1
|
Zhang L, Qin K, Pan N, Xu H, Gong Q. Shared and distinct patterns of default mode network dysfunction in major depressive disorder and bipolar disorder: A comparative meta-analysis. J Affect Disord 2025; 368:23-32. [PMID: 39260575 DOI: 10.1016/j.jad.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND While patients with major depressive disorder (MDD) and bipolar disorder (BD) exhibited default mode network (DMN) dysfunction revealed by aberrant resting-state functional connectivity (rsFC) patterns, previous findings have been inconsistent. Little is known about the similarities and differences in DMN rsFC between MDD and BD. METHODS A voxel-wise meta-analysis of seed-based DMN rsFC studies on MDD or BD was performed using the Seed-based d Mapping software with permutation of subject images (SDM-PSI). Aberrant DMN rsFC in both disorders was investigated separately, followed by conjunction and between-disorder comparison analyses. Functional decoding was performed to implicate the psychophysiological underpinnings of derived brain abnormalities. RESULTS Thirty-four studies comparing 1316 MDD patients with 1327 HC, and 22 studies comparing 1059 BD patients with 1396 HC were included. Compared to HC, MDD patients exhibited DMN hyperconnectivity with frontolimbic systems, and hypoconnectivity with temporal lobe and posterior cingulate cortex. BD patients displayed increased DMN connectivity with bilateral precuneus, and reduced connectivity with prefrontal cortex and middle temporal gyrus. No common patterns of DMN rsFC abnormalities were observed between MDD and BD. Compared to BD, MDD patients showed DMN hyperconnectivity with triangular part of the left inferior frontal gyrus and left fusiform gyrus. Functional decoding found that patterns of DMN rsFC alteration between MDD and BD were primarily related to action and perception domains. CONCLUSION Distinct DMN dysfunction patterns in MDD and BD enhance current understanding of the neural substrates of mood disorders and may provide a potential biomarker for differentiation.
Collapse
Affiliation(s)
- Lisha Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Kun Qin
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Haoran Xu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
2
|
Mei B, Tao Q, Dang J, Niu X, Sun J, Zhang M, Wang W, Han S, Zhang Y, Cheng J. Meta-analysis of structural and functional abnormalities in behavioral addictions. Addict Behav 2024; 157:108088. [PMID: 38924904 DOI: 10.1016/j.addbeh.2024.108088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND The incidence of behavioral addictions (BAs) associated with scientific and technological advances has been increasing steadily. Unfortunately, a large number of studies on the structural and functional abnormalities have shown poor reproducibility, and it remains unclear whether different addictive behaviors share common underlying abnormalities. Therefore, our objective was to conduct a quantitative meta-analysis of different behavioral addictions to provide evidence-based evidence of common structural and functional changes. METHODS We conducted systematic searches in PubMed, Web of Science and Scopus from January 2010 to December 2023, supplementing reference lists of high-quality relevant meta-analyses and reviews, to identify eligible voxel-based morphometry (VBM) and functional magnetic resonance imaging (fMRI) studies. Using anisotropic seed-based D-Mapping (AES-SDM) meta-analysis methods, we compared brain abnormalities between BAs and healthy controls (HCs). RESULTS There were 11 GMV studies (287 BAs and 292 HCs) and 26 fMRI studies (577 BAs and 545 HCs) that met inclusion criteria. Compared with HCs, BAs demonstrated significant reductions in gray matter volume (GMV) in (1) right anterior cingulate gyri extending into the adjacent superior frontal gyrus, as well as in the left inferior frontal gyrus and right striatum. (2) the bilateral precuneus, right supramarginal gyrus, and right fusiform gyrus were hyperfunction; (3) the left medial cingulate gyrus extended to the superior frontal gyrus, the left inferior frontal gyrus, and right middle temporal gyrus had hypofunction. CONCLUSIONS Our study identified structural and functional impairments in brain regions involved in executive control, cognitive function, visual memory, and reward-driven behavior in BAs. Notably, fronto-cingulate regions may serve as common biomarkers of BAs.
Collapse
Affiliation(s)
- Bohui Mei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Qiuying Tao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Jinghan Dang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Xiaoyu Niu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Jieping Sun
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Mengzhe Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| |
Collapse
|
3
|
Skok K, Waszkiewicz N. Biomarkers of Internet Gaming Disorder-A Narrative Review. J Clin Med 2024; 13:5110. [PMID: 39274323 PMCID: PMC11396063 DOI: 10.3390/jcm13175110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Since game mechanics and their visual aspects have become more and more addictive, there is concern about the growing prevalence of Internet gaming disorder (IGD). In the current narrative review, we searched PubMed and Google Scholar databases for the keywords "igd biomarker gaming" and terms related to biomarker modalities. The biomarkers we found are grouped into several categories based on a measurement method and are discussed in the light of theoretical addiction models (tripartite neurocognitive model, I-PACE). Both theories point to gaming-related problems with salience and inhibition. The first dysfunction makes an individual more susceptible to game stimuli (raised reward seeking), and the second negatively impacts resistance to these stimuli (decreased cognitive control). The IGD patients' hypersensitivity to reward manifests mostly in ventral striatum (VS) measurements. However, there is also empirical support for a ventral-to-dorsal striatal shift and transition from goal-directed to habitual behaviors. The deficits in executive control are demonstrated in parameters related to the prefrontal cortex (PFC), especially the dorsolateral prefrontal cortex (DLPFC). In general, the connection of PFC with reward under cortex nuclei seems to be dysregulated. Other biomarkers include reduced P3 amplitudes, high-frequency heart rate variability (HRV), and the number of eye blinks and saccadic eye movements during the non-resting state. A few studies propose a diagnostic (multimodal) model of IGD. The current review also comments on inconsistencies in findings in the nucleus accumbens (NAcc), anterior cingulate cortex (ACC), and precuneus and makes suggestions for future IGD studies.
Collapse
Affiliation(s)
- Katarzyna Skok
- Faculty of Education, University of Bialystok, ul. Świerkowa 20, 15-328 Bialystok, Poland
| | - Napoleon Waszkiewicz
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Bialystok, Poland
| |
Collapse
|
4
|
Musall BC, Schweitzer ME. Editorial for "Body Satisfaction, Exercise Dependence, and White Matter Microstructure in Young Adults". J Magn Reson Imaging 2024. [PMID: 39042788 DOI: 10.1002/jmri.29539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024] Open
Affiliation(s)
- Benjamin C Musall
- Department of Diagnostic and Interventional Imaging, The University of Texas UTHealth McGovern Medical School, Houston, Texas, USA
| | - Mark E Schweitzer
- Office of the Vice President for Health Affairs Office, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
5
|
Wang L, Zhou L, Liu S, Zheng Y, Liu Q, Yu M, Lu X, Lei W, Chen G. Identification of patients with internet gaming disorder via a radiomics-based machine learning model of subcortical structures in high-resolution T1-weighted MRI. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111026. [PMID: 38735428 DOI: 10.1016/j.pnpbp.2024.111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
It is of vital importance to establish an objective and reliable model to facilitate the early diagnosis and intervention of internet gaming disorder (IGD). A total of 133 patients with IGD and 110 healthy controls (HCs) were included. We extracted radiomic features of subcortical structures in high-resolution T1-weighted MRI. Different combinations of four feature selection methods (analysis of variance, Kruskal-Wallis, recursive feature elimination and relief) and ten classification algorithms were used to identify the most robust combined models for distinguishing IGD patients from HCs. Furthermore, a nomogram incorporating radiomic signatures and independent clinical factors was developed. Calibration curve and decision curve analyses were used to evaluate the nomogram. The combination of analysis of variance selector and logistic regression classifier identified that the radiomic model constructed with 20 features from the right caudate nucleus and amygdala showed better IGD screening performance. The radiomic model produced good areas under the curves (AUCs) in the training, validation and test cohorts (AUCs of 0.961, 0.903 and 0.895, respectively). In addition, sex, internet addiction test scores and radiomic scores were included in the nomogram as independent risk factors for IGD. Analysis of the correction curve and decision curve showed that the clinical-radiomic model has good reliability (C-index: 0.987). The nomogram incorporating radiomic features of subcortical structures and clinical characteristics achieved satisfactory classification performance and could serve as an effective tool for distinguishing IGD patients from HCs.
Collapse
Affiliation(s)
- Li Wang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Li Zhou
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shengdan Liu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yurong Zheng
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qianhan Liu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Minglin Yu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaofei Lu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wei Lei
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guangxiang Chen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
6
|
Zhang M, Niu X, Tao Q, Sun J, Dang J, Wang W, Han S, Zhang Y, Cheng J. Altered intrinsic neural timescales and neurotransmitter activity in males with tobacco use disorder. J Psychiatr Res 2024; 175:446-454. [PMID: 38797041 DOI: 10.1016/j.jpsychires.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Previous researches of tobacco use disorder (TUD) has overlooked the hierarchy of cortical functions and single modality design separated the relationship between macroscopic neuroimaging aberrance and microscopic molecular basis. At present, intrinsic timescale gradient of TUD and its molecular features are not fully understood. Our study recruited 146 male subjects, including 44 heavy smokers, 50 light smokers and 52 non-smokers, then obtained their rs-fMRI data and clinical scales related to smoking. Intrinsic neural timescale (INT) method was performed to describe how long neural information was stored in a brain region by calculating the autocorrelation function (ACF) of each voxel to examine the difference in the ability of information integration among the three groups. Then, correlation analyses were conducted to explore the relationship between INT abnormalities and clinical scales of smokers. Finally, cross-modal JuSpace toolbox was used to investigate the association between INT aberrance and the expression of specific receptor/transporters. Compared to healthy controls, TUD subjects displayed decreased INT in control network (CN), default mode network (DMN), sensorimotor areas and visual cortex, and such trend of decreasing INT was more pronounced in heavy smokers. Moreover, various neurotransmitters (including dopaminergic, acetylcholine and μ-opioid receptors) were involved in the molecular mechanism of timescale decreasing and differed in heavy and light smokers. These findings supplied novel insights into the brain functional aberrance in TUD from an intrinsic neural dynamic perspective and confirm INT was a potential neurobiological marker. And also established the connection between macroscopic imaging aberrance and microscopic molecular changes in TUD.
Collapse
Affiliation(s)
- Mengzhe Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Xiaoyu Niu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Qiuying Tao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Jieping Sun
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Jinghan Dang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
7
|
Schaub AC, Meyer M, Tschopp A, Wagner A, Lang UE, Walter M, Colledge F, Schmidt A. Brain alterations in individuals with exercise dependence: A multimodal neuroimaging investigation. J Behav Addict 2024; 13:565-575. [PMID: 38842943 PMCID: PMC11220813 DOI: 10.1556/2006.2024.00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/15/2023] [Accepted: 04/25/2024] [Indexed: 06/28/2024] Open
Abstract
Background Exercise dependence (ED) is characterised by behavioural and psychological symptoms that resemble those of substance use disorders. However, it remains inconclusive whether ED is accompanied by similar brain alterations as seen in substance use disorders. Therefore, we investigated brain alterations in individuals with ED and inactive control participants. Methods In this cross-sectional neuroimaging investigation, 29 individuals with ED as assessed with the Exercise Dependence Scale (EDS) and 28 inactive control participants (max one hour exercising per week) underwent structural and functional resting-state magnetic resonance imaging (MRI). Group differences were explored using voxel-based morphometry and functional connectivity analyses. Analyses were restricted to the striatum, amygdala, and inferior frontal gyrus (IFG). Exploratory analyses tested whether relationships between brain structure and function were differently related to EDS subscales among groups. Results No structural differences were found between the two groups. However, right IFG and bilateral putamen volumes were differently related to the EDS subscales "time" and "tolerance", respectively, between the two groups. Resting-state functional connectivity was increased from right IFG to right superior parietal lobule in individuals with ED compared to inactive control participants. Furthermore, functional connectivity of the angular gyrus to the left IFG and bilateral caudate showed divergent relationships to the EDS subscale "tolerance" among groups. Discussion The findings suggest that ED may be accompanied by alterations in cognition-related brain structures, but also functional changes that may drive compulsive habitual behaviour. Further prospective studies are needed to disentangle beneficial and detrimental brain effects of ED.
Collapse
Affiliation(s)
| | - Maximilian Meyer
- Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Amos Tschopp
- Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Aline Wagner
- Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Undine E. Lang
- Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Marc Walter
- Faculty of Medicine, University of Basel, Basel, Switzerland
- Psychiatric Services Aargau, Windisch, Switzerland
| | - Flora Colledge
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Switzerland
| |
Collapse
|
8
|
Xie H, Zhang F, Gan S, Wu J, Wu B, Qin K, Wang S, Sweeney JA, Gong Q, Jia Z. Body Satisfaction, Exercise Dependence, and White Matter Microstructure in Young Adults. J Magn Reson Imaging 2024. [PMID: 38874990 DOI: 10.1002/jmri.29485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Self-body satisfaction is considered a psychological factor for exercise dependence (EXD). However, the potential neuropsychological mechanisms underlying this association remain unclear. PURPOSE To investigate the role of white matter microstructure in the association between body satisfaction and EXD. STUDY TYPE Prospective. POPULATION One hundred eight regular exercisers (age 22.11 ± 2.62 years; 58 female). FIELD STRENGTH/SEQUENCE 3.0 Tesla; diffusion-weighted echo planar imaging with 30 directions. ASSESSMENT The Body Shape Satisfaction (BSS) and Exercise Dependence Scale (EDS); whole-brain tract-based spatial statistics (TBSS) and correlational tractography analyses; average fractional anisotropy (FA) and quantitative anisotropy (QA) values of obtained tracts. STATISTICAL TESTS The whole-brain regression model, mediation analysis, and simple slope analysis. P values <0.05 were defined as statistically significant. RESULTS The BSS and EDS scores were 37.33 ± 6.32 and 68.22 ± 13.88, respectively. TBSS showed negative correlations between EDS and FA values in the bilateral corticospinal tract (CST, r = -0.41), right cingulum (r = -0.41), and left superior thalamic radiation (STR, r = -0.50). Correlational tractography showed negative associations between EDS and QA values of the left inferior frontal occipital fasciculus (r = -0.35), STR (r = -0.42), CST (r = -0.31), and right cingulum (r = -0.28). The FA values, rather than QA values, mediated the BSS-EDS association (indirect effects = 0.30). The BSS was significantly associated with the EDS score at both low (β = 1.02) and high (β = 0.43) levels of FA value, while the association was significant only at the high level of QA value (β = 1.26). DATA CONCLUSION EXD was correlated with white matter in frontal-subcortical and sensorimotor networks, and these tracts mediated the body satisfaction-EXD association. White matter microstructure could be a promising neural signature for understanding the underlying neuropsychological mechanisms of EXD. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Feifei Zhang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sanshan Gan
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jiahao Wu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Baolin Wu
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Qin
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Song Wang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - John A Sweeney
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Qiyong Gong
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
9
|
Chen P, Wang J, Tang G, Chen G, Xiao S, Guo Z, Qi Z, Wang J, Wang Y. Large-scale network abnormality in behavioral addiction. J Affect Disord 2024; 354:743-751. [PMID: 38521138 DOI: 10.1016/j.jad.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Researchers have endeavored to ascertain the network dysfunction associated with behavioral addiction (BA) through the utilization of resting-state functional connectivity (rsFC). Nevertheless, the identification of aberrant patterns within large-scale networks pertaining to BA has proven to be challenging. METHODS Whole-brain seed-based rsFC studies comparing subjects with BA and healthy controls (HC) were collected from multiple databases. Multilevel kernel density analysis was employed to ascertain brain networks in which BA was linked to hyper-connectivity or hypo-connectivity with each prior network. RESULTS Fifty-six seed-based rsFC publications (1755 individuals with BA and 1828 HC) were included in the meta-analysis. The present study indicate that individuals with BAs exhibit (1) hypo-connectivity within the fronto-parietal network (FN) and hypo- and hyper-connectivity within the ventral attention network (VAN); (2) hypo-connectivity between the FN and regions of the VAN, hypo-connectivity between the VAN and regions of the FN and default mode network (DMN), hyper-connectivity between the DMN and regions of the FN; (3) hypo-connectivity between the reward system and regions of the sensorimotor network (SS), DMN and VAN; (4) hypo-connectivity between the FN and regions of the SS, hyper-connectivity between the VAN and regions of the SS. CONCLUSIONS These findings provide impetus for a conceptual framework positing a model of BA characterized by disconnected functional coordination among large-scale networks.
Collapse
Affiliation(s)
- Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Junjing Wang
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou 510006, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shu Xiao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zixuan Guo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Jurong Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
10
|
Zheng H, Zhai T, Lin X, Dong G, Yang Y, Yuan TF. The resting-state brain activity signatures for addictive disorders. MED 2024; 5:201-223.e6. [PMID: 38359839 PMCID: PMC10939772 DOI: 10.1016/j.medj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/20/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Addiction is a chronic and relapsing brain disorder. Despite numerous neuroimaging and neurophysiological studies on individuals with substance use disorder (SUD) or behavioral addiction (BEA), currently a clear neural activity signature for the addicted brain is lacking. METHODS We first performed systemic coordinate-based meta-analysis and partial least-squares regression to identify shared or distinct brain regions across multiple addictive disorders, with abnormal resting-state activity in SUD and BEA based on 46 studies (55 contrasts), including regional homogeneity (ReHo) and low-frequency fluctuation amplitude (ALFF) or fractional ALFF. We then combined Neurosynth, postmortem gene expression, and receptor/transporter distribution data to uncover the potential molecular mechanisms underlying these neural activity signatures. FINDINGS The overall comparison between addiction cohorts and healthy subjects indicated significantly increased ReHo and ALFF in the right striatum (putamen) and bilateral supplementary motor area, as well as decreased ReHo and ALFF in the bilateral anterior cingulate cortex and ventral medial prefrontal cortex, in the addiction group. On the other hand, neural activity in cingulate cortex, ventral medial prefrontal cortex, and orbitofrontal cortex differed between SUD and BEA subjects. Using molecular analyses, the altered resting activity recapitulated the spatial distribution of dopaminergic, GABAergic, and acetylcholine system in SUD, while this also includes the serotonergic system in BEA. CONCLUSIONS These results indicate both common and distinctive neural substrates underlying SUD and BEA, which validates and supports targeted neuromodulation against addiction. FUNDING This work was supported by the National Natural Science Foundation of China and Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health.
Collapse
Affiliation(s)
- Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tianye Zhai
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Guangheng Dong
- Department of Psychology, Yunnan Normal University, Kunming 650092, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China; Institute of Mental Health and Drug Discovery, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
11
|
Qin K, Pan N, Lei D, Zhang F, Yu Y, Sweeney JA, DelBello MP, Gong Q. Common and distinct neural correlates of emotional processing in individuals at familial risk for major depressive disorder and bipolar disorder: A comparative meta-analysis. J Affect Disord 2024; 348:97-106. [PMID: 38113944 PMCID: PMC10846904 DOI: 10.1016/j.jad.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Individuals at familial risk for mood disorders exhibit deficits in emotional processing and associated brain dysfunction prior to illness onset. However, such brain-behavior abnormalities related to familial predisposition remain poorly understood. To investigate robust abnormal functional activation patterns during emotional processing in unaffected at-risk relatives of patients with major depressive disorder (UAR-MDD) and bipolar disorder (UAR-BD), we performed a meta-analysis of task-based functional magnetic resonance imaging studies using Seed-based d Mapping (SDM) toolbox. Common and distinct patterns of abnormal functional activation between UAR-MDD and UAR-BD were detected via conjunction and differential analyses. A total of 17 studies comparing 481 UAR and 670 healthy controls (HC) were included. Compared with HC, UAR-MDD exhibited hyperactivation in the parahippocampal gyrus, amygdala and cerebellum, while UAR-BD exhibited parahippocampal hyperactivation and hypoactivation in the striatum and middle occipital gyrus (MOG). Conjunction analysis revealed shared hyperactivated PHG in both groups. Differential analysis indicated that the activation patterns of amygdala and MOG significantly differed between UAR-MDD and UAR-BD. These findings provide novel insights into common and distinct neural phenotypes for familial risk and associated risk mechanisms in MDD and BD, which may have implications in guiding precise prevention strategies tailored to the family context.
Collapse
Affiliation(s)
- Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, OH, United States of America
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Du Lei
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, OH, United States of America; College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Feifei Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yifan Yu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, OH, United States of America
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, OH, United States of America
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China.
| |
Collapse
|
12
|
Zeng X, Han X, Zheng D, Jiang P, Yuan Z. Similarity and difference in large-scale functional network alternations between behavioral addictions and substance use disorder: a comparative meta-analysis. Psychol Med 2024; 54:473-487. [PMID: 38047402 DOI: 10.1017/s0033291723003434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Behavioral addiction (BA) and substance use disorder (SUD) share similarities and differences in clinical symptoms, cognitive functions, and behavioral attributes. However, little is known about whether and how functional networks in the human brain manifest commonalities and differences between BA and SUD. Voxel-wise meta-analyses of resting-state functional connectivity (rs-FC) were conducted in BA and SUD separately, followed by quantitative conjunction analyses to identify the common and distinct alterations across both the BA and SUD groups. A total of 92 datasets with 2444 addicted patients and 2712 healthy controls (HCs) were eligible for the meta-analysis. Our findings demonstrated that BA and SUD exhibited common alterations in rs-FC between frontoparietal network (FPN) and other high-level neurocognitive networks (i.e. default mode network (DMN), affective network (AN), and salience network (SN)) as well as hyperconnectivity between SN seeds and the Rolandic operculum in SSN. In addition, compared with BA, SUD exhibited several distinct within- and between-network rs-FC alterations mainly involved in the DMN and FPN. Further, altered within- and between-network rs-FC showed significant association with clinical characteristics such as the severity of addiction in BA and duration of substance usage in SUD. The common rs-FC alterations in BA and SUD exhibited the relationship with consistent aberrant behaviors in both addiction groups, such as impaired inhibition control and salience attribution. By contrast, the distinct rs-FC alterations might suggest specific substance effects on the brain neural transmitter systems in SUD.
Collapse
Affiliation(s)
- Xinglin Zeng
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, 999078, China
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Xinyang Han
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Dong Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ping Jiang
- West China Medical Publishers, West China Hospital of Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, 999078, China
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
13
|
Vitale E, Mea R. Comorbidity, Eating Behaviors and Smartphone Addiction in Italian Nurses' Characteristics. Endocr Metab Immune Disord Drug Targets 2024; 24:1431-1444. [PMID: 38317462 DOI: 10.2174/0118715303271067231129103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Evidence suggested how nurses experienced worse lifestyles than the general population by recording deterioration rates in healthy conditions. AIM To assess differences between comorbidity, eating behavior, and smartphone addiction according to sex, Body Mass Index (BMI), age, work experience, shift, alcohol assumption, and physical activity in Italian nurses. METHODS An online questionnaire was spread through some professional internet pages. Data included demographic characteristics, the Charlson Comorbidity Index (CCI), the Italian Version of the Dutch Eating Behavior Questionnaire, and the Smartphone Addiction Scale (SAS-SV). RESULTS A total of 456 nurses were recruited. Significant differences were registered in the smartphone addiction score (p=0.030) and BMI scores and work experience (p=0.001), as underweight participants reported higher scores in the smartphone addiction attitude (2.4714 ± 1.25812) than the other subjects and also participants with the highest number of years in work experience also reported higher smartphone addiction scores (2.8074 ± 1.2022). Significant difference was reported in the CCI scores according to age (p<0.001): subjects aged over 61 years recorded higher scores in the CCI (1.67 ± 1.528) and also according to work experience and CCI scores (p<0.001), as participants employed between 21 and 30 years reported higher scores in the CCI (1.27 ± 1.382) and also to night shift (p=0.037), as participants who worked during the night shift also reported higher scores in the CCI. A significant difference was reported only for restrained eating attitude (p=0.034), as participants who declared to assume alcohol 2-3 times per month recorded higher levels in this eating attitude aspect (32.32 ± 7.181). CONCLUSION Female nurses, overweight and obese nurses with low physical activity practice, seemed to spend more time with their smartphones. Healthcare organizations should consider findings to prevent unhealthy lifestyles among nurses, which could negatively influence the whole healthcare system.
Collapse
Affiliation(s)
- Elsa Vitale
- Centre of Mental Health, Modugno, Local Health Company Bari, Bari, Italy
| | - Rocco Mea
- Department of Cardiology, San Carlo Hospital, Potenza, Italy
| |
Collapse
|
14
|
Ding K, Shen Y, Liu Q, Li H. The Effects of Digital Addiction on Brain Function and Structure of Children and Adolescents: A Scoping Review. Healthcare (Basel) 2023; 12:15. [PMID: 38200921 PMCID: PMC10779052 DOI: 10.3390/healthcare12010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The escalating prevalence of studies investigating digital addiction (DA) and its detrimental impact on the human brain's structure and functionality has been noticeable in recent years. Yet, an overwhelming majority of these reviews have been predominantly geared towards samples comprising college students or adults and have only inspected a single variant of DA, such as internet gaming disorder, internet addiction disorder, problematic smartphone use, tablet overuse, and so forth. Reviews focusing on young children and adolescents (ages 0-18), or those which amalgamate various types of DA, are decidedly scarce. Given this context, summarizing the effects of DA on brain structure and functionality during the vital developmental stage (0-18 years) is of immense significance. A scoping review, complying with the PRISMA extension for such reviews, was conducted to amalgamate findings from 28 studies spanning a decade (2013-2023) and to examine the influence of assorted forms of DA on the brains of children and adolescents (0-18 years). The synthesized evidence indicated two primary results: (1) DA exerts harmful effects on the structure and functionality of the brains of children and adolescents, and (2) the prefrontal lobe is the region most consistently reported as impacted across all research. Furthermore, this review discerned a notable void of studies investigating the neural indices of digital addiction, along with a shortage of studies focusing on young children (0-6 years old) and longitudinal evidence. This research could provide the necessary theoretical basis for the thwarting and intervention of digital addiction, a measure indispensable for ensuring healthy brain development in children and adolescents.
Collapse
Affiliation(s)
- Keya Ding
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200233, China; (K.D.); (Y.S.); (Q.L.)
| | - Yining Shen
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200233, China; (K.D.); (Y.S.); (Q.L.)
| | - Qianming Liu
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200233, China; (K.D.); (Y.S.); (Q.L.)
| | - Hui Li
- Faculty of Education and Human Development, The Education University of Hong Kong, 10 Lo Ping Road, Hong Kong
| |
Collapse
|
15
|
Tian MY, Zhou XY, Liao XY, Gong K, Cheng XT, Qin C, Liu KZ, Chen J, Lei W. Brain structural alterations in internet gaming disorder: Focus on the mesocorticolimbic dopaminergic system. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110806. [PMID: 37271367 DOI: 10.1016/j.pnpbp.2023.110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
AIMS This study aimed to identify gray/white matter volume (GMV/WMV) alterations in Internet Gaming Disorder (IGD), with a special focus on the subregions of the mesocorticolimbic dopaminergic system and their clinical association. RESULTS Compared with healthy controls, IGDs showed bigger GMV in the bilateral caudate and the left nucleus accumbens (NAc), and bigger WMV in the inferior parietal lobule. The comparison of regions of interest (ROI) confirmed increased GMV in the bilateral caudate (including the dorsal anterior, body, and tail) and the left core of NAc in IGD, but no significant WMV alterations in the mesocorticolimbic dopaminergic system. GMVs in the left lateral orbital gyrus of orbitofrontal cortex (OFC) were associated with craving for games, while GMVs in the left anterior insula, right NAc, right caudate, and right OFC were associated with self-control in IGD. CONCLUSIONS IGD was accompanied by changed GMV, but not WMV, in the mesocorticolimbic dopaminergic system. GMV in the mesocorticolimbic dopaminergic system may contribute to impaired self-control and craving in IGD.
Collapse
Affiliation(s)
- Ming-Yuan Tian
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Nuclear Industry 416 Hospital, the 2nd Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xin-Yi Zhou
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Yuan Liao
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ke Gong
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Tong Cheng
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Qin
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ke-Zhi Liu
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Chen
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Wei Lei
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
16
|
Jiang W, Liu X, Xu Z, Zhou Z, Tie C, Liu X, Yang J, Li H, Lai W. Association between gaming disorder and regional homogeneity in highly involved male adult gamers: A pilot resting-state fMRI study. Brain Behav 2023; 13:e3315. [PMID: 37932960 PMCID: PMC10726794 DOI: 10.1002/brb3.3315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Gaming behavior can induce cerebral changes that may be related to the neurobiological features of gaming disorder (GD). Additionally, individuals with higher levels of depression or impulsivity are more likely to experience GD. Therefore, the present pilot study explored potential neurobiological correlates of GD in the context of depression and impulsivity, after accounting for video gaming behavior. METHODS Using resting-state functional magnetic resonance imaging (fMRI), a cross-sectional study was conducted with 35 highly involved male adult gamers to examine potential associations between GD severity and regional homogeneity (ReHo) in the entire brain. A mediation model was used to test the role of ReHo in the possible links between depression/impulsivity and GD severity. RESULTS Individuals with greater GD severity showed increased ReHo in the right Heschl's gyrus and decreased ReHo in the right hippocampus (rHip). Furthermore, depression and impulsivity were negatively correlated with ReHo in the rHip, respectively. More importantly, ReHo in the rHip was found to mediate the associations between depression/impulsivity and GD. CONCLUSIONS These preliminary findings suggest that GD severity is related to ReHo in brain regions associated with learning/memory/mood and auditory function. Higher levels of depression or impulsivity may potentiate GD through the functional activity of the hippocampus. Our findings advance our understanding of the neurobiological differences behind GD symptoms in highly involved gamers.
Collapse
Affiliation(s)
- Wen‐tao Jiang
- Department of RadiologyShenzhen Mental Health Center/Shenzhen Kangning HospitalShenzhenGuangdongChina
| | - Xia Liu
- Department of RadiologyShenzhen Mental Health Center/Shenzhen Kangning HospitalShenzhenGuangdongChina
| | - Zi‐yun Xu
- Department of RadiologyShenzhen Mental Health Center/Shenzhen Kangning HospitalShenzhenGuangdongChina
| | - Zhi‐feng Zhou
- Department of RadiologyShenzhen Mental Health Center/Shenzhen Kangning HospitalShenzhenGuangdongChina
| | - Chang‐jun Tie
- Institute of Computing TechnologyChinese Academy of SciencesBeijingChina
- Peng Cheng LaboratoryShenzhenGuangdongChina
| | - Xiao‐ying Liu
- Department of Drug DependenceShenzhen Mental Health Center/Shenzhen Kangning HospitalShenzhenGuangdongChina
| | - Ji‐hui Yang
- Department of Drug DependenceShenzhen Mental Health Center/Shenzhen Kangning HospitalShenzhenGuangdongChina
| | - Hai Li
- Beijing Intelligent Brain Cloud, Inc.BeijingChina
| | - Wen‐tao Lai
- Department of RadiologyShenzhen Mental Health Center/Shenzhen Kangning HospitalShenzhenGuangdongChina
| |
Collapse
|
17
|
Wen X, Yue L, Du Z, Li L, Zhu Y, Yu D, Yuan K. Implications of neuroimaging findings in addiction. PSYCHORADIOLOGY 2023; 3:kkad006. [PMID: 38666116 PMCID: PMC10917371 DOI: 10.1093/psyrad/kkad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 04/28/2024]
Affiliation(s)
- Xinwen Wen
- School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Lirong Yue
- School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Zhe Du
- School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Linling Li
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Yuanqiang Zhu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Dahua Yu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an 710126, China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi'an 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| |
Collapse
|
18
|
The role of the orbitofrontal cortex in exercise addiction and exercise motivation: A brain imaging study based on multimodal magnetic resonance imaging. J Affect Disord 2023; 325:240-247. [PMID: 36638963 DOI: 10.1016/j.jad.2023.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Excessive exercise may also lead to exercise addiction (EXA), which is harmful to people's physical and mental health. Behavioral and neuroimaging studies have demonstrated that addictive disorders are essentially motivational problems. However, little is known about the neuropsychological mechanism of EXA and the effects of motivation on EXA. METHODS We investigated 130 regularly exercised participants with EXA symptoms to explore the neurobiological basis of EXA and its association with motivation. The correlation between EXA and gray matter volume (GMV) was evaluated by whole-brain regression analysis based on voxel-based morphometry. Then, regional brain function was extracted and the relationship between brain structure-function-EXA was analyzed. Finally, mediation analysis was performed to further detect the relationship between the brain, motivation, and EXA. RESULTS Whole-brain correlation analyses showed that the GMV of the right orbitofrontal cortex (OFC) was negatively correlated with EXA. The function of the right OFC played an indirect role in EXA and affected EXA via the GMV of the OFC. Importantly, the GMV of the right OFC played a mediating role in the relationship between ability motivation and EXA. These results remain significant even when adjusting for sex, age, body mass index, family socioeconomic status, general intelligence, total intracranial volume, and head motion. LIMITATION The results should be interpreted carefully because only the people with EXA symptoms were included. CONCLUSION This study provided evidence for the underlying neuropsychological mechanism of the important role of the right OFC in EXA and revealed that there may be a decrease in executive control function in EXA.
Collapse
|
19
|
Sun JT, Hu B, Chen TQ, Chen ZH, Shang YX, Li YT, Wang R, Wang W. Internet addiction-induced brain structure and function alterations: a systematic review and meta-analysis of voxel-based morphometry and resting-state functional connectivity studies. Brain Imaging Behav 2023; 17:329-342. [PMID: 36899209 DOI: 10.1007/s11682-023-00762-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/12/2023]
Abstract
Internet addiction (IA) is a growing social concern and has been intensively studied in recent years. Previous imaging studies have shown that IA may impair brain structure and function, but with no robust conclusions. We conducted a systematic review and meta-analysis of neuroimaging studies in IA. Two separate meta-analyses were conducted for voxel-based morphometry (VBM) studies and resting-state functional connectivity (rsFC) studies. All meta-analyses were performed using two analysis methods activation likelihood estimation (ALE) and seed-based d mapping with permutation of subject images (SDM-PSI). The ALE analysis of VBM studies revealed less gray matter volume (GMV) in the supplementary motor area (SMA) (1176 mm3), anterior cingulate cortex (ACC) (one cluster size is 744 mm3 and the other is 688 mm3), and orbitofrontal cortex (OFC) (624 mm3) in subjects with IA. The SDM-PSI analysis showed less GMV in the ACC (56 voxels). The ALE analysis of rsFC studies showed stronger rsFC from posterior cingulate cortex (PCC) (880 mm3) or insula (712 mm3) to the whole brain in subjects with IA; however, the SDM-PSI analysis revealed no obvious rsFC alteration. These changes may underlie the core symptoms of IA, which include emotional regulation disorder, distraction, and impaired executive control. Our results reflect the common features of neuroimaging studies related to IA in recent years and may potentially help inform the development of more effective diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Jing-Ting Sun
- Department of Medical Technology, Middle section of Century Avenue, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, China.,Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Bo Hu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Tian-Qi Chen
- Institute of basic medicine, Fourth Military Medical University (Air Force Medical University, 169 Changle Road, 710032, Xi'an, Shaanxi, China
| | - Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Yu-Xuan Shang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Yu-Ting Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Rui Wang
- Military medical center, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China.
| | - Wen Wang
- Department of Medical Technology, Middle section of Century Avenue, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, China. .,Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China.
| |
Collapse
|
20
|
Montag C, Becker B. Neuroimaging the effects of smartphone (over-)use on brain function and structure-a review on the current state of MRI-based findings and a roadmap for future research. PSYCHORADIOLOGY 2023; 3:kkad001. [PMID: 38666109 PMCID: PMC10917376 DOI: 10.1093/psyrad/kkad001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 04/28/2024]
Abstract
The smartphone represents a transformative device that dramatically changed our daily lives, including how we communicate, work, entertain ourselves, and navigate through unknown territory. Given its ubiquitous availability and impact on nearly every aspect of our lives, debates on the potential impact of smartphone (over-)use on the brain and whether smartphone use can be "addictive" have increased over the last years. Several studies have used magnetic resonance imaging to characterize associations between individual differences in excessive smartphone use and variations in brain structure or function. Therefore, it is an opportune time to summarize and critically reflect on the available studies. Following this overview, we present a roadmap for future research to improve our understanding of how excessive smartphone use can affect the brain, mental health, and cognitive and affective functions.
Collapse
Affiliation(s)
- Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm 89081, Germany
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu 611731, China
| |
Collapse
|
21
|
Klugah-Brown B, Zhou X, Wang L, Gan X, Zhang R, Liu X, Song X, Zhao W, Biswal BB, Yu F, Montag C, Becker B. Associations between levels of Internet Gaming Disorder symptoms and striatal morphology-replication and associations with social anxiety. PSYCHORADIOLOGY 2022; 2:207-215. [PMID: 38665272 PMCID: PMC10917202 DOI: 10.1093/psyrad/kkac020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 04/28/2024]
Abstract
Background Brain structural alterations of the striatum have been frequently observed in internet gaming disorder (IGD); however, the replicability of the results and the associations with social-affective dysregulations such as social anxiety remain to be determined. Methods The present study combined a dimensional neuroimaging approach with both voxel-wise and data-driven multivariate approaches to (i) replicate our previous results on a negative association between IGD symptom load (assessed by the Internet Gaming Disorder Scale-Short Form) and striatal volume, (ii) extend these findings to female individuals, and (iii) employ multivariate and mediation models to determine common brain structural representations of IGD and social anxiety (assessed by the Liebowitz Social Anxiety Scale). Results In line with the original study, the voxel-wise analyses revealed a negative association between IGD and volumes of the bilateral caudate. Going beyond the earlier study investigating only male participants, the present study demonstrates that the association in the right caudate was comparable in both the male and the female subsamples. Further examination using the multivariate approach revealed regionally different associations between IGD and social anxiety with striatal density representations in the dorsal striatum (caudate) and ventral striatum (nucleus accumbens). Higher levels of IGD were associated with higher social anxiety and the association was critically mediated by the multivariate neurostructural density variations of the striatum. Conclusions Altered striatal volumes may represent a replicable and generalizable marker of IGD symptoms. However, exploratory multivariate analyses revealed more complex and regional specific associations between striatal density and IGD as well as social anxiety symptoms. Variations in both tendencies may share common structural brain representations, which mediate the association between increased IGD and social anxiety.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xinqi Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Ran Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xiqin Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xinwei Song
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Bharat B Biswal
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, 89069 Ulm, Germany
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| |
Collapse
|
22
|
García-Castro J, Cancela A, Cárdaba MAM. Neural cue-reactivity in pathological gambling as evidence for behavioral addiction: a systematic review. CURRENT PSYCHOLOGY 2022; 42:1-12. [PMID: 36373116 PMCID: PMC9638381 DOI: 10.1007/s12144-022-03915-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Increasing incidence of problem gambling has led to prioritizing the problem from the point of view of public health. Additionally, gambling disorder has been recently classified as a behavioral addiction, with implications for both its diagnosis and treatment. However, the shared neural substrate of addictions, to substances and behavioral, is still discussed. Thus, this systematic review aims to provide up-to-date knowledge from the past five years (2017-2022) concerning the neural correlates of gambling related stimuli (cue-reactivity) on the basis of a previous review (Brevers et al., Cognitive, Affective and Behavioral Neuroscience 18:718-729, 2019). A total of five studies were included in the review. Activation of brain areas related to memory, reward and executive functions could be the underlying mechanism of this behavioral addiction. Specifically, nucleus accumbens and striatum (ventral and dorsal), parahippocampal regions, the right amygdala and several prefrontal cortex regions have systematically been found more active in those subjects exposed to gambling-related cues. Also, the insula could play a pivotal role connecting these three systems in a highly integrated neural network with several implications for reward processing modulation, associative learning and top-down attentional regulation to improve saliency of addiction-related cues. These results are consistent with previous findings on other substance addictions, such as alcohol, tobacco, marijuana or cocaine. The study of neural reactivity to stimuli related to addiction could be useful as a biomarker of the severity of the disorder, the efficacy of the treatment, the risk of relapse, in addition to being an objective criterion to measure the effectiveness of prevention campaigns.
Collapse
Affiliation(s)
| | - Ana Cancela
- Universidad Villanueva, C/Costa Brava, 6 28034, Madrid, Spain
| | | |
Collapse
|
23
|
Xie H, Zhang F, Cao Y, Long X, Wu B, Gong Q, Jia Z. Brain default mode network mediates the association between negative perfectionism and exercise dependence. J Behav Addict 2022; 11:928-940. [PMID: 36112490 PMCID: PMC9872538 DOI: 10.1556/2006.2022.00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/11/2022] [Accepted: 08/19/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND AIMS Perfectionism is correlated with the occurrence of exercise dependence. We aim to reveal the role of functional connectivity (FC) between gray matter (GM) and white matter (WM) networks in the association between perfectionism and exercise dependence. METHODS In this cross-sectional study, one hundred ten participants with exercise dependence underwent behavioral evaluation and resting-state functional magnetic resonance imaging. Perfectionism and exercise dependence were quantified using the Frost Multidimensional Perfectionism Scale (FMPS) and Exercise Dependence Scale (EDS). We used a K-means clustering algorithm to identify functional GM and WM networks and obtained the FCs of the GM-GM, GM-WM, and WM-WM networks. Partial correlation and mediation analyses were performed to explore the relationships among FCs, FMPS, and EDS. RESULTS We identified ten stable GM networks and nine WM networks. Of these, FCs existed between the corona radiata network (WM1) and default mode network (DMN, GM8), WM1 network and WM DMN (WM4), WM1 network and midbrain WM network (WM7), and WM4 network and inferior longitudinal fasciculus network (WM9). The WM1-GM8 and WM1-WM4 FCs were positively correlated with the EDS and negative FMPS. The mediating effects of the WM1-GM8 and WM1-WM4 FCs were established in the association between the negative dimensional FMPS and EDS. DISCUSSION AND CONCLUSIONS The WM1 network anatomically linked the subregions within the GM8 and WM4 networks, and WM1-GM8 and WM1-WM4 FCs mediated the association between negative dimensional FMPS and EDS. These findings indicated that DMN function might be involved in the increased risks of exercise dependence promoted by negative perfectionism.
Collapse
Affiliation(s)
- Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China,Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Feifei Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China,Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China,Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Xipeng Long
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China,Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Baolin Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China,Functional and Molecular Imaging Key Laboratory of Sichuan University, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China,Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, Fujian Province, China,Corresponding authors. E-mail: ,
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China,Functional and Molecular Imaging Key Laboratory of Sichuan University, West China Hospital of Sichuan University, Chengdu, 610041, China,Corresponding authors. E-mail: ,
| |
Collapse
|
24
|
Long J, Qin K, Wu Y, Li L, Zhou J. Gray matter abnormalities and associated familial risk endophenotype in individuals with first-episode bipolar disorder: Evidence from whole-brain voxel-wise meta-analysis. Asian J Psychiatr 2022; 74:103179. [PMID: 35691059 DOI: 10.1016/j.ajp.2022.103179] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Gray matter abnormalities have been widely reported in individuals with and at familial risk for bipolar disorder (BD). However, inconsistent findings were reported, and whether shared abnormalities exist between at-risk individuals and patients which can represent an endophenotype remained unclear. This meta-analysis aimed at identifying robust patterns of gray matter changes in patients with first-episode BD (FEBD) and associated risk endophenotype of BD. A systematic literature search was performed to identify eligible voxel-based morphometry studies comparing FEBD patients and healthy controls. Findings of included studies were integrated using the Seed-based d Mapping toolbox. Common and distinct patterns of gray matter abnormalities between FEBD patients and unaffected at-risk individuals were explored. A total of 16 VBM studies comparing 411 FEBD patients and 521 controls were included. FEBD patients showed increased gray matter volume in the cerebellum, posterior cingulate cortex and striatum, and decreased gray matter volume in the medial superior frontal gyrus and gyrus rectus. No common abnormalities were identified between FEBD patients and unaffected at-risk individuals. More gray matter loss in the medial superior frontal gyrus and insula were found in FEBD patients relative to unaffected at-risk individuals. These findings revealed robust gray matter abnormalities in the cortico-striato-cerebellar and default mode network regions in FEBD, and implicated that gray matter deficits may not represent a familial risk endophenotype of BD.
Collapse
Affiliation(s)
- Jingyi Long
- Department of Radiology, Wuhan Mental Health Center, Wuhan 430012, Hubei, China; Department of Radiology, Wuhan Hospital for Psychotherapy, Wuhan 430012, Hubei, China
| | - Kun Qin
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Yong Wu
- Department of Depression, Wuhan Hospital for Psychotherapy, Wuhan 430012, Hubei, China
| | - Lu Li
- Department of Interventional Radiology, Wuhan Jinyintan Hospital, Wuhan 430023, Hubei, China.
| | - Juan Zhou
- Department of Ultrasonography, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China.
| |
Collapse
|
25
|
Solera-Gómez S, Soler-Torró JM, Sancho-Cantus D, Gadea Rodríguez R, Rubia-Ortí JEDL, Camarena Pelegrí X. Pattern of mobile phone and internet use among 11-15-years-old. ENFERMERIA CLINICA (ENGLISH EDITION) 2022; 32:270-278. [PMID: 35618238 DOI: 10.1016/j.enfcle.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/10/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To assess the pattern of problematic internet and mobile use in a sample of adolescents. METHOD Cross-sectional descriptive study in 8 primary and secondary education centres attached to a semi-rural health centre serving 21,000 inhabitants. Two-stage, cluster and systematic sampling, with a final sample size of 446 participants. Sociodemographic variables and data related to the questionnaire for mobile phone-related experiences (CERM) and questionnaire on internet-related experiences (CERI) were collected. RESULTS 446 valid surveys were obtained, 228 boys (51.1%) and 218 girls (48.9%) 11-15 years old. A total of 418 (93.7%) had their own mobile. Median mobile usage was 12h on weekdays and 10 at weekends. The most used platforms were WhatsApp (53.6%) and social media (31.4%). Criteria for problematic internet use (CERI>26) were observed in 15.7%, more in 2nd and 3rd ESO. Girls had higher CERI -interpersonal conflict scores (p=.04). Regarding mobile use, girls had higher scores in total CERM (p=.001) and CERM-communicative and emotional use (p=.001). CONCLUSIONS The results indicate early onset of problems with internet and mobile use, probably related to the accessibility of the new technologies. No parental control was observed. More problematic use of mobile and internet in second and third compulsory secondary education and higher scores in the group of girls related to communication, emotional use and interpersonal conflicts were observed. The findings can help to raise awareness of this problem, detect it early and prevent the effects of addiction to technologies in adolescents.
Collapse
Affiliation(s)
| | | | - David Sancho-Cantus
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
| | | | - José Enrique de la Rubia-Ortí
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | | |
Collapse
|
26
|
Lei D, Qin K, Pinaya WHL, Young J, Van Amelsvoort T, Marcelis M, Donohoe G, Mothersill DO, Corvin A, Vieira S, Lui S, Scarpazza C, Arango C, Bullmore E, Gong Q, McGuire P, Mechelli A. Graph Convolutional Networks Reveal Network-Level Functional Dysconnectivity in Schizophrenia. Schizophr Bull 2022; 48:881-892. [PMID: 35569019 PMCID: PMC9212102 DOI: 10.1093/schbul/sbac047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is increasingly understood as a disorder of brain dysconnectivity. Recently, graph-based approaches such as graph convolutional network (GCN) have been leveraged to explore complex pairwise similarities in imaging features among brain regions, which can reveal abstract and complex relationships within brain networks. STUDY DESIGN We used GCN to investigate topological abnormalities of functional brain networks in schizophrenia. Resting-state functional magnetic resonance imaging data were acquired from 505 individuals with schizophrenia and 907 controls across 6 sites. Whole-brain functional connectivity matrix was extracted for each individual. We examined the performance of GCN relative to support vector machine (SVM), extracted the most salient regions contributing to both classification models, investigated the topological profiles of identified salient regions, and explored correlation between nodal topological properties of each salient region and severity of symptom. STUDY RESULTS GCN enabled nominally higher classification accuracy (85.8%) compared with SVM (80.9%). Based on the saliency map, the most discriminative brain regions were located in a distributed network including striatal areas (ie, putamen, pallidum, and caudate) and the amygdala. Significant differences in the nodal efficiency of bilateral putamen and pallidum between patients and controls and its correlations with negative symptoms were detected in post hoc analysis. CONCLUSIONS The present study demonstrates that GCN allows classification of schizophrenia at the individual level with high accuracy, indicating a promising direction for detection of individual patients with schizophrenia. Functional topological deficits of striatal areas may represent a focal neural deficit of negative symptomatology in schizophrenia.
Collapse
Affiliation(s)
| | | | - Walter H L Pinaya
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Jonathan Young
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Therese Van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Machteld Marcelis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health Care Institute Eindhoven (GGzE), Eindhoven, The Netherlands
| | - Gary Donohoe
- School of Psychology & Center for Neuroimaging and Cognitive Genomics, NUI Galway University, Galway, Ireland
| | - David O Mothersill
- Psychology Department, School of Business, National College of Ireland, Dublin, Ireland
| | - Aiden Corvin
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sandra Vieira
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Cristina Scarpazza
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Department of General Psychology, University of Padova, Padova, Italy
- Padova Neuroscience Centre, University of Padova, Padova, Italy
| | - Celso Arango
- Institute of Psychiatry and Mental Health, Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañon, School of Medicine, Universidad Complutense Madrid, IiSGM, CIBERSAM, Madrid, Spain
| | - Ed Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Qiyong Gong
- To whom correspondence should be addressed; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No 37 Guo Xue Xiang, Chengdu, 610041, China; tel: 86-18980601593, fax: 028-85423503,
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| |
Collapse
|
27
|
Chen Y, Chaudhary S, Wang W, Li CSR. Gray matter volumes of the insula and anterior cingulate cortex and their dysfunctional roles in cigarette smoking. ADDICTION NEUROSCIENCE 2022; 1:100003. [PMID: 37220533 PMCID: PMC10201991 DOI: 10.1016/j.addicn.2021.100003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The salience network, including the insula and anterior cingulate cortex (ACC), has been implicated in nicotine addiction. Structural imaging studies have reported diminished insula and ACC gray matter volumes (GMVs) in smokers as compared to nonsmokers. However, it remains unclear how insula and ACC GMVs may relate to years of smoking, addiction severity, or behavioral traits known to dispose individuals to smoking. Here, with a dataset curated from the Human Connectome Project and voxel-based morphometry, we replicated the findings of smaller GMVs of the insula and medial prefrontal cortex, including the dorsal ACC and supplementary motor area (dACC/SMA), in (70 heavy < 209 light < 209 never) smokers matched in age, sex, and average daily num ber of drinks. The GMVs of the insula or dACC/SMA were not significantly correlated with years of smoking or Fagerstrom Test for Nicotine Dependence (FTND) scores. Heavy relative to never smokers demonstrated higher externalizing and internalizing scores, as evaluated by the NIH Emotion. In heavy smokers, the dACC/SMA but not insula GMV was positively correlated with both externalizing and internalizing scores. The findings together confirm volumetric changes in the salience network in heavy smokers and suggest potentially distinct dysfunctional roles of the insula and dACC/SMA in chronic smoking.
Collapse
Affiliation(s)
- Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| |
Collapse
|
28
|
Solera-Gómez S, Soler-Torró JM, Sancho-Cantus D, Gadea Rodríguez R, de la Rubia-Ortí JE, Camarena Pelegrí X. Patrón de uso del teléfono móvil e Internet en adolescentes de entre 11 y 15 años. ENFERMERIA CLINICA 2022. [DOI: 10.1016/j.enfcli.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Solly JE, Hook RW, Grant JE, Cortese S, Chamberlain SR. Structural gray matter differences in Problematic Usage of the Internet: a systematic review and meta-analysis. Mol Psychiatry 2022; 27:1000-1009. [PMID: 34642454 PMCID: PMC9054652 DOI: 10.1038/s41380-021-01315-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Problematic Usage of the Internet (PUI) has been linked to diverse structural gray matter changes in individual data studies. However, no quantitative synthesis across studies has been conducted. We aimed to identify gray matter regions showing significant spatial convergence across neuroimaging studies in PUI. We searched PubMed and PsycINFO up to 10/03/2021 and included original, cross-sectional comparative studies that examined structural gray matter imaging in PUI versus control groups; reported a whole-brain analysis; and provided peak coordinates for gray matter differences. From a total of 624 potentially relevant studies, 15 (including 355 individuals with PUI and 363 controls) were included in a meta-analysis of voxel-based morphometry studies. Anatomical likelihood estimation (ALE) meta-analysis was performed using extracted coordinates and identified significant spatial convergence in the medial/superior frontal gyri, the left anterior cingulate cortex/cingulate gyrus, and the left middle frontal/precentral gyri. Datasets contributing to these findings all indicated reduced gray matter in cases compared to controls. In conclusion, voxel-based morphometric studies indicate replicable gray matter reductions in the dorsolateral prefrontal cortex and anterior cingulate cortex in PUI, regions implicated in reward processing and top-down inhibitory control. Further studies are required to understand the nature of gray matter differences across PUI behaviors, as well as the contribution of particular mental health disorders, and the influence of variation in study and sample characteristics.
Collapse
Affiliation(s)
- Jeremy E. Solly
- grid.24029.3d0000 0004 0383 8386Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK ,grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Roxanne W. Hook
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jon E. Grant
- grid.170205.10000 0004 1936 7822Department of Psychiatry, University of Chicago, Pritzker School of Medicine, Chicago, IL USA
| | - Samuele Cortese
- grid.5491.90000 0004 1936 9297Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK ,grid.5491.90000 0004 1936 9297Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK ,grid.451387.c0000 0004 0491 7174Solent NHS Trust, Southampton, UK ,grid.240324.30000 0001 2109 4251Hassenfeld Children’s Hospital at NYU Langone, New York University Child Study Center, New York City, NY USA ,grid.4563.40000 0004 1936 8868Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Samuel R. Chamberlain
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK ,grid.5491.90000 0004 1936 9297Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK ,grid.467048.90000 0004 0465 4159Southern Health NHS Foundation Trust, Southampton, UK ,grid.450563.10000 0004 0412 9303Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
30
|
Zhang M, Gao X, Yang Z, Wen M, Huang H, Zheng R, Wang W, Wei Y, Cheng J, Han S, Zhang Y. Shared gray matter alterations in subtypes of addiction: a voxel-wise meta-analysis. Psychopharmacology (Berl) 2021; 238:2365-2379. [PMID: 34313804 DOI: 10.1007/s00213-021-05920-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/05/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Numerous studies based on voxel-based morphometry (VBM) have revealed gray matter (GM) alterations in multiple brain regions for addiction. However, findings are poorly replicated, and it remains elusive whether distinct diagnoses of addiction are underpinned by shared abnormalities. Our aim was to conduct a quantitative meta-analysis of structural neuroimaging studies investigating GM abnormalities in two main categories of addiction: substance use disorders (SUD) and behavioral addictions (BA). METHOD A systematic database search was conducted in several databases from Jan 1, 2010, to Oct 23, 2020, to identify eligible VBM studies. Meta-analysis was performed with the seed-based d mapping software package to compare alternations between individuals with addiction-related disorders and healthy controls (HC). RESULTS A total of 59 VBM studies including 2096 individuals with addiction-related disorders and 2637 HC met the inclusion criteria. Individuals with addiction-related disorders showed shared GM volume decrease in bilateral prefrontal cortex, bilateral insula, bilateral rolandic operculum, left superior temporal gyrus, and right Heschl gyrus and GM increase in right lingual gyrus and right fusiform gyrus comparing with HC (p < 0.005). Subgroup analysis found heterogeneity between SUD and BA mainly in left inferior occipital gyrus and right striatum (p < 0.005). Meta-regression revealed that GM atrophy in right anterior cingulate (r = 0.541, p = 0.03 (uncorrected)) and left inferior frontal gyrus (r = 0.595, p = 0.015) were positively correlated with higher impulsivity. CONCLUSIONS This meta-analysis identified a concordance across subtypes of addiction in terms of the brain structural changes in prefrontal and insula areas, which may relate to higher impulsivity observed across addiction diagnoses. This concordance provides an organizing model that emphasizes the importance of shared neural substrates in addiction.
Collapse
Affiliation(s)
- Mengzhe Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyu Gao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengui Yang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengmeng Wen
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiyu Huang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiping Zheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijian Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Shaoqiang Han
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yong Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
31
|
Bouchard AE, Dickler M, Renauld E, Lenglos C, Ferland F, Rouillard C, Leblond J, Fecteau S. Brain morphometry in adults with gambling disorder. J Psychiatr Res 2021; 141:66-73. [PMID: 34175744 DOI: 10.1016/j.jpsychires.2021.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/20/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Little is known regarding the brain substrates of Gambling Disorder, including surface brain morphometry, and whether these are linked to the clinical profile. A better understanding of the brain substrates will likely help determine targets to treat patients. Hence, the aim of this study was two-fold, that is to examine surface-based morphometry in 17 patients with gambling disorder as compared to norms of healthy individuals (2713 and 2790 subjects for cortical and subcortical anatomical scans, respectively) and to assess the clinical relevance of morphometry in patients with Gambling Disorder. This study measured brain volume, surface and thickness in Gambling Disorder. We compared these measures to those of a normative database that controlled for factors such as age and sex. We also tested for correlations with gambling-related behaviors, such as gambling severity and duration, impulsivity, and depressive symptoms (assessed using the South Oaks Gambling Screen, years of gambling, Barratt Impulsiveness Scale, and Beck Depression Inventory, respectively). Patients displayed thinner prefrontal and parietal cortices, greater volume and thickness of the occipital and the entorhinal cortices, and greater volume of subcortical regions as compared to the norms of healthy individuals. There were positive correlations between surface area of occipital regions and depressive symptoms. This work contributes to better characterize the brain substrates of Gambling Disorder, which appear to resemble those of substance use disorders and Internet Gaming Disorder.
Collapse
Affiliation(s)
- Amy E Bouchard
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, 2325 rue de l'Université, Quebec City, Quebec, G1V 0A6, Canada; CERVO Brain Research Centre, Centre intégré universitaire de santé et de services sociaux de la Capitale-Nationale, 2301 avenue D'Estimauville, Quebec City, Quebec, G1E 1T2, Canada.
| | - Maya Dickler
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, 2325 rue de l'Université, Quebec City, Quebec, G1V 0A6, Canada; CERVO Brain Research Centre, Centre intégré universitaire de santé et de services sociaux de la Capitale-Nationale, 2301 avenue D'Estimauville, Quebec City, Quebec, G1E 1T2, Canada.
| | - Emmanuelle Renauld
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, 2325 rue de l'Université, Quebec City, Quebec, G1V 0A6, Canada; CERVO Brain Research Centre, Centre intégré universitaire de santé et de services sociaux de la Capitale-Nationale, 2301 avenue D'Estimauville, Quebec City, Quebec, G1E 1T2, Canada.
| | - Christophe Lenglos
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, 2325 rue de l'Université, Quebec City, Quebec, G1V 0A6, Canada; CERVO Brain Research Centre, Centre intégré universitaire de santé et de services sociaux de la Capitale-Nationale, 2301 avenue D'Estimauville, Quebec City, Quebec, G1E 1T2, Canada.
| | - Francine Ferland
- Centre de réadaptation en dépendance du CIUSSS de la Capitale-Nationale, 2525 chemin de la Canardière, Quebec City, Quebec, G1J 2G3, Canada.
| | - Claude Rouillard
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, 2325 rue de l'Université, Quebec City, Quebec, G1V 0A6, Canada; Axe Neurosciences, Centre de recherche du CHU de Québec, 2705 boul. Laurier, Quebec City, Quebec, G1V 4G2, Canada.
| | - Jean Leblond
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale, 525 boul. Wilfrid-Hamel, Quebec City, Quebec, G1M 2S8, Canada.
| | - Shirley Fecteau
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, 2325 rue de l'Université, Quebec City, Quebec, G1V 0A6, Canada; CERVO Brain Research Centre, Centre intégré universitaire de santé et de services sociaux de la Capitale-Nationale, 2301 avenue D'Estimauville, Quebec City, Quebec, G1E 1T2, Canada.
| |
Collapse
|
32
|
Yan H, Li Q, Yu K, Zhao G. Large-scale network dysfunction in youths with Internet gaming disorder: a meta-analysis of resting-state functional connectivity studies. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110242. [PMID: 33434637 DOI: 10.1016/j.pnpbp.2021.110242] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/25/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Internet gaming disorder (IGD) has been defined as a specific behavioral disorder, associated with abnormal interactions among large-scale brain networks. Researchers have sought to identify the network dysfunction in IGD using resting-state functional connectivity (rsFC). However, results across studies have not reached an agreement yet and the mechanism remains unclear. The present research aimed to investigate network dysfunction in IGD through a meta-analysis of rsFC studies. Twenty-two seed-based voxel-wise rsFC studies from 25 publications (594 individuals with IGD and 496 healthy controls) were included. By categorizing seeds into seed-networks based on their location within a prior functional network parcellations, we performed a Multilevel kernel density analysis (MKDA) within each seed-network to identify which brain systems showed abnormal interaction with particular seed-network in individuals with IGD. Compared to healthy control groups, individuals with IGD exhibited significant hypoconnectivity within the default mode network, and enhanced connectivity between the default mode network and insula within the ventral attention network. IGD was also associated with increased connectivity between the ventral attention network and somatomotor regions. Furthermore, the IGD groups showed hyperconnectivity between the limbic network and regions of the frontoparietal network. The results suggest that individuals with IGD show large-scale functional network alteration which underpins their core symptoms including poor emotional competence, cue-reactivity and craving, habitual addictive behaviors and impaired executive control. Whether the compensation mechanism exists in IGD is discussed, and further research is needed. The findings provide a neurocognitive network model of IGD, which may serve as functional biomarkers for IGD and have potentials for development of effective diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Haijiang Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Qi Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, China
| | - Kai Yu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Guozhen Zhao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
33
|
Zhang F, Wang S, Feng Y, Qin K, Li H, Wu B, Jia Z, Gong Q. Regional gray matter volume associated with exercise dependence: A voxel-based morphometry study. Hum Brain Mapp 2021; 42:4857-4868. [PMID: 34236128 PMCID: PMC8449116 DOI: 10.1002/hbm.25585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 06/07/2021] [Accepted: 06/26/2021] [Indexed: 02/05/2023] Open
Abstract
Although regular physical exercise has multiple positive benefits for the general population, excessive exercise may lead to exercise dependence (EXD), which is harmful to one's physical and mental health. Increasing evidence suggests that stress is a potential risk factor for the onset and development of EXD. However, little is known about the neural substrates of EXD and the underlying neuropsychological mechanism by which stress affects EXD. Herein, we investigate these issues in 86 individuals who exercise regularly by estimating their cortical gray matter volume (GMV) utilizing a voxel‐based morphometry method based on structural magnetic resonance imaging. Whole‐brain correlation analyses and prediction analyses showed negative relationships between EXD and GMV of the right orbitofrontal cortex (OFC), left subgenual cingulate gyrus (sgCG), and left inferior parietal lobe (IPL). Furthermore, mediation analyses found that the GMV of the right OFC was an important mediator between stress and EXD. Importantly, these results remained significant even when adjusting for sex, age, body mass index, family socioeconomic status, general intelligence and total intracranial volume, as well as depression and anxiety. Collectively, the results of the present study provide crucial evidence of the neuroanatomical basis of EXD and reveal a potential neuropsychological pathway in predicting EXD in which GMV mediates the relationship between stress and EXD.
Collapse
Affiliation(s)
- Feifei Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yang Feng
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Huiru Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Baolin Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China.,Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Krueger RF, Hobbs KA, Conway CC, Dick DM, Dretsch MN, Eaton NR, Forbes MK, Forbush KT, Keyes KM, Latzman RD, Michelini G, Patrick CJ, Sellbom M, Slade T, South S, Sunderland M, Tackett J, Waldman I, Waszczuk MA, Wright AG, Zald DH, Watson D, Kotov R. Validity and utility of Hierarchical Taxonomy of Psychopathology (HiTOP): II. Externalizing superspectrum. World Psychiatry 2021; 20:171-193. [PMID: 34002506 PMCID: PMC8129870 DOI: 10.1002/wps.20844] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Hierarchical Taxonomy of Psychopathology (HiTOP) is an empirical effort to address limitations of traditional mental disorder diagnoses. These include arbitrary boundaries between disorder and normality, disorder co-occurrence in the modal case, heterogeneity of presentation within dis-orders, and instability of diagnosis within patients. This paper reviews the evidence on the validity and utility of the disinhibited externalizing and antagonistic externalizing spectra of HiTOP, which together constitute a broad externalizing superspectrum. These spectra are composed of elements subsumed within a variety of mental disorders described in recent DSM nosologies, including most notably substance use disorders and "Cluster B" personality disorders. The externalizing superspectrum ranges from normative levels of impulse control and self-assertion, to maladaptive disinhibition and antagonism, to extensive polysubstance involvement and personality psychopathology. A rich literature supports the validity of the externalizing superspectrum, and the disinhibited and antagonistic spectra. This evidence encompasses common genetic influences, environmental risk factors, childhood antecedents, cognitive abnormalities, neural alterations, and treatment response. The structure of these validators mirrors the structure of the phenotypic externalizing superspectrum, with some correlates more specific to disinhibited or antagonistic spectra, and others relevant to the entire externalizing superspectrum, underlining the hierarchical structure of the domain. Compared with traditional diagnostic categories, the externalizing superspectrum conceptualization shows improved utility, reliability, explanatory capacity, and clinical applicability. The externalizing superspectrum is one aspect of the general approach to psychopathology offered by HiTOP and can make diagnostic classification more useful in both research and the clinic.
Collapse
Affiliation(s)
| | - Kelsey A. Hobbs
- Department of PsychologyUniversity of MinnesotaMinneapolisMNUSA
| | | | - Danielle M. Dick
- Department of PsychologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Michael N. Dretsch
- US Army Medical Research Directorate ‐ WestWalter Reed Army Institute of Research, Joint Base Lewis‐McChordWAUSA
| | | | - Miriam K. Forbes
- Centre for Emotional Health, Department of PsychologyMacquarie UniversitySydneyNSWAustralia
| | | | | | | | - Giorgia Michelini
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCAUSA
| | | | - Martin Sellbom
- Department of PsychologyUniversity of OtagoDunedinNew Zealand
| | - Tim Slade
- Matilda Centre for Research in Mental Health and Substance UseUniversity of SydneySydneyNSWAustralia
| | - Susan C. South
- Department of Psychological SciencesPurdue UniversityWest LafayetteINUSA
| | - Matthew Sunderland
- Matilda Centre for Research in Mental Health and Substance UseUniversity of SydneySydneyNSWAustralia
| | | | - Irwin Waldman
- Department of PsychologyEmory UniversityAtlantaGAUSA
| | | | | | - David H. Zald
- Department of PsychologyVanderbilt UniversityNashvilleTNUSA
| | - David Watson
- Department of PsychologyUniversity of Notre DameNotre DameINUSA
| | - Roman Kotov
- Department of PsychiatryStony Brook UniversityStony BrookNYUSA
| | | |
Collapse
|
35
|
Chen S, Wang M, Dong H, Wang L, Jiang Y, Hou X, Zhuang Q, Dong GH. Internet gaming disorder impacts gray matter structural covariance organization in the default mode network. J Affect Disord 2021; 288:23-30. [PMID: 33839555 DOI: 10.1016/j.jad.2021.03.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Although previous studies have revealed that dysfunctional brain organization is associated with internet gamingdisorder (IGD), the neuroanatomical basis that underlies IGD remains elusive. In this work, we aimed to investigate gray matter (GM) volume alterations and structural covariance patterns in relation to IGD severity. METHODS Structural magnetic resonance imaging data were acquired from two hundred and thirty young adults encompassing a wide range of IGD severity. Voxel-based morphometry (VBM) analysis was applied to examine GM volume changes associated with IGD severity. Furthermore, the organization of whole-brain structural covariance network (SCN) was analyzed using the regions identified as seeds from VBM analysis. RESULTS Individuals with greater IGD severity had increased GM volumes in the midline components of the default mode network (DMN), namely, the right medial prefrontal cortex (mPFC) and precuneus. More importantly, the SCN results revealed impaired patterns of structural covariance between the DMN-related regions and areas associated with visuospatial attention and reward craving processing as the addiction severity of IGD worsened. LIMITATIONS Only young Chinese adults were enrolled in our study andthe extent to which findings generalize to samples in other age groups and diverse cultures is unclear. CONCLUSIONS These results showed volume expansion of the DMN components and its weakened structural association with visuospatial attention and motivational craving regions with increasing IGD severity. This study deepens our understanding of the underlying neuroanatomical correlates of IGD, which may help to explain why some individuals are more vulnerable to compulsive gaming usage than others.
Collapse
Affiliation(s)
- Shuaiyu Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Min Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Haohao Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Lingxiao Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Yuchao Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Xin Hou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qian Zhuang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
36
|
Pan N, Wang S, Zhao Y, Lai H, Qin K, Li J, Biswal BB, Sweeney JA, Gong Q. Brain gray matter structures associated with trait impulsivity: A systematic review and voxel-based meta-analysis. Hum Brain Mapp 2021; 42:2214-2235. [PMID: 33599347 PMCID: PMC8046062 DOI: 10.1002/hbm.25361] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/27/2020] [Accepted: 01/22/2021] [Indexed: 02/05/2023] Open
Abstract
Trait impulsivity is a multifaceted personality characteristic that contributes to maladaptive life outcomes. Although a growing body of neuroimaging studies have investigated the structural correlates of trait impulsivity, the findings remain highly inconsistent and heterogeneous. Herein, we performed a systematic review to depict an integrated delineation of gray matter (GM) substrates of trait impulsivity and a meta-analysis to examine concurrence across previous whole-brain voxel-based morphometry studies. The systematic review summarized the diverse findings in GM morphometry in the past literature, and the quantitative meta-analysis revealed impulsivity-related volumetric GM alterations in prefrontal, temporal, and parietal cortices. In addition, we identified the modulatory effects of age and gender in impulsivity-GM volume associations. The present study advances understanding of brain GM morphometry features underlying trait impulsivity. The findings may have practical implications in the clinical diagnosis of and intervention for impulsivity-related disorders.
Collapse
Affiliation(s)
- Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional & Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional & Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
| | - Yajun Zhao
- School of Education and PsychologySouthwest Minzu UniversityChengduChina
| | - Han Lai
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional & Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional & Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
| | - Jingguang Li
- College of Teacher EducationDali UniversityDaliChina
| | - Bharat B. Biswal
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
| | - John A. Sweeney
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Department of PsychiatryUniversity of CincinnatiCincinnatiOhioUSA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional & Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
37
|
Tóth G, Kapus K, Hesszenberger D, Pohl M, Kósa G, Kiss J, Pusch G, Fejes É, Tibold A, Feher G. Prevalence and Risk Factors of Internet Addiction among Hungarian High School Teachers. Life (Basel) 2021; 11:194. [PMID: 33802530 PMCID: PMC8000611 DOI: 10.3390/life11030194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/08/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
The extensive availability of internet has led to the the recognition of problematic internet use (so called internet addiction, IA) mostly involving adolescents. There is limited data about the prevalence of IA in adults. Here we present a study focusing on the prevalence and risk factors of internet addiction among high school teachers. Overall 2500 paper-based questionnaires were successfully delivered and 1817 responses received (response rate of 72.7%). In our study 1194 females (65.7%) and 623 males (34.3%) participated. In a multivariate analysis including of all factors (demographic data, internet habits, comorbidity etc.) age <35 years (OR: 6.098, CI: 5.09-7.08, p < 0.001), male gender (OR = 5.413, CI: 4.39-6.18, p = 0.002), surfing on the internet > 5 h daily (OR 2.568, CI: 2.03-3.39, p < 0.001), having no children (OR: 1.353, CI: 1.13-1.99, p = 0.0248), and having secondary employment (OR = 11.377, CI: 8.67-13.07, p = 0.001) were significantly associated with internet addiction. This is the first study from Hungary showing the prevalence and risk factors of internet addiction among high school teachers. A small, but significant proportion suffered from IA. Our study also draws attention to the risk factors of IA such as younger age, family status and working type.
Collapse
Affiliation(s)
- Gábor Tóth
- Centre for Occupational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.T.); (K.K.); (M.P.); (G.K.); (J.K.); (É.F.); (A.T.)
- Szent Rókus Hospital, 6500 Baja, Hungary
| | - Krisztian Kapus
- Centre for Occupational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.T.); (K.K.); (M.P.); (G.K.); (J.K.); (É.F.); (A.T.)
| | - David Hesszenberger
- Department of Laboratory Medicine, Medical School, University of Pecs, 7624 Pécs, Hungary;
| | - Marietta Pohl
- Centre for Occupational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.T.); (K.K.); (M.P.); (G.K.); (J.K.); (É.F.); (A.T.)
| | - Gábor Kósa
- Centre for Occupational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.T.); (K.K.); (M.P.); (G.K.); (J.K.); (É.F.); (A.T.)
| | - Julianna Kiss
- Centre for Occupational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.T.); (K.K.); (M.P.); (G.K.); (J.K.); (É.F.); (A.T.)
| | - Gabriella Pusch
- Department of Neurology, Medical School, University of Pecs, 7624 Pécs, Hungary;
| | - Éva Fejes
- Centre for Occupational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.T.); (K.K.); (M.P.); (G.K.); (J.K.); (É.F.); (A.T.)
- Hospital of Komlo, 7300 Komlo, Hungary
| | - Antal Tibold
- Centre for Occupational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.T.); (K.K.); (M.P.); (G.K.); (J.K.); (É.F.); (A.T.)
| | - Gergely Feher
- Centre for Occupational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.T.); (K.K.); (M.P.); (G.K.); (J.K.); (É.F.); (A.T.)
- Neurology Outpatient Clinic, EÜ-MED KFT, 7300 Komló, Hungary
| |
Collapse
|
38
|
Toth G, Kapus K, Hesszenberger D, Pohl M, Kosa G, Kiss J, Pusch G, Fejes E, Tibold A, Feher G. Internet Addiction and Burnout in A Single Hospital: Is There Any Association? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020615. [PMID: 33450812 PMCID: PMC7828215 DOI: 10.3390/ijerph18020615] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/27/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
The extensive availability of the internet has led to the recognition of problematic internet use, the so-called Internet Addiction (IA), mostly involving adolescents. Burnout can lead to substance abuse or addictive behaviour (such as internet addiction) as a coping method. There are insufficient data about internet addiction and its possible association with burnout in adults, especially among healthcare workers. The aim of our present study was to focus on prevalence and the risk factors of internet addiction and its possible association with burnout among healthcare workers in a single hospital applying a questionnaire-based survey. In total, 49 doctors (10.1%), 198 nurses (40.9%), 123 medical assistant (25.4%), 73 other healthcare workers (15.1%), and 42 (1.7%) healthcare associated workers (cleaning, laundry, etc.) have completed our survey. In a multivariate analysis, IA was associated with age between 18 and 25 (OR: 2.6, p = 0.024), surfing on the internet >5 h daily (OR 25.583, p < 0.001), being single (OR: 4.275, p = 0.006), being childless (OR: 3.81, p = 0.011), working less than five years (OR 2.135, p = 0.048) and job type (being healthcare associated worker, OR: 2.907, p = 0.009). Illicit drug intake (OR 52.494, p < 0.001), and diabetes (OR: 4.122, p = 0.043) were also significantly associated with internet addiction. No association of burnout and IA could be found. A small but significant proportion of our healthcare workers suffered from IA, which was associated with substance abuse and diabetes in multivariate analysis. Our study also draws attention to the risk factors of IA such as younger age, family status, working type and working hours internet use. The possible association of burnout and IA merits further investigation.
Collapse
Affiliation(s)
- Gabor Toth
- Centre for Occupational Medicine, Medical School, University of Pécs, 7627 Pécs, Hungary; (G.T.); (K.K.); (M.P.); (G.K.); (J.K.); (E.F.); (A.T.)
- Szent Rókus Hospital, 1085 Baja, Hungary
| | - Krisztian Kapus
- Centre for Occupational Medicine, Medical School, University of Pécs, 7627 Pécs, Hungary; (G.T.); (K.K.); (M.P.); (G.K.); (J.K.); (E.F.); (A.T.)
| | - David Hesszenberger
- Department of Laboratory Medicine, Medical School, University of Pecs, 7627 Pécs, Hungary;
| | - Marietta Pohl
- Centre for Occupational Medicine, Medical School, University of Pécs, 7627 Pécs, Hungary; (G.T.); (K.K.); (M.P.); (G.K.); (J.K.); (E.F.); (A.T.)
| | - Gabor Kosa
- Centre for Occupational Medicine, Medical School, University of Pécs, 7627 Pécs, Hungary; (G.T.); (K.K.); (M.P.); (G.K.); (J.K.); (E.F.); (A.T.)
| | - Julianna Kiss
- Centre for Occupational Medicine, Medical School, University of Pécs, 7627 Pécs, Hungary; (G.T.); (K.K.); (M.P.); (G.K.); (J.K.); (E.F.); (A.T.)
| | - Gabriella Pusch
- Department of Neurology, Medical School, University of Pecs, 7627 Pécs, Hungary;
| | - Eva Fejes
- Centre for Occupational Medicine, Medical School, University of Pécs, 7627 Pécs, Hungary; (G.T.); (K.K.); (M.P.); (G.K.); (J.K.); (E.F.); (A.T.)
- Hospital of Komlo, 7300 Komlo, Hungary
| | - Antal Tibold
- Centre for Occupational Medicine, Medical School, University of Pécs, 7627 Pécs, Hungary; (G.T.); (K.K.); (M.P.); (G.K.); (J.K.); (E.F.); (A.T.)
| | - Gergely Feher
- Centre for Occupational Medicine, Medical School, University of Pécs, 7627 Pécs, Hungary; (G.T.); (K.K.); (M.P.); (G.K.); (J.K.); (E.F.); (A.T.)
- Neurology Outpatient Clinic, EÜ-MED KFT, 7300 Komlo, Hungary
- Correspondence: ; Tel.: +36-72518-523; Fax: 36-72518-521
| |
Collapse
|
39
|
Lee HK. Prerequisites for stakeholder framework: Consumer advocacy and health protection in the digital industry. •. J Behav Addict 2020; 9:898-902. [PMID: 33325840 PMCID: PMC8969714 DOI: 10.1556/2006.2020.00095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 11/21/2022] Open
Abstract
The World Health Organization (WHO) included gaming disorders in International Classification of Disease-11th (ICD-11) on May 25, 2019. Since then, some academics and the gaming industry have continued to argue over the health system's response to online addictive behaviors. Under these circumstances, a framework involving groups representing various interests is needed to derive a reasonable solution to the dispute over the inclusion of gaming disorders in ICD-11. For this framework to work effectively, it is necessary to agree on consistent and advanced research findings that harms related to the excessive use of digital devices or content continue to occur empirically all over the world and that addictive use constitutes a primary addictive disorder. The problematic risk taking involving emerging technologies may include not only health risks from addictive use, but also more general harms associated with digital ethics and norms such as privacy and transparent money transactions. An understanding of a public health model of addiction is required to reduce harms associated with online addictive behavior that exist behind risk taking. Such harms are also mediated by excessive use, excessive money spending, and exposure to addictive content such as violence and pornography. Major stakeholders and their roles can be derived more effectively based on these conceptual models and parameters of harms. In conclusion, the context of the proposed stakeholder framework should be further optimized on the basis of two principles: (1) advocating consumer rights as a general and standard approach to digital products; and (2) protecting consumers' health from harms related to addictive behaviors.
Collapse
Affiliation(s)
- Hae Kook Lee
- Department of Psychiatry, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, South Korea,Corresponding author.
| |
Collapse
|
40
|
Zhou X, Wu R, Liu C, Kou J, Chen Y, Pontes HM, Yao D, Kendrick KM, Becker B, Montag C. Higher levels of (Internet) Gaming Disorder symptoms according to the WHO and APA frameworks associate with lower striatal volume. J Behav Addict 2020; 9:598-605. [PMID: 33010145 PMCID: PMC8943682 DOI: 10.1556/2006.2020.00066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND AIMS Growing concerns about the addictive nature of Internet and computer games led to the preliminary recognition of Internet Gaming Disorder (IGD) as an emerging disorder by the American Psychiatric Association (APA) and the official recognition of Gaming Disorder (GD) as a new diagnosis by the World Health Organization (WHO). While the definition of clear diagnostic criteria for (I)GD represents an important step for diagnosis and treatment of the disorder, potential neurobiological correlates of the criteria remain to be explored. METHODS The present study employed a dimensional Magnetic Resonance Imaging (MRI) approach to determine associations between (I)GD symptom-load according to the APA and WHO diagnostic frameworks and brain structure in a comparably large sample of n = 82 healthy subjects. RESULTS Higher symptom-load on both, the APA and WHO diagnostic frameworks convergently associated with lower volumes of the striatum. DISCUSSION The results from this exploratory study provide the first initial evidence for a neurobiological foundation of the proposed diagnostic criteria for (I)GD according to both diagnostic classification systems and suggest that the transition from non-disordered to disordered gaming may be accompanied by progressive neuroplastic changes in the striatum, thus resembling progressive changes in other addictive disorders. CONCLUSIONS The proposed (I)GD criteria in both diagnostic systems were associated with neurostructural alterations in the striatum, suggesting an association with progressive changes in the motivational systems of the brain.
Collapse
Affiliation(s)
- Xinqi Zhou
- The Clinical Hospital of the Chengdu Brain Science Institute, Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Renjing Wu
- The Clinical Hospital of the Chengdu Brain Science Institute, Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Congcong Liu
- The Clinical Hospital of the Chengdu Brain Science Institute, Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Kou
- The Clinical Hospital of the Chengdu Brain Science Institute, Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanshu Chen
- The Clinical Hospital of the Chengdu Brain Science Institute, Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Halley M. Pontes
- School of Psychological Sciences, University of Tasmania, TAS 7250Launceston, Australia,The International Cyberpsychology and Addictions Research Laboratory (iCARL), University of Tasmania, Launceston, TAS 7250, Australia
| | - Dezhong Yao
- The Clinical Hospital of the Chengdu Brain Science Institute, Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M. Kendrick
- The Clinical Hospital of the Chengdu Brain Science Institute, Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Clinical Hospital of the Chengdu Brain Science Institute, Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China,Corresponding authors. ,
| | - Christian Montag
- The Clinical Hospital of the Chengdu Brain Science Institute, Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China,Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany,Corresponding authors. ,
| |
Collapse
|