1
|
Wang Y, Wu W, Wang R, Chen J, Xu X, Li M, Jia C, Chen N. Assessment of the Role of miR-30a-5p on the Proliferation and Apoptosis of Hair Follicle Stem Cells. J Cosmet Dermatol 2024. [PMID: 39440357 DOI: 10.1111/jocd.16644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE To investigate the role of miR-30a-5p on the proliferation and apoptosis of hair follicle stem cells (HFSCs) and whether the Wnt/β-catenin signaling pathway is involved. METHODS HFSCs derived from the vibrissa of mammary rats were obtained by enzymatic digestion, and subsequently the obtained HFSCs were treated with Lipofectamine 2000 cell transfection and divided into normal cell culture group (control), miR-30a-5p overexpression group (miR-30a-5p mimic), miR-30a-5p empty vector group (miR-NC), miR-30a-5p inhibitor group (in-miR-30a-5p), and in-miR-30a-5p empty vector group (in-miR-NC). After transfection, the cell proliferation and apoptosis rates were examined separately. In addition, the mRNA expression of β-catenin, proliferating cell nuclear antigen (PCNA) and apoptosis-related genes (Bax and Bcl-2) were examined. RESULTS The results of cell proliferation ability showed that in-miR-30a-5p group promoted cell proliferation of HFSCs relative to other groups, along with significant upregulation of gene levels of PCNA. Apoptosis analysis indicated that apoptosis rate was reduced in the in-miR-30a-5p group, and the expression of Bax was suppressed, while that of Bcl-2 was promoted. Wnt/β-catenin signaling pathway investigation revealed a significant increase in the levels of β-catenin in HFSCs in the in-miR-30a-5p group. CONCLUSION Downregulation of miR-30a-5p levels inhibited HFSCs apoptosis and simultaneously promoted proliferation, furthermore, the increased expression of β-catenin indirectly confirmed the activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yiping Wang
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Wentao Wu
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Risheng Wang
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
- Department of Burns and Plastic Surgery, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, China
| | - Jinwei Chen
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xiangping Xu
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Meiqi Li
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Chiyu Jia
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Nian Chen
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
2
|
Pozo-Pérez L, Tornero-Esteban P, López-Bran E. Clinical and preclinical approach in AGA treatment: a review of current and new therapies in the regenerative field. Stem Cell Res Ther 2024; 15:260. [PMID: 39148125 PMCID: PMC11328498 DOI: 10.1186/s13287-024-03801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/11/2024] [Indexed: 08/17/2024] Open
Abstract
Androgenetic alopecia (AGA) is the most prevalent type of hair loss. Its morbility is mainly psychological although an increased incidence in melanoma has also been observed in affected subjects. Current drug based therapies and physical treatments are either unsuccessful in the long term or have relevant side effects that limit their application. Therefore, a new therapeutic approach is needed to promote regenerative enhancement alternatives. These treatment options, focused on the cellular niche restoration, could be the solution to the impact of dihydrotestosterone in the hair follicle microenvironment. In this context emerging regenerative therapies such as Platelet-rich plasma or Platelet-rich fibrine as well as hair follicle stem cells and mesenchymal stem cell based therapies and their derivatives (conditioned medium CM or exoxomes) are highlighting in the evolving landscape of hair restoration. Nanotechnology is also leading the way in AGA treatment through the design of bioinks and nanobiomaterials whose structures are being configuring in a huge range of cases by means of 3D bioprinting. Due to the increasing number and the rapid creation of new advanced therapies alternatives in the AGA field, an extended review of the current state of art is needed. In addition this review provides a general insight in current and emerging AGA therapies which is intented to be a guidance for researchers highlighting the cutting edge treatments which are recently gaining ground.
Collapse
Affiliation(s)
- Lorena Pozo-Pérez
- Dermatology Department, Clínico San Carlos Hospital, Madrid, Spain.
- Institute for Health Research of Clinico San Carlos Hospital (IdISSC), Madrid, Spain.
| | - Pilar Tornero-Esteban
- Cellular GMP Manufacturing Facility, Institute for Health Research of Clinico San Carlos Hospital (IdISSC), Madrid, Spain
| | | |
Collapse
|
3
|
Almutairy BK, Khafagy ES, Aldawsari MF, Alshetaili A, Alotaibi HF, Lila ASA. Spanlastic-laden nanogel as a plausible platform for dermal delivery of bimatoprost with superior cutaneous deposition and hair regrowth efficiency in androgenic alopecia. Int J Pharm X 2024; 7:100240. [PMID: 38577618 PMCID: PMC10992714 DOI: 10.1016/j.ijpx.2024.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024] Open
Abstract
Bimatoprost (BIM) is a prostaglandin F2α analogs originally approved for the treatment of glaucoma and ocular hypertension. Recent studies have highlighted its potential to boost hair growth. The objective of this investigation is to challenge the potential of spanlastics (SLs) as a surfactant-based vesicular system for promoting the cutaneous delivery of BIM for the management of alopecia. BIM-loaded spanlastics (BIM-SLs), composed of Span as the main vesicle component and Tween as the edge activator, were fabricated by ethanol injection method. The formulated BIM-SLs were optimized by 23 full factorial design. The optimized formula (F1) was characterized for entrapment efficiency, surface charge, vesicle size, and drug release after 12 h (Q12h). The optimized formula (F1) exhibited high drug entrapment efficiency (83.1 ± 2.1%), appropriate zeta potential (-19.9 ± 2.1 mV), Q12h of 71.3 ± 5.3%, and a vesicle size of 364.2 ± 15.8 nm, which favored their cutaneous accumulation. In addition, ex-vivo skin deposition studies revealed that entrapping BIM within spanlastic-based nanogel (BIM-SLG) augmented the dermal deposition of BIM, compared to naïve BIM gel. Furthermore, in vivo studies verified the efficacy of spanlastic vesicles to boost the cutaneous accumulation of BIM compared to naive BIM gel; the AUC0-12h of BIM-SLG was 888.05 ± 72.31 μg/mL.h, which was twice as high as that of naïve BIM gel (AUC0-12h 382.86 ± 41.12 μg/mL.h). Intriguingly, BIM-SLG outperforms both naïve BIM gel and commercial minoxidil formulations in stimulating hair regrowth in an androgenetic alopecia mouse model. Collectively, spanlastic vesicles might be a potential platform for promoting the dermal delivery of BIM in managing alopecia.
Collapse
Affiliation(s)
- Bjad K. Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint AbdulRahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amr Selim Abu Lila
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| |
Collapse
|
4
|
Viloria Angarita JE, Insuasty D, Rodríguez M JD, Castro JI, Valencia-Llano CH, Zapata PA, Delgado-Ospina J, Navia-Porras DP, Albis A, Grande-Tovar CD. Biological activity of lyophilized chitosan scaffolds with inclusion of chitosan and zinc oxide nanoparticles. RSC Adv 2024; 14:13565-13582. [PMID: 38665501 PMCID: PMC11043666 DOI: 10.1039/d4ra00371c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The constant demand for biocompatible and non-invasive materials for regenerative medicine in accidents and various diseases has driven the development of innovative biomaterials that promote biomedical applications. In this context, using sol-gel and ionotropic gelation methods, zinc oxide nanoparticles (NPs-ZnO) and chitosan nanoparticles (NPs-CS) were synthesized with sizes of 20.0 nm and 11.98 nm, respectively. These nanoparticles were incorporated into chitosan scaffolds through the freeze-drying method, generating a porous morphology with small (<100 μm), medium (100-200 μm), and large (200-450 μm) pore sizes. Moreover, the four formulations showed preliminary bioactivity after hydrolytic degradation, facilitating the formation of a hydroxyapatite (HA) layer on the scaffold surface, as evidenced by the presence of Ca (4%) and P (5.1%) during hydrolytic degradation. The scaffolds exhibited average antibacterial activity of F1 = 92.93%, F2 = 99.90%, F3 = 74.10%, and F4 = 88.72% against four bacterial strains: K. pneumoniae, E. cloacae, S. enterica, and S. aureus. In vivo, evaluation confirmed the biocompatibility of the functionalized scaffolds, where F2 showed accelerated resorption attributed to the NPs-ZnO. At the same time, F3 exhibited controlled degradation with NPs-CS acting as initiation points for degradation. On the other hand, F4 combined NPs-CS and NPs-ZnO, resulting in progressive degradation, reduced inflammation, and an organized extracellular matrix. All the results presented expand the boundaries in tissue engineering and regenerative medicine by highlighting the crucial role of nanoparticles in optimizing scaffold properties.
Collapse
Affiliation(s)
- Jorge Eliecer Viloria Angarita
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico Carrera 30 Número 8-49 Puerto Colombia 081008 Colombia +57-5-3599-484
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte Km 5 Vía Puerto Colombia Barranquilla 081007 Colombia
| | - Juan David Rodríguez M
- Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Libre Km 5 Vía Puerto Colombia Barranquilla 081007 Colombia
| | - Jorge Iván Castro
- Tribology, Polymers, Powder Metallurgy and Solid Waste Transformations Research Group, Universidad del Valle Calle 13 No. 100-00 Cali 76001 Colombia
| | | | - Paula A Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago 9170020 Chile
| | - Johannes Delgado-Ospina
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali Carrera 122 # 6-65 Cali 76001 Colombia
| | - Diana Paola Navia-Porras
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali Carrera 122 # 6-65 Cali 76001 Colombia
| | - Alberto Albis
- Grupo de Investigación en Bioprocesos, Universidad del Atlántico, Facultad de Ingeniería Carrera 30 Número 8-49 Puerto Colombia 081008 Colombia
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico Carrera 30 Número 8-49 Puerto Colombia 081008 Colombia +57-5-3599-484
| |
Collapse
|
5
|
Zhao Q, Zheng Y, Zhao D, Zhao L, Geng L, Ma S, Cai Y, Liu C, Yan Y, Belmonte JCI, Wang S, Zhang W, Liu GH, Qu J. Single-cell profiling reveals a potent role of quercetin in promoting hair regeneration. Protein Cell 2023; 14:398-415. [PMID: 37285263 PMCID: PMC10246722 DOI: 10.1093/procel/pwac062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/16/2022] [Indexed: 07/21/2023] Open
Abstract
Hair loss affects millions of people at some time in their life, and safe and efficient treatments for hair loss are a significant unmet medical need. We report that topical delivery of quercetin (Que) stimulates resting hair follicles to grow with rapid follicular keratinocyte proliferation and replenishes perifollicular microvasculature in mice. We construct dynamic single-cell transcriptome landscape over the course of hair regrowth and find that Que treatment stimulates the differentiation trajectory in the hair follicles and induces an angiogenic signature in dermal endothelial cells by activating HIF-1α in endothelial cells. Skin administration of a HIF-1α agonist partially recapitulates the pro-angiogenesis and hair-growing effects of Que. Together, these findings provide a molecular understanding for the efficacy of Que in hair regrowth, which underscores the translational potential of targeting the hair follicle niche as a strategy for regenerative medicine, and suggest a route of pharmacological intervention that may promote hair regrowth.
Collapse
Affiliation(s)
| | | | | | - Liyun Zhao
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Lingling Geng
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chengyu Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yupeng Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
6
|
Girbig RM, Baier J, Palme R, Tolba R, Rix A, Kiessling F. Welfare Assessment on Healthy and Tumor-Bearing Mice after Repeated Ultrasound Imaging. Eur Surg Res 2023; 64:77-88. [PMID: 35398847 PMCID: PMC9945198 DOI: 10.1159/000524431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Ultrasound (US) imaging enables tissue visualization in high spatial resolution with short examination times. Thus, it is often applied in preclinical research. Diagnostic US, including contrast-enhanced US (CEUS), is considered to be well-tolerated by laboratory animals although no systematic study has been performed to confirm this claim. Therefore, the aim of this study was to screen for possible effects of US and CEUS examinations on welfare of healthy mice. Additionally, the potential influence of CEUS and molecular CEUS on well-being and therapy response to regorafenib was investigated in breast cancer-bearing mice. MATERIAL AND METHODS Forty healthy Balb/c mice were randomly assigned for examination with US or CEUS (3×/week) for 4 weeks. Untreated healthy mice and mice receiving only isoflurane anesthesia served as controls (n = 10/group). Ninety-four 4T1 tumor-bearing Balb/c mice were allocated randomly to the following groups: no imaging, isoflurane anesthesia, CEUS, and molecular CEUS. They either received 10 mg/kg regorafenib or vehicle solution daily by oral gavage. Animals were examined three times within 2 weeks. CEUS measurements were performed using phospholipid microbubbles, and phospholipid microbubbles targeting the vascular endothelial growth factor receptor-2 were applied for molecular CEUS. Welfare evaluation was performed by daily observational score sheets, measuring the heart rate, Rotarod performance, and fecal corticosterone metabolites twice a week. On the last day, pathological changes in serum corticosterone concentrations, hemograms, and organ weights were obtained. Moreover, a potential influence of isoflurane anesthesia, CEUS, and molecular CEUS on regorafenib response in tumor-bearing mice was examined. Analysis of variance and Dunnett's post hoc test were performed as statistical analyses. RESULTS Severity parameters were not altered after repeated US and CEUS examinations of healthy mice, but spleen sizes were significantly lower after isoflurane anesthesia. In tumor-bearing mice, no effect on animal welfare after repeated CEUS and molecular CEUS could be observed. However, leukocyte counts and spleen weights of tumor-bearing mice were significantly lower in animals examined with CEUS and molecular CEUS compared to the control groups. This effect was not visible in regorafenib-treated animals. CONCLUSIONS Repeated US and (molecular) CEUS have no detectable impact on animal welfare in healthy and tumor-bearing mice. However, CEUS and molecular CEUS in combination with isoflurane anesthesia might attenuate immunological processes in tumor-bearing animals and may consequently affect responses to antitumor therapy.
Collapse
Affiliation(s)
- Renée Michèle Girbig
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Jasmin Baier
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - René Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
- *Fabian Kiessling,
| |
Collapse
|
7
|
Elucidation of the Potential Hair Growth-Promoting Effect of Botryococcus terribilis, Its Novel Compound Methylated-Meijicoccene, and C32 Botryococcene on Cultured Hair Follicle Dermal Papilla Cells Using DNA Microarray Gene Expression Analysis. Biomedicines 2022; 10:biomedicines10051186. [PMID: 35625924 PMCID: PMC9138970 DOI: 10.3390/biomedicines10051186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
A person’s quality of life can be adversely affected by hair loss. Microalgae are widely recognized for their abundance and rich functional components. Here, we evaluated the hair growth effect of a green alga, Botryococcus terribilis (B. terribilis), in vitro using hair follicle dermal papilla cells (HFDPCs). We isolated two types of cells from B. terribilis—green and orange cells, obtained from two different culture conditions. Microarray and real time-PCR results revealed that both cell types stimulated the expression of several pathways and genes associated with different aspect of the hair follicle cycle. Additionally, we demonstrated B. terribilis’ effect on collagen and keratin synthesis and inflammation reduction. We successfully isolated a novel compound, methylated-meijicoccene (me-meijicoccene), and C32 botryococcene from B. terribilis to validate their promising effects. Our study revealed that treatment with the two compounds had no cytotoxic effect on HFDPCs and significantly enhanced the gene expression levels of hair growth markers at low concentrations. Our study provides the first evidence of the underlying hair growth promoting effect of B. terribilis and its novel compound, me-meijicoccene, and C32 botryococcene.
Collapse
|
8
|
Nilforoushzadeh MA, Aghdami N, Taghiabadi E. Effects of Adipose-Derived Stem Cells and Platelet-Rich Plasma Exosomes on The Inductivity of Hair Dermal Papilla Cells. CELL JOURNAL 2021; 23:576-583. [PMID: 34837686 PMCID: PMC8588812 DOI: 10.22074/cellj.2021.7352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/19/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Hair loss is a prevalent medical problem in both men and women. Maintaining the hair inductivity potential of human dermal papilla cells (hDPCs) during cell culture is the main issue in hair follicle morphogenesis and regeneration. The present study was conducted to compare the effects of different concentrations of exosomes derived from human adipose stem cells (hASCs) and platelet-rich plasma (PRP) on the proliferation, migration and expression of alkaline pholphatase (ALP), versican, and smooth muscle alpha-actin (α-SMA) in human DPCs. MATERIALS AND METHODS In this experimental study, hDPCs, human hair DPCs and outer root sheet cells (ORSCs) were separated from healthy hair samples. The protocol of exosome isolation from PRP and hASCs comprises serial low speed centrifugation and ultracentrifugation. The effects of different concentrations of exosomes (25, 50, 100 μg/ ml) derived from hASCs and PRP on proliferation (MTS assay), migration (scratch test) and expression of ALP, versican and α-SMA (real time-polymerase chain reaction) in human DPCs were evaluated. RESULTS The flow cytometry analysis of specific cytoplasmic markers showed expression of versican (77%) and α-SMA (60.8%) in DPCs and K15 (73.2%) in ORSCs. According to NanoSight Dynamic Light Scattering, we found the majority of ASCs and PRP-exosomes (ASC-Exo and PRP-Exo) to be 30-150 nm in size. For 100 μg/ml of ASCs-Exo, the expressions of ALP, versican and α-SMA proteins increased by a factor of 1.2, 2 and 3, respectively, compared to the control group. The findings of our experiments illustrated that 100 μg/ml of ASCs-Exo compared to the same concentration of PRP-Exo significantly promote DPC proliferation and migration in culture. CONCLUSION This study introduced the potential positive effect of ASC-Exo in increasing the proliferation and survival of DPCs, while maintaining their hair inductivity. Thus, ASCs-Exo possibly provide a new effective procedure for treatment of hair loss.
Collapse
Affiliation(s)
| | - Nasser Aghdami
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ehsan Taghiabadi
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Identification of potential key genes and pathways associated with the Pashmina fiber initiation using RNA-Seq and integrated bioinformatics analysis. Sci Rep 2021; 11:1766. [PMID: 33469142 PMCID: PMC7815713 DOI: 10.1038/s41598-021-81471-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/07/2021] [Indexed: 01/06/2023] Open
Abstract
Pashmina goat (Capra hircus) is an economically important livestock species, which habitats the cold arid desert of the Ladakh region (India), and produces a princely animal fiber called Pashmina. The Pashmina goat has a double coat fleece as an adaptation to the very harsh cold winters the outer long coarse hair (guard hair) produced from primary hair follicles and the inner fine Pashmina fiber produced from secondary hair follicles. Pashmina fiber undergoes a circannual and synchronized growth cycle. In the present study, we analyzed transcriptome profiles from 10 different Pashmina goats during anagen and telogen to delineate genes and signaling pathways regulating active (anagen) and regressive (telogen) phases of the follicle growth. During anagen, 150 genes were expressed at significantly higher levels with log (FC) > 2 and padj < 0.05. The RNA seq results were subjected to qRT-PCR validation. Among the nine genes selected, the expression of HAS1, TRIB2, P2RX1. PRG4, CNR2, and MMP25 were significantly higher (p < 0.05) in the anagen phase, whereas MC4R, GIPC2, and CDO1 were significantly expressed (p < 0.05) in the telogen phase which supports and validates the gene expression pattern from the RNA-sequencing. Differentially expressed genes revealed that Pashmina fiber initiation is largely controlled by signaling pathways like Wnt, NF-Kappa, JAK-STAT, Hippo, MAPK, Calcium, and PI3K-Akt. Expression of genes from the Integrin family, Cell adhesion molecules, and ECM-receptors were observed to be at much higher levels during anagen. We identified key genes (IL36RN, IGF2, ITGAV, ITGA5, ITCCR7, CXCL5, C3, CCL19, and CXCR3) and a collagen cluster which might be tightly correlated with anagen-induction. The regulatory network suggests the potential role of RUNX3, NR2F1/2, and GATA family transcription factors in anagen-initiation and maintaining fiber quality in Pashmina goats.
Collapse
|
10
|
A Treatment Combination of IGF and EGF Promotes Hair Growth in the Angora Rabbit. Genes (Basel) 2020; 12:genes12010024. [PMID: 33375217 PMCID: PMC7823460 DOI: 10.3390/genes12010024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/13/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
The hair follicle (HF) growth cycle is a complex, multistep biological process, for which dysfunction affects hair-related diseases in humans and wool production in animals. In this study, a treatment combination of 10 ng/mL insulin-like growth factor-1 (IGF-1) and 20 ng/mL epidermal growth factor (EGF) significantly increased the elongation length of hair shafts for cultured HFs. The combined treatment of IGF-1 and EGF enhanced the proliferation of HFs and promoted HF growth and development in vitro. In vivo, the combined treatment of IGF-1 and EGF was subcutaneously injected into the dorsal skin in HF synchronized rabbits. The IGF-1 and EGF combination promoted the transition of the hair cycle from telogen to anagen and stimulated the growth of hair shafts. This IGF-1 and EGF combination maintained the structure of the HF and enhanced the cell proliferation of outer root sheaths and the dermal papilla within rabbit skin. The combined treatment of IGF-1 and EGF regulated HF-related genes, including LEF1, CCND1 and WNT2, suggesting that IGF-1 and EGF play a positive role in HF growth and development. Utilization of the combined IGF-1 and EGF treatment may assist with hair and wool production and HF related diseases in mammals.
Collapse
|
11
|
Majeed M, Majeed S, Nagabhushanam K, Mundkur L, Neupane P, Shah K. Clinical Study to Evaluate the Efficacy and Safety of a Hair Serum Product in Healthy Adult Male and Female Volunteers with Hair Fall. Clin Cosmet Investig Dermatol 2020; 13:691-700. [PMID: 33061509 PMCID: PMC7522433 DOI: 10.2147/ccid.s271013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
Background Hair fall is a widespread problem among all genders, ages, and ethnicity with both physical and psychological effects. Objective This clinical study was designed to evaluate the efficacy and safety of a hair serum formulation containing amla extract, freeze-dried coconut water, and the micronutrient selenium along with sandalwood odorant and peanut shell extract in healthy male and female volunteers with hair fall. Methods A total of 42 subjects were enrolled and completed the study and they used the test product daily for 90 days. TrichoScan® was used to evaluate the efficacy of the test product for improving hair growth rate, hair density, anagen hair, telogen hair, and the density of vellus and terminal hair. Hair thinning and hair fall reduction were compared to its basline by both dermatologists and subject self-assessment questionnaires. Result and Discussion After 90 days of test product application, there was a significant improvement in hair growth rate (<0.0001), hair density (<0.0001), vellus hair density (<0.0001), and terminal hair density (<0.0001) in comparison to baseline. There was a significant reduction in hair fall with bulb (<0.0001) and without bulb (<0.0001), and hair thinning (<0.0001) compared to the baseline measurement. Adverse events were not recorded during the study. No skin intolerance was reported during the study, and the test product was considered dermatologically safe to use.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami Labs Limited, Bangalore, Karnataka 560058, India.,Sabinsa Corporation, New Jersey, East Windsor 08520, USA.,ClinWorld Private Limited, Bangalore, Karnataka, India
| | - Shaheen Majeed
- Sami Labs Limited, Bangalore, Karnataka 560058, India.,Sabinsa Corporation, New Jersey, East Windsor 08520, USA.,ClinWorld Private Limited, Bangalore, Karnataka, India
| | | | | | | | - Kalpesh Shah
- ClinWorld Private Limited, Bangalore, Karnataka, India
| |
Collapse
|
12
|
Hu S, Li Z, Lutz H, Huang K, Su T, Cores J, Dinh PUC, Cheng K. Dermal exosomes containing miR-218-5p promote hair regeneration by regulating β-catenin signaling. SCIENCE ADVANCES 2020; 6:eaba1685. [PMID: 32832660 PMCID: PMC7439409 DOI: 10.1126/sciadv.aba1685] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/11/2020] [Indexed: 05/05/2023]
Abstract
The progression in the hair follicle cycle from the telogen to the anagen phase is the key to regulating hair regrowth. Dermal papilla (DP) cells support hair growth and regulate the hair cycle. However, they gradually lose key inductive properties upon culture. DP cells can partially restore their capacity to promote hair regrowth after being subjected to spheroid culture. In this study, results revealed that DP spheroids are effective at inducing the progression of the hair follicle cycle from telogen to anagen compared with just DP cell or minoxidil treatment. Because of the importance of paracrine signaling in this process, secretome and exosomes were isolated from DP cell culture, and their therapeutic efficacies were investigated. We demonstrated that miR-218-5p was notably up-regulated in DP spheroid-derived exosomes. Western blot and immunofluorescence imaging were used to demonstrate that DP spheroid-derived exosomes up-regulated β-catenin, promoting the development of hair follicles.
Collapse
Affiliation(s)
- Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Halle Lutz
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Teng Su
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Jhon Cores
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Phuong-Uyen Cao Dinh
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, and North Carolina State University, Raleigh, NC 27606, USA
- Corresponding author.
| |
Collapse
|
13
|
Nilforoushzadeh MA, Aghdami N, Taghiabadi E. Human Hair Outer Root Sheath Cells and Platelet-Lysis Exosomes Promote Hair Inductivity of Dermal Papilla Cell. Tissue Eng Regen Med 2020; 17:525-536. [PMID: 32519329 DOI: 10.1007/s13770-020-00266-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Hair loss is a prevalent medical problem in both men and women. Maintaining the potential hair inductivity of dermal papilla cells (DPCs) during cell culture is the main factor in hair follicle morphogenesis and regeneration. The present study was conducted to compare the effects of different concentrations of human hair outer root sheath cell (HHORSC) and platelet lysis (PL) exosomes to maintain hair inductivity of the human dermal papilla cells (hDPCs). METHODS In this study, hDPCs and HHORSCs were isolated from healthy hair samples. Specific markers of hDPCs (versican, α-SMA) and HHORSCs (K15) were evaluated using flow cytometric and immunocytochemical techniques. The exosomes were isolated from HHORSCs and PL with ultracentrifugation technique. Western blot was used to detect specific markers of HHORSCs and PL exosomes. Particle size and distribution of the exosomes were analyzed by NanoSight dynamic light NanoSight Dynamic Light Scattering. Different methods such as proliferation test (MTS assay), migration test (Transwell assay) were used to evaluate the effects of different concentrations of exosomes (2,550,100 µg/ml) derived from HHORSC and PL on hDPCs. Expression of specific genes in the hair follicle inductivity, including ALP, versican and α-SMA were also evaluated using real time-PCR. RESULTS The flow cytometry of the specific cytoplasmic markers of the hDPCs and HHORSCs showed expression of versican (77%), α-SMA (55.2%) and K15 (73.2%). The result of particle size and distribution of the exosomes were analyzed by NanoSight dynamic light NanoSight Dynamic Light Scattering, which revealed the majority of HHORSC and PL exosomes were 30-150 nm. For 100 µg/ml of HHORSC exosomes, the expressions of ALP, versican and α-SMA proteins respectively increased by a factor of 2.1, 1.7and 1.3 compared to those in the control group. CONCLUSION In summary, we applied HHORSC exosomes as a new method to support hair inductivity of dermal papilla cells and improve the outcome for the treatment of hair loss.
Collapse
Affiliation(s)
- Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, No. 226, Qods St., Keshavarz Blvd., Tehran, 1416753955, Iran
| | - Nasser Aghdami
- Department of Regenerative medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Ehsan Taghiabadi
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, No. 226, Qods St., Keshavarz Blvd., Tehran, 1416753955, Iran.
| |
Collapse
|
14
|
郑 雨, 胡 永, 刘 康, 卢 艳, 胡 燕, 周 冼. [Therapeutic effect of Impatiens balsamina, Lawsonia inermis L. and Henna on androgenetic alopecia in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1376-1380. [PMID: 31852654 PMCID: PMC6926075 DOI: 10.12122/j.issn.1673-4254.2019.11.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To investigate the therapeutic effect of Impatiens balsamina, Lawsonia inermis L. and Henna in a C57BL/6 mouse model of androgenetic alopecia and explore the mechanisms. METHODS Forty-eight male C57BL/6 mice were randomized equally into blank control group, androgenetic alopecia model group, Impatiens balsamina group, Lawsonia inermis L. group, Henna group and minoxidil group. In all but those in the blank control group, the mice were subjected to dorsal subcutaneous injection of testosterone propionate solution (daily dose 5 mg/kg) to establish models of androgenetic alopecia and received subsequent treatment with topical application of the corresponding drugs on a daily basis for 35 days. The concentrations of testosterone, dihydrotestosterone and 5α reductase type Ⅱ in the serum and skin tissue were measured, and the histopathological changes of the skin tissues were observed. RESULTS All the tested drugs were capable of promoting new hair growth in the dorsal skin lesions of the mice. Among these drugs, Henna produced the most pronounced therapeutic effect and resulted in the highest dorsal hair density and a color change of the dorsal skin into gray; Lawsonia inermis L. showed the poorest therapeutic effect and resulted in the lowest dorsal hair density. The total number of follicles and the number of terminal hair follicles in a given field were significantly higher in all the drug treatment groups than in the model group (P < 0.05). In Impatiens balsamina group and Henna group, the contents of testosterone and dihydrotestosterone in the skin were significantly lower than those in the model group (P < 0.05). No significant difference was found in serum testosterone and dihydrotestosterone levels or skin 5α reductase type Ⅱ level between the drug treatment groups and the model group. CONCLUSIONS Impatiens balsamina, Lawsonia inermis L., and Henna all have therapeutic effects on androgenetic alopecia in C57BL/6 mice. The therapeutic effect of Impatiens balsamina and Henna is possibly achieved by reducing androgen content in local skin tissue.
Collapse
Affiliation(s)
- 雨诗 郑
- />南方医科大学第三附属医院皮肤科,广东 广州 510630Department of Dermatology and Venereology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - 永轩 胡
- />南方医科大学第三附属医院皮肤科,广东 广州 510630Department of Dermatology and Venereology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - 康兴 刘
- />南方医科大学第三附属医院皮肤科,广东 广州 510630Department of Dermatology and Venereology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - 艳 卢
- />南方医科大学第三附属医院皮肤科,广东 广州 510630Department of Dermatology and Venereology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - 燕卿 胡
- />南方医科大学第三附属医院皮肤科,广东 广州 510630Department of Dermatology and Venereology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - 冼苡 周
- />南方医科大学第三附属医院皮肤科,广东 广州 510630Department of Dermatology and Venereology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| |
Collapse
|
15
|
Upadhyay DK, Sharma A, Sarma GS, Gupta GD, Rai VK. Mechanism of androgenic alopecia: Addressing speculations through empirical evidences. Dermatol Ther 2019; 32:e13120. [DOI: 10.1111/dth.13120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/23/2019] [Accepted: 10/11/2019] [Indexed: 11/29/2022]
Affiliation(s)
| | - Amit Sharma
- Department of PharmaceuticsISF College of Pharmacy Moga Punjab India
| | - Ganti S. Sarma
- Department of PharmaceuticsISF College of Pharmacy Moga Punjab India
| | | | - Vineet K. Rai
- Department of PharmaceuticsISF College of Pharmacy Moga Punjab India
| |
Collapse
|
16
|
Madaan A, Verma R, Singh AT, Jaggi M. Review of Hair Follicle Dermal Papilla cells as in vitro screening model for hair growth. Int J Cosmet Sci 2018; 40:429-450. [PMID: 30144361 DOI: 10.1111/ics.12489] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
Abstract
Hair disorders such as hair loss (alopecia) and androgen dependent, excessive hair growth (hirsutism, hypertrichosis) may impact the social and psychological well-being of an individual. Recent advances in understanding the biology of hair have accelerated the research and development of novel therapeutic and cosmetic hair growth agents. Preclinical models aid in dermocosmetic efficacy testing and claim substantiation of hair growth modulators. The in vitro models to investigate hair growth utilize the hair follicle Dermal Papilla cells (DPCs), specialized mesenchymal cells located at the base of hair follicle that play essential roles in hair follicular morphogenesis and postnatal hair growth cycles. In this review, we have compiled and discussed the extensively reported literature citing DPCs as in vitro model to study hair growth promoting and inhibitory effects. A variety of agents such as herbal and natural extracts, growth factors and cytokines, platelet-rich plasma, placental extract, stem cells and conditioned medium, peptides, hormones, lipid-nanocarrier, light, electrical and electromagnetic field stimulation, androgens and their analogs, stress-serum and chemotherapeutic agents etc. have been examined for their hair growth modulating effects in DPCs. Effects on DPCs' activity were determined from untreated (basal) or stress induced levels. Cell proliferation, apoptosis and secretion of growth factors were included as primary end-point markers. Effects on a wide range of biomolecules and mechanistic pathways that play key role in the biology of hair growth were also investigated. This consolidated and comprehensive review summarizes the up-to-date information and understanding regarding DPCs based screening models for hair growth and may be helpful for researchers to select the appropriate assay system and biomarkers. This review highlights the pivotal role of DPCs in the forefront of hair research as screening platforms by providing insights into mechanistic action at cellular level, which may further direct the development of novel hair growth modulators.
Collapse
Affiliation(s)
- Alka Madaan
- Cell Biology Lab, Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh, 201010, India
| | - Ritu Verma
- Cell Biology Lab, Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh, 201010, India
| | - Anu T Singh
- Cell Biology Lab, Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh, 201010, India
| | - Manu Jaggi
- Cell Biology Lab, Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh, 201010, India
| |
Collapse
|
17
|
Maekawa M, Ohnishi T, Balan S, Hisano Y, Nozaki Y, Ohba H, Toyoshima M, Shimamoto C, Tabata C, Wada Y, Yoshikawa T. Thiosulfate promotes hair growth in mouse model. Biosci Biotechnol Biochem 2018; 83:114-122. [PMID: 30200826 DOI: 10.1080/09168451.2018.1518705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present study describes the hair growth-promoting effects of sodium thiosulfate (STS), a widely used compound, in mice. STS accelerated hair growth in the "telogen model", suggesting that it stimulates telogen hair follicles to reenter the anagen phase of hair growth. In the same model, STS potentiated hair growth in an additive manner with minoxidil (MXD), a drug used for the treatment of androgenic alopecia. Furthermore, in the "anagen model", STS promoted hair growth, probably by promoting hair follicle proliferation. Since STS elevated the skin surface temperature, its hair growth-promoting activity may be partly due to vasorelaxation, similar to MXD. In addition, STS is known to generate a gaseous mediator, H2S, which has vasorelaxation and anti-inflammatory/anti-oxidative stress activities. Therefore, STS and/or provisionally its metabolite, H2S, may aid the hair growth process. Collectively, these results suggest that salts of thiosulfate may represent a novel and beneficial remedy for hair loss.
Collapse
Affiliation(s)
- Motoko Maekawa
- a Laboratory for Molecular Psychiatry , RIKEN Center for Brain Science , Saitama , Japan
| | - Tetsuo Ohnishi
- a Laboratory for Molecular Psychiatry , RIKEN Center for Brain Science , Saitama , Japan
| | - Shabeesh Balan
- a Laboratory for Molecular Psychiatry , RIKEN Center for Brain Science , Saitama , Japan
| | - Yasuko Hisano
- a Laboratory for Molecular Psychiatry , RIKEN Center for Brain Science , Saitama , Japan
| | - Yayoi Nozaki
- a Laboratory for Molecular Psychiatry , RIKEN Center for Brain Science , Saitama , Japan
| | - Hisako Ohba
- a Laboratory for Molecular Psychiatry , RIKEN Center for Brain Science , Saitama , Japan
| | - Manabu Toyoshima
- a Laboratory for Molecular Psychiatry , RIKEN Center for Brain Science , Saitama , Japan
| | - Chie Shimamoto
- a Laboratory for Molecular Psychiatry , RIKEN Center for Brain Science , Saitama , Japan
| | - Chinatsu Tabata
- a Laboratory for Molecular Psychiatry , RIKEN Center for Brain Science , Saitama , Japan.,b Department of Biological Sciences , Graduate School of Humanities and Sciences, Ochanomizu University , Tokyo , Japan
| | - Yuina Wada
- a Laboratory for Molecular Psychiatry , RIKEN Center for Brain Science , Saitama , Japan.,b Department of Biological Sciences , Graduate School of Humanities and Sciences, Ochanomizu University , Tokyo , Japan
| | - Takeo Yoshikawa
- a Laboratory for Molecular Psychiatry , RIKEN Center for Brain Science , Saitama , Japan
| |
Collapse
|
18
|
Characterization of minoxidil/hydroxypropyl-β-cyclodextrin inclusion complex in aqueous alginate gel useful for alopecia management: Efficacy evaluation in male rat. Eur J Pharm Biopharm 2018; 122:146-157. [DOI: 10.1016/j.ejpb.2017.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/26/2017] [Accepted: 10/23/2017] [Indexed: 01/26/2023]
|
19
|
Orliac S, Serfaty JM, Perozziello A, Zurlinden O, Louedec L, Dallaudière B. Efficacy of subcutaneous injection of platelet-rich plasma in alopecia: A clinical and histological pilot study on a rat model with a six-month long-term follow-up experience. J Cosmet Dermatol 2017; 17:214-219. [PMID: 29130636 DOI: 10.1111/jocd.12425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2017] [Indexed: 01/01/2023]
Abstract
PURPOSE To assess the potential of platelet-rich plasma (PRP) subcutaneous injection of to treat alopecia and to evaluate local toxicity. MATERIALS-METHODS Twelve Hairless rats were used. At D0, we performed systematic clinical examination and divided the rat back into four quadrants (Q). We initiated subcutaneous injection using either PRP in PRPQ+, platelet-poor plasma (PPP) in PPPQ+, physiological serum (PS) in PSQ+, or no treatment (Q4). At D7, D14, D21, and D28 but also second month (M2), M3, M4, M5, rats had exactly the same injection procedure. Follow-up with PRP efficacy and toxicity at D28 and M6 using clinical and histological evaluation was performed. RESULTS Hair density was significantly improved at D28 and at M6 for PRPQ+ vs PSQ+ (respectively, P = .0156 and P = .0313), PPPQ+ (respectively, P = .042 and P = .046). Significant histological improvement was observed between D28 and M6, for PRPQ+ vs PPPQ+ and PSQ+ for vessels (respectively, P = .0160 and P = .021), collagen (respectively, P = .0036 and P = .032), and epithelium (respectively, P = .0138 and P = .022) with no local toxicity. CONCLUSION Our study suggests that subcutaneous PRP injections using controlled concentration of platelets and leukocytes improve hair growth.
Collapse
Affiliation(s)
- Sophie Orliac
- Centre de Médecine Esthétique, Bordeaux, France.,Université Paris Diderot, Paris, France.,Unité Inserm U698, Hôpital universitaire Bichat, Paris, France
| | - Jean-Michel Serfaty
- Université Paris Diderot, Paris, France.,Unité Inserm U698, Hôpital universitaire Bichat, Paris, France.,Service de Radiologie, Hôpital universitaire Bichat, Paris, France
| | | | | | - Liliane Louedec
- Unité Inserm U698, Hôpital universitaire Bichat, Paris, France
| | - Benjamin Dallaudière
- Université Paris Diderot, Paris, France.,Unité Inserm U698, Hôpital universitaire Bichat, Paris, France.,Service de Radiologie, Hôpital universitaire Bichat, Paris, France
| |
Collapse
|