.R. China
| | - Min Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China
| | - Jinyan Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P.R. China
| | - Xumin Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P.R. China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
20
|
Li J, Yuan H, Zhao Z, Li L, Li X, Zhu L, Wang X, Sun P, Xiao Y. The mitigative effect of isorhamnetin against type 2 diabetes via gut microbiota regulation in mice. Front Nutr 2022; 9:1070908. [PMID: 36618710 PMCID: PMC9815710 DOI: 10.3389/fnut.2022.1070908] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
In order to demonstrate the effects of isorhamnetin (IH) on the symptoms of type 2 diabetes mellitus (T2DM) and the role of gut microbiota in this process, an T2DM mouse model was established via a high-fat diet and streptozotocin. After 6 weeks of IH intervention and diabetes phenotype monitoring, the mice were dissected. We detected blood indicators and visceral pathology. Contents of the cecum were collected for 16S rRNA sequencing and short chain fatty acid (SCFAs) detection. The results showed that after IH intervention, the body weight of type 2 diabetic mice was gradually stabilized, fasting blood glucose was significantly decreased, and food intake was reduced (P < 0.05). Isorhamnetin significantly increased the level of SCFAs and decreased the levels of blood lipids and inflammatory factors in mice (P < 0.05). 16S rRNA sequencing results showed that Lactobacillus were significantly decreased and Bacteroidales S24-7 group_norank were significantly increased (P < 0.05). Interestingly, gut microbiota was significantly correlated with inflammatory factors, blood lipids, and SCFAs (P < 0.05). Taken together, our data demonstrated that isorhamnetin could improve the diabetic effects in T2DM mice, which might be mediated by gut microbiota.
Collapse
Affiliation(s)
- Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Huimin Yuan
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Zhiqi Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Department of Pharmacology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Li Li
- Clinical Medicine College, Hangzhou Normal University, Hangzhou, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liying Zhu
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ping Sun
- School of Public Health, Shanxi Medical University, Taiyuan, China,*Correspondence: Ping Sun,
| | - Yinping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Yinping Xiao,
| |
Collapse
|
21
|
Jia S, Zhang J, Li X, He Y, Yu T, Zhao C, Song C. Intestinal Microflora Characteristics of Antheraea pernyi (Lepidoptera: Saturniidae) Larvae With Vomit Disease. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1859-1868. [PMID: 36124625 DOI: 10.1093/jee/toac142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Antheraea pernyi Guérin-Méneville (Lepidoptera: Saturniidae) is of high economic value as a source of silk, food, and bioactive substances with medicinal properties. A. pernyi larvae are prone to A. pernyi vomit disease (AVD), which results in substantial economic losses during cultivation; however, the relationship between AVD and A. pernyi gut microbiota remains unclear. Here, we investigated the bacterial community in the midgut and feces of A. pernyi larvae with and without AVD using 16S rRNA gene sequencing with Illumina MiSeq technology. Compared with healthy larvae, intestinal bacterial diversity and community richness increased and decreased in larvae with mild and severe AVD, respectively. In addition, the proportion of gut Enterobacter Hormaeche and Edwards(Enterobacteriales: Enterobacteriaceae) and Enterococcus Thiercelin and Jouhaud (Lactobacillales: Enterococcaceae) was higher and lower, respectively, in larvae with mild AVD than those in healthy larvae. A. pernyi vomit disease infection significantly increased the genera with abundance <1%. In the gut of larvae with severe AVD, the proportion of Turicibacter Bosshard et al. (Erysipelotrichales: Turicibacteraceae) increased significantly to 81.53-99.92%, whereas that of Enterobacter decreased compared with healthy larvae. However, the diversity of fecal bacteria was similar between healthy larvae and those with mild AVD. Overall, the findings demonstrate that intestinal microflora in A. pernyi larvae are altered by AVD infection and may cause secondary bacterial infection. This is the first report of the presence of Turicibacter in the intestinal tract of lepidopterans.
Collapse
Affiliation(s)
- Shu Jia
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Juntao Zhang
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
| | - Xisheng Li
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
| | - Yingzi He
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
| | - Tinghong Yu
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
| | - Chong Zhao
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
| | - Ce Song
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
| |
Collapse
|
22
|
Feng R, Fan Y, Chen L, Ge Q, Xu J, Yang M, Chen K. Based on 16 S rRNA sequencing and metabonomics to reveal the new mechanism of aluminum potassium sulfate induced inflammation and abnormal lipid metabolism in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114214. [PMID: 36327783 DOI: 10.1016/j.ecoenv.2022.114214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
More and more discoveries have been made about the chronic toxic effects of aluminum, but the specific mechanism of action remains unclear. In this study, we explored the perturbation of aluminum on intestinal microflora and its effects on host and microbial metabolites through a more realistic nutrient absorption model. The microorganisms Turicibacter, Lactobacillus murinus, Lactobacillus_reuteri and Bifidobacterium pseudolongum may be the main targets of the aluminum affecting microbiota. Lysine, proline, putrescine, serotonin and cholesterol may be important metabolites affected by aluminum ions after the interference of intestinal flora composition, leading to abnormal metabolism pathways of amino acids and lipids in the body, and thus promoting inflammation and lesion. The possible mechanisms of aluminum action on the body: (1) Affecting immune cell response, ROS generation and production of a series of pro-inflammatory factors to promote inflammation; (2) Through the disturbance of intestinal microbiota composition structure, change the abundance of metabolites, and then affect amino acid metabolism, lipid metabolism pathways. The joint analysis of multiple omics showed significant difference in microbiome abundance and metabolomics expression between high dose group and the control group.
Collapse
Affiliation(s)
- Rong Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yixuan Fan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Qi Ge
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Ming Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Keping Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China; School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
23
|
Wang XL, Yu N, Wang C, Zhou HR, Wu C, Yang L, Wei S, Miao AJ. Changes in Gut Microbiota Structure: A Potential Pathway for Silver Nanoparticles to Affect the Host Metabolism. ACS NANO 2022; 16:19002-19012. [PMID: 36315867 DOI: 10.1021/acsnano.2c07924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Silver nanoparticles (AgNPs) are one of the most widely used NPs. Their adverse effects on either the host or its gut microbiota (GM) have been examined. Nevertheless, whether the GM plays any role in AgNP toxicity to the host remains unclear. In the present study, AgNPs were administered to mice by oral gavage once a day for 120 days. A significant dose-dependent accumulation of Ag in the liver was observed, with a steady state reached within 21 days. The AgNPs changed the structure of the GM, mainly with respect to microorganisms involved in the metabolism of energy, amino acids, organic acids, and lipids, as predicted in a PICRUST analysis. Effects of the AgNPs on liver metabolism were also demonstrated, as a KEGG pathway analysis showed the enrichment of pathways responsible for the metabolism of amino acids, purines and pyrimidine, lipids, and energy. More interestingly, the changes in GM structure and liver metabolism were highly correlated, evidenced by the correlation between ∼23% of the differential microorganisms at the genus level and ∼60% of the differential metabolites. This implies that the metabolic variations in liver as affected by AgNPs were partly attributable to NP-induced changes of GM structure. Therefore, our results demonstrate the importance of considering the roles of GM in the toxicity of NPs to the host in evaluations of the health risks of NPs.
Collapse
Affiliation(s)
- Xin-Lei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Chuan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Hao-Ran Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Chao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| |
Collapse
|
24
|
Cheng J, Zhang X, Zhang D, Zhang Y, Li X, Zhao Y, Xu D, Zhao L, Li W, Wang J, Zhou B, Lin C, Yang X, Zhai R, Cui P, Zeng X, Huang Y, Ma Z, Liu J, Wang W. Sheep fecal transplantation affects growth performance in mouse models by altering gut microbiota. J Anim Sci 2022; 100:skac303. [PMID: 36075210 PMCID: PMC9667978 DOI: 10.1093/jas/skac303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Animal growth traits are important and complex traits that determine the productivity of animal husbandry. There are many factors that affect growth traits, among which diet digestion is the key factor. In the process of animal digestion and absorption, the role of gastrointestinal microbes is essential. In this study, we transplanted two groups of sheep intestinal microorganisms with different body weights into the intestines of mice of the same age to observe the effect of fecal bacteria transplantation on the growth characteristics of the mouse model. The results showed that receiving fecal microbiota transplantation (FMT) had an effect on the growth traits of recipient mice (P < 0.05). Interestingly, only mice receiving high-weight donor microorganisms showed differences. Use 16S rDNA sequencing technology to analyze the stool microorganisms of sheep and mice. The microbial analysis of mouse feces showed that receiving FMT could improve the diversity and richness of microorganisms (P < 0.05), and the microbial composition of mouse feces receiving low-weight donor microorganisms was similar to that of the control group, which was consistent with the change trend of growth traits. The feces of high-weight sheep may have higher colonization ability. The same five biomarkers were identified in the donor and recipient, all belonging to Firmicutes, and were positively correlated with the body weight of mice at each stage. These results suggest that FMT affects the growth traits of receptors by remodeling their gut microflora.
Collapse
Affiliation(s)
- Jiangbo Cheng
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Yukun Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaolong Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Rui Zhai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| |
Collapse
|
25
|
Yi ZY, Chen L, Wang Y, He D, Zhao D, Zhang SH, Yu R, Huang JH. The potential mechanism of Liu-Wei-Di-Huang Pills in treatment of type 2 diabetic mellitus: from gut microbiota to short-chain fatty acids metabolism. Acta Diabetol 2022; 59:1295-1308. [PMID: 35857109 DOI: 10.1007/s00592-022-01922-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) has already become a global pandemic. Recently, reports showed its pathogenesis was closely related to a disorder of gut microbiota. In China, the Liu-Wei-Di-Huang Pills (LWDH) have treated T2DM for thousands of years. However, its therapeutic mechanism associated with gut microbiota is worthy of further study. AIMS This study aims to investigate the effects of LWDH on T2DM by regulating gut microbiota and short-chain fatty acids (SCFAs) in Goto-Kakizaki (GK) rats. METHODS T2DM models were successfully established based on GK rats and administrated with LWDH. The changes in fasting blood glucose (FBG), oral glucose tolerance test (OGTT), and serum insulin (INS) were determined, and the immunohistochemical (IHC) method was used to test INS expression in pancreas. The 16S-ribosomal DNA (16S rDNA) sequencing analysis assessed gut microbiota structural changes; a gas chromatography-mass spectrometer (GC-MS)-based metabolomics method was adopted to detect SCFA levels. The pathological morphology of jejunum was detected by hematoxylin-eosin (H&E) staining, and the expression of GPR43, GPR41, GLP-1, and GLP-1R was evaluated by qRT-PCR and ELISA, respectively. RESULTS We observed that GK rats treated with LWDH: (a) has altered the microbial structure and promoted the abundance of bacteria in Firmicutes, including Lactobacillus, Allobaculum, and Ruminococcus_2, (b) increased SCFAs levels involving acetic acid, propionic acid, and butyric acid and (c) alleviated T2DM and jejunum injuries potentially based on SCFAs-GPR43/41-GLP-1 pathway. CONCLUSION LWDH could improve T2DM by regulating gut microbiota and SCFAs, and the therapeutic mechanism might be related to the SCFAs-GPR43/41-GLP-1 pathway.
Collapse
Affiliation(s)
- Zi-Yang Yi
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410013, Hunan, People's Republic of China
| | - Lin Chen
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410013, Hunan, People's Republic of China
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Dan He
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410013, Hunan, People's Republic of China
| | - Di Zhao
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410013, Hunan, People's Republic of China
| | - Shui-Han Zhang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410013, Hunan, People's Republic of China
| | - Rong Yu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410013, Hunan, People's Republic of China.
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China.
| | - Jian-Hua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410013, Hunan, People's Republic of China.
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China.
| |
Collapse
|
26
|
Synbiotic Supplementation Modulates Gut Microbiota, Regulates β-Catenin Expression and Prevents Weight Gain in ob/ob Mice: Preliminary Findings. Int J Mol Sci 2022; 23:ijms231810483. [PMID: 36142396 PMCID: PMC9501016 DOI: 10.3390/ijms231810483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Obesity is one of the main health problems in the world today, and dysbiosis seems to be one of the factors involved. The aim of this study was to examine the impact of synbiotic supplementation on obesity and the microbiota in ob/ob mice. Twenty animals were divided into four groups: obese treated (OT), obese control (OC), lean treated (LT) and lean control (LC). All animals received a standard diet for 8 weeks. The treated groups received a synbiotic (Simbioflora-Invictus Farmanutrição Ltd., Sao Paulo, Brazil) in water, while the nontreated groups received only water. After 8 weeks, all animals were sacrificed, and gut tissue and stool samples were collected for mRNA isolation and microbiota analysis, respectively. β-Catenin, occludin, cadherin and zonulin in the gut tissue were analyzed via RT-qPCR. Microbiome DNA was extracted from stool samples and sequenced using an Ion PGM Torrent platform. Results: Synbiotic supplementation reduced body weight gain in the OT group compared with the OC group (p = 0.0398) and was associated with an increase in Enterobacteriaceae (p = 0.005) and a decrease in Cyanobacteria (p = 0.047), Clostridiaceae (p = 0.026), Turicibacterales (p = 0.005) and Coprococcus (p = 0.047). On the other hand, a significant reduction in Sutterella (p = 0.009) and Turicibacter (p = 0.005) bacteria was observed in the LT group compared to the LC group. Alpha and beta diversities were different among all treated groups. β-Catenin gene expression was significantly decreased in the gut tissue of the OT group (p ≤ 0.0001) compared to the other groups. No changes were observed in occludin, cadherin or zonulin gene expression in the gut tissue. Conclusions: Synbiotic supplementation prevents excessive weight gain, modulates the gut microbiota, and reduces β-catenin expression in ob/ob mice.
Collapse
|
27
|
Jiedu-Yizhi Formula Alleviates Neuroinflammation in AD Rats by Modulating the Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4023006. [PMID: 35958910 PMCID: PMC9357688 DOI: 10.1155/2022/4023006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023]
Abstract
Background The Jiedu-Yizhi formula (JDYZF) is a Chinese herbal prescription used to treat Alzheimer's disease (AD). It was previously confirmed that JDYZF can inhibit the expression of pyroptosis-related proteins in the hippocampus of AD rats and inhibit gut inflammation in AD rats. Therefore, it is hypothesized that JDYZF has a regulatory effect on the gut microbiota. Methods In this study, an AD rat model was prepared by bilateral hippocampal injection of Aβ25-35 and AD rats received high, medium, and low doses of JDYZF orally for 8 weeks. The body weights of the AD rats were observed to assess the effect of JDYZF. The 16S rRNA sequencing technique was used to study the regulation of the gut microbiota by JDYZF in AD rats. Immunohistochemical staining was used to observe the expression levels of Caspase-1 and Caspase-11 in the hippocampus. Results JDYZF reduced body weight in AD rats, and this effect may be related to JDYZF regulating body-weight-related gut microbes. The 16S rRNA analysis showed that JDYZF increased the diversity of the gut microbiota in AD rats. At the phylum level, JDYZF increased the abundances of Bacteroidota and Actinobacteriota and decreased the abundances of Firmicutes, Campilobacterota, and Desulfobacterota. At the genus level, the abundances of Lactobacillus, Prevotella, Bacteroides, Christensenellaceae_R-7_group, Rikenellaceae_RC9_gut_group, and Blautia were increased and the abundances of Lachnospiraceae-NK4A136-group, Anaerobiospirillum, Turicibacter, Oscillibacter, Desulfovibrio, Helicobacter, and Intestinimonas were decreased. At the species level, the abundances of Lactobacillus johnsonii, Lactobacillus reuteri, and Lactobacillus faecis were increased and the abundances of Helicobacter rodentium and Ruminococcus_sp_N15.MGS-57 were decreased. Immunohistochemistry showed that JDYZF reduced the levels of Caspase-1- and Caspase-11-positive staining. Conclusion JDYZF has a regulatory effect on the gut microbiota of AD rats, which may represent the basis for the anti-inflammatory effect of JDYZF.
Collapse
|
28
|
Luo L, Luo J, Cai Y, Fu M, Li W, Shi L, Liu J, Dong R, Xu X, Tu L, Yang Y. Inulin-type fructans change the gut microbiota and prevent the development of diabetic nephropathy. Pharmacol Res 2022; 183:106367. [PMID: 35882293 DOI: 10.1016/j.phrs.2022.106367] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease, and few treatment options that prevent the progressive loss of renal function are available. Studies have shown that dietary fiber intake improves kidney diseases and metabolism-related diseases, most likely through short-chain fatty acids (SCFAs). The present study aimed to examine the protective effects of inulin-type fructans (ITFs) on DN through 16 S rRNA gene sequencing, gas chromatographymass spectrometry (GCMS) analysis and fecal microbiota transplantation (FMT). The results showed that ITFs supplementation protected against kidney damage in db/db mice and regulated the composition of the gut microbiota. Antibiotic treatment and FMT experiments further demonstrated a key role of the gut microbiota in mediating the beneficial effects of ITFs. The ITFs treatment-induced changes in the gut microbiota led to an enrichment of SCFA-producing bacteria, especially the genera Akkermansia and Candidatus Saccharimonas, which increased the fecal and serum acetate concentrations. Subsequently, acetate supplementation improved glomerular damage and renal fibrosis by attenuating mitochondrial dysfunction and reducing toxic glucose metabolite levels. In conclusion, ITFs play a renoprotective role by modulating the gut microbiota and increasing acetate production. Furthermore, acetate mediates renal protection by regulating glucose metabolism, decreasing glycotoxic product levels and improving mitochondrial function.
Collapse
Affiliation(s)
- Liman Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Division of Endocrinology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yueting Cai
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Menglu Fu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenhua Li
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lili Shi
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingrui Liu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ruolan Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xizhen Xu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Ling Tu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Yan Yang
- Division of Endocrinology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
29
|
Wen Y, Wu Q, Zhang L, He J, Chen Y, Yang X, Zhang K, Niu X, Li S. Association of Intrauterine Microbes with Endometrial Factors in Intrauterine Adhesion Formation and after Medicine Treatment. Pathogens 2022; 11:pathogens11070784. [PMID: 35890029 PMCID: PMC9322781 DOI: 10.3390/pathogens11070784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Intrauterine adhesions (IUAs) have caused serious harm to women’s reproductive health. Although emerging evidence has linked intrauterine microbiome to gynecological diseases, the association of intrauterine microbiome with IUA, remains unknown. We performed metagenome-wide association, metabolomics, and transcriptomics studies on IUA and non-IUA uteri of adult rats to identify IUA-associated microbial species, which affected uterine metabolites and endometrial transcriptions. A rat model was used with one side of the duplex uterus undergoing IUA and the other remaining as a non-IUA control. Both 16S rRNA sequencing and metagenome-wide association analysis revealed that instead of Mycoplasmopsis specie in genital tract, murine lung pathogen Mycoplasmopsispulmonis markedly increased in IUA samples and displayed a distinct positive interaction with the host immune system. Moreover, most of the IUA-enriched 58 metabolites positively correlate with M.pulmonis, which inversely correlates with a mitotic progression inhibitor named 3-hydroxycapric acid. A comparison of metabolic profiles of intrauterine flushing fluids from human patients with IUA, endometritis, and fallopian tube obstruction suggested that rat IUA shared much similarity to human IUA. The endometrial gene Tenascin-N, which is responsible for extracellular matrix of wounds, was highly up-regulated, while the key genes encoding parvalbumin, trophectoderm Dkkl1 and telomerase involved in leydig cells, trophectoderm cells, activated T cells and monocytes were dramatically down-regulated in rat IUA endometria. Treatment for rat IUA with estrogen (E2), oxytetracycline (OTC), and a traditional Chinese patent medicine GongXueNing (GXN) did not reduce the incidence of IUA, though inflammatory factor IL-6 was dramatically down-regulated (96–86%) with all three. Instead, in both the E2 and OTC treated groups, IUA became worse with a highly up-regulated B cell receptor signaling pathway, which may be associated with the significantly increased proportions of Ulvibacter or Staphylococcus. Our results suggest an association between intrauterine microbiota alterations, certain uterine metabolites, characteristic changes in endometrial transcription, and IUA and the possibility to intervene in IUA formation by targeting the causal factors, microbial infection, and Tenascin-like proteins.
Collapse
Affiliation(s)
- Ya Wen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming 650091, China
| | - Qunfu Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
| | - Longlong Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
| | - Jiangbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
- Kunming Key Laboratory of Respiratory Disease, Kunming University, Kunming 650214, China
| | - Yonghong Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
| | - Xiaoyu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
- Regenerative Medicine Research Center, The First People’s Hospital of Yunnan Province, Kunming 650034, China
| | - Keqin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
| | - Xuemei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
- Correspondence: (X.N.); (S.L.)
| | - Shenghong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (X.N.); (S.L.)
| |
Collapse
|
30
|
He L, Yang FQ, Tang P, Gao TH, Yang CX, Tan L, Yue P, Hua YN, Liu SJ, Guo JL. Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus. Biomed Pharmacother 2022; 151:113091. [PMID: 35576662 DOI: 10.1016/j.biopha.2022.113091] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022] Open
Abstract
Diabetes mellitus comprises a group of heterogeneous disorders, which are usually subdivided into type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Both genetic and environmental factors have been implicated in the onset of diabetes. Type 1 diabetes primarily involves autoimmune insulin deficiency. In comparison, type 2 diabetes is contributed by the pathological state of insulin deficiency and insulin resistance. In recent years, significant differences were found in the abundance of microflora, intestinal barrier, and intestinal metabolites in diabetic subjects when compared to normal subjects. To further understand the relationship between diabetes mellitus and intestinal flora, this paper summarizes the interaction mechanism between diabetes mellitus and intestinal flora. Furthermore, the natural compounds found to treat diabetes through intestinal flora were classified and summarized. This review is expected to provide a valuable resource for the development of new diabetic drugs and the applications of natural compounds.
Collapse
Affiliation(s)
- Liying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fang-Qing Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Pan Tang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ting-Hui Gao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cai-Xia Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Tan
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Pan Yue
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ya-Nan Hua
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Si-Jing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
31
|
Zhang J, Cao W, Zhao H, Guo S, Wang Q, Cheng N, Bai N. Protective Mechanism of Fagopyrum esculentum Moench. Bee Pollen EtOH Extract Against Type II Diabetes in a High-Fat Diet/Streptozocin-Induced C57BL/6J Mice. Front Nutr 2022; 9:925351. [PMID: 35845783 PMCID: PMC9280863 DOI: 10.3389/fnut.2022.925351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/10/2022] [Indexed: 12/25/2022] Open
Abstract
Bee pollen is known as a natural nutrient storehouse and plays a key role in many biological processes. Based on the preliminary separation, identification, and characterization of the main active components of Fagopyrum esculentum Moench. bee pollen (FBP), the protective effects of F. esculentum bee pollen extract (FBPE) on high-fat-diet (HFD) and streptozocin (STZ) induced type II diabetes mellitus (T2DM) was evaluated in this study. The results revealed that FBPE contains 10 active compounds mainly including luteolin (9.46 g/kg), resveratrol (5.25 g/kg), kaemferol (3.67 g/kg), etc. The animal experiment results showed that FBPE could improve HFD-STZ induced T2DM mice. Moreover, the underlying mechanism of the above results could be: (i) FBPE could reduce the inflammation related to phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway, and (ii) the gut microbiota remodeling. The results of correlation analysis showed Candidatus Arthromitus and SMB53 indicated positive correlations to tumor necrosis factor-α (TNF-α); Coprococcus, Ruminocossus, and Odoribacteraceae reported negative correlations to transforming growth factor-β (TGF-β). That FBPE has an outstanding ability to improve T2DM and could be used as a kind of potential functional food for the prevention of T2DM.
Collapse
Affiliation(s)
- Jinjin Zhang
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi'an, China
- Bee Product Research Center of Shaanxi, Xi'an, China
- *Correspondence: Wei Cao
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Sen Guo
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Qian Wang
- Shaanxi Institute for Food and Drug Control, Xi'an, China
| | - Ni Cheng
- College of Food Science and Technology, Northwest University, Xi'an, China
- Bee Product Research Center of Shaanxi, Xi'an, China
| | - Naisheng Bai
- College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
32
|
Bifidobacterium adolescentis Is Effective in Relieving Type 2 Diabetes and May Be Related to Its Dominant Core Genome and Gut Microbiota Modulation Capacity. Nutrients 2022; 14:nu14122479. [PMID: 35745208 PMCID: PMC9227778 DOI: 10.3390/nu14122479] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/30/2023] Open
Abstract
The prevalence of diabetes mellitus is increasing globally. Probiotics have been shown to be an effective intervention for diabetes. This study focused on the relieving effects and possible mechanisms of 16 strains of two dominant Bifidobacterium species (B. bifidum and B. adolescentis, which exist in the human gut at different life stages) on type 2 diabetes (T2D). The results indicated that more B. adolescentis strains appeared to be superior in alleviating T2D symptoms than B. bifidum strains. This effect was closely related to the ability of B. adolescentis to restore the homeostasis of the gut microbiota, increase the abundance of short-chain fatty acid-producing flora, and alleviate inflammation in mice with T2D. In addition, compared with B. bifidum, B. adolescentis had a higher number of core genes, and these genes were more evolutionarily stable, including unique environmental tolerance, carbon and nitrogen utilization genes, and a blood sugar regulation gene, glgP. This may be one of the reasons why B. adolescentis is more likely to colonize in the adult gut and show a superior ability to relieve T2D. This study provides insights into future studies aimed at investigating probiotics for the treatment of metabolic diseases.
Collapse
|
33
|
Wang Y, Deng Y, Liu N, Chen Y, Jiang Y, Teng Z, Ma Z, Chang Y, Xiang Y. Alterations in the Gut Microbiome of Individuals With Tuberculosis of Different Disease States. Front Cell Infect Microbiol 2022; 12:836987. [PMID: 35425720 PMCID: PMC9001989 DOI: 10.3389/fcimb.2022.836987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThere is evidence that the gut microbiota play a regulatory role in the occurrence and progression of tuberculosis. The purpose of the current study was to explore the alterations in gut microbiome under different tuberculosis disease stages in the Uyghur population, clarify the composition of microbial taxonomy, search for microbial biomarkers and provide innovative ideas for individual immune prevention and for control strategies.DesignA case–control study of Uyghur individuals was performed using 56 cases of pulmonary tuberculosis (PTB), 36 cases of latent tuberculosis infection (LTBI) and 50 healthy controls (HC), from which stool samples were collected for 16S rRNA gene sequencing.ResultsThe results showed that the alpha diversity indexes of the PTB group were lower than those of the other two groups (P <0.001), while only observed species were different between LTBI and HC (P <0.05). Beta diversity showed differences among the three groups (P = 0.001). At the genus level, the relative abundance of Bifidobacterium and Bacteroides increased, while Roseburia and Faecalibacterium decreased in the PTB group, when compared with the other two groups, but the changes between the LTBI and HC groups were not significant. The classifier in the test set showed that the ability of the combined genus to distinguish between each two groups was 81.73, 87.26, and 86.88%, respectively, and the validation efficiency was higher than that of a single screened genus.ConclusionThe gut microbiota of PTB patients was significantly disordered compared with LTBI and HC, while the changes of LTBI and HC were not significant. In the future, gut microbiota could be used as a non-invasive biomarker to assess disease activity.
Collapse
Affiliation(s)
- Yue Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Xinjiang Medical University, Urumqi, China
- Department of Women and Children and Community Health, Xinjiang Production and Construction Corps Center for Disease Control and Prevention, Urumqi, China
| | - Yali Deng
- Department of Disease Control and Prevention, Xinjiang Production and Construction Corps Center for Disease Control and Prevention, Urumqi, China
| | - Nianqiang Liu
- Centre for Tuberculosis and Leprosy Control and Prevention, Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, China
| | - Yanggui Chen
- Department of Tuberculosis Control and Prevention, Wulumuqi Center for Disease Control and Prevention, Urumqi, China
| | - Yuandong Jiang
- Department of Epidemiology and Biostatistics, College of Public Health, Xinjiang Medical University, Urumqi, China
| | - Zihao Teng
- Department of Epidemiology and Biostatistics, College of Public Health, Xinjiang Medical University, Urumqi, China
| | - Zhi Ma
- Department of Epidemiology and Biostatistics, College of Public Health, Xinjiang Medical University, Urumqi, China
| | - Yuxue Chang
- Department of Epidemiology and Biostatistics, College of Public Health, Xinjiang Medical University, Urumqi, China
| | - Yang Xiang
- Department of Epidemiology and Biostatistics, College of Public Health, Xinjiang Medical University, Urumqi, China
- *Correspondence: Yang Xiang,
| |
Collapse
|
34
|
The next generation beneficial actions of novel probiotics as potential therapeutic targets and prediction tool for metabolic diseases. J Food Drug Anal 2022; 30:1-10. [PMID: 35647717 PMCID: PMC9931004 DOI: 10.38212/2224-6614.3396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
The prevalence of metabolic disease has rising and affected over 1,000 million populations globally. Since the metabolic disease and its related complication are board, it has become the major health hazard of modern world. However, Long term medication of metabolic disease may cause serious side effects and risk for adverse health problems. Recently, emerging studies focus on exploring the mechanistic details of metabolic state in disease development and progression. Gut bacteria ecosystem was considered to play a pivotal role in regulating energy homeostasis and great associated with the development of metabolic disease. Accumulated evidences indicated that Akkermansia muciniphila, Faecalibacterium prausnitzii, and Roseburia hominis improve the balance of the microecology in the intestine of the host and have positive effects on enhancing nutrients absorption. Hence, the novel probiotics as therapeutic target to modify gut microbiota generally focus on improving microbiota dysbiosis, and offers new prospects for treating metabolic disease. In the present review, we discuss the significant roles and regulatory properties of specific bacterium in the context of intestinal microbial balance, explores the kinds of harmful/beneficial bacteria that were likely to act as indicator for metabolic disease. Further proposed a stepwise procedure in the basis of sequencing technology with that of innovative option to reestablish the microbial equilibrium and prevent metabolic disease.
Collapse
|
35
|
Wang X, Ye P, Fang L, Ge S, Huang F, Polverini PJ, Heng W, Zheng L, Hu Q, Yan F, Wang W. Active Smoking Induces Aberrations in Digestive Tract Microbiota of Rats. Front Cell Infect Microbiol 2021; 11:737204. [PMID: 34917518 PMCID: PMC8668415 DOI: 10.3389/fcimb.2021.737204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoking could have certain effects on gut microbiota. Some pioneering studies have investigated effects of active smoking on the microbiome in local segments of the digestive tract, while active smoking-induced microbiome alterations in the whole digestive tract have not been fully investigated. Here, we developed a rat model of active smoking and characterized the effects of active smoking on the microbiota within multiple regions along the digestive tract. Blood glucose and some metabolic factors levels, the microbial diversity and composition, relative abundances of taxa, bacterial network correlations and predictive functional profiles were compared between the control group and active smoking group. We found that active smoking induced hyperglycemia and significant reductions in serum insulin and leptin levels. Active smoking induced region-specific shifts in microbiota structure, composition, network correlation and metabolism function along the digestive tract. Our results demonstrated that active smoking resulted in a reduced abundance of some potentially beneficial genera (i.e. Clostridium, Turicibacter) and increased abundance of potentially harmful genera (i.e. Desulfovibrio, Bilophila). Functional prediction suggested that amino acid, lipid, propanoate metabolism function could be impaired and antioxidant activity may be triggered. Active smoking may be an overlooked risk to health through its potential effects on the digestive tract microbiota, which is involved in the cause and severity of an array of chronic diseases.
Collapse
Affiliation(s)
- Xiang Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Pei Ye
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li Fang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Sheng Ge
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fan Huang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Peter J Polverini
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Weiwei Heng
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lichun Zheng
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qingang Hu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
36
|
Del Chierico F, Trapani V, Petito V, Reddel S, Pietropaolo G, Graziani C, Masi L, Gasbarrini A, Putignani L, Scaldaferri F, Wolf FI. Dietary Magnesium Alleviates Experimental Murine Colitis through Modulation of Gut Microbiota. Nutrients 2021; 13:nu13124188. [PMID: 34959740 PMCID: PMC8707433 DOI: 10.3390/nu13124188] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Nutritional deficiencies are common in inflammatory bowel diseases (IBD). In patients, magnesium (Mg) deficiency is associated with disease severity, while in murine models, dietary Mg supplementation contributes to restoring mucosal function. Since Mg availability modulates key bacterial functions, including growth and virulence, we investigated whether the beneficial effects of Mg supplementation during colitis might be mediated by gut microbiota. The effects of dietary Mg modulation were assessed in a murine model of dextran sodium sulfate (DSS)-induced colitis by monitoring magnesemia, weight, and fecal consistency. Gut microbiota were analyzed by 16S-rRNA based profiling on fecal samples. Mg supplementation improved microbiota richness in colitic mice, increased abundance of Bifidobacterium and reduced Enterobacteriaceae. KEEG pathway analysis predicted an increase in biosynthetic metabolism, DNA repair and translation pathways during Mg supplementation and in the presence of colitis, while low Mg conditions favored catabolic processes. Thus, dietary Mg supplementation increases bacteria involved in intestinal health and metabolic homeostasis, and reduces bacteria involved in inflammation and associated with human diseases, such as IBD. These findings suggest that Mg supplementation may be a safe and cost-effective strategy to ameliorate disease symptoms and restore a beneficial intestinal flora in IBD patients.
Collapse
Affiliation(s)
- Federica Del Chierico
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00147 Rome, Italy; (F.D.C.); (S.R.)
| | - Valentina Trapani
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.T.); (V.P.); (G.P.); (C.G.); (L.M.); (A.G.)
| | - Valentina Petito
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.T.); (V.P.); (G.P.); (C.G.); (L.M.); (A.G.)
| | - Sofia Reddel
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00147 Rome, Italy; (F.D.C.); (S.R.)
| | - Giuseppe Pietropaolo
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.T.); (V.P.); (G.P.); (C.G.); (L.M.); (A.G.)
| | - Cristina Graziani
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.T.); (V.P.); (G.P.); (C.G.); (L.M.); (A.G.)
| | - Letizia Masi
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.T.); (V.P.); (G.P.); (C.G.); (L.M.); (A.G.)
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.T.); (V.P.); (G.P.); (C.G.); (L.M.); (A.G.)
- CEMAD—IBD UNIT—Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Franco Scaldaferri
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.T.); (V.P.); (G.P.); (C.G.); (L.M.); (A.G.)
- CEMAD—IBD UNIT—Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
- Correspondence: (F.S.); (F.I.W.)
| | - Federica I. Wolf
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.T.); (V.P.); (G.P.); (C.G.); (L.M.); (A.G.)
- Saint Camillus International University of Health Sciences-UniCamillus, 00131 Rome, Italy
- Correspondence: (F.S.); (F.I.W.)
| |
Collapse
|
37
|
Tamura M, Watanabe J, Hori S, Inose A, Kubo Y, Noguchi T, Nishikawa T, Ikezawa M, Araki R, Kobori M. Effects of a high-γ-polyglutamic acid-containing natto diet on liver lipids and cecal microbiota of adult female mice. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2021; 40:176-185. [PMID: 34631329 PMCID: PMC8484009 DOI: 10.12938/bmfh.2020-061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/19/2021] [Indexed: 11/05/2022]
Abstract
Natto is a traditional Japanese fermented soy product high in γ-polyglutamic acid (γ-PGA), whose beneficial effects have been reported. We prepared high-γ-PGA natto and compared the dietary influence on liver lipids and cecal microbiota in mice fed a diet containing it or a standard diet. The mice were served a 30% high-γ-PGA natto diet (PGA group) or standard diet (Con group) for 28 days. Liver lipids, fecal lipids, and fecal bile acids were quantified. Cecal microbiota were analyzed by PCR amplification of the V3 and V4 regions of 16S rRNA genes and sequenced using a MiSeq System. Additionally, the cecal short-chain fatty acid profile was assessed. The results revealed that the liver lipid and triglyceride contents were significantly lower (p<0.01) and amounts of bile acids and lipids in the feces were significantly higher in the PGA group than in the Con group. The cecal butyric acid concentration was observed to be significantly higher in the PGA group than in the Con group. Principal component analysis of the cecal microbiota revealed that the PGA and Con groups were distinct. The ratio of Firmicutes/Bacteroidetes was found to be significantly low in the PGA mice. The results revealed a significantly higher relative abundance of Lachnospiraceae (p<0.05) and significantly lower relative abundance of Coriobacteriaceae (p<0.01) in the PGA group. Analysis of the correlation between bacterial abundance and liver lipids, cecal short-chain fatty acids, fecal lipids, and fecal bile acids suggested that intestinal microbiota can be categorized into different types based on lipid metabolism. Hepatic lipid accumulation typically facilitates the onset of nonalcoholic fatty liver disease (NAFLD). Our findings suggest that high-γ-PGA natto is a beneficial dietary component for the prevention of NAFLD.
Collapse
Affiliation(s)
- Motoi Tamura
- Food Research Institute of the National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Jun Watanabe
- Food Research Institute of the National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.,Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Sachiko Hori
- Food Research Institute of the National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Atsuko Inose
- Food Research Institute of the National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Yuji Kubo
- Industrial Technology Innovation Center of Ibaraki Prefecture, 3781-1 Nagaoka, Ibaraki-machi, Higashi-ibaraki-gun, Ibaraki 311-3116, Japan
| | - Tomotsugu Noguchi
- Industrial Technology Innovation Center of Ibaraki Prefecture, 3781-1 Nagaoka, Ibaraki-machi, Higashi-ibaraki-gun, Ibaraki 311-3116, Japan
| | | | - Masaya Ikezawa
- Takanofoods Co., Ltd., 1542 Noda, Omitama, Ibaraki 311-3411, Japan
| | - Risa Araki
- Department of Clinical and Translational Research Methodology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Masuko Kobori
- Food Research Institute of the National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| |
Collapse
|
38
|
Effect of Continuous Feeding of Ayu-Narezushi on Lipid Metabolism in a Mouse Model of Metabolic Syndrome. ScientificWorldJournal 2021; 2021:1583154. [PMID: 34531707 PMCID: PMC8440109 DOI: 10.1155/2021/1583154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/18/2022] Open
Abstract
Ayu-narezushi, a traditional Japanese fermented food, comprises abundant levels of lactic acid bacteria (LAB) and free amino acids. This study aimed to examine the potential beneficial effects of ayu-narezushi and investigated whether ayu-narezushi led to improvements in the Tsumura Suzuki obese diabetes (TSOD) mice model of spontaneous metabolic syndrome because useful LAB are known as probiotics that regulate intestinal function. In the present study, the increased body weight of the TSOD mice was attenuated in those fed the ayu-narezushi-comprised chow (ayu-narezushi group) compared with those fed the normal rodent chow (control group). Serum triglyceride and cholesterol levels were significantly lower in the Ayu-narezushi group than in the control group at 24 weeks of age. Furthermore, hepatic mRNA levels of carnitine-palmitoyl transferase 1 and acyl-CoA oxidase, which related to fatty acid oxidation, were significantly increased in the ayu-narezushi group than in the control group at 24 weeks of age. In conclusion, these results suggested that continuous feeding with ayu-narezushi improved obesity and dyslipidemia in the TSOD mice and that the activation of fatty acid oxidation in the liver might contribute to these improvements.
Collapse
|
39
|
Wang K, Xu X, Maimaiti A, Hao M, Sang X, Shan Q, Wu X, Cao G. Gut microbiota disorder caused by diterpenoids extracted from Euphorbia pekinensis aggravates intestinal mucosal damage. Pharmacol Res Perspect 2021; 9:e00765. [PMID: 34523246 PMCID: PMC8440943 DOI: 10.1002/prp2.765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota disorder will lead to intestinal damage. This study evaluated the influence of total diterpenoids extracted from Euphorbia pekinensis (TDEP) on gut microbiota and intestinal mucosal barrier after long‐term administration, and the correlations between gut microbiota and intestinal mucosal barrier were analysed by Spearman correlation analysis. Mice were randomly divided to control group, TDEP groups (4, 8, 16 mg/kg), TDEP (16 mg/kg) + antibiotic group. Two weeks after intragastric administration, inflammatory factors (TNF‐α, IL‐6, IL‐1β) and LPS in serum, short chain fatty acids (SCFAs) in feces were tested by Enzyme‐linked immunosorbent assay (ELISA) and high‐performance liquid chromatography (HPLC), respectively. The expression of tight junction (TJ) protein in colon was measured by western blotting. Furthermore, the effects of TDEP on gut microbiota community in mice have been investigated by 16SrDNA high‐throughput sequencing. The results showed TDEP significantly increased the levels of inflammatory factors in dose‐dependent manners, and decreased the expression of TJ protein and SCFAs, and the composition of gut microbiota of mice in TDEP group was significantly different from that of control group. When antibiotics were added, the diversity of gut microbiota was significantly reduced, and the colon injury was more serious. Finally, through correlation analysis, we have found nine key bacteria (Barnesiella, Muribaculaceae_unclassified, Alloprevotella, Candidatus_Arthromitus, Enterorhabdus, Alistipes, Bilophila, Mucispirillum, Ruminiclostridium) that may be related to colon injury caused by TDEP. Taken together, the disturbance of gut microbiota caused by TDEP may aggravate the colon injury, and its possible mechanism may be related to the decrease of SCFAs in feces, disrupted the expression of TJ protein in colon and increasing the contents of inflammatory factors.
Collapse
Affiliation(s)
- Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofen Xu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aikebaier Maimaiti
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
40
|
Gao J, Zhou N, Wu Y, Lu M, Wang Q, Xia C, Zhou M, Xu Y. Urinary metabolomic changes and microbiotic alterations in presenilin1/2 conditional double knockout mice. J Transl Med 2021; 19:351. [PMID: 34399766 PMCID: PMC8365912 DOI: 10.1186/s12967-021-03032-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Background Given the clinical low efficient treatment based on mono-brain-target design in Alzheimer’s disease (AD) and an increasing emphasis on microbiome-gut-brain axis which was considered as a crucial pathway to affect the progress of AD along with metabolic changes, integrative metabolomic signatures and microbiotic community profilings were applied on the early age (2-month) and mature age (6-month) of presenilin1/2 conditional double knockout (PS cDKO) mice which exhibit a series of AD-like phenotypes, comparing with gender and age-matched C57BL/6 wild-type (WT) mice to clarify the relationship between microbiota and metabolomic changes during the disease progression of AD. Materials and methods Urinary and fecal samples from PS cDKO mice and gender-matched C57BL/6 wild-type (WT) mice both at age of 2 and 6 months were collected. Urinary metabolomic signatures were measured by the gas chromatography-time-of-flight mass spectrometer, as well as 16S rRNA sequence analysis was performed to analyse the microbiota composition at both ages. Furthermore, combining microbiotic functional prediction and Spearman’s correlation coefficient analysis to explore the relationship between differential urinary metabolites and gut microbiota. Results In addition to memory impairment, PS cDKO mice displayed metabolic and microbiotic changes at both of early and mature ages. By longitudinal study, xylitol and glycine were reduced at both ages. The disturbed metabolic pathways were involved in glycine, serine and threonine metabolism, glyoxylate and dicarboxylate metabolism, pentose and glucuronate interconversions, starch and sucrose metabolism, and citrate cycle, which were consistent with functional metabolic pathway predicted by the gut microbiome, including energy metabolism, lipid metabolism, glycan biosynthesis and metabolism. Besides reduced richness and evenness in gut microbiome, PS cDKO mice displayed increases in Lactobacillus, while decreases in norank_f_Muribaculaceae, Lachnospiraceae_NK4A136_group, Mucispirillum, and Odoribacter. Those altered microbiota were exceedingly associated with the levels of differential metabolites. Conclusions The urinary metabolomics of AD may be partially mediated by the gut microbiota. The integrated analysis between gut microbes and host metabolism may provide a reference for the pathogenesis of AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03032-9.
Collapse
Affiliation(s)
- Jie Gao
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.,Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Nian Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China
| | - Yongkang Wu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Mengna Lu
- Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qixue Wang
- Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Mingmei Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China.
| | - Ying Xu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
41
|
Beneficial effects of a combination of Clostridium cochlearium and Lactobacillus acidophilus on body weight gain, insulin sensitivity, and gut microbiota in high-fat diet-induced obese mice. Nutrition 2021; 93:111439. [PMID: 34507264 DOI: 10.1016/j.nut.2021.111439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Species Lactobacillus acidophilus and butyrate producer Clostridium cochlearium have been shown to have potential antiobesity effects. The aim of this study was to show that the combination of C. cochlearium and L. acidophilus (CC-LA) has beneficial effects on body weight control and glucose homeostasis in high-fat diet-induced obese (DIO) mice. METHODS In this study, thirty-six 6-wk-old male C57BL/6 mice were randomly assigned to three groups of 12 mice each. The experimental group (CC-LA) was administered with CC-LA mixture and fed ad libitum with a high-fat diet. High-fat diet (HF) control and low-fat diet (LF) control groups were treated with the same dose of sterile water as the CC-LA group. RESULTS After 17 wk of dietary intervention, the CC-LA group showed 17% less body weight gain than the HF group did (P < 0.01). The CC-LA group also showed significantly reduced incremental area under the curve of oral glucose tolerance test and homeostatic model assessment for insulin resistance compared with the HF group. The results from 16S rRNA sequencing analysis of gut microbiota showed that the CC-LA administration led to overall increased α-diversity indices, and a significant microbial separation from the HF group. The ratio of Firmicutes to Bacteroidetes (F/B) was reduced from 3.30 in the HF group to 1.94 in the CC-LA group. The relative abundances of certain obesity-related taxa were also decreased by CC-LA administration. CONCLUSION The present study provided evidence that the CC-LA combination reduced obesity and improved glucose metabolism in high-fat diet-treated DIO mice, potentially mediated by the modulation of gut microbiota.
Collapse
|
42
|
Lv H, Huang Y, Wang T, Zhai S, Hou Z, Chen S. Microbial Composition in the Duodenum and Ileum of Yellow Broilers With High and Low Feed Efficiency. Front Microbiol 2021; 12:689653. [PMID: 34385985 PMCID: PMC8353196 DOI: 10.3389/fmicb.2021.689653] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022] Open
Abstract
The composition of the gut microbiome plays important roles in digestion, nutrient absorption, and health. Here, we analyzed the microbial composition in the duodenum and ileum of yellow broilers. Chickens were grouped based on feed efficiency (high feed efficiency [HFE] and low feed efficiency [LFE] groups; n = 22 each). Microbial samples from the duodenum and ileum were collected, and 16S rRNA sequencing of the V3–V4 region was performed. The dominant bacteria in the duodenum were from the phyla Firmicutes and Cyanobacteria and the genera Lactobacillus, Faecalibacterium, and Ruminococcus. In the ileum, the phyla Firmicutes and Proteobacteria and the genera Lactobacillus, SMB53 and Enterococcus were predominant. Alpha diversity analysis showed that the microbiota diversity was significantly higher in the duodenum than in the ileum. The structure of the ileal microbiota was similar between groups, and the species richness of the microbiota in the HFE group was significantly higher than that in the LFE group. In the HFE and LFE groups, Firmicutes and Cyanobacteria were negatively correlated, and Lactobacillus had medium to high negative correlations with most other genera. Functional prediction analysis showed that the gluconeogenesis I pathway was the most abundant differential metabolic pathway and was significantly altered in the LFE group. Moreover, although the microbial community structures were similar in the duodenum and ileum, the diversity of the microbial community was significantly higher in the duodenum than in the ileum. Pearson correlation analysis revealed that the phylum Chloroflexi and genera Acinetobacter, Pseudomonas, Bacillus and Neisseria were with coefficients <−0.3 or >0.3. In the ileum, Ruminococcus may be associated with HFE whereas Faecalibacterium may be associated with LFE. These findings may provide valuable foundations for future research on composition and diversity of intestinal microbes and provide insights into the roles of intestinal microbes in improving feed efficiency and the industrial economic benefits of yellow broilers.
Collapse
Affiliation(s)
- Huijiao Lv
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yun Huang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tao Wang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shangkun Zhai
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sirui Chen
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Zhao R, Huang F, Shen GX. Dose-Responses Relationship in Glucose Lowering and Gut Dysbiosis to Saskatoon Berry Powder Supplementation in High Fat-High Sucrose Diet-Induced Insulin Resistant Mice. Microorganisms 2021; 9:microorganisms9081553. [PMID: 34442633 PMCID: PMC8399366 DOI: 10.3390/microorganisms9081553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/21/2022] Open
Abstract
Administration of freeze-dried powder of Saskatoon berry (SB), a popular fruit enriched with antioxidants, reduced glucose level, inflammatory markers and gut microbiota disorder in high fat-high sucrose (HFHS) diet-induced insulin resistant mice. The present study examined the dose-response relationship in metabolic, inflammatory and gut microbiotic variables to SB power (SBp) supplementation in HFHS diet-fed mice. Male C57 BL/6J mice were fed with HFHS diet supplemented with 0, 1%, 2.5% or 5% SBp for 11 weeks. HFHS diet significantly increased the levels of fast plasma glucose (FPG), cholesterol, triglycerides, insulin, homeostatic model assessment of insulin resistance (HOMA-IR), tumor necrosis factor-α, monocyte chemotactic protein-1 and plasminogen activator inhibitor-1, but decreased fecal Bacteroidetes phylum bacteria and Muribaculaceae family bacteria compared to low fat diet. SBp dose-dependently reduced metabolic and inflammatory variables and gut dysbiosis in mice compared with mice receiving HFHS diet alone. Significant attenuation of HFHS diet-induced biochemical disorders were detected in mice receiving ≥1% SBp. The abundances of Muribaculaceae family bacteria negatively correlated with body weights, FPG, lipids, insulin, HOMA-IR and inflammatory markers in the mice. The results suggest that SBp supplementation dose-dependently attenuated HFHS diet-induced metabolic and inflammatory disorders, which was associated with the amelioration of gut dysbiosis in the mice.
Collapse
Affiliation(s)
- Ruozhi Zhao
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada; (R.Z.); (F.H.)
| | - Fei Huang
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada; (R.Z.); (F.H.)
| | - Garry X. Shen
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada; (R.Z.); (F.H.)
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Correspondence: ; Tel.: +1-204-789-3816; Fax: +1-204-789-3987
| |
Collapse
|
44
|
Chai M, Wang L, Li X, Zhao J, Zhang H, Wang G, Chen W. Different Bifidobacterium bifidum strains change the intestinal flora composition of mice via different mechanisms to alleviate loperamide-induced constipation. Food Funct 2021; 12:6058-6069. [PMID: 34038494 DOI: 10.1039/d1fo00559f] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Constipation is a condition with a high prevalence rate worldwide and may occur in men and women of any age. Bifidobacterium bifidum has been shown to have a relieving effect on constipation, but the underlying mechanism is still unknown. This study explored the effects of gavage of three strains of B. bifidum (CCFM668, FHNFQ25M12 and FXJCJ32M2) from different sources in mice with loperamide-induced constipation. After 38 days of intervention, B. bifidum CCFM668, FHNFQ25M12 and FXJCJ32M2 showed the ability to modify the levels of gastrointestinal active peptides and promote the expression of 5-hydroxytryptamine (5-HT or serotonin) receptor 4 (5-HT4R), thereby promoting small intestinal peristalsis. The strains could also effectively increase the thickness of the colonic mucosa. However, what was different from previous studies was that these results were independent of the levels of short-chain fatty acids (SCFAs) and 5-HT. Further analysis of the intestinal flora revealed that the relative abundances of the genera Faecalibaculum and Ruminococcaceae_UCG_014 in the constipated mice increased significantly, whereas that of Erysipelatoclostridium decreased. A correlation analysis between the intestinal flora and evaluated gastrointestinal indicators demonstrated that the relative abundances of the genera Anaerotruncus, Angelakisella, Erysipelatoclostridium and Ruminococcaceae_UCG_014 were negatively correlated with the levels of gastrointestinal active peptides. B. bifidum FXJCJ32M2 can increase the relative abundances of Turicibacter and Dubosiella, and this was positively correlated with the expression of aquaporin 8 and vasoactive intestinal peptide receptor 1 but could not effectively alleviate faecal dryness or promote colonic motility. These findings suggest that B. bifidum shows significant intraspecific differences in the remission mechanism and provides a theoretical basis for subsequent population experiments and personalised treatment for constipation.
Collapse
Affiliation(s)
- Mao Chai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xinping Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China and Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
45
|
Jiang R, Li WV, Li JJ. mbImpute: an accurate and robust imputation method for microbiome data. Genome Biol 2021; 22:192. [PMID: 34183041 PMCID: PMC8240317 DOI: 10.1186/s13059-021-02400-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022] Open
Abstract
A critical challenge in microbiome data analysis is the existence of many non-biological zeros, which distort taxon abundance distributions, complicate data analysis, and jeopardize the reliability of scientific discoveries. To address this issue, we propose the first imputation method for microbiome data-mbImpute-to identify and recover likely non-biological zeros by borrowing information jointly from similar samples, similar taxa, and optional metadata including sample covariates and taxon phylogeny. We demonstrate that mbImpute improves the power of identifying disease-related taxa from microbiome data of type 2 diabetes and colorectal cancer, and mbImpute preserves non-zero distributions of taxa abundances.
Collapse
Affiliation(s)
- Ruochen Jiang
- Department of Statistics, University of California, Los Angeles, 90095-1554, CA, USA
| | - Wei Vivian Li
- Department of Statistics, University of California, Los Angeles, 90095-1554, CA, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, 08854, NJ, USA
| | - Jingyi Jessica Li
- Department of Statistics, University of California, Los Angeles, 90095-1554, CA, USA.
- Department of Human Genetics, University of California, Los Angeles, 90095-7088, CA, USA.
- Department of Computational Medicine, University of California, Los Angeles, 90095-1766, CA, USA.
- Department of Biostatistics, University of California, Los Angeles, 90095-1772, CA, USA.
| |
Collapse
|
46
|
López-Moreno A, Acuña I, Torres-Sánchez A, Ruiz-Moreno Á, Cerk K, Rivas A, Suárez A, Monteoliva-Sánchez M, Aguilera M. Next Generation Probiotics for Neutralizing Obesogenic Effects: Taxa Culturing Searching Strategies. Nutrients 2021; 13:1617. [PMID: 34065873 PMCID: PMC8151043 DOI: 10.3390/nu13051617] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
The combination of diet, lifestyle, and the exposure to food obesogens categorized into "microbiota disrupting chemicals" (MDC) could determine obesogenic-related dysbiosis and modify the microbiota diversity that impacts on individual health-disease balances, inducing altered pathogenesis phenotypes. Specific, complementary, and combined treatments are needed to face these altered microbial patterns and the specific misbalances triggered. In this sense, searching for next-generation beneficial microbes or next-generation probiotics (NGP) by microbiota culturing, and focusing on their demonstrated, extensive scope and well-defined functions could contribute to counteracting and repairing the effects of obesogens. Therefore, this review presents a perspective through compiling information and key strategies for directed searching and culturing of NGP that could be administered for obesity and endocrine-related dysbiosis by (i) observing the differential abundance of specific microbiota taxa in obesity-related patients and analyzing their functional roles, (ii) developing microbiota-directed strategies for culturing these taxa groups, and (iii) applying the successful compiled criteria from recent NGP clinical studies. New isolated or cultivable microorganisms from healthy gut microbiota specifically related to obesogens' neutralization effects might be used as an NGP single strain or in consortia, both presenting functions and the ability to palliate metabolic-related disorders. Identification of holistic approaches for searching and using potential NGP, key aspects, the bias, gaps, and proposals of solutions are also considered in this review.
Collapse
Affiliation(s)
- Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
| | - Inmaculada Acuña
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Alfonso Torres-Sánchez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
| | - Ángel Ruiz-Moreno
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
| | - Klara Cerk
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
| | - Ana Rivas
- IBS, Instituto de Investigación Biosanitaria, 18012 Granada, Spain;
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Antonio Suárez
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Mercedes Monteoliva-Sánchez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
- IBS, Instituto de Investigación Biosanitaria, 18012 Granada, Spain;
| |
Collapse
|
47
|
Geng Z, Kang L, Huang J, Gao S, Wang J, Yuan Y, Li Y, Wang J, Xin W. Epsilon toxin from Clostridium perfringens induces toxic effects on skin tissues and HaCaT and human epidermal keratinocytes. Toxicon 2021; 198:102-110. [PMID: 33965432 DOI: 10.1016/j.toxicon.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Epsilon toxin (ETX) is a key pathogenic factor of C. perfringens type B and D, causing fatal enterotoxemia in sheep and goats. Excessive production of ETX increases intestinal permeability; its entrance into the bloodstream leads to severe edema in organs such as the brain and kidneys. At present, very few cell lines are known to be sensitive to ETX, with the most sensitive cell model for in vitro research being the MDCK cell line. Recently, more tissue-derived cell lines have been shown to be sensitive to ETX, but the mechanism of cytotoxicity remains unknown. Herein, for the first time, we aimed to evaluate the effects of ETX on HaCaT keratinocytes and human epidermal keratinocytes (HEKa). In addition, the median lethal dose of subcutaneous injection of ETX in mice was 109 ng/kg. At this dose, ETX rapidly entered the blood circulation, causing hemorrhage and edema in the brain and kidneys. ETX also increased the expression of aquaporin 3 in the muscle layer and hair follicles of the skin. We further showed the presence of the MAL protein in HaCaT keratinocytes and HEKa and skin tissues, supporting the hypothesis that it is a key element in the mechanism of cytotoxicity of ETX. In conclusion, skin cell lines were used for the first time as a model for studying the toxic effects of ETX, which will help elucidate the cytotoxicity induced by ETX and the related molecular mechanisms.
Collapse
Affiliation(s)
- Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233001, Anhui Province, PR China; State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, PR China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, PR China
| | - Jing Huang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, PR China; Life Science Institute of Hebei Normal University, Shijiazhuang, 050011, Hebei Province, PR China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, PR China
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, PR China
| | - Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, PR China
| | - Yanwei Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, PR China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, PR China.
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, PR China.
| |
Collapse
|
48
|
Xiao Y, Niu Y, Mao M, Lin H, Wang B, Wu E, Zhao H, Li S. [Correlation analysis between type 2 diabetes and core gut microbiota]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:358-369. [PMID: 33849826 DOI: 10.12122/j.issn.1673-4254.2021.03.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To analyze the species, abundance and structure differences of intestinal flora between patients with type 2 diabetes mellitus (T2D) and healthy individuals and explore the correlation between intestinal flora changes and T2D. OBJECTIVE We collected a total of 133 clinical fecal samples from 78 healthy individuals and 55 patients with T2D. Hiseq2500 was used for high-throughput sequencing of the V3+V4 regions of the 16S rRNA gene. Usearch and QIIME were used for data splicing and filtering, classification and species annotation. The Alpha diversity index and Beta diversity index of the samples were analyzed using R language data packets to compare the richness and diversity of the sample flora. The flora differences were compared between the two groups and the disease marker flora was screened after correction of the relevant factors. PICRUST software was used to predict the function of different flora. OBJECTIVE There was significant difference in the intestinal flora diversity between the two groups. Cluster analysis showed that Fimicutes and Bacteroidetes were the dominant species at the phylum level. LefSe analysis showed that significant differences in the relative abundance between the two groups in 2 phyla, 3 classes, 3 orders, 4 families and 10 genera. After correction for the influence of related factors, the markers of T2Drelated bacteria groups were identified, including Bifidobacterium, Bifidobacteriales, Bifidobacteriaceae, Actinobacteria, Bacilli, Lactobacillales, Lactobacillaceae and Lactobacillus. On this basis, analysis of KEGG metabolic pathways of the differential flora revealed significant differences in 36 KEGG metabolic pathways between the two groups, and the citric acid cycle, lipopolysaccharide biosynthesis and other metabolic pathways were all up-regulated in T2D group. OBJECTIVE The composition and abundance of intestinal flora were different between T2D group and the normal group, and T2D group showed the characteristics of ecological imbalance.
Collapse
Affiliation(s)
- Y Xiao
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine, Ministry of Education, Beijing 100081, China
| | - Y Niu
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine, Ministry of Education, Beijing 100081, China
| | - M Mao
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine, Ministry of Education, Beijing 100081, China
| | - H Lin
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine, Ministry of Education, Beijing 100081, China
| | - B Wang
- School Hospital, Minzu University of China, Beijing 100081, China
| | - E Wu
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine, Ministry of Education, Beijing 100081, China
| | - H Zhao
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine, Ministry of Education, Beijing 100081, China
| | - S Li
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine, Ministry of Education, Beijing 100081, China
| |
Collapse
|
49
|
Jeong YJ, Park HY, Nam HK, Lee KW. Fermented Maillard Reaction Products by Lactobacillus gasseri 4M13 Alters the Intestinal Microbiota and Improves Dysfunction in Type 2 Diabetic Mice with Colitis. Pharmaceuticals (Basel) 2021; 14:299. [PMID: 33800583 PMCID: PMC8066505 DOI: 10.3390/ph14040299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease is a chronic relapsing disease. Multiple factors can cause inflammatory bowel disease (IBD), including diet, imbalance of the immune system, and impaired intestinal barrier function. Type 2 diabetes mellitus is a complex and chronic metabolic disease caused by a combination of insulin resistance and an ineffective insulin secretory response. The co-occurrence of these two diseases, demonstrating interrelated effects within the gut microbiota, has been frequently reported. This study evaluated the effects of a fermented glycated conjugate of whey protein and galactose with Lactobacillus gasseri 4M13 (FMRP) to prevent type 2 diabetes mellitus with inflammatory bowel disease. C57BLKS/J- db/db mice were orally administered FMRP for 14 consecutive days and 2% dextran sulfate sodium (DSS) in water ad libitum for 5 days to induce colitis. FMRP-fed mice showed improved insulin secretion and symptoms of colitis. Compared to the DSS group, the FMRP group showed a decreased abundance of six bacterial genera and increased abundance of Alistipes and Hungateiclostridium. In cecal contents, the levels of short-chain fatty acids increased in the FMRP group compared to those in the DSS group. Continuous administration of FMRP thus may improve the homeostasis of not only insulin secretion and inflammation, but also the intestinal environment in inflammatory bowel disease and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yu-Jin Jeong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 02841, Korea; (Y.-J.J.); (H.-K.N.)
| | - Ho-Young Park
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea;
| | - Han-Kyul Nam
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 02841, Korea; (Y.-J.J.); (H.-K.N.)
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 02841, Korea; (Y.-J.J.); (H.-K.N.)
| |
Collapse
|
50
|
Wu Y, Liu W, Yang T, Li M, Qin L, Wu L, Liu T. Oral administration of mangiferin ameliorates diabetes in animal models: a meta-analysis and systematic review. Nutr Res 2021; 87:57-69. [PMID: 33601215 DOI: 10.1016/j.nutres.2020.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 12/28/2022]
Abstract
Although mangiferin has a number of documented beneficial effects, there are no systematic reviews or meta-analyses of its effects in diabetic animal models. To investigate the effects of oral administration of mangiferin on blood glucose levels, body weight, and total cholesterol and triglycerides levels in diabetic animal models, a meta-analysis was conducted and the underlying mechanisms were reviewed. Studies from 6 databases (PubMed, Web of Science, Embase, Cochrane Library, and CNKI (China National Knowledge Infrastructure), and Wanfang Med) were searched from inception to April 2020. After article screening, a total of 19 articles were included in this meta-analysis. The meta-analysis was performed using RevMan 5.3 and STATA 14.0 software. The overall pooled estimate of standardized mean difference (SMD) of mangiferin's effect on blood glucose was -1.27 (95% confidence interval [CI]: -1.71, -0.82, P < .00001). Body weight increased in lean diabetic animals with an SMD of 1.41 (95% CI: 0.57, 2.25; P = .001), while it decreased in obese diabetic animals with an SMD of -0.92 (95% CI: -1.69, -0.14; P = .02). Mangiferin intake reduced serum total cholesterol and triglycerides levels with SMDs of -1.02 (95% CI: -1.43, -0.61; P < .001) and -1.24 (95% CI: -1.70, -0.79; P < .001), respectively. The meta-analysis suggests that oral intake of mangiferin has a significant antidiabetic effect in animal models, and the systematic review suggested that this function might be attributed to its anti-inflammatory and antioxidative properties, as well as to its function of improving glycolipid metabolism and enhancing insulin signaling.
Collapse
Affiliation(s)
- You Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China; Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Wei Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China; Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Tao Yang
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mei Li
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lingling Qin
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|