1
|
Al Hakeem WG, Cason EE, Adams D, Fathima S, Shanmugasundaram R, Lourenco J, Selvaraj RK. Characterizing the Effect of Campylobacter jejuni Challenge on Growth Performance, Cecal Microbiota, and Cecal Short-Chain Fatty Acid Concentrations in Broilers. Animals (Basel) 2024; 14:473. [PMID: 38338116 PMCID: PMC10854649 DOI: 10.3390/ani14030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This study aimed to understand the effect of C. jejuni challenge on the cecal microbiota and short-chain fatty acid (SCFA) concentration to form a better understanding of the host-pathogen interaction. Sixty broilers were randomly allocated into two treatments: control and challenge. Each treatment was replicated in six pens with five birds per pen. On day 21, birds in the challenge group were orally gavaged with 1 × 108C. jejuni/mL, while the control group was mock challenged with PBS. The C. jejuni challenge had no effect on body weight, feed intake, and feed conversion ratio compared to the control group. On day 28, the C. jejuni challenge decreased the observed features and Shannon index compared to the control group. On the species level, the C. jejuni challenge decreased (p = 0.02) the relative abundance of Sellimonas intestinalis on day 28 and increased (p = 0.04) the relative abundance of Faecalibacterium sp002160895 on day 35 compared to the control group. The C. jejuni challenge did not change the microbial function and the cecal concentrations of SCFA on days 28 and 35 compared to the control group. In conclusion, C. jejuni might alter the gut microbiota's composition and diversity without significantly compromising broilers' growth.
Collapse
Affiliation(s)
- Walid G. Al Hakeem
- Department of Poultry Science, The University of Georgia, Athens, GA 3060, USA; (W.G.A.H.); (E.E.C.); (D.A.); (S.F.)
| | - Emily E. Cason
- Department of Poultry Science, The University of Georgia, Athens, GA 3060, USA; (W.G.A.H.); (E.E.C.); (D.A.); (S.F.)
| | - Daniel Adams
- Department of Poultry Science, The University of Georgia, Athens, GA 3060, USA; (W.G.A.H.); (E.E.C.); (D.A.); (S.F.)
| | - Shahna Fathima
- Department of Poultry Science, The University of Georgia, Athens, GA 3060, USA; (W.G.A.H.); (E.E.C.); (D.A.); (S.F.)
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Athens, GA 30605, USA;
| | - Jeferson Lourenco
- Department of Animal and Dairy Science, The University of Georgia, Athens, GA 30602, USA
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 3060, USA; (W.G.A.H.); (E.E.C.); (D.A.); (S.F.)
| |
Collapse
|
2
|
Courtice JM, Ahmad TB, Wei C, Mahdi LK, Palmieri C, Juma S, Groves PJ, Hancock K, Korolik V, Petrovsky N, Kotiw M. Detection, characterization, and persistence of Campylobacter hepaticus, the cause of spotty liver disease in layer hens. Poult Sci 2023; 102:102462. [PMID: 37209651 PMCID: PMC10209450 DOI: 10.1016/j.psj.2022.102462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 12/08/2022] [Accepted: 12/25/2022] [Indexed: 02/04/2023] Open
Abstract
A Campylobacter species was first described as the etiological agent of Spotty Liver Disease (SLD) in 2015 and subsequently named as Campylobacter hepaticus in 2016. The bacterium predominantly affects barn and/or free-range hens at peak lay, is fastidious and difficult to isolate, which has impeded elucidation of its sources, means of persistence and transmission. Ten farms from South-Eastern Australia, of which 7 were free range entities participated in the study. A total of 1,404 specimens from layers and 201 from environmental sources, were examined for the presence of C. hepaticus. In this study, our principal findings included the continuing detection of C. hepaticus infection in a flock following an outbreak, indicating a possible transition of infected hens to asymptomatic carriers, that was also characterized by no further occurrence of SLD in the flock. We also report that the first outbreaks of SLD on newly commissioned free-range farms affected layers ranging from 23 to 74 wk of age, while subsequent outbreaks in replacement flocks on these farms occurred during the more conventional peak lay period (23-32 wk of age). Finally, we report that in the on-farm environment, C. hepaticus DNA was detected in layer feces, inert elements such as stormwater, mud, soil, as well as in fauna such as flies, red mites, Darkling beetles, and rats. While in off-farm locations, the bacterium was detected in feces from a variety of wild birds and a canine.
Collapse
Affiliation(s)
- Jodi M Courtice
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Tarek B Ahmad
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Chuanyu Wei
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Layla K Mahdi
- University of South Australia, UniSA Clinical and Health Sciences, SA, Australia
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, QLD, Australia
| | - Sarah Juma
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Peter J Groves
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Kerry Hancock
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Victoria Korolik
- The Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Nikolai Petrovsky
- Flinders Medical Centre, Flinders University, Bedford Park, SA, Australia
| | - Michael Kotiw
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia.
| |
Collapse
|
3
|
Hu Y, Wu W. Application of Membrane Filtration to Cold Sterilization of Drinks and Establishment of Aseptic Workshop. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:89-106. [PMID: 36933166 PMCID: PMC10024305 DOI: 10.1007/s12560-023-09551-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/27/2023] [Indexed: 06/01/2023]
Abstract
Aseptic packaging of high quality beverage is necessary and its cold-pasteurization or sterilization is vital. Studies on application of ultrafiltration or microfiltration membrane to cold- pasteurization or sterilization for the aseptic packaging of beverages have been reviewed. Designing and manufacturing ultrafiltration or microfiltration membrane systems for cold-pasteurization or sterilization of beverage are based on the understanding of size of microorganisms and theoretical achievement of filtration. It is concluded that adaptability of membrane filtration, especially its combination with other safe cold method, to cold- pasteurization and sterilization for the aseptic packaging of beverages should be assured without a shadow of doubt in future.
Collapse
Affiliation(s)
- Yunhao Hu
- College of Food Science, Southwest University, No.2 Tian Shengqiao, Beibei, Chongqing, People's Republic of China
| | - Wenbiao Wu
- College of Food Science, Southwest University, No.2 Tian Shengqiao, Beibei, Chongqing, People's Republic of China.
- Research Center of Grains, Oils and Foods Engineering Design, Industrial Research Institute, Southwest University, No.2 Tian Shengqiao, Beibei, Chongqing, People's Republic of China.
| |
Collapse
|
4
|
Gharbi M, Béjaoui A, Hamrouni S, Arfaoui A, Maaroufi A. Persistence of Campylobacter spp. in Poultry Flocks after Disinfection, Virulence, and Antimicrobial Resistance Traits of Recovered Isolates. Antibiotics (Basel) 2023; 12:antibiotics12050890. [PMID: 37237793 DOI: 10.3390/antibiotics12050890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
To investigate the persistence risk of Campylobacter spp. in poultry farms, and to study the virulence and antimicrobial resistance characteristics in the recovered strains, we collected 362 samples from breeding hen flocks, before and after disinfection. The virulence factors were investigated by targeting the genes; flaA, cadF, racR, virB11, pldA, dnaJ, cdtA, cdtB, cdtC, ciaB, wlaN, cgtB, and ceuE by PCR. Antimicrobial susceptibility was tested and genes encoding antibiotic resistance were investigated by PCR and MAMA-PCR. Among the analyzed samples, 167 (46.13%) were positive for Campylobacter. They were detected in 38.7% (38/98) and 3% (3/98) of environment samples before and after disinfection, respectively, and in 126 (75.9%) out of 166 feces samples. In total, 78 C. jejuni and 89 C. coli isolates were identified and further studied. All isolates were resistant to macrolids, tetracycline, quinolones, and chloramphenicol. However, lower rates were observed for beta-lactams [ampicillin (62.87%), amoxicillin-clavulanic acid (47.3%)] and gentamicin (0.6%). The tet(O) and the cmeB genes were detected in 90% of resistant isolates. The blaOXA-61 gene and the specific mutations in the 23S rRNA were detected in 87% and 73.5% of isolates, respectively. The A2075G and the Thr-86-Ile mutations were detected in 85% and 73.5% of macrolide and quinolone-resistant isolates, respectively. All isolates carried the flaA, cadF, CiaB, cdtA, cdtB, and cdtC genes. The virB11, pldA, and racR genes were frequent in both C. jejuni (89%, 89%, and 90%, respectively) and C. coli (89%, 84%, and 90%). Our findings highlight the high occurrence of Campylobacter strains exhibiting antimicrobial resistance with potential virulence traits in the avian environment. Thus, the improvement of biosecurity measures in poultry farms is essential to control bacterial infection persistence and to prevent the spread of virulent and resistant strains.
Collapse
Affiliation(s)
- Manel Gharbi
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Awatef Béjaoui
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Safa Hamrouni
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Amel Arfaoui
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Abderrazak Maaroufi
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| |
Collapse
|
5
|
Al Hakeem WG, Acevedo Villanueva KY, Selvaraj RK. The Development of Gut Microbiota and Its Changes Following C. jejuni Infection in Broilers. Vaccines (Basel) 2023; 11:595. [PMID: 36992178 PMCID: PMC10056385 DOI: 10.3390/vaccines11030595] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The gut is home to more than millions of bacterial species. The gut bacteria coexist with the host in a symbiotic relationship that can influence the host's metabolism, nutrition, and physiology and even module various immune functions. The commensal gut microbiota plays a crucial role in shaping the immune response and provides a continuous stimulus to maintain an activated immune system. The recent advancements in high throughput omics technologies have improved our understanding of the role of commensal bacteria in developing the immune system in chickens. Chicken meat continues to be one of the most consumed sources of protein worldwide, with the demand expected to increase significantly by the year 2050. Yet, chickens are a significant reservoir for human foodborne pathogens such as Campylobacter jejuni. Understanding the interaction between the commensal bacteria and C. jejuni is essential in developing novel technologies to decrease C. jejuni load in broilers. This review aims to provide current knowledge of gut microbiota development and its interaction with the immune system in broilers. Additionally, the effect of C. jejuni infection on the gut microbiota is addressed.
Collapse
Affiliation(s)
| | | | - Ramesh K. Selvaraj
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
Al Hakeem WG, Fathima S, Shanmugasundaram R, Selvaraj RK. Campylobacter jejuni in Poultry: Pathogenesis and Control Strategies. Microorganisms 2022; 10:2134. [PMID: 36363726 PMCID: PMC9697106 DOI: 10.3390/microorganisms10112134] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
C. jejuni is the leading cause of human foodborne illness associated with poultry, beef, and pork consumption. C. jejuni is highly prevalent in commercial poultry farms, where horizontal transmission from the environment is considered to be the primary source of C. jejuni. As an enteric pathogen, C. jejuni expresses virulence factors regulated by a two-component system that mediates C. jejuni's ability to survive in the host. C. jejuni survives and reproduces in the avian intestinal mucus. The avian intestinal mucus is highly sulfated and sialylated compared with the human mucus modulating C. jejuni pathogenicity into a near commensal bacteria in poultry. Birds are usually infected from two to four weeks of age and remain colonized until they reach market age. A small dose of C. jejuni (around 35 CFU/mL) is sufficient for successful bird colonization. In the U.S., where chickens are raised under antibiotic-free environments, additional strategies are required to reduce C. jejuni prevalence on broilers farms. Strict biosecurity measures can decrease C. jejuni prevalence by more than 50% in broilers at market age. Vaccination and probiotics, prebiotics, synbiotics, organic acids, bacteriophages, bacteriocins, and quorum sensing inhibitors supplementation can improve gut health and competitively exclude C. jejuni load in broilers. Most of the mentioned strategies showed promising results; however, they are not fully implemented in poultry production. Current knowledge on C. jejuni's morphology, source of transmission, pathogenesis in poultry, and available preharvest strategies to decrease C. jejuni colonization in broilers are addressed in this review.
Collapse
Affiliation(s)
| | - Shahna Fathima
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
7
|
Mota-Gutierrez J, Lis L, Lasagabaster A, Nafarrate I, Ferrocino I, Cocolin L, Rantsiou K. Campylobacter spp. prevalence and mitigation strategies in the broiler production chain. Food Microbiol 2022; 104:103998. [DOI: 10.1016/j.fm.2022.103998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
|
8
|
Ledwoń A, Murawska M, Dolka I, Chmiel DC, Szleszczuk P. Case of necrotic enteritis associated with campylobacteriosis and coccidiosis in an adult Indian peacock (Pavo cristatus). BMC Vet Res 2022; 18:160. [PMID: 35501900 PMCID: PMC9063363 DOI: 10.1186/s12917-022-03260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background To date, Campylobacter jejuni has not been found to be pathogenic to peafowl. The available publications show that out of a total of 44 samples tested from peafowl, this bacterium was isolated only in two cases. Eimeria pavonina infestations in the peafowl have been described, but no fatal cases have been reported yet. Case presentation The four-year-old peacock was presented with chronic diarrhea, emaciation and weakness. Post mortem examination revealed enlarged and pale kidneys, small intestinal mucosal necrosis and thickening of intestinal wall, and pericardial effusion. The histopathological examination revealed necrotic enteritis with marked mononuclear cells infiltration associated with the presence of coccidia, additionally there was histological evidence of septicemia in liver and kidneys. Bacteria identification was based on light microscopy of the small intestine sample, culture, and biochemical tests. Further identification was based on PCR. Antimicrobial susceptibility profile was created by determination of minimal inhibitory concentration (MIC) values for 6 antimicrobial agents from 5 different classes. PCR assays were performed to detect virulence factors genes responsible for motility, cytolethal distending toxin production, adhesion and internalization. Bacteriology of the small intestine sample showed abundant growth almost exclusively of Campylobacter jejuni, resistant to ciprofloxacin, gentamycin and ampicillin. Bacteria was sensitive to Amoxicillin + clavulanic acid, tetracycline, and erythromycin. All tested virulence factors genes have been detected. The parasitological examination was performed by microscopic examination of fresh faeces and intestinal content, and revealed the moderate number of Eimeria pavonina, Histomonas meleagridis, single Capillaria spp. eggs as well Heterakis spp. like parasites. Conclusion The above case shows that a virulent isolate of Campylobacter jejuni in combination with a parasitic invasion may cause chronic enteritis in peafowl, which most likely led to extreme exhaustion of the host organism and death. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03260-1.
Collapse
Affiliation(s)
- Aleksandra Ledwoń
- Department of Pathology and Veterinary Diagnostics of the Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland.
| | - Małgorzata Murawska
- Department of Preclinical Sciences, of the Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Izabella Dolka
- Department of Pathology and Veterinary Diagnostics of the Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Dorota Chrobak Chmiel
- Department of Preclinical Sciences, of the Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Piotr Szleszczuk
- Department of Pathology and Veterinary Diagnostics of the Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| |
Collapse
|
9
|
Di Marcantonio L, Marotta F, Vulpiani MP, Sonntag Q, Iannetti L, Janowicz A, Serafino GD, Di Giannatale E, Garofolo G. Investigating the cecal microbiota in broiler poultry farms and its potential relationships with animal welfare. Res Vet Sci 2022; 144:115-125. [DOI: 10.1016/j.rvsc.2022.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
|
10
|
Habib I, Mohamed MYI, Khan M. Current State of Salmonella, Campylobacter and Listeria in the Food Chain across the Arab Countries: A Descriptive Review. Foods 2021; 10:2369. [PMID: 34681418 PMCID: PMC8535026 DOI: 10.3390/foods10102369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Foodborne infections caused by bacterial pathogens are a common cause of human illness in the Middle East, with a substantial burden of economic loss and public health consequences. This review aims at elucidating recent literature on the prevalence of Non-Typhoidal Salmonella (NTS), Campylobacter and Listeria monocytogens in the food chain in the Arab countries, and to consolidate available evidence on the public health burden and the status of antimicrobial resistance (AMR) among the concerned three pathogens. The reviewed evidence points to a scarcity of understanding of the magnitude of NTS in the food chain in the Arab countries. Additionally, not much work has been done at the molecular characterization level to address the source-attribution of NTS in the Arab World. Very few surveys have been done on Campylobacter in the food chain in the Gulf Cooperation Council (GCC) countries. There is a gap in quantitative (counts/numbers) surveillance efforts for Campylobacter in the chicken meat supply across all Arab countries, despite the availability of some qualitative (presence/absence) surveillance data. While there are several reports on L. monocytogenes in animal-sourced foods, notably in North African Arab countries, fewer are published on L. monocytogenes in plant-sourced foods. Information on the L. monocytogenes serotypes and strain diversity circulating in the Arab region is widely lacking. Antibiotic resistance in the three pathogens is not fully understood across the Arab region, despite some reports indicating varying trends at the human-food interface. The literature evidence presented in this review stresses that Salmonella, Campylobacter and L. monocytogenes continue to challenge food safety and public health in the Arab countries.
Collapse
Affiliation(s)
- Ihab Habib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Environmental Health, High Institute of Public Health, Alexandria University, Alexandria P.O. Box 21221, Egypt
- School of Veterinary Medicine, Murdoch University, Perth 6150, Australia
| | - Mohamed-Yousif Ibrahim Mohamed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
| | - Mushtaq Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| |
Collapse
|
11
|
Joensen KG, Schjørring S, Gantzhorn MR, Vester CT, Nielsen HL, Engberg JH, Holt HM, Ethelberg S, Müller L, Sandø G, Nielsen EM. Whole genome sequencing data used for surveillance of Campylobacter infections: detection of a large continuous outbreak, Denmark, 2019. ACTA ACUST UNITED AC 2021; 26. [PMID: 34085631 PMCID: PMC8176674 DOI: 10.2807/1560-7917.es.2021.26.22.2001396] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Campylobacter is one of the most frequent causes of bacterial gastroenteritis. Campylobacter outbreaks are rarely reported, which could be a reflection of a surveillance without routine molecular typing. We have previously shown that numerous small outbreak-like clusters can be detected when whole genome sequencing (WGS) data of clinical Campylobacter isolates was applied. Aim Typing-based surveillance of Campylobacter infections was initiated in 2019 to enable detection of large clusters of clinical isolates and to match them to concurrent retail chicken isolates in order to react on ongoing outbreaks. Methods We performed WGS continuously on isolates from cases (n = 701) and chicken meat (n = 164) throughout 2019. Core genome multilocus sequence typing was used to detect clusters of clinical isolates and match them to isolates from chicken meat. Results Seventy-two clusters were detected, 58 small clusters (2–4 cases) and 14 large clusters (5–91 cases). One third of the clinical isolates matched isolates from chicken meat. One large cluster persisted throughout the whole year and represented 12% of all studied Campylobacter cases. This cluster type was detected in several chicken samples and was traced back to one slaughterhouse, where interventions were implemented to control the outbreak. Conclusion Our WGS-based surveillance has contributed to an improved understanding of the dynamics of the occurrence of Campylobacter strains in chicken meat and the correlation to clusters of human cases.
Collapse
Affiliation(s)
| | - Susanne Schjørring
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark
| | | | | | - Hans Linde Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Hanne Marie Holt
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Steen Ethelberg
- Statens Serum Institut, Department of Infectious Disease Epidemiology and Prevention, Copenhagen, Denmark
| | - Luise Müller
- Statens Serum Institut, Department of Infectious Disease Epidemiology and Prevention, Copenhagen, Denmark
| | - Gudrun Sandø
- Danish Veterinary and Food Administration, Glostrup, Denmark
| | - Eva Møller Nielsen
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark
| |
Collapse
|
12
|
Asakura H, Nakayama T, Yamamoto S, Izawa K, Kawase J, Torii Y, Murakami S. Long-Term Grow-Out Affects Campylobacter jejuni Colonization Fitness in Coincidence With Altered Microbiota and Lipid Composition in the Cecum of Laying Hens. Front Vet Sci 2021; 8:675570. [PMID: 34222400 PMCID: PMC8249580 DOI: 10.3389/fvets.2021.675570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/21/2021] [Indexed: 01/14/2023] Open
Abstract
Campylobacter jejuni is one of the leading causes of gastrointestinal illness worldwide and is mainly transmitted from chicken through the food chain. Previous studies have provided increasing evidence that this pathogen can colonize and replicate in broiler chicken during its breeding; however, its temporal kinetics in laying hen are poorly understood. Considering the possible interaction between C. jejuni and gut microbiota, the current study was conducted to address the temporal dynamics of C. jejuni in the cecum of laying hen over 40 weeks, with possible alteration of the gut microbiota and fatty acid (FA) components. Following oral infection with C. jejuni 81-176, inocula were stably recovered from ceca for up to 8 weeks post-infection (p.i.). From 16 weeks p.i., most birds became negative for C. jejuni and remained negative up to 40 weeks p.i. 16S rRNA gene sequencing analyses revealed that most of the altered relative rRNA gene abundances occurred in the order Clostridiales, in which increased relative rRNA gene abundances were observed at >16 weeks p.i. in the families Clostridiaceae, Ruminococcaceae, Lachnospiraceae, and Peptococcaceae. Lipidome analyses revealed increased levels of sterols associated with bile acid metabolisms in the cecum at 16 and/or 24 weeks p.i. compared with those detected at 8 weeks p.i., suggesting that altered microbiota and bile acid metabolism might underlie the decreased colonization fitness of C. jejuni in the gut of laying hens.
Collapse
Affiliation(s)
- Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Tatsuya Nakayama
- Division of Biomedical Food Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Shiori Yamamoto
- Division of Biomedical Food Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Kazuki Izawa
- Department of Computer Science, Tokyo Institute of Technology, Meguro City, Japan
| | - Jun Kawase
- Department of Bacteriology, Shimane Prefectural Institute of Public Health and Environmental Science, Matsue City, Japan
| | - Yasushi Torii
- Department of Animal Hygiene, Tokyo University of Agriculture, Atsugi City, Japan
| | - Satoshi Murakami
- Department of Animal Hygiene, Tokyo University of Agriculture, Atsugi City, Japan
| |
Collapse
|
13
|
Multidrug-Resistant Campylobacer jejuni on Swine Processing at a Slaughterhouse in Eastern Spain. ANIMALS : AN OPEN ACCESS JOURNAL FROM MDPI 2021; 11:ani11051339. [PMID: 34066771 PMCID: PMC8150584 DOI: 10.3390/ani11051339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 01/06/2023]
Abstract
Campylobacteriosis is the most commonly reported gastrointestinal disease in humans in the EU, mainly from poultry meat consumption. C. jejuni is the main species involved in the human disease. However, little is known about the role of swine meat in its epidemiology. Thus, the aim of this study was to assess the epidemiology and antimicrobial resistance of C. jejuni on swine processing at the slaughterhouse. To this end, a total of 21 pig herds were intensively sampled at the slaughterhouse. Campylobacter isolation was based on official method ISO 10272-1:2018, speciation was determined by the hippurate hydrolysis test, and antibiotic susceptibility was performed according to standard disc diffusion assay. The results showed that all batches shed Campylobacter in faeces upon arrival at the slaughterhouse and remained positive at the end of the slaughtering process (42.8%). Moreover, 41.5% of Campylobacter strains isolated were C. jejuni and all of them were resistant to at least one antibiotic, and 96.3% were multidrug-resistant strains. In conclusion, the high level of multidrug-resistant C. jejuni swine batch contamination at the slaughterhouse makes it necessary to include the swine sector in national control programmes to reduce the bacterium and its resistance.
Collapse
|
14
|
Heimesaat MM, Backert S, Alter T, Bereswill S. Human Campylobacteriosis-A Serious Infectious Threat in a One Health Perspective. Curr Top Microbiol Immunol 2021; 431:1-23. [PMID: 33620646 DOI: 10.1007/978-3-030-65481-8_1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zoonotic Campylobacter species-mainly C. jejuni and C. coli-are major causes of food-borne bacterial infectious gastroenteritis worldwide. Symptoms of intestinal campylobacteriosis include abdominal pain, diarrhea and fever. The clinical course of enteritis is generally self-limiting, but some infected individuals develop severe post-infectious sequelae including autoimmune disorders affecting the nervous system, the joints and the intestinal tract. Moreover, in immunocompromised individuals, systemic spread of the pathogens may trigger diseases of the circulatory system and septicemia. The socioeconomic costs associated with Campylobacter infections have been calculated to several billion dollars annually. Poultry meat products represent major sources of human infections. Thus, a "One World-One Health" approach with collective efforts of public health authorities, veterinarians, clinicians, researchers and politicians is required to reduce the burden of campylobacteriosis. Innovative intervention regimes for the prevention of Campylobacter contaminations along the food chain include improvements of information distribution to strengthen hygiene measures for agricultural remediation. Given that elimination of Campylobacter from the food production chains is not feasible, novel intervention strategies fortify both the reduction of pathogen contamination in food production and the treatment of the associated diseases in humans. This review summarizes some current trends in the combat of Campylobacter infections including the combination of public health and veterinary preventive approaches with consumer education. The "One World-One Health" perspective is completed by clinical aspects and molecular concepts of human campylobacteriosis offering innovative treatment options supported by novel murine infection models that are based on the essential role of innate immune activation by bacterial endotoxins.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| | - Thomas Alter
- Department of Veterinary Medicine, Institute of Food Safety and Food Hygiene, Free University Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
15
|
Beier RC, Byrd JA, Andrews K, Caldwell D, Crippen TL, Anderson RC, Nisbet DJ. Disinfectant and antimicrobial susceptibility studies of the foodborne pathogen Campylobacter jejuni isolated from the litter of broiler chicken houses. Poult Sci 2021; 100:1024-1033. [PMID: 33518061 PMCID: PMC7858144 DOI: 10.1016/j.psj.2020.10.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/15/2023] Open
Abstract
Foodborne illness is an ongoing problem worldwide and is caused by bacteria that invade the food chain from the farm, slaughter house, restaurant or grocery, or in the home and can be controlled by strategies using biocides (antiseptics and disinfectants). Susceptibility profiles were determined for 96 Campylobacter jejuni strains obtained in 2011-2012 from broiler chicken house environments to antimicrobials and disinfectants as per the methods of the Clinical and Laboratory Standards Institute and TREK Diagnostics using CAMPY AST Campylobacter plates. Low prevalence of antimicrobial resistance was observed in C. jejuni strains to tetracycline (TET; 21.9%), ciprofloxacin (CIP; 13.5%), and nalidixic acid (NAL; 12.5%). The resistance profiles had a maximum of 3 antimicrobials, CIP-NAL-TET, with TET being the main profile observed. No cross-resistance was observed between antimicrobials and disinfectants. The C. jejuni strains (99%) were resistant to triclosan, 32% were resistant to chlorhexidine, and they all were susceptible to benzalkonium chloride. The strains had low-level minimum inhibitory concentrations (MICs) to the disinfectants P-128, Food Service Sanitizer, F-25 Sanitizer, Final Step 512 Sanitizer, OdoBan, dioctyldimethylammmonium chloride, didecyldimethylammonium chloride (C10AC), benzyldimethyldodecylammonium chloride (C12BAC), and benzyldimethyltetradecylammonium chloride (C14BAC). Intermediate MICs against DC&R, cetylpyridinium bromide hydrate, hexadecylpyridinium chloride, ethylhexadecyldimethylammonium bromide, and hexadecyltrimethylammonium bromide with elevated intermediate MICs against Tek-Trol, benzyldimethylhexadecylammonium chloride, tris(hydroxylmethyl)nitromethane (THN), and formaldehyde. The highest MIC were obtained for povidone-iodine. The components THN and the benzylammonium chlorides C12BAC and C14BAC were responsible for the inhibition by DC&R. The components C10AC and C12BAC may act synergistically causing inhibition of C. jejuni by the disinfectant P-128. The formaldehyde component in DC&R was not effective against C. jejuni compared with the ammonium chloride components. Its use in disinfectants may result in additional unnecessary chemicals in the environment. Didecyldimethylammonium chloride is the most effective ammonium chloride component against C. jejuni.
Collapse
Affiliation(s)
- Ross C Beier
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845, USA.
| | - J Allen Byrd
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845, USA
| | - Kathleen Andrews
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845, USA
| | - Denise Caldwell
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845, USA
| | - Tawni L Crippen
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845, USA
| | - Robin C Anderson
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845, USA
| | - David J Nisbet
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845, USA
| |
Collapse
|
16
|
Deng W, Dittoe DK, Pavilidis HO, Chaney WE, Yang Y, Ricke SC. Current Perspectives and Potential of Probiotics to Limit Foodborne Campylobacter in Poultry. Front Microbiol 2020; 11:583429. [PMID: 33414767 PMCID: PMC7782433 DOI: 10.3389/fmicb.2020.583429] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023] Open
Abstract
Poultry has been one of the major contributors of Campylobacter related human foodborne illness. Numerous interventions have been applied to limit Campylobacter colonization in poultry at the farm level, but other strategies are under investigation to achieve more efficient control. Probiotics are viable microbial cultures that can establish in the gastrointestinal tract (GIT) of the host animal and elicit health and nutrition benefits. In addition, the early establishment of probiotics in the GIT can serve as a barrier to foodborne pathogen colonization. Thus, probiotics are a potential feed additive for reducing and eliminating the colonization of Campylobacter in the GIT of poultry. Screening probiotic candidates is laborious and time-consuming, requiring several tests and validations both in vitro and in vivo. The selected probiotic candidate should possess the desired physiological characteristics and anti-Campylobacter effects. Probiotics that limit Campylobacter colonization in the GIT rely on different mechanistic strategies such as competitive exclusion, antagonism, and immunomodulation. Although numerous research efforts have been made, the application of Campylobacter limiting probiotics used in poultry remains somewhat elusive. This review summarizes current research progress on identifying and developing probiotics against Campylobacter and presenting possible directions for future research efforts.
Collapse
Affiliation(s)
- Wenjun Deng
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Dana K. Dittoe
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | | | | | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
17
|
Kreling V, Falcone FH, Kehrenberg C, Hensel A. Campylobacter sp.: Pathogenicity factors and prevention methods-new molecular targets for innovative antivirulence drugs? Appl Microbiol Biotechnol 2020; 104:10409-10436. [PMID: 33185702 PMCID: PMC7662028 DOI: 10.1007/s00253-020-10974-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/24/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
Abstract
Infections caused by bacterial species from the genus Campylobacter are one of the four main causes of strong diarrheal enteritis worldwide. Campylobacteriosis, a typical food-borne disease, can range from mild symptoms to fatal illness. About 550 million people worldwide suffer from campylobacteriosis and lethality is about 33 million p.a. This review summarizes the state of the current knowledge on Campylobacter with focus on its specific virulence factors. Using this knowledge, multifactorial prevention strategies can be implemented to reduce the prevalence of Campylobacter in the food chain. In particular, antiadhesive strategies with specific adhesion inhibitors seem to be a promising concept for reducing Campylobacter bacterial load in poultry production. Antivirulence compounds against bacterial adhesion to and/or invasion into the host cells can open new fields for innovative antibacterial agents. Influencing chemotaxis, biofilm formation, quorum sensing, secretion systems, or toxins by specific inhibitors can help to reduce virulence of the bacterium. In addition, the unusual glycosylation of the bacterium, being a prerequisite for effective phase variation and adaption to different hosts, is yet an unexplored target for combating Campylobacter sp. Plant extracts are widely used remedies in developing countries to combat infections with Campylobacter. Therefore, the present review summarizes the use of natural products against the bacterium in an attempt to stimulate innovative research concepts on the manifold still open questions behind Campylobacter towards improved treatment and sanitation of animal vectors, treatment of infected patients, and new strategies for prevention. KEY POINTS: • Campylobacter sp. is a main cause of strong enteritis worldwide. • Main virulence factors: cytolethal distending toxin, adhesion proteins, invasion machinery. • Strong need for development of antivirulence compounds.
Collapse
Affiliation(s)
- Vanessa Kreling
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Franco H Falcone
- Institute of Parasitology, University of Gießen, Schubertstraße 81, 35392, Gießen, Germany
| | - Corinna Kehrenberg
- Institute of Veterinary Food Science, University of Gießen, Frankfurterstraße 81, 35392, Gießen, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
18
|
Renu S, Renukaradhya GJ. Chitosan Nanoparticle Based Mucosal Vaccines Delivered Against Infectious Diseases of Poultry and Pigs. Front Bioeng Biotechnol 2020; 8:558349. [PMID: 33282847 PMCID: PMC7691491 DOI: 10.3389/fbioe.2020.558349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Infectious disease of poultry and pig are major threat to health and cause severe economic loss to the food industry and a global food safety issue. Poultry and pig act as a mixing vessel of zoonotic transmission of disease to humans. Effective mucosal vaccines used in animals could reduce the impact of diseases in food animals. Chitosan is a biocompatible polymer, and its positive charge makes it a natural mucoadhesive agent. Therefore, since last one-decade chitosan derived nanoparticles (CS NPs) have been in use widely to deliver vaccine antigens in animals through mucosal route. Primary route of entry of most infectious disease pathogen is through oral and nasal routes, and the CS NPs based vaccines delivered through that routes enhance the immunogenicity of encapsulated vaccine antigens by targeting the cargo to mucosal microfold cells, dendritic cells and macrophages. Resulting in induction of robust secretory and systemic antibodies and/or cell mediated immune response which provides protection against infections. To date, CS NPs is being widely used for mucosal vaccine delivery in poultry and pigs to control bacterial and viral infections, and tested in several preclinical trials for vaccine delivery in humans. In this review, we highlighted the progress so far made in using CS NPs as a vehicle for mucosal vaccine delivery against infectious and zoonotic diseases of poultry and pigs. Discussed about the need of CS NPs modifications, CS NPs based vaccines induced immune responses and its role in protection, and challenges in vaccination and future directions.
Collapse
Affiliation(s)
- Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
19
|
Wysok B, Wojtacka J, Kivistö R. Pathogenicity of Campylobacter strains of poultry and human origin from Poland. Int J Food Microbiol 2020; 334:108830. [PMID: 32841810 DOI: 10.1016/j.ijfoodmicro.2020.108830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 11/25/2022]
Abstract
The aim of this study was to determine the pathogenic markers associated with Campylobacter infection in humans. A total of 104 Campylobacter isolates obtained from poultry and humans were examined for the presence of nine virulence genes and their ability to adhere to, invade and produce cytotoxin were defined using HeLa cells. The diversity of the Campylobacter spp. isolates was studied based on sequencing of the SVR-region of flaA gene. Altogether 45 flaA-SVR alleles were identified among 104 Campylobacter isolates of poultry and human origin. All Campylobacter isolates possessed flaA, cadF and racR genes involved in adherence. Accordingly, all poultry and human isolates exhibited adherence towards HeLa cells at mean levels of 0.95% and 0.82% of starting viable inoculum, respectively. The genes involved in invasion (iam and pldA) and cytotoxin production (cdtA, cdtB and cdtC) were also widely distributed among the human and poultry Campylobacter isolates. Significantly higher invasiveness was observed for poultry isolates (mean level of 0.002% of starting bacterial inoculum) compared to human isolates (0.0005%). Interestingly the iam gene, associated with invasion, was more common in human (100%) than poultry (84%) isolates, and the poultry isolates lacking the iam gene showed a marked reduction in their ability to invade HeLa cells. Moreover, virB11 was present in 22% of the poultry and 70.4% of the human isolates. Strains lacking virB11 showed a slight reduction in invasion, however in the absence of iam even the poultry isolates containing virB11 were unable to invade HeLa cells. The mean cytotoxicity of Campylobacter isolates from poultry and human was 26.7% and 38.7%, respectively. Strains missing both the cdtB and cdtC genes were non-cytotoxic compared to strains containing all three cdtABC genes, which were the most cytotoxic among the C. jejuni and C. coli isolates from both sources. No cytotoxic effect was observed in only 4% of poultry and 5.6% of human isolates.
Collapse
Affiliation(s)
- Beata Wysok
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-917 Olsztyn, Poland
| | - Joanna Wojtacka
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-917 Olsztyn, Poland
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland.
| |
Collapse
|
20
|
Heimesaat MM, Weschka D, Kløve S, Genger C, Biesemeier N, Mousavi S, Bereswill S. Microbiota composition and inflammatory immune responses upon peroral application of the commercial competitive exclusion product Aviguard® to microbiota-depleted wildtype mice. Eur J Microbiol Immunol (Bp) 2020; 10:139-146. [PMID: 32750026 PMCID: PMC7592517 DOI: 10.1556/1886.2020.00012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022] Open
Abstract
Non-antibiotic feed additives including competitive exclusion products have been shown effective in reducing pathogen loads including multi-drug resistant strains from the vertebrate gut. In the present study we surveyed the intestinal bacterial colonization properties, potential macroscopic and microscopic inflammatory sequelae and immune responses upon peroral application of the commercial competitive exclusion product Aviguard® to wildtype mice in which the gut microbiota had been depleted by antibiotic pre-treatment. Until four weeks following Aviguard® challenge, bacterial strains abundant in the probiotic suspension stably established within the murine intestines. Aviguard® application did neither induce any clinical signs nor gross macroscopic intestinal inflammatory sequelae, which also held true when assessing apoptotic and proliferative cell responses in colonic epithelia until day 28 post-challenge. Whereas numbers of colonic innate immune cell subsets such as macrophages and monocytes remained unaffected, peroral Aviguard® application to microbiota depleted mice was accompanied by decreases in colonic mucosal counts of adaptive immune cells such as T and B lymphocytes. In conclusion, peroral Aviguard® application results i.) in effective intestinal colonization within microbiota depleted mice, ii.) neither in macroscopic nor in microscopic inflammatory sequelae and iii.) in lower colonic mucosal T and B cell responses.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dennis Weschka
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sigri Kløve
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudia Genger
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nina Biesemeier
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
21
|
Heimesaat MM, Genger C, Biesemeier N, Klove S, Weschka D, Mousavi S, Bereswill S. Inflammatory Immune Responses and Gut Microbiota Changes Following Campylobacter coli Infection of IL-10 -/- Mice with Chronic Colitis. Pathogens 2020; 9:pathogens9070560. [PMID: 32664563 PMCID: PMC7400060 DOI: 10.3390/pathogens9070560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Human infections with the food-borne enteropathogens Campylobacter are progressively rising. Recent evidence revealed that pre-existing intestinal inflammation facilitates enteropathogenic infection subsequently exacerbating the underlying disease. Given that only little is known about C. coli-host interactions and particularly during intestinal inflammation, the aim of the present study was to survey gastrointestinal colonization properties, gut microbiota changes and pro-inflammatory sequelae upon peroral C. coli-infection of IL-10-/- mice with chronic colitis. C. coli colonized the gastrointestinal tract of mice with varying efficiencies until day 28 post-infection and induced macroscopic and microscopic inflammatory changes as indicated by shorter colonic lengths, more distinct histopathological changes in the colonic mucosa and higher numbers of apoptotic colonic epithelial cells when compared to mock-infected controls. Furthermore, not only colonic innate and adaptive immune cell responses, but also enhanced systemic TNF-α secretion could be observed following C. coli as opposed to mock challenge. Notably, C. coli induced intestinal inflammatory sequelae were accompanied with gut microbiota shifts towards higher commensal enterobacterial loads in the infected gut lumen. Moreover, the pathogen translocated from the intestinal tract to extra-intestinal tissue sites in some cases, but never to systemic compartments. Hence, C. coli accelerates inflammatory immune responses in IL-10-/- mice with chronic colitis.
Collapse
|
22
|
Bifidobacterium longum subsp. infantis ATCC 15697 and Goat Milk Oligosaccharides Show Synergism In Vitro as Anti-Infectives against Campylobacter jejuni. Foods 2020; 9:foods9030348. [PMID: 32192119 PMCID: PMC7142803 DOI: 10.3390/foods9030348] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Bifidobacteria are known to inhibit, compete with and displace the adhesion of pathogens to human intestinal cells. Previously, we demonstrated that goat milk oligosaccharides (GMO) increased the attachment of Bifidobacterium longum subsp. infantis ATCC 15697 to intestinal cells in vitro. In this study, we aimed to exploit this effect as a mechanism for inhibiting pathogen association with intestinal cells. We examined the synergistic effect of GMO-treated B. infantis on preventing the attachment of a highly invasive strain of Campylobacter jejuni to intestinal HT-29 cells. The combination decreased the adherence of C. jejuni to the HT-29 cells by an average of 42% compared to the control (non-GMO treated B. infantis). Increasing the incubation time of the GMO with the Bifidobacterium strain resulted in the strain metabolizing the GMO, correlating with a subsequent 104% increase in growth over a 24 h period when compared to the control. Metabolite analysis in the 24 h period also revealed increased production of acetate, lactate, formate and ethanol by GMO-treated B. infantis. Statistically significant changes in the GMO profile were also demonstrated over the 24 h period, indicating that the strain was digesting certain structures within the pool such as lactose, lacto-N-neotetraose, lacto-N-neohexaose 3′-sialyllactose, 6′-sialyllactose, sialyllacto-N-neotetraose c and disialyllactose. It may be that early exposure to GMO modulates the adhesion of B. infantis while carbohydrate utilisation becomes more important after the bacteria have transiently colonised the host cells in adequate numbers. This study builds a strong case for the use of synbiotics that incorporate oligosaccharides sourced from goat′s milk and probiotic bifidobacteria in functional foods, particularly considering the growing popularity of formulas based on goat milk.
Collapse
|
23
|
Adhesion and invasion of Campylobacter jejuni in chickens with a modified gut microbiota due to antibiotic treatment. Vet Microbiol 2019; 240:108504. [PMID: 31902497 DOI: 10.1016/j.vetmic.2019.108504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/20/2022]
Abstract
Campylobacter jejuni (C. jejuni) is a predominant cause of foodborne illness in humans, while its colonization in chickens is usually asymptomatic. Antibiotics are not routinely used to treat chickens against C. jejuni, but in the face of other bacterial diseases, C. jejuni may be exposed to antibiotics. In this study, chickens were treated with antibiotics (AT) to modify the gut microbiota composition and compared with untreated chickens (Conv) with respect to changes in C. jejuni-colonization and bacterial-intestine interaction. Groups of AT and Conv chickens were inoculated after an antibiotic-withdrawal time of eight days with one of three different C. jejuni isolates to identify possible strain variations. Significantly higher numbers of colony forming units of C. jejuni were detected in the cecal content of AT birds, with higher colonization rates in the spleen and liver compared to Conv birds independent of the inoculated strain (p < 0.05). Clinical signs and histopathological lesions were only observed in C. jejuni-inoculated AT birds. For the first time we demonstrated C. jejuni invasion of the cecal mucosa in AT chickens and its inter- and intracellular localization by using antigen-straining, and electronic microscopy. This study provides the first circumstantial evidence that antibiotic treatment with lasting modification of the microbiota may provide a suitable environment for C. jejuni invasion also in chickens which may subsequently increase the risk of C. jejuni-introduction into the food chain.
Collapse
|
24
|
Heimesaat MM, Mrazek K, Bereswill S. Murine Fecal Microbiota Transplantation Alleviates Intestinal and Systemic Immune Responses in Campylobacter jejuni Infected Mice Harboring a Human Gut Microbiota. Front Immunol 2019; 10:2272. [PMID: 31616437 PMCID: PMC6768980 DOI: 10.3389/fimmu.2019.02272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
Human campylobacteriosis constitutes a zoonotic food-borne disease and a progressively rising health burden of significant socioeconomic impact. We have recently shown that conventional mice are protected from Campylobacter jejuni infection, which was not the case for human microbiota associated (hma) mice indicating that the host-specific gut microbiota composition primarily determines susceptibility to or resistance against C. jejuni infection. In our present preclinical intervention study we addressed whether gut microbiota changes in stably C. jejuni infected hma mice following murine fecal microbiota transplantation (mFMT) could alleviate pathogen-induced immune responses. To accomplish this, secondary abiotic C57BL/6 mice were generated by broad-spectrum antibiotic treatment, perorally reassociated with a complex human gut microbiota and challenged with C. jejuni by gavage. Seven days later C. jejuni infected hma mice were subjected to peroral mFMT on 3 consecutive days. Within a week post-mFMT fecal pathogenic burdens had decreased by two orders of magnitude, whereas distinct changes in the gut microbiota composition with elevated numbers of lactobacilli and bifidobacteria could be assessed. In addition, mFMT resulted in less C. jejuni induced apoptotic responses in colonic epithelia, reduced numbers of macrophages and monocytes as well as of T lymphocytes in the large intestinal mucosa and lamina propria and in less distinct intestinal pro-inflammatory cytokine secretion as compared to mock challenge. Strikingly, inflammation dampening effects of mFMT were not restricted to the intestinal tract, but could also be observed systemically as indicated by elevated serum concentrations of pro-inflammatory cytokines such as TNF-α, IL-12p70, and IL-6 in C. jejuni infected hma mice of the mock, but not the mFMT cohort. In conclusion, our preclinical mFMT intervention study provides evidence that changes in the gut microbiota composition which might be achieved by pre- or probiotic formulations may effectively lower intestinal C. jejuni loads, dampen both, pathogen-induced intestinal and systemic inflammatory sequelae and may represent a useful tool to treat continuous shedding of C. jejuni by asymptomatic carriers which is critical in the context of food production, hospitalization and immunosuppression.
Collapse
Affiliation(s)
- Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | | |
Collapse
|
25
|
Alrubaye B, Abraha M, Almansour A, Bansal M, Wang H, Kwon YM, Huang Y, Hargis B, Sun X. Microbial metabolite deoxycholic acid shapes microbiota against Campylobacter jejuni chicken colonization. PLoS One 2019; 14:e0214705. [PMID: 31276498 PMCID: PMC6611565 DOI: 10.1371/journal.pone.0214705] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Despite reducing the prevalent foodborne pathogen Campylobacter jejuni in chickens decreases campylobacteriosis, few effective approaches are available. The aim of this study was to use microbial metabolic product bile acids to reduce C. jejuni chicken colonization. Broiler chicks were fed with deoxycholic acid (DCA), lithocholic acid (LCA), or ursodeoxycholic acid (UDCA). The birds were also transplanted with DCA modulated anaerobes (DCA-Anaero) or aerobes (DCA-Aero). The birds were infected with human clinical isolate C. jejuni 81-176 or chicken isolate C. jejuni AR101. Notably, C. jejuni 81-176 was readily colonized intestinal tract at d16 and reached an almost plateau at d21. Remarkably, DCA excluded C. jejuni cecal colonization below the limit of detection at 16 and 28 days of age. Neither chicken ages of infection nor LCA or UDCA altered C. jejuni AR101 chicken colonization level, while DCA reduced 91% of the bacterium in chickens at d28. Notably, DCA diet reduced phylum Firmicutes but increased Bacteroidetes compared to infected control birds. Importantly, DCA-Anaero attenuated 93% of C. jejuni colonization at d28 compared to control infected birds. In conclusion, DCA shapes microbiota composition against C. jejuni colonization in chickens, suggesting a bidirectional interaction between microbiota and microbial metabolites.
Collapse
Affiliation(s)
- Bilal Alrubaye
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Mussie Abraha
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Ayidh Almansour
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Mohit Bansal
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Hong Wang
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Young Min Kwon
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Yan Huang
- Department of Animal Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Billy Hargis
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Xiaolun Sun
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
26
|
Schmidt AM, Escher U, Mousavi S, Boehm M, Backert S, Bereswill S, Heimesaat MM. Protease Activity of Campylobacter jejuni HtrA Modulates Distinct Intestinal and Systemic Immune Responses in Infected Secondary Abiotic IL-10 Deficient Mice. Front Cell Infect Microbiol 2019; 9:79. [PMID: 30984628 PMCID: PMC6449876 DOI: 10.3389/fcimb.2019.00079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/08/2019] [Indexed: 01/20/2023] Open
Abstract
Even though human Campylobacter jejuni infections are progressively increasing worldwide, the underlying molecular mechanisms of pathogen-host-interactions are still not fully understood. We have recently shown that the secreted serine protease HtrA plays a key role in C. jejuni cellular invasion and transepithelial migration in vitro, and is involved in the onset of intestinal pathology in murine infection models in vivo. In the present study, we investigated whether the protease activity of HtrA had an impact in C. jejuni induced acute enterocolitis. For this purpose, we perorally infected secondary abiotic IL-10-/- mice with wildtype C. jejuni strain NCTC11168 (11168WT) or isogenic bacteria carrying protease-inactive HtrA with a single point mutation at S197A in the active center (11168HtrA-S197A). Irrespective of the applied pathogenic strain, mice harbored similar C. jejuni loads in their feces and exhibited comparably severe macroscopic signs of acute enterocolitis at day 6 postinfection (p.i.). Interestingly, the 11168HtrA-S197A infected mice displayed less pronounced colonic apoptosis and immune cell responses, but enhanced epithelial proliferation as compared to the 11168WT strain infected controls. Furthermore, less distinct microscopic sequelae in 11168HtrA-S197A as compared to parental strain infected mice were accompanied by less distinct colonic secretion of pro-inflammatory cytokines such as MCP-1, IL-6, TNF, and IFN-γ in the former as compared to the latter. Strikingly, the S197A point mutation was additionally associated with less pronounced systemic pro-inflammatory immune responses as assessed in serum samples. In conclusion, HtrA is a remarkable novel virulence determinant of C. jejuni, whose protease activity is not required for intestinal colonization and establishment of disease, but aggravates campylobacteriosis by triggering apoptosis and pro-inflammatory immune responses.
Collapse
Affiliation(s)
- Anna-Maria Schmidt
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Ulrike Escher
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Manja Boehm
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
27
|
Sylte MJ, Johnson TA, Meyer EL, Inbody MH, Trachsel J, Looft T, Susta L, Wu Z, Zhang Q. Intestinal colonization and acute immune response in commercial turkeys following inoculation with Campylobacter jejuni constructs encoding antibiotic-resistance markers. Vet Immunol Immunopathol 2019; 210:6-14. [PMID: 30947981 DOI: 10.1016/j.vetimm.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
Consumption of contaminated poultry products is one of the main sources of human campylobacteriosis, of which Campylobacter jejuni subsp. jejuni (C. jejuni) is responsible for approximately 90% of the cases. At slaughter, the ceca of commercial chickens and turkeys are the main anatomical site where C. jejuni asymptomatically colonizes. We have previously colonized commercial turkey poults with different isolates of C. jejuni and evaluated different media to best enumerate Campylobacter from intestinal samples, but the host-response is unknown in turkeys. Enumeration of Campylobacter (colony forming units (cfu)/gram of intestinal contents) can be challenging, and can be confounded if animals are colonized with multiple species of Campylobacter. In order to precisely enumerate the C. jejuni isolate used to experimentally colonize turkeys, constructs of C. jejuni (NCTC 11,168) were tagged with different antibiotic resistance markers at the CmeF locus (chloramphenicol (CjCm) or kanamycin (CjK)). We sought to examine the kinetics of intestinal colonization using the antibiotic resistant constructs, and characterize the immune response in cecal tissue of turkeys. In vitro analysis of the tagged antibiotic-resistant constructs demonstrated no changes in motility, morphology, or adherence and invasion of INT-407 cells compared to the parent isolate NCTC 11,168. Two animal experiments were completed to evaluate intestinal colonization by the constructs. In experiment 1, three-week old poults were colonized after oral gavage for 14 days, and CjCm and CjK cfu were recovered from cecal, but not ileal contents. In experiment 2, nine-week old poults were orally inoculated with CjCm, and the abundance of CjCm cfu/g of cecal contents significantly decreased beyond 14 days after inoculation. Significant lesions were detected in CjCm colonized poults at day 2 post-colonization. Using immunohistochemistry, Campylobacter antigen was detected in between cecal villi by day 7 of CjCm colonized poults. Quantitative RT-PCR of CjCm-colonized cecal tissue demonstrated significant down-regulation of IL-1β, IL-10 and IL-13 mRNA, and significant up-regulation of IL-6, IL-8, IL-17 A, IL-22 and IFNγ mRNA on day 2, and for some on day 7 post-colonization. All differentially expressed genes were similar to mock-infected poults by day 14. These data suggest that C. jejuni induced a brief inflammatory response in the cecum of poults that quickly resolved. Results from this study provide valuable insight into host-response and persistent colonization of the turkey cecum. These findings will help to develop and test strategies to promote food safety in commercial turkeys.
Collapse
Affiliation(s)
- Matthew J Sylte
- Food Safety and Enteric Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, IA, USA.
| | - Timothy A Johnson
- Food Safety and Enteric Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, IA, USA; Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Ella L Meyer
- Food Safety and Enteric Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, IA, USA
| | - Matt H Inbody
- Food Safety and Enteric Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, IA, USA
| | - Julian Trachsel
- Food Safety and Enteric Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, IA, USA
| | - Torey Looft
- Food Safety and Enteric Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, IA, USA
| | - Leonardo Susta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
28
|
Bailey RA, Kranis A, Psifidi A, Watson KA, Rothwell L, Hocking PM, Kaiser P, Stevens MP, Avendano S. Colonization of a commercial broiler line by Campylobacter is under limited genetic control and does not significantly impair performance or intestinal health. Poult Sci 2018; 97:4167-4176. [PMID: 29982748 PMCID: PMC6305830 DOI: 10.3382/ps/pey295] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
Campylobacter is the leading bacterial cause of foodborne diarrheal illness in humans and source attribution studies unequivocally identify handling or consumption of poultry meat as a key risk factor. Campylobacter colonizes the avian intestines in high numbers and rapidly spreads within flocks. A need therefore exists to devise strategies to reduce Campylobacter populations in poultry flocks. There has been a great deal of research aiming to understand the epidemiology and transmission characteristics of Campylobacter in poultry as a means to reduce carriage rates in poultry and reduce infection in humans. One potential strategy for control is the genetic selection of poultry for increased resistance to colonization by Campylobacter. The potential for genetic control of colonization has been demonstrated in inbred populations following experimental challenge with Campylobacter where quantitative trait loci associated with resistance have been identified. Currently in the literature there is no information of the genetic basis of Campylobacter colonization in commercial broiler lines and it is unknown whether these QTL are found in commercial broiler lines. The aim of this study was to estimate genetic parameters associated with Campylobacter load and genetic correlations with gut health and production traits following natural exposure of broiler chickens to Campylobacter.The results from the analysis show a low but significant heritability estimate (0.095 ± 0.037) for Campylobacter load which indicates a limited genetic basis and that non-genetic factors have a greater influence on the level of Campylobacter found in the broiler chicken.Furthermore, through examination of macroscopic intestinal health and absorptive capacity, our study indicated that Campylobacter has no detrimental effects on intestinal health and bird growth following natural exposure in the broiler line under study. These data indicate that whilst there is a genetic component to Campylobacter colonization worthy of further investigation, there is a large proportion of phenotypic variance under the influence of non-genetic effects. As such the control of Campylobacter will require understanding and manipulation of non-genetic host and environmental factors.
Collapse
Affiliation(s)
| | | | - Androniki Psifidi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- Royal Veterinary College, University of London, Hatfield AL9 7TA, UK
| | - Kellie A Watson
- Aviagen, Newbridge, Midlothian EH28 8SZ, UK
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Lisa Rothwell
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Paul M Hocking
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Pete Kaiser
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | | |
Collapse
|
29
|
Wang H, Wang L, Hu Q, Wang R, Li Y, Kidd M. Rapid and Sensitive Detection of Campylobacter jejuni in Poultry Products Using a Nanoparticle-Based Piezoelectric Immunosensor Integrated with Magnetic Immunoseparation. J Food Prot 2018; 81:1321-1330. [PMID: 30019963 DOI: 10.4315/0362-028x.jfp-17-381] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Campylobacter jejuni is one of the leading causes of foodborne human gastrointestinal diseases. Poultry and poultry products have been identified as the major transmission routes to humans for this pathogenic bacterium. The objective of this research was to develop a rapid and sensitive immunosensor for detection of C. jejuni in poultry products on the basis of a quartz crystal microbalance (QCM) using magnetic nanobeads (MNBs) for separation of target pathogen and gold nanoparticles for amplification of the measurement. A QCM sensor in a flow cell was prepared by immobilizing the mouse anti- C. jejuni monoclonal antibody (mAb1) on the sensor surface to specifically capture C. jejuni. Rabbit anti- C. jejuni polyclonal antibody (pAb1) was conjugated with MNBs to capture and separate C. jejuni from food matrices. MNB-pAb1- C. jejuni complexes were injected into the flow cell to bind with the mAb1 immobilized on the QCM sensor surface. Goat anti-rabbit immunoglobulin G polyclonal antibody conjugated with gold nanoparticles was injected into the flow cell to bind with pAb1 on MNBs. Finally, resonant frequency was measured with a QCM analyzer, and the change in resonant frequency was correlated to the cell number of C. jejuni. The specificity of this immunosensor was confirmed with different strains of Campylobacter, Salmonella, and other foodborne pathogens commonly colonized in the broiler gastrointestinal tract. Samples of broiler carcass wash and ground turkey were spiked with C. jejuni at different concentrations for use in tests. Results showed that the QCM immunosensor could rapidly detect C. jejuni in poultry products, with a detection limit of 20 to 30 CFU/mL without preenrichment, and a total detection time of less than 30 min. Characteristics of C. jejuni captured by the antibody immobilized on the surface of the QCM sensor were visualized by using atomic force microscopy. This highly adaptive and flexible method could provide the poultry industry a more rapid, sensitive, and effective method for detection of major foodborne pathogens in poultry products.
Collapse
Affiliation(s)
- Hong Wang
- 1 Center of Excellence for Poultry Science and
| | - Lijun Wang
- 2 Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA.,3 State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China; and
| | - Qinqin Hu
- 2 Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA.,4 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ronghui Wang
- 2 Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Yanbin Li
- 1 Center of Excellence for Poultry Science and.,2 Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA.,4 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | | |
Collapse
|
30
|
CapC, a Novel Autotransporter and Virulence Factor of Campylobacter jejuni. Appl Environ Microbiol 2018; 84:AEM.01032-18. [PMID: 29915112 DOI: 10.1128/aem.01032-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Campylobacter jejuni is recognized as an important causative agent of bacterial gastroenteritis in the developed world. Despite the identification of several factors contributing to infection, characterization of the virulence strategies employed by C. jejuni remains a significant challenge. Bacterial autotransporter proteins are a major class of secretory proteins in Gram-negative bacteria, and notably, many autotransporter proteins contribute to bacterial virulence. The aim of this study was to characterize the C. jejuni 81116 C8J_1278 gene (capC), predicted to encode an autotransporter protein, and examine the contribution of this factor to virulence of C. jejuni The predicted CapC protein has a number of features that are consistent with autotransporters, including the N-terminal signal sequence and the C-terminal β-barrel domain and was determined to localize to the outer membrane. Inactivation of the capC gene in C. jejuni 81116 and C. jejuni M1 resulted in reduced insecticidal activity in Galleria mellonella larvae. Furthermore, C. jejuni capC mutants displayed significantly reduced adherence to and invasion of nonpolarized, partially differentiated Caco-2 and T84 intestinal epithelial cells. Gentamicin treatment showed that the reduced invasion of the capC mutant is primarily caused by reduced adherence to intestinal epithelial cells, not by reduced invasion capability. C. jejuni capC mutants caused reduced interleukin 8 (IL-8) secretion from intestinal epithelial cells and elicited a significantly diminished immune reaction in Galleria larvae, indicating that CapC functions as an immunogen. In conclusion, CapC is a new virulence determinant of C. jejuni that contributes to the integral infection process of adhesion to human intestinal epithelial cells.IMPORTANCECampylobacter jejuni is a major causative agent of human gastroenteritis, making this zoonotic pathogen of significant importance to human and veterinary public health worldwide. The mechanisms by which C. jejuni interacts with intestinal epithelial cells and causes disease are still poorly understood due, in part, to the heterogeneity of C. jejuni infection biology. Given the importance of C. jejuni to public health, the need to characterize novel and existing virulence mechanisms is apparent. The significance of our research is in demonstrating the role of CapC, a novel virulence factor in C. jejuni that contributes to adhesion and invasion of the intestinal epithelium, thereby in part, addressing the dearth of knowledge concerning the factors involved in Campylobacter pathogenesis and the variation observed in the severity of human infection.
Collapse
|
31
|
Abstract
Chickens are recognized as an imperative source of thermophilic Campylobacter spp., carrying this microorganism in high numbers in their intestinal tract. For a long time, Campylobacter jejuni has been considered as a commensal microorganism which colonizes its primary host rather than infecting it, in the absence of any obvious clinical signs. However, recent studies question this and argue for a deeper understanding of the host-bacteria interaction. Following oral uptake, it was demonstrated that C. jejuni interacts intimately with the gut epithelium and influences cellular functions of the host, with consequences on nutrient absorption. The immune reaction of the host which was revealed in some studies confirmed the infectious nature of C. jejuni. In agreement with this, an increased expression of pro-inflammatory cytokine genes was noticed. The ability to induce intestinal damage and to modulate the barrier function of the intestinal epithelia has further consequences on gut integrity, as it facilitates the paracellular passage of C. jejuni into the underlying tissues and it supports the translocation of luminal bacteria such as Escherichia coli to internal organs. This is associated with an alteration of the gut microbiota as infected birds have a significantly lower abundance of E. coli in different parts of the intestine. Some studies found that the gut microbiota influences the infection and translocation of C. jejuni in chickens in various ways. The effects of C. jejuni on the intestinal function of chickens already indicate a possible interference with bird performance and welfare, which was confirmed in some experimental studies. Furthermore, it could be demonstrated that a Campylobacter infection has an influence on the movement pattern of broiler flocks, supporting experimental studies. The intense interaction of C. jejuni with the chicken supports its role as an infectious agent instead of simply colonizing the gut. Most of the findings about the impact of Campylobacter on chickens are derived from studies using different Campylobacter isolates, a specific type of bird and varying experimental design. However, experimental studies demonstrate an influence of the aforementioned parameters on the outcome of a certain trial, arguing for improved standardization. This review summarizes the actual knowledge of the host-pathogen interaction of C. jejuni in chickens, emphasizing that there are still major gaps despite recently gained knowledge. Resolving the cascade from oral uptake to dissemination in the organism is crucial to fully elucidating the interaction of C. jejuni with the chicken host and to assess the clinical and economic implications with possible consequences on preventive interventions.
Collapse
Affiliation(s)
- Wageha A Awad
- a Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health , University of Veterinary Medicine , Vienna , Austria.,b Department of Animal Hygiene, Poultry and Environment, Faculty of Veterinary Medicine , South Valley University , Qena , Egypt
| | - Claudia Hess
- a Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health , University of Veterinary Medicine , Vienna , Austria
| | - Michael Hess
- a Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health , University of Veterinary Medicine , Vienna , Austria
| |
Collapse
|
32
|
Visscher CF, Abd El-Wahab A, Ahmed MFE, Hankel J, Taube V, Kamphues J. Influence of different protein sources in the broiler diet on the presence ofCampylobacterspp. in excreta and caecal content. J Anim Physiol Anim Nutr (Berl) 2017. [DOI: 10.1111/jpn.12733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- C. F. Visscher
- Institute for Animal Nutrition; University of Veterinary Medicine Hannover, Foundation; Hannover Germany
| | - A. Abd El-Wahab
- Department of Nutrition and Nutritional Deficiency Diseases; Faculty of Veterinary Medicine; Mansoura University; Mansoura Egypt
| | - M. F. E. Ahmed
- Department of Hygiene and Zoonoses; Faculty of Veterinary Medicine; Mansoura University; Mansoura Egypt
| | - J. Hankel
- Institute for Animal Nutrition; University of Veterinary Medicine Hannover, Foundation; Hannover Germany
| | - V. Taube
- BEST 3 Geflügelernährung GmbH; Twistringen Germany
| | - J. Kamphues
- Institute for Animal Nutrition; University of Veterinary Medicine Hannover, Foundation; Hannover Germany
| |
Collapse
|
33
|
Josephs-Spaulding J, Beeler E, Singh OV. Human microbiome versus food-borne pathogens: friend or foe. Appl Microbiol Biotechnol 2016; 100:4845-63. [PMID: 27102132 DOI: 10.1007/s00253-016-7523-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 12/16/2022]
Abstract
As food safety advances, there is a great need to maintain, distribute, and provide high-quality food to a much broader consumer base. There is also an ever-growing "arms race" between pathogens and humans as food manufacturers. The human microbiome is a collective organ of microbes that have found community niches while associating with their host and other microorganisms. Humans play an important role in modifying the environment of these organisms through their life choices, especially through individual diet. The composition of an individual's diet influences the digestive system-an ecosystem with the greatest number and largest diversity of organisms currently known. Organisms living on and within food have the potential to be either friends or foes to the consumer. Maintenance of this system can have multiple benefits, but lack of maintenance can lead to a host of chronic and preventable diseases. Overall, this dynamic system is influenced by intense competition from food-borne pathogens, lifestyle, overall diet, and presiding host-associated microbiota.
Collapse
Affiliation(s)
- Jonathan Josephs-Spaulding
- Division of Biological and Health Sciences, University of Pittsburgh, 300 Campus Drive, Bradford, PA, 16701, USA
| | - Erik Beeler
- Division of Biological and Health Sciences, University of Pittsburgh, 300 Campus Drive, Bradford, PA, 16701, USA
| | - Om V Singh
- Division of Biological and Health Sciences, University of Pittsburgh, 300 Campus Drive, Bradford, PA, 16701, USA.
| |
Collapse
|
34
|
Saint-Cyr MJ, Guyard-Nicodème M, Messaoudi S, Chemaly M, Cappelier JM, Dousset X, Haddad N. Recent Advances in Screening of Anti-Campylobacter Activity in Probiotics for Use in Poultry. Front Microbiol 2016; 7:553. [PMID: 27303366 PMCID: PMC4885830 DOI: 10.3389/fmicb.2016.00553] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/04/2016] [Indexed: 12/17/2022] Open
Abstract
Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Campylobacter species involved in this infection usually include the thermotolerant species Campylobacter jejuni. The major reservoir for C. jejuni leading to human infections is commercial broiler chickens. Poultry flocks are frequently colonized by C. jejuni without any apparent symptoms. Risk assessment analyses have identified the handling and consumption of poultry meat as one of the most important sources of human campylobacteriosis, so elimination of Campylobacter in the poultry reservoir is a crucial step in the control of this foodborne infection. To date, the use of probiotics has demonstrated promising results to reduce Campylobacter colonization. This review provides recent insights into methods used for probiotic screening to reduce the prevalence and colonization of Campylobacter at the farm level. Different eukaryotic epithelial cell lines are employed to screen probiotics with an anti-Campylobacter activity and yield useful information about the inhibition mechanism involved. These in vitro virulence models involve only human intestinal or cervical cell lines whereas the use of avian cell lines could be a preliminary step to investigate mechanisms of C. jejuni colonization in poultry in the presence of probiotics. In addition, in vivo trials to evaluate the effect of probiotics on Campylobacter colonization are conducted, taking into account the complexity introduced by the host, the feed, and the microbiota. However, the heterogeneity of the protocols used and the short time duration of the experiments lead to results that are difficult to compare and draw conclusions at the slaughter-age of broilers. Nevertheless, the combined approach using complementary in vitro and in vivo tools (cell cultures and animal experiments) leads to a better characterization of probiotic strains and could be employed to assess reduced Campylobacter spp. colonization in chickens if some parameters are optimized.
Collapse
Affiliation(s)
| | - Muriel Guyard-Nicodème
- Hygiene and Quality of Poultry and Pork Products Unit, Ploufragan/Plouzané Laboratory, ANSES, Université Bretagne LoirePloufragan, France
| | - Soumaya Messaoudi
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| | - Marianne Chemaly
- Hygiene and Quality of Poultry and Pork Products Unit, Ploufragan/Plouzané Laboratory, ANSES, Université Bretagne LoirePloufragan, France
| | | | - Xavier Dousset
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| | - Nabila Haddad
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| |
Collapse
|
35
|
Ulasi GN, Creese AJ, Hui SX, Penn CW, Cooper HJ. Comprehensive mapping of O-glycosylation in flagellin from Campylobacter jejuni 11168: A multienzyme differential ion mobility mass spectrometry approach. Proteomics 2015; 15:2733-45. [PMID: 25884275 PMCID: PMC4975691 DOI: 10.1002/pmic.201400533] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/09/2015] [Accepted: 04/14/2015] [Indexed: 11/19/2022]
Abstract
Glycosylation of flagellin is essential for the virulence of Campylobacter jejuni, a leading cause of bacterial gastroenteritis. Here, we demonstrate comprehensive mapping of the O‐glycosylation of flagellin from Campylobacter jejuni 11168 by use of a bottom‐up proteomics approach that incorporates differential ion mobility spectrometry (also known as high field asymmetric waveform ion mobility spectrometry or FAIMS) together with proteolysis with proteinase K. Proteinase K provides complementary sequence coverage to that achieved following trypsin proteolysis. The use of FAIMS increased the number of glycopeptides identified. Novel glycans for this strain were identified (pseudaminic acid and either acetamidino pseudaminic acid or legionaminic acid), as were novel glycosylation sites: Thr208, Ser343, Ser348, Ser349, Ser395, Ser398, Ser423, Ser433, Ser436, Ser445, Ser448, Ser451, Ser452, Ser454, Ser457 and Thr465. Multiply glycosylated peptides were observed, as well as variation at individual residues in the nature of the glycan and its presence or absence. Such extreme heterogeneity in the pattern of glycosylation has not been reported previously, and suggests a novel dimension in molecular variation within a bacterial population that may be significant in persistence of the organism in its natural environment. These results demonstrate the usefulness of differential ion mobility in proteomics investigations of PTMs.
Collapse
Affiliation(s)
- Gloria N Ulasi
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Andrew J Creese
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Sam Xin Hui
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Charles W Penn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Helen J Cooper
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|