1
|
Roy SC, Sapkota S, Pasula MB, Briski KP. In Vivo Glucose Transporter-2 Regulation of Dorsomedial Versus Ventrolateral VMN Astrocyte Metabolic Sensor and Glycogen Metabolic Enzyme Gene Expression in Female Rat. Neurochem Res 2024; 49:3367-3382. [PMID: 39306597 DOI: 10.1007/s11064-024-04246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024]
Abstract
Astrocyte glycogenolysis shapes ventromedial hypothalamic nucleus (VMN) regulation of glucostasis in vivo. Glucose transporter-2 (GLUT2), a plasma membrane glucose sensor, controls hypothalamic primary astrocyte culture glycogen metabolism in vitro. In vivo gene silencing tools and single-cell laser-catapult-microdissection/multiplex qPCR techniques were used here to examine whether GLUT2 governs dorsomedial (VMNdm) and/or ventrolateral (VMNvl) VMN astrocyte metabolic sensor and glycogen metabolic enzyme gene profiles. GLUT2 gene knockdown diminished astrocyte GLUT2 mRNA in both VMN divisions. Hypoglycemia caused GLUT2 siRNA-reversible up-regulation of this gene profile in the VMNdm, but down-regulated VMNvl astrocyte GLUT2 transcription. GLUT2 augmented baseline VMNdm and VMNvl astrocyte glucokinase (GCK) gene expression, but increased (VMNdm) or reduced (VMNvl) GCK transcription during hypoglycemia. GLUT2 imposed opposite control, namely stimulation versus inhibition of VMNdm or VMNvl astrocyte 5'-AMP-activated protein kinase-alpha 1 and -alpha 2 gene expression, respectively. GLUT2 stimulated astrocyte glycogen synthase (GS) gene expression in each VMN division. GLUT2 inhibited transcription of the AMP-sensitive glycogen phosphorylase (GP) isoform GP-brain type (GPbb) in each site, yet diminished (VMNdm) or augmented (VMNvl) astrocyte GP-muscle type (GPmm) mRNA. GLUT2 enhanced VMNdm and VMNvl glycogen accumulation during euglycemia, and curbed hypoglycemia-associated VMNdm glycogen depletion. Results show that VMN astrocytes exhibit opposite, division-specific GLUT2 transcriptional responsiveness to hypoglycemia. Data document divergent GLUT2 control of GCK, AMPK catalytic subunit, and GPmm gene profiles in VMNdm versus VMNvl astrocytes. Ongoing studies seek to determine how differential GLUT2 regulation of glucose and energy sensor function and glycogenolysis in each VMN location may affect local neuron responses to hypoglycemia.
Collapse
Affiliation(s)
- Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA.
- UL System Foundation and Willis-Knighton Health Systems Professorship in Toxicology, College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| |
Collapse
|
2
|
Gonzalez-Gutierrez L, Motiño O, Barriuso D, de la Puente-Aldea J, Alvarez-Frutos L, Kroemer G, Palacios-Ramirez R, Senovilla L. Obesity-Associated Colorectal Cancer. Int J Mol Sci 2024; 25:8836. [PMID: 39201522 PMCID: PMC11354800 DOI: 10.3390/ijms25168836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Colorectal cancer (CRC) affects approximately 2 million people worldwide. Obesity is the major risk factor for CRC. In addition, obesity contributes to a chronic inflammatory stage that enhances tumor progression through the secretion of proinflammatory cytokines. In addition to an increased inflammatory response, obesity-associated cancer presents accrued molecular factors related to cancer characteristics, such as genome instability, sustained cell proliferation, telomere dysfunctions, angiogenesis, and microbial alteration, among others. Despite the evidence accumulated over the last few years, the treatments for obesity-associated CRC do not differ from the CRC treatments in normal-weight individuals. In this review, we summarize the current knowledge on obesity-associated cancer, including its epidemiology, risk factors, molecular factors, and current treatments. Finally, we enumerate possible new therapeutic targets that may improve the conditions of obese CRC patients. Obesity is key for the development of CRC, and treatments resulting in the reversal of obesity should be considered as a strategy for improving antineoplastic CRC therapies.
Collapse
Affiliation(s)
- Lucia Gonzalez-Gutierrez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Omar Motiño
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Daniel Barriuso
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Juan de la Puente-Aldea
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Lucia Alvarez-Frutos
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Roberto Palacios-Ramirez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Laura Senovilla
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| |
Collapse
|
3
|
Wu Q, Liu Z, Li B, Liu YE, Wang P. Immunoregulation in cancer-associated cachexia. J Adv Res 2024; 58:45-62. [PMID: 37150253 PMCID: PMC10982873 DOI: 10.1016/j.jare.2023.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Cancer-associated cachexia is a multi-organ disorder associated with progressive weight loss due to a variable combination of anorexia, systemic inflammation and excessive energy wasting. Considering the importance of immunoregulation in cachexia, it still lacks a complete understanding of the immunological mechanisms in cachectic progression. AIM OF REVIEW Our aim here is to describe the complex immunoregulatory system in cachexia. We summarize the effects and translational potential of the immune system on the development of cancer-associated cachexia and we attempt to conclude with thoughts on precise and integrated therapeutic strategies under the complex immunological context of cachexia. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three main key concepts. First, we highlight the inflammatory factors and additional mediators that have been identified to modulate this syndrome. Second, we decipher the potential role of immune checkpoints in tissue wasting. Third, we discuss the multilayered insights in cachexia through the immunometabolic axis, immune-gut axis and immune-nerve axis.
Collapse
Affiliation(s)
- Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yu-E Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| |
Collapse
|
4
|
Zhuang Y, Chai J, Abdelsattar MM, Fu Y, Zhang N. Transcriptomic and metabolomic insights into the roles of exogenous β-hydroxybutyrate acid for the development of rumen epithelium in young goats. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:10-21. [PMID: 37746660 PMCID: PMC10514413 DOI: 10.1016/j.aninu.2023.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/29/2023] [Accepted: 02/17/2023] [Indexed: 09/26/2023]
Abstract
Beta-hydroxybutyric acid (BHBA), as one of the main metabolic ketones in the rumen epithelium, plays critical roles in cellular growth and metabolism. The ketogenic capacity is associated with the maturation of rumen in young ruminants, and the exogenous BHBA in diet may promote the rumen development. However, the effects of exogenous BHBA on rumen remain unknown. This is the first study to investigate the mechanisms of BHBA on gene expression and metabolism of rumen epithelium using young goats as a model through multi-omics techniques. Thirty-two young goats were divided into control, low dose, middle dose, and high dose groups by supplementation of BHBA in starter (0, 3, 6, and 9 g/day, respectively). Results demonstrated the dietary of BHBA promoted the growth performance of young goats and increased width and length of the rumen papilla (P < 0.05). Hub genes in host transcriptome that were positively related to rumen characteristics and BHBA concentration were identified. Several upregulated hub genes including NDUFC1, NDUFB4, NDUFB10, NDUFA11 and NDUFA1 were enriched in the gene ontology (GO) pathway of nicotinamide adenine dinucleotide (NADH) dehydrogenase (ubiquinone) activity, while ATP5ME, ATP5PO and ATP5PF were associated with ATP synthesis. RT-PCR revealed the expression of genes (HMGCS2, BDH1, SLC16A3, etc.) associated with lipolysis increased significantly by BHBA supplementation (P < 0.05). Metabolomics indicated that some metabolites such as glucose, palmitic acid, cortisol and capric acid were also increased (P < 0.05). This study revealed that BHBA promoted rumen development through altering NADH balance and accelerating lipid metabolism, which provides a theoretical guidance for the strategies of gastrointestinal health and development of young ruminants.
Collapse
Affiliation(s)
- Yimin Zhuang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Chai
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Mahmoud M. Abdelsattar
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, 83523 Qena, Egypt
| | - Yuze Fu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Naifeng Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Briski KP, Napit PR, Alhamyani A, Leprince J, Mahmood AH. Sex-Dimorphic Octadecaneuropeptide (ODN) Regulation of Ventromedial Hypothalamic Nucleus Glucoregulatory Neuron Function and Counterregulatory Hormone Secretion. ASN Neuro 2023; 15:17590914231167230. [PMID: 37194319 PMCID: PMC10196551 DOI: 10.1177/17590914231167230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 05/18/2023] Open
Abstract
Central endozepinergic signaling is implicated in glucose homeostasis. Ventromedial hypothalamic nucleus (VMN) metabolic monitoring governs glucose counter-regulation. VMN glucose-stimulatory nitric oxide (NO) and glucose-inhibitory γ-aminobutyric acid (GABA) neurons express the energy gauge 5'-AMP-activated protein kinase (AMPK). Current research addresses the premise that the astrocyte glio-peptide octadecaneuropeptide (ODN) imposes sex-dimorphic control of metabolic sensor activity and neurotransmitter signaling in these neurons. The ODN G-protein coupled-receptor antagonist cyclo(1-8)[DLeu5]OP (LV-1075) was administered intracerebroventricularly (icv) to euglycemic rats of each sex; additional groups were pretreated icv with the ODN isoactive surrogate ODN11-18 (OP) before insulin-induced hypoglycemia. Western blotting of laser-catapult-microdissected VMN NO and GABA neurons showed that hypoglycemia caused OP-reversible augmentation of phospho-, e.g., activated AMPK and nitric oxide synthase (nNOS) expression in rostral (female) or middle (male) VMN segments or ODN-dependent suppression of nNOS in male caudal VMN. OP prevented hypoglycemic down-regulation of glutamate decarboxylase profiles in female rat rostral VMN, without affecting AMPK activity. LV-1075 treatment of male, not female rats elevated plasma glucagon and corticosterone concentrations. Moreover, OP attenuated hypoglycemia-associated augmentation of these hormones in males only. Results identify, for each sex, regional VMN metabolic transmitter signals that are subject to endozepinergic regulation. Directional shifts and gain-or-loss of ODN control during eu- versus hypoglycemia infer that VMN neuron receptivity to or post-receptor processing of this stimulus may be modulated by energy state. In male, counter-regulatory hormone secretion may be governed principally by ODN-sensitive neural pathways, whereas this endocrine outflow may be controlled by parallel, redundant ODN-dependent and -independent mechanisms in female.
Collapse
Affiliation(s)
- Karen P. Briski
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| | - Prabhat R. Napit
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| | - Abdulrahman Alhamyani
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| | - Jérôme Leprince
- Neuronal and Neuroendocrine Differentiation
and Communication Laboratory, Normandy University, INSERM U1239, PRIMACEN, Rouen,
France
| | - A.S.M. Hasan Mahmood
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| |
Collapse
|
6
|
Roy SC, Sapkota S, Pasula MB, Bheemanapally K, Briski KP. Diazepam Binding Inhibitor Control of Eu- and Hypoglycemic Patterns of Ventromedial Hypothalamic Nucleus Glucose-Regulatory Signaling. ASN Neuro 2023; 15:17590914231214116. [PMID: 38031405 PMCID: PMC10687944 DOI: 10.1177/17590914231214116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Pharmacological stimulation/antagonism of astrocyte glio-peptide octadecaneuropeptide signaling alters ventromedial hypothalamic nucleus (VMN) counterregulatory γ-aminobutyric acid (GABA) and nitric oxide transmission. The current research used newly developed capillary zone electrophoresis-mass spectrometry methods to investigate hypoglycemia effects on VMN octadecaneuropeptide content, along with gene knockdown tools to determine if octadecaneuropeptide signaling regulates these transmitters during eu- and/or hypoglycemia. Hypoglycemia caused dissimilar adjustments in the octadecaneuropeptide precursor, i.e., diazepam-binding-inhibitor and octadecaneuropeptide levels in dorsomedial versus ventrolateral VMN. Intra-VMN diazepam-binding-inhibitor siRNA administration decreased baseline 67 and 65 kDa glutamate decarboxylase mRNA levels in GABAergic neurons laser-microdissected from each location, but only affected hypoglycemic transcript expression in ventrolateral VMN. This knockdown therapy imposed dissimilar effects on eu- and hypoglycemic glucokinase and 5'-AMP-activated protein kinase-alpha1 (AMPKα1) and -alpha2 (AMPKα2) gene profiles in dorsomedial versus ventrolateral GABAergic neurons. Diazepam-binding-inhibitor gene silencing up-regulated baseline (dorsomedial) or hypoglycemic (ventrolateral) nitrergic neuron neuronal nitric oxide synthase mRNA profiles. Baseline nitrergic cell glucokinase mRNA was up- (ventrolateral) or down- (dorsomedial) regulated by diazepam-binding-inhibitor siRNA, but knockdown enhanced hypoglycemic profiles in both sites. Nitrergic nerve cell AMPKα1 and -α2 transcripts exhibited division-specific responses to this genetic manipulation during eu- and hypoglycemia. Results document the utility of capillary zone electrophoresis-mass spectrometric tools for quantification of ODN in small-volume brain tissue samples. Data show that hypoglycemia has dissimilar effects on ODN signaling in the two major neuroanatomical divisions of the VMN and that this glio-peptide imposes differential control of glucose-regulatory neurotransmission in the VMNdm versus VMNvl during eu- and hypoglycemia.
Collapse
Affiliation(s)
- Sagor C. Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Karen P. Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|
7
|
Adipokines as Regulators of Autophagy in Obesity-Linked Cancer. Cells 2022; 11:cells11203230. [PMID: 36291097 PMCID: PMC9600294 DOI: 10.3390/cells11203230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Excess body weight and obesity have become significant risk factors for cancer development. During obesity, adipose tissue alters its biological function, deregulating the secretion of bioactive factors such as hormones, cytokines, and adipokines that promote an inflammatory microenvironment conducive to carcinogenesis and tumor progression. Adipokines regulate tumor processes such as apoptosis, proliferation, migration, angiogenesis, and invasion. Additionally, it has been found that they can modulate autophagy, a process implicated in tumor suppression in healthy tissue and cancer progression in established tumors. Since the tumor-promoting role of autophagy has been well described, the process has been suggested as a therapeutic target in cancer. However, the effects of targeting autophagy might depend on the tumor type and microenvironmental conditions, where circulating adipokines could influence the role of autophagy in cancer. Here, we review recent evidence related to the role of adipokines in cancer cell autophagy in an effort to understand the tumor response in the context of obesity under the assumption of an autophagy-targeting treatment.
Collapse
|
8
|
Xiang L, Niu K, Peng Y, Zhang X, Li X, Ye R, Yu G, Ye G, Xiang H, Song Q, Feng Q. DNA G-quadruplex structure participates in regulation of lipid metabolism through acyl-CoA binding protein. Nucleic Acids Res 2022; 50:6953-6967. [PMID: 35748856 PMCID: PMC9262599 DOI: 10.1093/nar/gkac527] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
G-quadruplex structure (G4) is a type of DNA secondary structure that widely exists in the genomes of many organisms. G4s are believed to participate in multiple biological processes. Acyl-CoA binding protein (ACBP), a ubiquitously expressed and highly conserved protein in eukaryotic cells, plays important roles in lipid metabolism by transporting and protecting acyl-CoA esters. Here, we report the functional identification of a G4 in the promoter of the ACBP gene in silkworm and human cancer cells. We found that G4 exists as a conserved element in the promoters of ACBP genes in invertebrates and vertebrates. The BmACBP G4 bound with G4-binding protein LARK regulated BmACBP transcription, which was blocked by the G4 stabilizer pyridostatin (PDS) and G4 antisense oligonucleotides. PDS treatment with fifth instar silkworm larvae decreased the BmACBP expression and triacylglycerides (TAG) level, resulting in reductions in fat body mass, body size and weight and growth and metamorphic rates. PDS treatment and knocking out of the HsACBP G4 in human hepatic adenocarcinoma HepG2 cells inhibited the expression of HsACBP and decreased the TAG level and cell proliferation. Altogether, our findings suggest that G4 of the ACBP genes is involved in regulation of lipid metabolism processes in invertebrates and vertebrates.
Collapse
Affiliation(s)
- Lijun Xiang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kangkang Niu
- Correspondence may also be addressed to Kangkang Niu. Tel: +86 20 85215291; Fax: +86 20 85215291;
| | - Yuling Peng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaojuan Zhang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoyu Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruoqi Ye
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Guoxing Yu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Guojun Ye
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hui Xiang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qisheng Song
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Qili Feng
- To whom correspondence should be addressed. Tel: +86 20 85215291; Fax: +86 20 85215291;
| |
Collapse
|
9
|
Anagnostopoulos G, Motiño O, Li S, Carbonnier V, Chen H, Sica V, Durand S, Bourgin M, Aprahamian F, Nirmalathasan N, Donne R, Desdouets C, Sola MS, Kotta K, Montégut L, Lambertucci F, Surdez D, Sandrine G, Delattre O, Maiuri MC, Bravo-San Pedro JM, Martins I, Kroemer G. An obesogenic feedforward loop involving PPARγ, acyl-CoA binding protein and GABA A receptor. Cell Death Dis 2022; 13:356. [PMID: 35436993 PMCID: PMC9016078 DOI: 10.1038/s41419-022-04834-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
Acyl-coenzyme-A-binding protein (ACBP), also known as a diazepam-binding inhibitor (DBI), is a potent stimulator of appetite and lipogenesis. Bioinformatic analyses combined with systematic screens revealed that peroxisome proliferator-activated receptor gamma (PPARγ) is the transcription factor that best explains the ACBP/DBI upregulation in metabolically active organs including the liver and adipose tissue. The PPARγ agonist rosiglitazone-induced ACBP/DBI upregulation, as well as weight gain, that could be prevented by knockout of Acbp/Dbi in mice. Moreover, liver-specific knockdown of Pparg prevented the high-fat diet (HFD)-induced upregulation of circulating ACBP/DBI levels and reduced body weight gain. Conversely, knockout of Acbp/Dbi prevented the HFD-induced upregulation of PPARγ. Notably, a single amino acid substitution (F77I) in the γ2 subunit of gamma-aminobutyric acid A receptor (GABAAR), which abolishes ACBP/DBI binding to this receptor, prevented the HFD-induced weight gain, as well as the HFD-induced upregulation of ACBP/DBI, GABAAR γ2, and PPARγ. Based on these results, we postulate the existence of an obesogenic feedforward loop relying on ACBP/DBI, GABAAR, and PPARγ. Interruption of this vicious cycle, at any level, indistinguishably mitigates HFD-induced weight gain, hepatosteatosis, and hyperglycemia.
Collapse
Affiliation(s)
- Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Sijing Li
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Vincent Carbonnier
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Hui Chen
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Valentina Sica
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sylvère Durand
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Mélanie Bourgin
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Fanny Aprahamian
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Nitharsshini Nirmalathasan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Romain Donne
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, 75006, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006, Paris, France
| | - Chantal Desdouets
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, 75006, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006, Paris, France
| | | | - Konstantina Kotta
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Didier Surdez
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005, Paris, France
- Bone Sarcoma Research Laboratory, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Grossetête Sandrine
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005, Paris, France
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005, Paris, France
- Unité de Génétique Somatique, Service d'oncogénétique, Institut Curie, Centre Hospitalier, 75005, Paris, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - José Manuel Bravo-San Pedro
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
10
|
Abstract
Keyhole limpet hemocyanin (KLH) is a glycosylated multi-subunit metalloprotein that elicits a strong nonspecific immune activation, thus inducing both cellular and humoral immune responses. The exceptional immunogenicity of this protein can be leveraged to vaccinate mice against self-antigens that otherwise would not induce an autoimmune response. This protocol describes the covalent conjugation of KLH with acyl-coenzyme A-binding protein (ACBP), the autovaccination of mice with ACBP-KLH conjugate together with a potent adjuvant, and the detection of the produced anti-ACBP autoantibodies. For complete details on the use and execution of this profile, please refer to Bravo-San Pedro et al. (2019c). ACBP can be glutaraldehyde-conjugated to the large immunogenic protein KLH When coinjected with adjuvant, KLH-ACBP elicits autoantibodies against ACBP Circulating ACBP protein can be quantified by a specific ELISA Bioavailable ACBP decreases after successful autovaccination
Collapse
|
11
|
Distinct Plasma Concentrations of Acyl-CoA-Binding Protein (ACBP) in HIV Progressors and Elite Controllers. Viruses 2022; 14:v14030453. [PMID: 35336860 PMCID: PMC8949460 DOI: 10.3390/v14030453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/28/2022] Open
Abstract
HIV elite controllers (ECs) are characterized by the spontaneous control of viral replication, and by metabolic and autophagic profiles which favor anti-HIV CD4 and CD8 T-cell responses. Extracellular acyl coenzyme A binding protein (ACBP) acts as a feedback inhibitor of autophagy. Herein, we assessed the circulating ACBP levels in ECs, compared to people living with HIV (PLWH) receiving antiretroviral therapy (ART) or not. We found lower ACBP levels in ECs compared to ART-naïve or ART-treated PLWH (p < 0.01 for both comparisons), independently of age and sex. ACBP levels were similar in ECs and HIV-uninfected controls. The expression of the protective HLA alleles HLA-B*27, *57, or *58 did not influence ACBP levels in ECs. ACBP levels were not associated with CD4 or CD8 T-cell counts, CD4 loss over time, inflammatory cytokines, or anti-CMV IgG titers in ECs. In ART-treated PLWH, ACBP levels were correlated with interleukin (IL)-1β levels, but not with other inflammatory cytokines such as IL-6, IL-8, IL-32, or TNF-α. In conclusion, ECs are characterized by low ACBP plasma levels compared to ART-naïve or ART-treated PLWH. As autophagy is key to anti-HIV CD4 and CD8 T-cell responses, the ACBP pathway constitutes an interesting target in HIV cure strategies.
Collapse
|
12
|
Bourgin M, Kepp O, Kroemer G. Immunostimulatory effects of vitamin B5 improve anticancer immunotherapy. Oncoimmunology 2022; 11:2031500. [PMID: 35096488 PMCID: PMC8794238 DOI: 10.1080/2162402x.2022.2031500] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Vitamin B5 (panthotenic acid), the precursor of coenzyme A (CoA), is contained in most food items and is produced by the intestinal microbiota. A recent study published in Cell Metabolism reports that vitamin B5 and CoA favor the differentiation of CD8+ cytotoxic T cells into interleukin-22 (IL-22)-producing Tc22 cells, likely through fueling mitochondrial metabolism. Importantly, in a small cohort of melanoma patients, the plasma levels of vitamin B5 positively correlate with responses to PD-1-targeted immunotherapy. Moreover, in mice, supplementation with vitamin B5 increases the efficacy of PD-L1-targeted cancer immunotherapy, and in vitro culture of T cells with CoA enhances their antitumor activity upon adoptive transfer into mice. These finding suggest that vitamin B5 is yet another B vitamin that stimulates anti-cancer immunosurveillance.
Collapse
Affiliation(s)
- Melanie Bourgin
- Centre de Recherche Des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Oliver Kepp
- Centre de Recherche Des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche Des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP,Paris, France
| |
Collapse
|
13
|
Hiser C, Montgomery BL, Ferguson-Miller S. TSPO protein binding partners in bacteria, animals, and plants. J Bioenerg Biomembr 2021; 53:463-487. [PMID: 34191248 PMCID: PMC8243069 DOI: 10.1007/s10863-021-09905-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/12/2021] [Indexed: 12/11/2022]
Abstract
The ancient membrane protein TSPO is phylogenetically widespread from archaea and bacteria to insects, vertebrates, plants, and fungi. TSPO’s primary amino acid sequence is only modestly conserved between diverse species, although its five transmembrane helical structure appears mainly conserved. Its cellular location and orientation in membranes have been reported to vary between species and tissues, with implications for potential diverse binding partners and function. Most TSPO functions relate to stress-induced changes in metabolism, but in many cases it is unclear how TSPO itself functions—whether as a receptor, a sensor, a transporter, or a translocator. Much evidence suggests that TSPO acts indirectly by association with various protein binding partners or with endogenous or exogenous ligands. In this review, we focus on proteins that have most commonly been invoked as TSPO binding partners. We suggest that TSPO was originally a bacterial receptor/stress sensor associated with porphyrin binding as its most ancestral function and that it later developed additional stress-related roles in eukaryotes as its ability to bind new partners evolved.
Collapse
Affiliation(s)
- Carrie Hiser
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| | - Beronda L Montgomery
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
14
|
Li S, Joseph A, Martins I, Kroemer G. Elevated plasma levels of the appetite-stimulator ACBP/DBI in fasting and obese subjects. Cell Stress 2021; 5:89-98. [PMID: 34308254 PMCID: PMC8283301 DOI: 10.15698/cst2021.07.252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic cells release the phylogenetically ancient protein acyl coenzyme A binding protein (ACBP, which in humans is encoded by the gene DBI, diazepam binding inhibitor) upon nutrient deprivation. Accordingly, mice that are starved for one to two days and humans that undergo voluntary fasting for one to three weeks manifest an increase in the plasma concentration of ACBP/DBI. Paradoxically, ACBP/DBI levels also increase in obese mice and humans. Since ACBP/DBI stimulates appetite, this latter finding may explain why obesity constitutes a self-perpetuating state. Here, we present a theoretical framework to embed these findings in the mechanisms of weight control, as well as a bioinformatics analysis showing that, irrespective of the human cell or tissue type, one single isoform of ACBP/DBI (ACBP1) is preponderant (~90% of all DBI transcripts, with the sole exception of the testis, where it is ~70%). Based on our knowledge, we conclude that ACBP1 is subjected to a biphasic transcriptional and post-transcriptional regulation, explaining why obesity and fasting both are associated with increased circulating ACBP1 protein levels.
Collapse
Affiliation(s)
- Sijing Li
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France.,SL and AJ equally contributed to this paper
| | - Adrien Joseph
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France.,SL and AJ equally contributed to this paper
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Joseph A, Chen H, Anagnostopoulos G, Montégut L, Lafarge A, Motiño O, Castedo M, Maiuri MC, Clément K, Terrisse S, Martin AL, Vaz-Luis I, Andre F, Grundler F, de Toledo FW, Madeo F, Zitvogel L, Goldwasser F, Blanchet B, Fumeron F, Roussel R, Martins I, Kroemer G. Effects of acyl-coenzyme A binding protein (ACBP)/diazepam-binding inhibitor (DBI) on body mass index. Cell Death Dis 2021; 12:599. [PMID: 34108446 PMCID: PMC8190068 DOI: 10.1038/s41419-021-03864-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
In mice, the plasma concentrations of the appetite-stimulatory and autophagy-inhibitory factor acyl-coenzyme A binding protein (ACBP, also called diazepam-binding inhibitor, DBI) acutely increase in response to starvation, but also do so upon chronic overnutrition leading to obesity. Here, we show that knockout of Acbp/Dbi in adipose tissue is sufficient to prevent high-fat diet-induced weight gain in mice. We investigated ACBP/DBI plasma concentrations in several patient cohorts to discover a similar dual pattern of regulation. In relatively healthy subjects, ACBP/DBI concentrations independently correlated with body mass index (BMI) and age. The association between ACBP/DBI and BMI was lost in subjects that underwent major weight gain in the subsequent 3-9 years, as well as in advanced cancer patients. Voluntary fasting, undernutrition in the context of advanced cancer, as well as chemotherapy were associated with an increase in circulating ACBP/DBI levels. Altogether, these results support the conclusion that ACBP/DBI may play an important role in body mass homeostasis as well as in its failure.
Collapse
Affiliation(s)
- Adrien Joseph
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Hui Chen
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Antoine Lafarge
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Maria Castedo
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Karine Clément
- INSERM, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Nutrition Departement, Pitié-Salpêtrière Hospital, Sorbonne Université, 47-83 bd de l'Hôpital, 75013, Paris, France
| | - Safae Terrisse
- Department of Medical Oncology, Saint-Louis Hospital, Paris Descartes University, AP-HP, Paris, France
| | | | - Ines Vaz-Luis
- INSERM Unit 981, Gustave Roussy, Cancer Campus, Villejuif, France
- Medical Oncology, Gustave Roussy, Cancer Campus, Villejuif, France
| | - Fabrice Andre
- INSERM Unit 981, Gustave Roussy, Cancer Campus, Villejuif, France
- Medical Oncology, Gustave Roussy, Cancer Campus, Villejuif, France
| | | | | | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Laurence Zitvogel
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
- INSERM U1015, Gustave Roussy, Cancer Campus, 94800, Villejuif, France
- INSERM CICBT1428, Centre d'Investigation Clinique-Biothérapie, 94800, Villejuif, France
| | - François Goldwasser
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris, France
- URP4466, Paris University, Paris, France
| | - Benoit Blanchet
- Pharmacokinetics and Pharmacochemistry Unit, Cochin Hospital, Paris Descartes University, CARPEM, AP-HP, Paris, France
- UMR8038 CNRS, U1268 INSERM, Faculty of Pharmacy, University of Paris, PRES Sorbonne Paris Cité, CARPEM, 75006, Paris, France
| | - Frédéric Fumeron
- Centre de Recherche des Cordeliers, UMR-S 1138, INSERM, Université de Paris, Paris, France
| | - Ronan Roussel
- Centre de Recherche des Cordeliers, UMR-S 1138, INSERM, Université de Paris, Paris, France
- Department of Diabetology, Endocrinology, Nutrition, AP-HP, Bichat Hospital, Paris, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Department of Physiology, University Complutense of Madrid, Madrid, Spain.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
16
|
Genes Encoding Microbial Acyl Coenzyme A Binding Protein/Diazepam-Binding Inhibitor Orthologs Are Rare in the Human Gut Microbiome and Show No Links to Obesity. Appl Environ Microbiol 2021; 87:e0047121. [PMID: 33837018 PMCID: PMC8174751 DOI: 10.1128/aem.00471-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acyl coenzyme A (CoA) binding protein (ACBP), also called diazepam-binding inhibitor (DBI), is a phylogenetically conserved protein that is expressed by all eukaryotic species as well as by some bacteria. Since elevated ACBP/DBI levels play a major role in the inhibition of autophagy, increase in appetite, and enhanced lipid storage that accompany obesity, we wondered whether ACBP/DBI produced by the human microbiome might affect host weight. We found that the genomes of bacterial commensals rarely contain ACBP/DBI homologues, which are rather encoded by genomes of some pathogenic or environmental taxa that were not prevalent in human feces. Exhaustive bioinformatic analyses of 1,899 gut samples from healthy individuals refuted the hypothesis that bacterial ACBP/DBI might affect the body mass index (BMI) in a physiological context. Thus, the physiological regulation of BMI is unlikely to be affected by microbial ACBP/DBI-like proteins. However, at the speculative level, it remains possible that ACBP/DBI produced by potential pathogenic bacteria might enhance their virulence by inhibiting autophagy and hence subverting innate immune responses. IMPORTANCE Acyl coenzyme A (CoA) binding protein (ACBP) can be encoded by several organisms across the domains of life, including microbes, and has shown to play major roles in human metabolic processes. However, little is known about its presence in the human gut microbiome and whether its microbial counterpart could also play a role in human metabolism. In the present study, we found that microbial ACBP/DBI sequences were rarely present in the gut microbiome across multiple metagenomic data sets. Microbes that carried ACBP/DBI in the human gut microbiome included Saccharomyces cerevisiae, Lautropia mirabilis, and Comamonas kerstersii, but these microorganisms were not associated with body mass index, further indicating an unconvincing role for microbial ACBP/DBI in human metabolism.
Collapse
|
17
|
Mei J, Yang R, Yang Q, Wan W, Wei X. Proteomic screening identifies the direct targets of chrysin anti-lipid depot in adipocytes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113361. [PMID: 32891819 DOI: 10.1016/j.jep.2020.113361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/07/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Overweight/obesity was mentioned by many countries as an obstacle to good health and long life, which increases risk of diseases and disorders. Previous studies suggested that the chronic low-grade inflammation present in the body was considered as the essential pathogenesis for obesity. Chrysin is extracted from traditional Chinese medicine Oroxylum indicum (Linn.) Kurz and plays a superior anti-obesity role. Chrysin could reduce the lipid depot by inhibiting the obesity-related inflammation in adipose tissue. However, the target protein for chrysin to exert its anti-obesity role are not verified. AIM OF STUDY The present study aimed to screen and validate the target protein for chrysin to reduce the lipid depot in palmitic acid-induced 3T3-L1 adipocytes. MATERIALS AND METHODS Obesity model was established employing 0.5 mmol/L palmitic acid-induced 3T3-L1 adipocytes through "Cocktails" method. Two-dimensional gel electrophoresis (2-DE) combined with liquid chromatography-mass spectrometry (LC-MS) was applied to analyze the differentially expressed proteins for chrysin intervention by lipid formation in adipocytes. Gene silencing was utilized to decrease gene expression of the candidate proteins, then production of triglyceride in 3T3-L1 was detected by triglycerides assay to determine the target proteins. Ultraviolet (UV) absorption together with fluorescence spectra validated the direct target proteins of chrysin. They also computed the correlation constants of combination between chrysin and the target proteins. Molecular docking was further employed to identify the main binding amino acids between chrysin and the target protein. RESULTS 2-DE combined with LC-MS screened four candidate proteins which were related to metabolism and inflammation. The production of triglycerides in 3T3-L1 was reduced after decreasing gene expression of Annexin A2 (ANXA2), 60 kDa heat shock protein (HSP-60) and succinyl-CoA:3-ketoacid coenzyme A transferase 1 (SCOT-S), respectively. UV spectrum showed that the absorbance spectra of ANXA2 from 260 to 300 nm shifted upwards along with the increase in chrysin concentration, meanwhile the absorbance spectra of HSP-60 from 200 to 220 nm and from 265 to 280 nm shifted slightly upwards along with the increase in chrysin concentrations. The results indicated the conjugated structures between chrysin and ANXA2 or HSP-60. Fluorescence quenching further suggested a spontaneous interaction between chrysin and ANXA2 or HSP-60. Finally, molecular docking identified the main binding amino acids between ANXA2 and chrysin were Ser22, Tyr24, Pro267, Val298, Asp299, and Lys302. CONCLUSIONS Chrysin can reduce the amount of triglycerides by directly downregulating the inflammation-related target proteins ANXA2 and HSP-60, exerting an anti-obesity role.
Collapse
Affiliation(s)
- Jie Mei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rong Yang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiaohong Yang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wencheng Wan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoyong Wei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Kumar A, Ghosh DK, Ranjan A. Differential Stabilities of Mefloquine-Bound Human and Plasmodium falciparum Acyl-CoA-Binding Proteins. ACS OMEGA 2021; 6:1883-1893. [PMID: 33521428 PMCID: PMC7841788 DOI: 10.1021/acsomega.0c04582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/01/2020] [Indexed: 05/03/2023]
Abstract
Toxic effects of pharmacological drugs restrict their robust application against human diseases. Although used as a drug in the combinatorial therapy to treat malaria, the use of mefloquine is not highly recommended because of its adverse effects in humans. Mefloquine inhibits the binding of acyl-CoAs to acyl-CoA-binding proteins of Plasmodium falciparum (PfACBPs) and human (hACBP). In this study, we have used molecular dynamics simulation and other computational approaches to investigate the differences of stabilities of mefloquine-PfACBP749 and mefloquine-hACBP complexes. The stability of mefloquine in the binding cavity of PfACBP749 is less than its stability in the binding pocket of hACBP. Although the essential tyrosine residues (tyrosine-30 and tyrosine-33 of PfACBP749 and tyrosine-29 and tyrosine-32 of hACBP) mediate the initial binding of mefloquine to the proteins by π-stacking interactions, additional temporally longer interactions between mefloquine and aspartate-22 and methionine-25 of hACBP result in stronger binding of mefloquine to hACBP. The higher fluctuation of mefloquine-binding residues of PfACBP749 contributes to the instability of mefloquine in the binding cavity of the protein. On the contrary, in the mefloquine-bound state, the stability of hACBP protein is less than the stability of PfACBP749. The helix-to-coil transition of the N-terminal hydrophobic region of hACBP has a destabilizing effect upon the protein's structure. This causes the induction of aggregation properties in the hACBP in the mefloquine-bound state. Taken together, we describe the mechanistic features that affect the differential dynamic stabilities of mefloquine-bound PfACBP749 and hACBP proteins.
Collapse
Affiliation(s)
- Abhishek Kumar
- Computational
and Functional Genomics Group, Centre for
DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, Telangana 500039, India
- Graduate
Studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Debasish Kumar Ghosh
- Computational
and Functional Genomics Group, Centre for
DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, Telangana 500039, India
| | - Akash Ranjan
- Computational
and Functional Genomics Group, Centre for
DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, Telangana 500039, India
| |
Collapse
|
19
|
Joseph A, Moriceau S, Sica V, Anagnostopoulos G, Pol J, Martins I, Lafarge A, Maiuri MC, Leboyer M, Loftus J, Bellivier F, Belzeaux R, Berna F, Etain B, Capdevielle D, Courtet P, Dubertret C, Dubreucq J, Thierry DA, Fond G, Gard S, Llorca PM, Mallet J, Misdrahi D, Olié E, Passerieux C, Polosan M, Roux P, Samalin L, Schürhoff F, Schwan R, Magnan C, Oury F, Bravo-San Pedro JM, Kroemer G. Metabolic and psychiatric effects of acyl coenzyme A binding protein (ACBP)/diazepam binding inhibitor (DBI). Cell Death Dis 2020; 11:502. [PMID: 32632162 PMCID: PMC7338362 DOI: 10.1038/s41419-020-2716-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Acyl coenzyme A binding protein (ACBP), also known as diazepam binding inhibitor (DBI) is a multifunctional protein with an intracellular action (as ACBP), as well as with an extracellular role (as DBI). The plasma levels of soluble ACBP/DBI are elevated in human obesity and reduced in anorexia nervosa. Accumulating evidence indicates that genetic or antibody-mediated neutralization of ACBP/DBI has anorexigenic effects, thus inhibiting food intake and inducing lipo-catabolic reactions in mice. A number of anorexiants have been withdrawn from clinical development because of their side effects including an increase in depression and suicide. For this reason, we investigated the psychiatric impact of ACBP/DBI in mouse models and patient cohorts. Intravenously (i.v.) injected ACBP/DBI protein conserved its orexigenic function when the protein was mutated to abolish acyl coenzyme A binding, but lost its appetite-stimulatory effect in mice bearing a mutation in the γ2 subunit of the γ-aminobutyric acid (GABA) A receptor (GABAAR). ACBP/DBI neutralization by intraperitoneal (i.p.) injection of a specific mAb blunted excessive food intake in starved and leptin-deficient mice, but not in ghrelin-treated animals. Neither i.v. nor i.p. injected anti-ACBP/DBI antibody affected the behavior of mice in the dark–light box and open-field test. In contrast, ACBP/DBI increased immobility in the forced swim test, while anti-ACBP/DBI antibody counteracted this sign of depression. In patients diagnosed with therapy-resistant bipolar disorder or schizophrenia, ACBP/DBI similarly correlated with body mass index (BMI), not with the psychiatric diagnosis. Patients with high levels of ACBP/DBI were at risk of dyslipidemia and this effect was independent from BMI, as indicated by multivariate analysis. In summary, it appears that ACBP/DBI neutralization has no negative impact on mood and that human depression is not associated with alterations in ACBP/DBI concentrations.
Collapse
Affiliation(s)
- Adrien Joseph
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Faculté de Médecine, Université de Paris Saclay, Kremlin Bicetre, France
| | - Stéphanie Moriceau
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Descartes-Sorbonne-Paris Cité, Paris, France
| | - Valentina Sica
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
| | - Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Faculté de Médecine, Université de Paris Saclay, Kremlin Bicetre, France
| | - Jonathan Pol
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Antoine Lafarge
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Faculté de Médecine, Université de Paris Saclay, Kremlin Bicetre, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Marion Leboyer
- Fondation FondaMental, Créteil, France.,Université Paris Est Créteil, Inserm U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France.,AP-HP, HU Henri Mondor, Departement Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Federation Hospitalo-Universitaire de Médecine de Precision (FHU IMPACT), F-94010, Créteil, France.,Fondation FondaMental Créteil, Créteil, France
| | - Josephine Loftus
- Fondation FondaMental, Créteil, France.,Pôle de Psychiatrie, Centre Hospitalier Princesse Grace, Monaco, France
| | - Frank Bellivier
- Fondation FondaMental, Créteil, France.,AP-HP, GH Saint-Louis-Lariboisière-Fernand Widal, Pôle Neurosciences Tête et Cou, INSERM UMRS 1144, University Paris Diderot, Paris, France
| | - Raoul Belzeaux
- Fondation FondaMental, Créteil, France.,Pôle de Psychiatrie, Assistance Publique Hôpitaux de Marseille, Marseille, France.,INT-UMR7289, CNRS Aix-Marseille Université, Marseille, France
| | - Fabrice Berna
- Fondation FondaMental, Créteil, France.,Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Bruno Etain
- Fondation FondaMental, Créteil, France.,AP-HP, GH Saint-Louis-Lariboisière-Fernand Widal, Pôle Neurosciences Tête et Cou, INSERM UMRS 1144, University Paris Diderot, Paris, France
| | - Delphine Capdevielle
- Fondation FondaMental, Créteil, France.,Service Universitaire de Psychiatrie Adulte, Hôpital la Colombière, CHRU Montpellier, Université Montpellier 1, Inserm 1061, Montpellier, France
| | - Philippe Courtet
- Fondation FondaMental, Créteil, France.,Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France.,PSNREC, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Caroline Dubertret
- Fondation FondaMental, Créteil, France.,AP-HP, Groupe Hospitalo-Universitaire Nord, DMU ESPRIT, Service de Psychiatrie et Addictologie. Hopital Louis Mourier, Colombes, Inserm U1266, Faculté de Médecine, Université de Paris, Paris, France
| | - Julien Dubreucq
- Fondation FondaMental, Créteil, France.,Centre Référent de Réhabilitation Psychosociale et de Remédiation Cognitive (C3R), CH, Alpes Isère, France
| | - D' Amato Thierry
- Fondation FondaMental, Créteil, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Equipe PSYR2, Centre Hospitalier Le Vinatier, Pole Est, 69678, Bron Cedex, France
| | - Guillaume Fond
- Fondation FondaMental, Créteil, France.,AP-HM, Aix-Marseille University, School of Medicine-La Timone Medical Campus, EA 3279, Marseille, France.,EReSS-Health Service Research and Quality of Life Center, 13005, Marseille, France
| | - Sebastien Gard
- Fondation FondaMental, Créteil, France.,Centre Expert Troubles Bipolaires, Service de Psychiatrie Adulte, Hôpital Charles-Perrens, Bordeaux, France
| | - Pierre-Michel Llorca
- Fondation FondaMental, Créteil, France.,CHU Clermont-Ferrand, Department of Psychiatry, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Jasmina Mallet
- Fondation FondaMental, Créteil, France.,AP-HP, Groupe Hospitalo-Universitaire Nord, DMU ESPRIT, Service de Psychiatrie et Addictologie. Hopital Louis Mourier, Colombes, Inserm U1266, Faculté de Médecine, Université de Paris, Paris, France
| | - David Misdrahi
- Fondation FondaMental, Créteil, France.,Centre Expert Troubles Bipolaires, Service de Psychiatrie Adulte, Hôpital Charles-Perrens, Bordeaux, France
| | - Emilie Olié
- Fondation FondaMental, Créteil, France.,Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
| | - Christine Passerieux
- Fondation FondaMental, Créteil, France.,Service Universitaire de Psychiatrie d'Adultes, Centre Hospitalier de Versailles, Le Chesnay, Université Paris-Saclay, UVSQ, Inserm, CESP, Team "DevPsy", 94807, Villejuif, France
| | - Mircea Polosan
- Fondation FondaMental, Créteil, France.,Université Grenoble Alpes, CHU de Grenoble et des Alpes, Grenoble Institut des Neurosciences (GIN) Inserm U 1216, Grenoble, France
| | - Paul Roux
- Fondation FondaMental, Créteil, France.,Service Universitaire de Psychiatrie d'Adultes, Centre Hospitalier de Versailles, Le Chesnay, Université Paris-Saclay, UVSQ, Inserm, CESP, Team "DevPsy", 94807, Villejuif, France
| | - Ludovic Samalin
- Fondation FondaMental, Créteil, France.,CHU Clermont-Ferrand, Department of Psychiatry, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Franck Schürhoff
- Fondation FondaMental, Créteil, France.,Université Paris Est Créteil, Inserm U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France.,AP-HP, HU Henri Mondor, Departement Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Federation Hospitalo-Universitaire de Médecine de Precision (FHU IMPACT), F-94010, Créteil, France.,Fondation FondaMental Créteil, Créteil, France
| | - Raymond Schwan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Université de Lorraine, CHRU de Nancy et Pôle de Psychiatrie et Psychologie Clinique, Centre Psychothérapique de Nancy, Nancy, France
| | | | | | - Franck Oury
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Descartes-Sorbonne-Paris Cité, Paris, France
| | - José M Bravo-San Pedro
- University Complutense of Madrid. Faculty of Medicine. Department of Physiology, Madrid, Spain.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France. .,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China. .,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
20
|
Qiu S, Zeng B. Advances in Understanding the Acyl-CoA-Binding Protein in Plants, Mammals, Yeast, and Filamentous Fungi. J Fungi (Basel) 2020; 6:E34. [PMID: 32164164 PMCID: PMC7151191 DOI: 10.3390/jof6010034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/31/2022] Open
Abstract
Acyl-CoA-binding protein (ACBP) is an important protein with a size of about 10 kDa. It has a high binding affinity for C12-C22 acyl-CoA esters and participates in lipid metabolism. ACBP and its family of proteins have been found in all eukaryotes and some prokaryotes. Studies have described the function and structure of ACBP family proteins in mammals (such as humans and mice), plants (such as Oryza sativa, Arabidopsis thaliana, and Hevea brasiliensis) and yeast. However, little information on the structure and function of the proteins in filamentous fungi has been reported. This article concentrates on recent advances in the research of the ACBP family proteins in plants and mammals, especially in yeast, filamentous fungi (such as Monascus ruber and Aspergillus oryzae), and fungal pathogens (Aspergillus flavus, Cryptococcus neoformans). Furthermore, we discuss some problems in the field, summarize the binding characteristics of the ACBP family proteins in filamentous fungi and yeast, and consider the future of ACBP development.
Collapse
Affiliation(s)
| | - Bin Zeng
- JiangXi Province Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China;
| |
Collapse
|
21
|
Madeo F, Tavernarakis N, Pedro JMBS, Kroemer G. ACBP is an appetite stimulator across phylogenetic barriers. Cell Stress 2020; 4:27-29. [PMID: 32043075 PMCID: PMC6997948 DOI: 10.15698/cst2020.02.211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria.,BioTechMed Graz, Austria
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece.,Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion 71110, Crete, Greece
| | - José M Bravo-San Pedro
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Inserm U1138, Centre de Recherche des Cordeliers, Sorbonne. Université, Université de Paris, 15 rue de l'école de médecine 75006, Paris, France.,Team "Metabolism, Cancer & Immunity", équipe 11 labellisée par la Ligue contre le Cancer, Paris, France.,Share senior co-authorship
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Inserm U1138, Centre de Recherche des Cordeliers, Sorbonne. Université, Université de Paris, 15 rue de l'école de médecine 75006, Paris, France.,Team "Metabolism, Cancer & Immunity", équipe 11 labellisée par la Ligue contre le Cancer, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Share senior co-authorship
| |
Collapse
|