1
|
Zhang X, Tian H, Xie C, Yang Y, Li P, Cheng J. The role and mechanism of vascular wall cell ion channels in vascular fibrosis remodeling. Channels (Austin) 2024; 18:2418128. [PMID: 39425532 PMCID: PMC11492694 DOI: 10.1080/19336950.2024.2418128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
Fibrosis is usually the final pathological state of many chronic inflammatory diseases and may lead to organ malfunction. Excessive deposition of extracellular matrix (ECM) molecules is a characteristic of most fibrotic tissues. The blood vessel wall contains three layers of membrane structure, including the intima, which is composed of endothelial cells; the media, which is composed of smooth muscle cells; and the adventitia, which is formed by the interaction of connective tissue and fibroblasts. The occurrence and progression of vascular remodeling are closely associated with cardiovascular diseases, and vascular remodeling can alter the original structure and function of the blood vessel. Dysregulation of the composition of the extracellular matrix in blood vessels leads to the continuous advancement of vascular stiffening and fibrosis. Vascular fibrosis reaction leads to excessive deposition of the extracellular matrix in the vascular adventitia, reduces vessel compliance, and ultimately alters key aspects of vascular biomechanics. The pathogenesis of fibrosis in the vasculature and strategies for its reversal have become interesting and important challenges. Ion channels are widely expressed in the cardiovascular system; they regulate blood pressure, maintain cardiovascular function homeostasis, and play important roles in ion transport, cell differentiation, proliferation. In blood vessels, different types of ion channels in fibroblasts, smooth muscle cells and endothelial cells may be relevant mediators of the development of fibrosis in organs or tissues. This review discusses the known roles of ion channels in vascular fibrosis remodeling and discusses potential therapeutic targets for regulating remodeling and repair after vascular injury.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Hai Tian
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Cheng Xie
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Pengyun Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Jun Cheng
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Liu J, Sun W, Li N, Li H, Wu L, Yi H, Ji J, Zheng D. Uncovering immune cell-associated genes in breast cancer: based on summary data-based Mendelian randomized analysis and colocalization study. Breast Cancer Res 2024; 26:172. [PMID: 39614330 DOI: 10.1186/s13058-024-01928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Breast cancer, which is the most prevalent form of cancer among women globally, encompasses various subtypes that demand distinct treatment approaches. The tumor microenvironment and immune response are of crucial significance in the development and progression of breast cancer. Nevertheless, there has been scant evidence concerning the genes within breast cancer - specific immune cells. METHODS We utilized summary data-based Mendelian randomization (SMR) to identify genes associated with breast cancer by utilizing expression quantitative trait loci (eQTL) datasets for 14 different immune cell types and genome-wide association studies (GWAS) for overall breast cancer and its subtypes. Furthermore, colocalization analysis was carried out to evaluate whether the observed association in SMR analyses is influenced by the same causal variant. Replication analysis and bulk RNA sequencing (bulkRNA-seq) analysis were employed to validate promising immune genes as potential drug targets. RESULTS After correcting for the rate of false discovery, we discovered a total of 17 genes in 9 immune cell types that were significantly associated with overall breast cancer and its subtypes. The genes KCNN4, L3MBTL3, ZBTB38, MDM4, and TNFSF10 were identified in overall breast cancer and its subtypes. Colocalization analyses provided robust evidence in support of these associations. Notably, the KCNN4 gene in non-classical MONOcytes (MONOnc) was further validated through replication analysis and bulkRNA-seq analysis. CONCLUSION In summary, our research has revealed a repertoire of genes within diverse immune cells associated with breast cancer. KCNN4 gene in non-classical MONOcytes (MONOnc) exhibited a negative association with overall breast cancer and its subtypes, which was identified as a potential drug target for breast cancer, opening up new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Jingyang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Wen Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Haibin Li
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lijuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Huan Yi
- Department of Gynecologic Oncology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China.
| | - Jianguang Ji
- Faculty of Health Science, University of Macau, Taipa, Macao SAR, China.
| | - Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Iyer K, Yan Z, Ross SR. Entry inhibitors as arenavirus antivirals. Front Microbiol 2024; 15:1382953. [PMID: 38650890 PMCID: PMC11033450 DOI: 10.3389/fmicb.2024.1382953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Arenaviruses belonging to the Arenaviridae family, genus mammarenavirus, are enveloped, single-stranded RNA viruses primarily found in rodent species, that cause severe hemorrhagic fever in humans. With high mortality rates and limited treatment options, the search for effective antivirals is imperative. Current treatments, notably ribavirin and other nucleoside inhibitors, are only partially effective and have significant side effects. The high lethality and lack of treatment, coupled with the absence of vaccines for all but Junín virus, has led to the classification of these viruses as Category A pathogens by the Centers for Disease Control (CDC). This review focuses on entry inhibitors as potential therapeutics against mammarenaviruses, which include both New World and Old World arenaviruses. Various entry inhibition strategies, including small molecule inhibitors and neutralizing antibodies, have been explored through high throughput screening, genome-wide studies, and drug repurposing. Notable progress has been made in identifying molecules that target receptor binding, internalization, or fusion steps. Despite promising preclinical results, the translation of entry inhibitors to approved human therapeutics has faced challenges. Many have only been tested in in vitro or animal models, and a number of candidates showed efficacy only against specific arenaviruses, limiting their broader applicability. The widespread existence of arenaviruses in various rodent species and their potential for their zoonotic transmission also underscores the need for rapid development and deployment of successful pan-arenavirus therapeutics. The diverse pool of candidate molecules in the pipeline provides hope for the eventual discovery of a broadly effective arenavirus antiviral.
Collapse
Affiliation(s)
| | | | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois, College of Medicine, Chicago, IL, United States
| |
Collapse
|
4
|
Olivas-Aguirre M, Cruz-Aguilar LH, Pottosin I, Dobrovinskaya O. Reduction of Ca 2+ Entry by a Specific Block of KCa3.1 Channels Optimizes Cytotoxic Activity of NK Cells against T-ALL Jurkat Cells. Cells 2023; 12:2065. [PMID: 37626875 PMCID: PMC10453324 DOI: 10.3390/cells12162065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Degranulation mediated killing mechanism by NK cells is dependent on store-operated Ca2+ entry (SOCE) and has optimum at moderate intracellular Ca2+ elevations so that partial block of SOCE optimizes the killing process. In this study, we tested the effect of the selective blocker of KCa3.1 channel NS6180 on SOCE and the killing efficiency of NK cells from healthy donors and NK-92 cells against T-ALL cell line Jurkat. Patch-clamp analysis showed that only one-quarter of resting NK cells functionally express KCa3.1 current, which increases 3-fold after activation by interleukins 15 and 2. Nevertheless, blockage of KCa3.1 significantly reduced SOCE and intracellular Ca2+ rise induced by IL-15 or target cell recognition. NS6180 (1 μM) decreased NK degranulation at zero time of coculture with Jurkat cells but already after 1 h, the degranulation reached the same level as in the control. Monitoring of target cell death by flow cytometry and confocal microscopy demonstrated that NS6180 significantly improved the killing ability of NK cells after 1 h in coculture with Jurkat cells and increased the Jurkat cell fraction with apoptotic and necrotic markers. Our data evidence a strong dependence of SOCE on KCa3.1 activity in NK cells and that KCa3.1 specific block can improve NK cytotoxicity.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28045, Mexico
- Division of Exact, Natural and Technological Sciences, South University Center (CUsur), University of Guadalajara, Guzmán City 49000, Mexico
| | - Laura Hadit Cruz-Aguilar
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28045, Mexico
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28045, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28045, Mexico
| |
Collapse
|
5
|
Thale I, Maskri S, Grey L, Todesca LM, Budde T, Maisuls I, Strassert CA, Koch O, Schwab A, Wünsch B. Imaging of K Ca 3.1 Channels in Tumor Cells with PET and Small-Molecule Fluorescent Probes. ChemMedChem 2023; 18:e202200551. [PMID: 36315933 PMCID: PMC10098740 DOI: 10.1002/cmdc.202200551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/31/2022] [Indexed: 01/20/2023]
Abstract
The Ca2+ activated K+ channel KCa 3.1 is overexpressed in several human tumor cell lines, e. g. clear cell renal carcinoma, prostate cancer, non-small cell lung cancer. Highly aggressive cancer cells use this ion channel for key processes of the metastatic cascade such as migration, extravasation and invasion. Therefore, small molecules, which are able to image this KCa 3.1 channel in vitro and in vivo represent valuable diagnostic and prognostic tool compounds. The [18 F]fluoroethyltriazolyl substituted senicapoc was used as positron emission tomography (PET) tracer and showed promising properties for imaging of KCa 3.1 channels in lung adenocarcinoma cells in mice. The novel senicapoc BODIPY conjugates with two F-atoms (9 a) and with a F-atom and a methoxy moiety (9 b) at the B-atom led to the characteristic punctate staining pattern resulting from labeling of single KCa 3.1 channels in A549-3R cells. This punctate pattern was completely removed by preincubation with an excess of senicapoc confirming the high specificity of KCa 3.1 labeling. Due to the methoxy moiety at the B-atom and the additional oxyethylene unit in the spacer, 9 b exhibits higher polarity, which improves solubility and handling without reduction of fluorescence quantum yield. Docking studies using a cryo-electron microscopy (EM) structure of the KCa 3.1 channel confirmed the interaction of 9 a and 9 b with a binding pocket in the channel pore.
Collapse
Affiliation(s)
- Insa Thale
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, 48149, Münster, Germany
| | - Sarah Maskri
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, 48149, Münster, Germany
| | - Lucie Grey
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, 48149, Münster, Germany
| | - Luca Matteo Todesca
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Universitätsklinikum Münster, Institute of Physiology II, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Thomas Budde
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Universitätsklinikum Münster, Institute of Physiology I, Robert-Koch-Straße 27a, 48149, Münster, Germany
| | - Ivan Maisuls
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie CiMIC, SoN, Corrensstraße 28, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, CeNTech, Heisenbergstraße 11, 48149, Münster, Germany
| | - Cristian A Strassert
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie CiMIC, SoN, Corrensstraße 28, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, CeNTech, Heisenbergstraße 11, 48149, Münster, Germany
| | - Oliver Koch
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, 48149, Münster, Germany
| | - Albrecht Schwab
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Universitätsklinikum Münster, Institute of Physiology II, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Bernhard Wünsch
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, 48149, Münster, Germany
| |
Collapse
|
6
|
Lin Y, Zhao YJ, Zhang HL, Hao WJ, Zhu RD, Wang Y, Hu W, Zhou RP. Regulatory role of KCa3.1 in immune cell function and its emerging association with rheumatoid arthritis. Front Immunol 2022; 13:997621. [PMID: 36275686 PMCID: PMC9580404 DOI: 10.3389/fimmu.2022.997621] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease characterized by chronic inflammation. Immune dysfunction is an essential mechanism in the pathogenesis of RA and directly linked to synovial inflammation and cartilage/bone destruction. Intermediate conductance Ca2+-activated K+ channel (KCa3.1) is considered a significant regulator of proliferation, differentiation, and migration of immune cells by mediating Ca2+ signal transduction. Earlier studies have demonstrated abnormal activation of KCa3.1 in the peripheral blood and articular synovium of RA patients. Moreover, knockout of KCa3.1 reduced the severity of synovial inflammation and cartilage damage to a significant extent in a mouse collagen antibody-induced arthritis (CAIA) model. Accumulating evidence implicates KCa3.1 as a potential therapeutic target for RA. Here, we provide an overview of the KCa3.1 channel and its pharmacological properties, discuss the significance of KCa3.1 in immune cells and feasibility as a drug target for modulating the immune balance, and highlight its emerging role in pathological progression of RA.
Collapse
Affiliation(s)
- Yi Lin
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Hai-Lin Zhang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wen-Juan Hao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ren-Di Zhu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- *Correspondence: Wei Hu, ; Ren-Peng Zhou,
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- *Correspondence: Wei Hu, ; Ren-Peng Zhou,
| |
Collapse
|
7
|
Yan P, Ke B, Fang X. Ion channels as a therapeutic target for renal fibrosis. Front Physiol 2022; 13:1019028. [PMID: 36277193 PMCID: PMC9581181 DOI: 10.3389/fphys.2022.1019028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Renal ion channel transport and electrolyte disturbances play an important role in the process of functional impairment and fibrosis in the kidney. It is well known that there are limited effective drugs for the treatment of renal fibrosis, and since a large number of ion channels are involved in the renal fibrosis process, understanding the mechanisms of ion channel transport and the complex network of signaling cascades between them is essential to identify potential therapeutic approaches to slow down renal fibrosis. This review summarizes the current work of ion channels in renal fibrosis. We pay close attention to the effect of cystic fibrosis transmembrane conductance regulator (CFTR), transmembrane Member 16A (TMEM16A) and other Cl− channel mediated signaling pathways and ion concentrations on fibrosis, as well as the various complex mechanisms for the action of Ca2+ handling channels including Ca2+-release-activated Ca2+ channel (CRAC), purinergic receptor, and transient receptor potential (TRP) channels. Furthermore, we also focus on the contribution of Na+ transport such as epithelial sodium channel (ENaC), Na+, K+-ATPase, Na+-H+ exchangers, and K+ channels like Ca2+-activated K+ channels, voltage-dependent K+ channel, ATP-sensitive K+ channels on renal fibrosis. Proposed potential therapeutic approaches through further dissection of these mechanisms may provide new therapeutic opportunities to reduce the burden of chronic kidney disease.
Collapse
|
8
|
Laska MJ, Møller JB, Graversen JH, Strøbæk D, Blomster L, Christophersen P, Bahrami S. Retroviral glycoprotein-mediated immune suppression via the potassium channel KCa3.1 - A new strategy for amelioration of inflammatory bowel diseases. Clin Immunol 2022; 242:109081. [PMID: 35905828 DOI: 10.1016/j.clim.2022.109081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 11/03/2022]
Abstract
Peptides derived from retroviral envelope proteins have been shown to possess a wide range of immunosuppressive and anti-inflammatory activities. We have previously reported identification of such a peptide derived from the envelope protein coded by a human endogenous retrovirus (HERV). In this study, we identified that in vitro the peptide inhibits the KCa3.1 potassium channel, a potential target for therapy of immune diseases. We describe in vitro ENV59-GP3 effects with respect to potency of inhibition on KCa3.1 channels and calcium influx. Furthermore, we asses in vivo the effect of blocking KCa3.1 with ENV59-GP3 peptide or KCa3.1-blocker NS6180 on protection against DSS-induced acute colitis. ENV59-GP3 peptide treatment showed reduction of the disease score in the DSS-induced acute colitis mice model, which was comparable to effects of the KCa3.1 channel blocker NS6180. Analysis of cytokine production from DSS-mice model treated animals revealed equipotent inhibitory effects of the ENV59-GP3 and NS6180 compounds on the production of IL-6, TNF-α, IL-1β. These findings altogether suggest that ENV59-GP3 functions as a KCa3.1 channel inhibitor and underline the implications of using virus derived channel blockers for treatment of autoimmune diseases. Additionally, they open the possibilities whether KCa3.1 inhibition is efficacious in patients with inflammatory bowel diseases.
Collapse
Affiliation(s)
- Magdalena J Laska
- Department of Molecular Biology and Genetics, Aarhus University, Denmark.
| | - Jesper Bonnet Møller
- Department of Cancer and Inflammation Research, University of Southern Denmark, Denmark
| | | | | | | | | | | |
Collapse
|
9
|
Fan J, Tian R, Yang X, Wang H, Shi Y, Fan X, Zhang J, Chen Y, Zhang K, Chen Z, Li L. KCNN4 Promotes the Stemness Potentials of Liver Cancer Stem Cells by Enhancing Glucose Metabolism. Int J Mol Sci 2022; 23:ijms23136958. [PMID: 35805963 PMCID: PMC9266406 DOI: 10.3390/ijms23136958] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
The presence of liver cancer stem cells (LCSCs) is one of the reasons for the treatment failure of hepatocellular carcinoma (HCC). For LCSCs, one of their prominent features is metabolism plasticity, which depends on transporters and ion channels to exchange metabolites and ions. The K+ channel protein KCNN4 (Potassium Calcium-Activated Channel Subfamily N Member 4) has been reported to promote cell metabolism and malignant progression of HCCs, but its influence on LCSC stemness has remained unclear. Here, we demonstrated that KCNN4 was highly expressed in L-CSCs by RT-PCR and Western blot. Then, we illustrated that KCNN4 promoted the stemness of HC-C cells by CD133+CD44+ LCSC subpopulation ratio analysis, in vitro stemness transcription factor detection, and sphere formation assay, as well as in vivo orthotopic liver tumor formation and limiting dilution tumorigenesis assays. We also showed that KCNN4 enhanced the glucose metabolism in LCSCs by metabolic enzyme detections and seahorse analysis, and the KCNN4-promoted increase in LCSC ratios was abolished by glycolysis inhibitor 2-DG or OXPHOS inhibitor oligomycin. Collectively, our results suggested that KCNN4 promoted LCSC stemness via enhancing glucose metabolism, and that KCNN4 would be a potential molecular target for eliminating LCSCs in HCC.
Collapse
Affiliation(s)
- Jing Fan
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710005, China; (J.F.); (R.T.); (X.Y.); (Y.S.); (X.F.); (J.Z.); (Y.C.); (K.Z.)
| | - Ruofei Tian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710005, China; (J.F.); (R.T.); (X.Y.); (Y.S.); (X.F.); (J.Z.); (Y.C.); (K.Z.)
| | - Xiangmin Yang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710005, China; (J.F.); (R.T.); (X.Y.); (Y.S.); (X.F.); (J.Z.); (Y.C.); (K.Z.)
| | - Hao Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710005, China; (J.F.); (R.T.); (X.Y.); (Y.S.); (X.F.); (J.Z.); (Y.C.); (K.Z.)
- Department of Cell Biology, Institutes of Biomedicine, Jinan University, Guangzhou 510632, China;
| | - Ying Shi
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710005, China; (J.F.); (R.T.); (X.Y.); (Y.S.); (X.F.); (J.Z.); (Y.C.); (K.Z.)
| | - Xinyu Fan
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710005, China; (J.F.); (R.T.); (X.Y.); (Y.S.); (X.F.); (J.Z.); (Y.C.); (K.Z.)
| | - Jiajia Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710005, China; (J.F.); (R.T.); (X.Y.); (Y.S.); (X.F.); (J.Z.); (Y.C.); (K.Z.)
| | - Yatong Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710005, China; (J.F.); (R.T.); (X.Y.); (Y.S.); (X.F.); (J.Z.); (Y.C.); (K.Z.)
| | - Kun Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710005, China; (J.F.); (R.T.); (X.Y.); (Y.S.); (X.F.); (J.Z.); (Y.C.); (K.Z.)
| | - Zhinan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710005, China; (J.F.); (R.T.); (X.Y.); (Y.S.); (X.F.); (J.Z.); (Y.C.); (K.Z.)
- Correspondence: (Z.C.); (L.L.)
| | - Ling Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710005, China; (J.F.); (R.T.); (X.Y.); (Y.S.); (X.F.); (J.Z.); (Y.C.); (K.Z.)
- Correspondence: (Z.C.); (L.L.)
| |
Collapse
|
10
|
Mathis CL, Barrios AM. Histidine phosphorylation in metalloprotein binding sites. J Inorg Biochem 2021; 225:111606. [PMID: 34555600 DOI: 10.1016/j.jinorgbio.2021.111606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
Post-translational modifications (PTMs) are invaluable regulatory tools for the control of catalytic functionality, protein-protein interactions, and signaling pathways. Historically, the study of phosphorylation as a PTM has been focused on serine, threonine, and tyrosine residues. In contrast, the significance of mammalian histidine phosphorylation remains largely unexplored. This gap in knowledge regarding the molecular basis for histidine phosphorylation as a regulatory agent exists in part because of the relative instability of phosphorylated histidine as compared with phosphorylated serine, threonine and tyrosine. However, the unique metal binding abilities of histidine make it one of the most common metal coordinating ligands in nature, and it is interesting to consider how phosphorylation would change the metal coordinating ability of histidine, and consequently, the properties of the phosphorylated metalloprotein. In this review, we examine eleven metalloproteins that have been shown to undergo reversible histidine phosphorylation at or near their metal binding sites. These proteins are described with respect to their biological activity and structure, with a particular emphasis on how phosphohistidine may tune the primary coordination sphere and protein conformation. Furthermore, several common methods, challenges, and limitations of studying sensitive, high affinity metalloproteins are discussed.
Collapse
Affiliation(s)
- Cheryl L Mathis
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, United States
| | - Amy M Barrios
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
11
|
Bai Y, Xu J, Yang S, Zhang H, He L, Zhou W, Cheng M, Zhang S. The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to alkalinization-induced vascular calcification in vitro. J Clin Lab Anal 2021; 35:e23854. [PMID: 34313357 PMCID: PMC8373358 DOI: 10.1002/jcla.23854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE In order to find new strategies for the prevention of vascular calcification in uremic individuals especially treated by dialysis and develop novel therapeutic targets in vascular calcification, we explore the role of KCa3.1 in alkalinization-induced VSMCs calcification in vitro. METHOD Rat VSMCs calcification model was established by beta-glycerophosphate (β-GP, 10 mM) induction. The pH of Dulbecco's modified Eagle's medium (DMEM) was adjusted every 24 h with 10 mM HCl or 10 mM NaHCO3 . The mineralization was measured by Alizarin Red staining and O-cresolphthalein complex one method. mRNA and protein expression were detected by RT-PCR and Western blot or immunofluorescence. Ca2+ influx was measured by Elisa. RESULT The results indicated that alkalization induced an increase in Ca2+ influx to enhance VSMCs calcification. Furthermore, the increase of calcification was associated with the expression of KCa3.1 via advanced expression of osteoblastic differentiation markers alkaline phosphatase (ALP) and Runt-related transcription factor 2 (Runx2). Blocking KCa3.1 with TRAM-34 or shRNA vector can significantly lowered the effects of calcification in the activity of ALP and Runx2 expression. CONCLUSION Together all, our studies suggested that alkalinization can promote vascular calcification by upregulating KCa3.1 channel and enhancing osteogenic/chondrogenic differentiation by upregulating Runx2. The specific inhibitor TRAM-34 and KCa3.1-shRNA ameliorated VSMCs calcification by downregulating KCa3.1.
Collapse
MESH Headings
- Alkaline Phosphatase/metabolism
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Calcinosis/chemically induced
- Calcinosis/drug therapy
- Calcinosis/metabolism
- Calcium/metabolism
- Cells, Cultured
- Core Binding Factor Alpha 1 Subunit/metabolism
- Glycerophosphates/toxicity
- Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors
- Intermediate-Conductance Calcium-Activated Potassium Channels/genetics
- Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism
- Male
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Pyrazoles/pharmacology
- Rats, Sprague-Dawley
- Rats
Collapse
Affiliation(s)
- Yaling Bai
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Departments of NephrologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jinsheng Xu
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Departments of NephrologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Shuo Yang
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Departments of NephrologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Huiran Zhang
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Departments of NephrologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Lei He
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Departments of NephrologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Wei Zhou
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Departments of NephrologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Meijuan Cheng
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Departments of NephrologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Shenglei Zhang
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Departments of NephrologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
12
|
Huang C, Yi H, Shi Y, Cao Q, Shi Y, Cheng D, Braet F, Chen XM, Pollock CA. KCa3.1 Mediates Dysregulation of Mitochondrial Quality Control in Diabetic Kidney Disease. Front Cell Dev Biol 2021; 9:573814. [PMID: 33681190 PMCID: PMC7933228 DOI: 10.3389/fcell.2021.573814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction is implicated in the pathogenesis of diabetic kidney disease. Mitochondrial quality control is primarily mediated by mitochondrial turnover and repair through mitochondrial fission/fusion and mitophagy. We have previously shown that blockade of the calcium-activated potassium channel KCa3.1 ameliorates diabetic renal fibrosis. However, the mechanistic link between KCa3.1 and mitochondrial quality control in diabetic kidney disease is not yet known. Transforming growth factor β1 (TGF-β1) plays a central role in diabetic kidney disease. Recent studies indicate an emerging role of TGF-β1 in the regulation of mitochondrial function. However, the molecular mechanism mediating mitochondrial quality control in response to TGF-β1 remains limited. In this study, mitochondrial function was assessed in TGF-β1-exposed renal proximal tubular epithelial cells (HK2 cells) transfected with scrambled siRNA or KCa3.1 siRNA. In vivo, diabetes was induced in KCa3.1+/+ and KCa3.1−/− mice by low-dose streptozotocin (STZ) injection. Mitochondrial fission/fusion-related proteins and mitophagy markers, as well as BCL2 interacting protein 3 (BNIP3) (a mitophagy regulator) were examined in HK2 cells and diabetic mice kidneys. The in vitro results showed that TGF-β1 significantly inhibited mitochondrial ATP production rate and increased mitochondrial ROS (mtROS) production when compared to control, which was normalized by KCa3.1 gene silencing. Increased fission and suppressed fusion were found in both TGF-β1-treated HK2 cells and diabetic mice, which were reversed by KCa3.1 deficiency. Furthermore, our results showed that mitophagy was inhibited in both in vitro and in vivo models of diabetic kidney disease. KCa3.1 deficiency restored abnormal mitophagy by inhibiting BNIP3 expression in TGF-β1-induced HK2 cells as well as in the diabetic mice. Collectively, these results indicate that KCa3.1 mediates the dysregulation of mitochondrial quality control in diabetic kidney disease.
Collapse
Affiliation(s)
- Chunling Huang
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Hao Yi
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Ying Shi
- Division of Nephrology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Qinghua Cao
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Yin Shi
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Delfine Cheng
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | - Filip Braet
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The Bosch Institute, University of Sydney, Sydney, NSW, Australia.,Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, NSW, Australia
| | - Xin-Ming Chen
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Carol A Pollock
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| |
Collapse
|
13
|
Wen J, Lin B, Lin L, Chen Y, Wang O. KCNN4 is a diagnostic and prognostic biomarker that promotes papillary thyroid cancer progression. Aging (Albany NY) 2020; 12:16437-16456. [PMID: 32857728 PMCID: PMC7485723 DOI: 10.18632/aging.103710] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
The incidence of thyroid cancer remains high worldwide, and papillary thyroid cancer (PTC) is the most common type. Potassium Calcium-Activated Channel Subfamily N Member 4 (KCNN4) has been reported as an oncogene in various cancers. We examined expression of KCNN4 in public databases and discovered that it is upregulated in PTC. We verified this finding using our own validated cohort and RNA sequencing data. We also found that KCNN4 is a diagnostic and prognostic biomarker that is associated with disease-free survival, immune infiltration, and several other clinicopathological features of PTC. Gene Set Enrichment Analysis indicated that apoptotic and epithelial-mesenchymal transition gene sets are both upregulated in PTC patients with higher KCNN4 levels. In PTC cell lines, silencing KCNN4 inhibited cell proliferation, migration and invasion. Moreover, quantitative real-time PCR and Western blotting indicated that silencing KCNN4 increased expression of apoptotic genes in PTC cells and reduced the expression of genes involved in their epithelial-mesenchymal transition. These results suggest that KCNN4 promotes PTC progression by inducing epithelial-mesenchymal transition and suppressing apoptosis, which suggests KCNN4 may be a useful diagnostic and prognostic biomarker of PTC.
Collapse
Affiliation(s)
- Jialiang Wen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Bangyi Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Lizhi Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yizuo Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Ouchen Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
14
|
Jakakul C, Kanjanasirirat P, Muanprasat C. Development of a Cell-Based Assay for Identifying K Ca3.1 Inhibitors Using Intestinal Epithelial Cell Lines. SLAS DISCOVERY 2020; 26:439-449. [PMID: 32830616 DOI: 10.1177/2472555220950661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibition of the KCa3.1 potassium channel has therapeutic potential in a variety of human diseases, including inflammation-associated disorders and cancers. However, KCa3.1 inhibitors with high therapeutic promise are currently not available. This study aimed to establish a screening assay for identifying inhibitors of KCa3.1 in native cells and from library compounds derived from natural products in Thailand. The screening platform was successfully developed based on a thallium flux assay in intestinal epithelial (T84) cells with a Z' factor of 0.52. The screening of 1352 compounds and functional validation using electrophysiological analyses identified 8 compounds as novel KCa3.1 inhibitors with IC50 values ranging from 0.14 to 6.57 µM. These results indicate that the assay developed is of excellent quality for high-throughput screening and capable of identifying KCa3.1 inhibitors. This assay may be useful in identifying novel KCa3.1 inhibitors that may have therapeutic potential for inflammation-associated disorders and cancers.
Collapse
Affiliation(s)
- Chanon Jakakul
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Phongthon Kanjanasirirat
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| |
Collapse
|
15
|
van der Vorst EPC, Weber C. Novel Features of Monocytes and Macrophages in Cardiovascular Biology and Disease. Arterioscler Thromb Vasc Biol 2019; 39:e30-e37. [PMID: 30673349 DOI: 10.1161/atvbaha.118.312002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Emiel P C van der Vorst
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany (E.P.C.v.d.V., C.W.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany (E.P.C.v.d.V., C.W.).,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (C.W.).,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (C.W.)
| |
Collapse
|
16
|
Critical regulation of atherosclerosis by the KCa3.1 channel and the retargeting of this therapeutic target in in-stent neoatherosclerosis. J Mol Med (Berl) 2019; 97:1219-1229. [DOI: 10.1007/s00109-019-01814-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/07/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023]
|
17
|
Rational modulator design by exploitation of protein-protein complex structures. Future Med Chem 2019; 11:1015-1033. [PMID: 31141413 DOI: 10.4155/fmc-2018-0433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The horizon of drug discovery is currently expanding to target and modulate protein-protein interactions (PPIs) in globular proteins and intrinsically disordered proteins that are involved in various diseases. To either interrupt or stabilize PPIs, the 3D structure of target protein-protein (or protein-peptide) complexes can be exploited to rationally design PPI modulators (inhibitors or stabilizers) through structure-based molecular design. In this review, we present an overview of experimental and computational methods that can be used to determine 3D structures of protein-protein complexes. Several approaches including rational and in silico methods that can be applied to design peptides, peptidomimetics and small compounds by utilization of determined 3D protein-protein/peptide complexes are summarized and illustrated.
Collapse
|
18
|
Identification of Clotrimazole Derivatives as Specific Inhibitors of Arenavirus Fusion. J Virol 2019; 93:JVI.01744-18. [PMID: 30626681 DOI: 10.1128/jvi.01744-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Arenaviruses are a large family of emerging enveloped negative-strand RNA viruses that include several causative agents of viral hemorrhagic fevers. For cell entry, human-pathogenic arenaviruses use different cellular receptors and endocytic pathways that converge at the level of acidified late endosomes, where the viral envelope glycoprotein mediates membrane fusion. Inhibitors of arenavirus entry hold promise for therapeutic antiviral intervention and the identification of "druggable" targets is of high priority. Using a recombinant vesicular stomatitis virus pseudotype platform, we identified the clotrimazole-derivative TRAM-34, a highly selective antagonist of the calcium-activated potassium channel KCa3.1, as a specific entry inhibitor for arenaviruses. TRAM-34 specifically blocked entry of most arenaviruses, including hemorrhagic fever viruses, but not Lassa virus and other enveloped viruses. Anti-arenaviral activity was likewise observed with the parental compound clotrimazole and the derivative senicapoc, whereas structurally unrelated KCa3.1 inhibitors showed no antiviral effect. Deletion of KCa3.1 by CRISPR/Cas9 technology did not affect the antiarenaviral effect of TRAM-34, indicating that the observed antiviral effect of clotrimazoles was independent of the known pharmacological target. The drug affected neither virus-cell attachment, nor endocytosis, suggesting an effect on later entry steps. Employing a quantitative cell-cell fusion assay that bypasses endocytosis, we demonstrate that TRAM-34 specifically inhibits arenavirus-mediated membrane fusion. In sum, we uncover a novel antiarenaviral action of clotrimazoles that currently undergo in vivo evaluation in the context of other human diseases. Their favorable in vivo toxicity profiles and stability opens the possibility to repurpose clotrimazole derivatives for therapeutic intervention against human-pathogenic arenaviruses.IMPORTANCE Emerging human-pathogenic arenaviruses are causative agents of severe hemorrhagic fevers with high mortality and represent serious public health problems. The current lack of a licensed vaccine and the limited treatment options makes the development of novel antiarenaviral therapeutics an urgent need. Using a recombinant pseudotype platform, we uncovered that clotrimazole drugs, in particular TRAM-34, specifically inhibit cell entry of a range of arenaviruses, including important emerging human pathogens, with the exception of Lassa virus. The antiviral effect was independent of the known pharmacological drug target and involved inhibition of the unusual membrane fusion mechanism of arenaviruses. TRAM-34 and its derivatives currently undergo evaluation against a number of human diseases and show favorable toxicity profiles and high stability in vivo Our study provides the basis for further evaluation of clotrimazole derivatives as antiviral drug candidates. Their advanced stage of drug development will facilitate repurposing for therapeutic intervention against human-pathogenic arenaviruses.
Collapse
|
19
|
Hutchings CJ, Colussi P, Clark TG. Ion channels as therapeutic antibody targets. MAbs 2018; 11:265-296. [PMID: 30526315 PMCID: PMC6380435 DOI: 10.1080/19420862.2018.1548232] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/12/2022] Open
Abstract
It is now well established that antibodies have numerous potential benefits when developed as therapeutics. Here, we evaluate the technical challenges of raising antibodies to membrane-spanning proteins together with enabling technologies that may facilitate the discovery of antibody therapeutics to ion channels. Additionally, we discuss the potential targeting opportunities in the anti-ion channel antibody landscape, along with a number of case studies where functional antibodies that target ion channels have been reported. Antibodies currently in development and progressing towards the clinic are highlighted.
Collapse
Affiliation(s)
| | | | - Theodore G. Clark
- TetraGenetics Inc, Arlington Massachusetts, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca New York, USA
| |
Collapse
|
20
|
Ramirez GA, Coletto LA, Sciorati C, Bozzolo EP, Manunta P, Rovere-Querini P, Manfredi AA. Ion Channels and Transporters in Inflammation: Special Focus on TRP Channels and TRPC6. Cells 2018; 7:E70. [PMID: 29973568 PMCID: PMC6070975 DOI: 10.3390/cells7070070] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022] Open
Abstract
Allergy and autoimmune diseases are characterised by a multifactorial pathogenic background. Several genes involved in the control of innate and adaptive immunity have been associated with diseases and variably combine with each other as well as with environmental factors and epigenetic processes to shape the characteristics of individual manifestations. Systemic or local perturbations in salt/water balance and in ion exchanges between the intra- and extracellular spaces or among tissues play a role. In this field, usually referred to as elementary immunology, novel evidence has been recently acquired on the role of members of the transient potential receptor (TRP) channel family in several cellular mechanisms of potential significance for the pathophysiology of the immune response. TRP canonical channel 6 (TRPC6) is emerging as a functional element for the control of calcium currents in immune-committed cells and target tissues. In fact, TRPC6 influences leukocytes’ tasks such as transendothelial migration, chemotaxis, phagocytosis and cytokine release. TRPC6 also modulates the sensitivity of immune cells to apoptosis and influences tissue susceptibility to ischemia-reperfusion injury and excitotoxicity. Here, we provide a view of the interactions between ion exchanges and inflammation with a focus on the pathogenesis of immune-mediated diseases and potential future therapeutic implications.
Collapse
Affiliation(s)
- Giuseppe A Ramirez
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Lavinia A Coletto
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Clara Sciorati
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Enrica P Bozzolo
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Paolo Manunta
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Nephrology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Patrizia Rovere-Querini
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Angelo A Manfredi
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
21
|
Valle-Reyes S, Valencia-Cruz G, Liñan-Rico L, Pottosin I, Dobrovinskaya O. Differential Activity of Voltage- and Ca 2+-Dependent Potassium Channels in Leukemic T Cell Lines: Jurkat Cells Represent an Exceptional Case. Front Physiol 2018; 9:499. [PMID: 29867547 PMCID: PMC5954129 DOI: 10.3389/fphys.2018.00499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Activation of resting T cells relies on sustained Ca2+ influx across the plasma membrane, which in turn depends on the functional expression of potassium channels, whose activity repolarizes the membrane potential. Depending on the T-cells subset, upon activation the expression of Ca2+- or voltage-activated K+ channels, KCa or Kv, is up-regulated. In this study, by means of patch-clamp technique in the whole cell mode, we have studied in detail the characteristics of Kv and KCa currents in resting and activated human T cells, the only well explored human T-leukemic cell line Jurkat, and two additional human leukemic T cell lines, CEM and MOLT-3. Voltage dependence of activation and inactivation of Kv1.3 current were shifted up to by 15 mV to more negative potentials upon a prolonged incubation in the whole cell mode and displayed little difference at a stable state in all cell lines but CEM, where the activation curve was biphasic, with a high and low potential components. In Jurkat, KCa currents were dominated by apamine-sensitive KCa2.2 channels, whereas only KCa3.1 current was detected in healthy T and leukemic CEM and MOLT-3 cells. Despite a high proliferation potential of Jurkat cells, Kv and KCa currents were unexpectedly small, more than 10-fold lesser as compared to activated healthy human T cells, CEM and MOLT-3, which displayed characteristic Kv1.3high:KCa3.1high phenotype. Our results suggest that Jurkat cells represent perhaps a singular case and call for more extensive studies on primary leukemic T cell lines as well as a verification of the therapeutic potential of specific KCa3.1 blockers to combat acute lymphoblastic T leukemias.
Collapse
Affiliation(s)
- Salvador Valle-Reyes
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Georgina Valencia-Cruz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Liliana Liñan-Rico
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Oxana Dobrovinskaya
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| |
Collapse
|
22
|
Huang C, Zhang L, Shi Y, Yi H, Zhao Y, Chen J, Pollock CA, Chen XM. The KCa3.1 blocker TRAM34 reverses renal damage in a mouse model of established diabetic nephropathy. PLoS One 2018; 13:e0192800. [PMID: 29425253 PMCID: PMC5806905 DOI: 10.1371/journal.pone.0192800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/30/2018] [Indexed: 01/26/2023] Open
Abstract
Despite optimal control of hyperglycaemia, hypertension, and dyslipidaemia, the number of patients with diabetic nephropathy (DN) continues to grow. Strategies to target various signaling pathways to prevent DN have been intensively investigated in animal models and many have been proved to be promising. However, targeting these pathways once kidney disease is established, remain unsatisfactory. The clinical scenario is that patients with diabetes mellitus often present with established kidney damage and need effective treatments to repair and reverse the kidney damage. In this studies, eNOS-/- mice were administered with streptozotocin to induce diabetes. At 24 weeks, at which time we have previously demonstrated albuminuria and pathological changes of diabetic nephropathy, mice were randomised to receive TRAM34 subcutaneously, a highly selective inhibitor of potassium channel KCa3.1 or DMSO (vehicle) for a further 14 weeks. Albuminuria was assessed, inflammatory markers (CD68, F4/80) and extracellular matrix deposition (type I collagen and fibronectin) in the kidneys were examined. The results clearly demonstrate that TRAM34 reduced albuminuria, decreased inflammatory markers and reversed extracellular matrix deposition in kidneys via inhibition of the TGF-β1 signaling pathway. These results indicate that KCa3.1 blockade effectively reverses established diabetic nephropathy in this rodent model and provides a basis for progressing to human studies.
Collapse
Affiliation(s)
- Chunling Huang
- Kolling Institute, Sydney Medical School-Northern, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Ling Zhang
- School of Pharmaceutical Science &Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kuming, China
| | - Ying Shi
- Kolling Institute, Sydney Medical School-Northern, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Hao Yi
- Kolling Institute, Sydney Medical School-Northern, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Yongli Zhao
- Department of Pediatrics, the Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jason Chen
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia
| | - Carol A. Pollock
- Kolling Institute, Sydney Medical School-Northern, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Xin-Ming Chen
- Kolling Institute, Sydney Medical School-Northern, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
23
|
D'Alessandro G, Grimaldi A, Chece G, Porzia A, Esposito V, Santoro A, Salvati M, Mainiero F, Ragozzino D, Di Angelantonio S, Wulff H, Catalano M, Limatola C. KCa3.1 channel inhibition sensitizes malignant gliomas to temozolomide treatment. Oncotarget 2017; 7:30781-96. [PMID: 27096953 PMCID: PMC5058717 DOI: 10.18632/oncotarget.8761] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/31/2016] [Indexed: 01/19/2023] Open
Abstract
Malignant gliomas are among the most frequent and aggressive cerebral tumors, characterized by high proliferative and invasive indexes. Standard therapy for patients, after surgery and radiotherapy, consists of temozolomide (TMZ), a methylating agent that blocks tumor cell proliferation. Currently, there are no therapies aimed at reducing tumor cell invasion. Ion channels are candidate molecular targets involved in glioma cell migration and infiltration into the brain parenchyma. In this paper we demonstrate that: i) blockade of the calcium-activated potassium channel KCa3.1 with TRAM-34 has co-adjuvant effects with TMZ, reducing GL261 glioma cell migration, invasion and colony forming activity, increasing apoptosis, and forcing cells to pass the G2/M cell cycle phase, likely through cdc2 de-phosphorylation; ii) KCa3.1 silencing potentiates the inhibitory effect of TMZ on glioma cell viability; iii) the combination of TMZ/TRAM-34 attenuates the toxic effects of glioma conditioned medium on neuronal cultures, through a microglia dependent mechanism since the effect is abolished by clodronate-induced microglia killing; iv) TMZ/TRAM-34 co-treatment increases the number of apoptotic tumor cells, and the mean survival time in a syngeneic mouse glioma model (C57BL6 mice implanted with GL261 cells); v) TMZ/TRAM-34 co-treatment reduces cell viability of GBM cells and cancer stem cells (CSC) freshly isolated from patients.Taken together, these data suggest a new therapeutic approach for malignant glioma, targeting both glioma cell proliferating and migration, and demonstrate that TMZ/TRAM-34 co-treatment affects both glioma cells and infiltrating microglia, resulting in an overall reduction of tumor cell progression.
Collapse
Affiliation(s)
- Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Alfonso Grimaldi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giuseppina Chece
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Alessandra Porzia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Esposito
- IRCCS Neuromed, Pozzilli, Italy.,Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Antonio Santoro
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Maurizio Salvati
- Department of Science and Medical Surgical Biotechnology, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Fabrizio Mainiero
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Center for Life Nanoscience Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, Davis, USA
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, Italy.,Pasteur Institute Rome-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
24
|
Faouzi M, Hague F, Geerts D, Ay AS, Potier-Cartereau M, Ahidouch A, Ouadid-Ahidouch H. Functional cooperation between KCa3.1 and TRPC1 channels in human breast cancer: Role in cell proliferation and patient prognosis. Oncotarget 2017; 7:36419-36435. [PMID: 27183905 PMCID: PMC5095010 DOI: 10.18632/oncotarget.9261] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/08/2016] [Indexed: 12/24/2022] Open
Abstract
Intracellular Ca2+ levels are important regulators of cell cycle and proliferation. We, and others, have previously reported the role of KCa3.1 (KCNN4) channels in regulating the membrane potential and the Ca2+ entry in association with cell proliferation. However, the relevance of KC3.1 channels in cancer prognosis as well as the molecular mechanism of Ca2+ entry triggered by their activation remain undetermined. Here, we show that RNAi-mediated knockdown of KCa3.1 and/or TRPC1 leads to a significant decrease in cell proliferation due to cell cycle arrest in the G1 phase. These results are consistent with the observed upregulation of both channels in synchronized cells at the end of G1 phase. Additionally, knockdown of TRPC1 suppressed the Ca2+ entry induced by 1-EBIO-mediated KCa3.1 activation, suggesting a functional cooperation between TRPC1 and KCa3.1 in the regulation of Ca2+ entry, possibly within lipid raft microdomains where these two channels seem to co-localize. We also show significant correlations between KCa3.1 mRNA expression and poor patient prognosis and unfavorable clinical breast cancer parameters by mining large datasets in the public domain. Together, these results highlight the importance of KCa3.1 in regulating the proliferative mechanisms in breast cancer cells as well as in providing a promising novel target in prognosis and therapy.
Collapse
Affiliation(s)
- Malika Faouzi
- University of Picardie Jules Verne, UFR of Sciences, EA4667 Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France.,Queen's Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA
| | - Frederic Hague
- University of Picardie Jules Verne, UFR of Sciences, EA4667 Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Dirk Geerts
- Department of Pediatric Oncology/Hematology, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Anne-Sophie Ay
- University of Picardie Jules Verne, UFR of Sciences, EA4667 Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Marie Potier-Cartereau
- University of Picardie Jules Verne, UFR of Sciences, EA4667 Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France.,Inserm, UMR1069, Nutrition, Growth and Cancer, University of François Rabelais, Tours F-37032, France
| | - Ahmed Ahidouch
- University of Picardie Jules Verne, UFR of Sciences, EA4667 Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Halima Ouadid-Ahidouch
- University of Picardie Jules Verne, UFR of Sciences, EA4667 Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| |
Collapse
|
25
|
Lu R, Flauaus C, Kennel L, Petersen J, Drees O, Kallenborn-Gerhardt W, Ruth P, Lukowski R, Schmidtko A. K Ca3.1 channels modulate the processing of noxious chemical stimuli in mice. Neuropharmacology 2017; 125:386-395. [PMID: 28823609 DOI: 10.1016/j.neuropharm.2017.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/26/2017] [Accepted: 08/16/2017] [Indexed: 12/19/2022]
Abstract
Intermediate conductance calcium-activated potassium channels (KCa3.1) have been recently implicated in pain processing. However, the functional role and localization of KCa3.1 in the nociceptive system are largely unknown. We here characterized the behavior of mice lacking KCa3.1 (KCa3.1-/-) in various pain models and analyzed the expression pattern of KCa3.1 in dorsal root ganglia (DRG) and the spinal cord. KCa3.1-/- mice demonstrated normal behavioral responses in models of acute nociceptive, persistent inflammatory, and persistent neuropathic pain. However, their behavioral responses to noxious chemical stimuli such as formalin and capsaicin were increased. Accordingly, formalin-induced nociceptive behavior was increased in wild-type mice after administration of the KCa3.1 inhibitor TRAM-34. In situ hybridization experiments detected KCa3.1 in most DRG satellite glial cells, in a minority of DRG neurons, and in ependymal cells lining the central canal of the spinal cord. Together, our data point to a specific inhibitory role of KCa3.1 for the processing of noxious chemical stimuli.
Collapse
Affiliation(s)
- Ruirui Lu
- Pharmakologisches Institut für Naturwissenschaftler, Goethe-Universität, Fachbereich Biochemie, Chemie und Pharmazie, 60438 Frankfurt am Main, Germany; Institut für Pharmakologie und Toxikologie, Universität Witten/Herdecke, ZBAF, 58453 Witten, Germany.
| | - Cathrin Flauaus
- Pharmakologisches Institut für Naturwissenschaftler, Goethe-Universität, Fachbereich Biochemie, Chemie und Pharmazie, 60438 Frankfurt am Main, Germany
| | - Lea Kennel
- Pharmakologisches Institut für Naturwissenschaftler, Goethe-Universität, Fachbereich Biochemie, Chemie und Pharmazie, 60438 Frankfurt am Main, Germany
| | - Jonas Petersen
- Pharmakologisches Institut für Naturwissenschaftler, Goethe-Universität, Fachbereich Biochemie, Chemie und Pharmazie, 60438 Frankfurt am Main, Germany; Institut für Pharmakologie und Toxikologie, Universität Witten/Herdecke, ZBAF, 58453 Witten, Germany
| | - Oliver Drees
- Institut für Pharmakologie und Toxikologie, Universität Witten/Herdecke, ZBAF, 58453 Witten, Germany
| | - Wiebke Kallenborn-Gerhardt
- Pharmakologisches Institut für Naturwissenschaftler, Goethe-Universität, Fachbereich Biochemie, Chemie und Pharmazie, 60438 Frankfurt am Main, Germany
| | - Peter Ruth
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, Universität Tübingen, 72076 Tübingen, Germany
| | - Robert Lukowski
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, Universität Tübingen, 72076 Tübingen, Germany
| | - Achim Schmidtko
- Pharmakologisches Institut für Naturwissenschaftler, Goethe-Universität, Fachbereich Biochemie, Chemie und Pharmazie, 60438 Frankfurt am Main, Germany; Institut für Pharmakologie und Toxikologie, Universität Witten/Herdecke, ZBAF, 58453 Witten, Germany
| |
Collapse
|
26
|
Andrei SA, Sijbesma E, Hann M, Davis J, O’Mahony G, Perry MWD, Karawajczyk A, Eickhoff J, Brunsveld L, Doveston RG, Milroy LG, Ottmann C. Stabilization of protein-protein interactions in drug discovery. Expert Opin Drug Discov 2017; 12:925-940. [DOI: 10.1080/17460441.2017.1346608] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sebastian A. Andrei
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Eline Sijbesma
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Michael Hann
- Platform Technology and Science, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, UK
| | - Jeremy Davis
- Department of Chemistry, UCB Celltech, Slough, UK
| | - Gavin O’Mahony
- CVMD Medicinal Chemistry, Innovative Medicines and Early Development, AstraZeneca Gothenburg, Pepparedsleden, Mölndal, Sweden
| | - Matthew W. D. Perry
- RIA Medicinal Chemistry, Innovative Medicines and Early Development, AstraZeneca Gothenburg, Pepparedsleden, Mölndal, Sweden
| | - Anna Karawajczyk
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Dortmund, Germany
| | - Jan Eickhoff
- Assay development & screening, Lead Discovery Center GmbH, Dortmund, Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Richard G. Doveston
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Chemistry, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
27
|
Bauer D, Werth F, Nguyen HA, Kiecker F, Eberle J. Critical role of reactive oxygen species (ROS) for synergistic enhancement of apoptosis by vemurafenib and the potassium channel inhibitor TRAM-34 in melanoma cells. Cell Death Dis 2017; 8:e2594. [PMID: 28151482 PMCID: PMC5386497 DOI: 10.1038/cddis.2017.6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/11/2016] [Accepted: 12/27/2016] [Indexed: 12/13/2022]
Abstract
Inhibition of MAP kinase pathways by selective BRAF inhibitors, such as vemurafenib and dabrafenib, have evolved as key therapies of BRAF-mutated melanoma. However, tumor relapse and therapy resistance have remained as major problems, which may be addressed by combination with other pathway inhibitors. Here we identified the potassium channel inhibitor TRAM-34 as highly effective in combination with vemurafenib. Thus apoptosis was significantly enhanced and cell viability was decreased. The combination vemurafenib/TRAM-34 was also effective in vemurafenib-resistant cells, suggesting that acquired resistance may be overcome. Vemurafenib decreased ERK phosphorylation, suppressed antiapoptotic Mcl-1 and enhanced proapoptotic Puma and Bim. The combination resulted in enhancement of proapoptotic pathways as caspase-3 and loss of mitochondrial membrane potential. Indicating a special mechanism of vemurafenib-induced apoptosis, we found strong enhancement of intracellular ROS levels already at 1 h of treatment. The critical role of ROS was demonstrated by the antioxidant vitamin E (α-tocopherol), which decreased intracellular ROS as well as apoptosis. Also caspase activation and loss of mitochondrial membrane potential were suppressed, proving ROS as an upstream effect. Thus ROS represents an initial and independent apoptosis pathway in melanoma cells that is of particular importance for vemurafenib and its combination with TRAM-34.
Collapse
Affiliation(s)
- Daniel Bauer
- Department of Dermatology, Venerology und Allergology, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Molecular Medicine Master's Program, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Werth
- Department of Dermatology, Venerology und Allergology, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute for Biochemistry and Biology, Faculty of Science, University of Potsdam, Potsdam, Germany
| | - Ha An Nguyen
- Department of Dermatology, Venerology und Allergology, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Molecular Medicine Master's Program, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Kiecker
- Department of Dermatology, Venerology und Allergology, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology und Allergology, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
28
|
Xu R, Li C, Wu Y, Shen L, Ma J, Qian J, Ge J. Role of KCa3.1 Channels in Macrophage Polarization and Its Relevance in Atherosclerotic Plaque Instability. Arterioscler Thromb Vasc Biol 2017; 37:226-236. [PMID: 28062499 DOI: 10.1161/atvbaha.116.308461] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022]
Abstract
Objective—
Emerging evidence indicates that proinflammatory macrophage polarization imbalance plays a key role in atherosclerotic plaque progression and instability. The calcium-activated potassium channel KCa3.1 is critically involved in macrophage activation and function. However, the role of KCa3.1 in macrophage polarization is unknown. This study investigates the potential role of KCa3.1 in transcriptional regulation in macrophage polarization and its relationship to plaque instability.
Approach and Results—
Human monocytes were differentiated into macrophages using macrophage colony-stimulating factor. Macrophages were then polarized into proinflammatory M1 cells by interferon-γ and lipopolysaccharide and into alternative M2 macrophages by interleukin-4. A model for plaque instability was induced by combined partial ligation of the left renal artery and left common carotid artery in apolipoprotein E knockout mice. Significant upregulation of KCa3.1 expression was observed during the differentiation of human monocytes into macrophages. Blocking KCa3.1 significantly reduced the expression of proinflammatory genes during macrophages polarization. Further mechanistic studies indicated that blocking KCa3.1 inhibited macrophage differentiation toward the M1 phenotype by downregulating signal transducer and activator of transcription-1 phosphorylation. In animal models, KCa3.1 blockade therapy strikingly reduced the incidence of plaque rupture and luminal thrombus in carotid arteries, decreased the expression of markers associated with M1 macrophage polarization, and enhanced the expression of M2 markers within atherosclerotic lesions.
Conclusions—
These results suggest that blocking KCa3.1 suppresses plaque instability in advanced stages of atherosclerosis by inhibiting macrophage polarization toward an M1 phenotype.
Collapse
Affiliation(s)
- Rende Xu
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenguang Li
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yizhe Wu
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Shen
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianying Ma
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juying Qian
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Kovalenko I, Glasauer A, Schöckel L, Sauter DRP, Ehrmann A, Sohler F, Hägebarth A, Novak I, Christian S. Identification of KCa3.1 Channel as a Novel Regulator of Oxidative Phosphorylation in a Subset of Pancreatic Carcinoma Cell Lines. PLoS One 2016; 11:e0160658. [PMID: 27494181 PMCID: PMC4975431 DOI: 10.1371/journal.pone.0160658] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents the most common form of pancreatic cancer with rising incidence in developing countries and overall 5-year survival rates of less than 5%. The most frequent mutations in PDAC are gain-of-function mutations in KRAS as well as loss-of-function mutations in p53. Both mutations have severe impacts on the metabolism of tumor cells. Many of these metabolic changes are mediated by transporters or channels that regulate the exchange of metabolites and ions between the intracellular compartment and the tumor microenvironment. In the study presented here, our goal was to identify novel transporters or channels that regulate oxidative phosphorylation (OxPhos) in PDAC in order to characterize novel potential drug targets for the treatment of these cancers. We set up a Seahorse Analyzer XF based siRNA screen and identified previously described as well as novel regulators of OxPhos. The siRNA that resulted in the greatest change in cellular oxygen consumption was targeting the KCNN4 gene, which encodes for the Ca2+-sensitive K+ channel KCa3.1. This channel has not previously been reported to regulate OxPhos. Knock-down experiments as well as the use of a small molecule inhibitor confirmed its role in regulating oxygen consumption, ATP production and cellular proliferation. Furthermore, PDAC cell lines sensitive to KCa3.1 inhibition were shown to express the channel protein in the plasma membrane as well as in the mitochondria. These differences in the localization of KCa3.1 channels as well as differences in the regulation of cellular metabolism might offer opportunities for targeted therapy in subsets of PDAC.
Collapse
Affiliation(s)
- Ilya Kovalenko
- Drug Discovery, Therapeutic Research Groups / Onc II, Bayer Pharma AG, Berlin, Germany
- Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Andrea Glasauer
- Drug Discovery, Therapeutic Research Groups / Onc II, Bayer Pharma AG, Berlin, Germany
| | - Laura Schöckel
- Drug Discovery, Therapeutic Research Groups / Onc II, Bayer Pharma AG, Berlin, Germany
| | - Daniel R. P. Sauter
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Ehrmann
- Drug Discovery, Lead Discovery / Cell Biology, Bayer Pharma AG, Berlin, Germany
| | - Florian Sohler
- Drug Discovery, Therapeutic Research Groups / Bioinformatics, Bayer Pharma AG, Leverkusen, Germany
| | - Andrea Hägebarth
- Drug Discovery, Therapeutic Research Groups / Onc II, Bayer Pharma AG, Berlin, Germany
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sven Christian
- Drug Discovery, Therapeutic Research Groups / Onc II, Bayer Pharma AG, Berlin, Germany
- * E-mail:
| |
Collapse
|
30
|
Ohya S, Kito H, Hatano N, Muraki K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacol Ther 2016; 160:11-43. [PMID: 26896566 DOI: 10.1016/j.pharmthera.2016.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of different ion channel types are involved in cell signaling networks, and homeostatic regulatory mechanisms contribute to the control of ion channel expression. Profiling of global gene expression using microarray technology has recently provided novel insights into the molecular mechanisms underlying the homeostatic and pathological control of ion channel expression. It has demonstrated that the dysregulation of ion channel expression is associated with the pathogenesis of neural, cardiovascular, and immune diseases as well as cancers. In addition to the transcriptional, translational, and post-translational regulation of ion channels, potentially important evidence on the mechanisms controlling ion channel expression has recently been accumulated. The regulation of alternative pre-mRNA splicing is therefore a novel therapeutic strategy for the treatment of dominant-negative splicing disorders. Epigenetic modification plays a key role in various pathological conditions through the regulation of pluripotency genes. Inhibitors of pre-mRNA splicing and histone deacetyalase/methyltransferase have potential as potent therapeutic drugs for cancers and autoimmune and inflammatory diseases. Moreover, membrane-anchoring proteins, lysosomal and proteasomal degradation-related molecules, auxiliary subunits, and pharmacological agents alter the protein folding, membrane trafficking, and post-translational modifications of ion channels, and are linked to expression-defect channelopathies. In this review, we focused on recent insights into the transcriptional, spliceosomal, epigenetic, and proteasomal regulation of ion channel expression: Ca(2+) channels (TRPC/TRPV/TRPM/TRPA/Orai), K(+) channels (voltage-gated, KV/Ca(2+)-activated, KCa/two-pore domain, K2P/inward-rectifier, Kir), and Ca(2+)-activated Cl(-) channels (TMEM16A/TMEM16B). Furthermore, this review highlights expression of these ion channels in expression-defect channelopathies.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan.
| |
Collapse
|
31
|
Calcium-Activated Potassium Channels: Potential Target for Cardiovascular Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 104:233-261. [PMID: 27038376 DOI: 10.1016/bs.apcsb.2015.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ca(2+)-activated K(+) channels (KCa) are classified into three subtypes: big conductance (BKCa), intermediate conductance (IKCa), and small conductance (SKCa) KCa channels. The three types of KCa channels have distinct physiological or pathological functions in cardiovascular system. BKCa channels are mainly expressed in vascular smooth muscle cells (VSMCs) and inner mitochondrial membrane of cardiomyocytes, activation of BKCa channels in these locations results in vasodilation and cardioprotection against cardiac ischemia. IKCa channels are expressed in VSMCs, endothelial cells, and cardiac fibroblasts and involved in vascular smooth muscle proliferation, migration, vessel dilation, and cardiac fibrosis. SKCa channels are widely expressed in nervous and cardiovascular system, and activation of SKCa channels mainly contributes membrane hyperpolarization. In this chapter, we summarize the physiological and pathological roles of the three types of KCa channels in cardiovascular system and put forward the possibility of KCa channels as potential target for cardiovascular diseases.
Collapse
|
32
|
Liu Y, Zhao L, Ma W, Cao X, Chen H, Feng D, Liang J, Yin K, Jiang X. The Blockage of KCa3.1 Channel Inhibited Proliferation, Migration and Promoted Apoptosis of Human Hepatocellular Carcinoma Cells. J Cancer 2015; 6:643-51. [PMID: 26078795 PMCID: PMC4466414 DOI: 10.7150/jca.11913] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/15/2015] [Indexed: 01/11/2023] Open
Abstract
The intermediate conductance calcium-activated potassium channel KCa3.1 plays an important role in regulating cell proliferation and migration. However, the role of KCa3.1 channel in human hepatocellular carcinoma remained unknown. This study was therefore performed to investigate the effects of KCa3.1 potassium channel blocker on the proliferation, apoptosis and migration of human hepatocellular cancer cells HepG2. KCa3.1 mRNA and protein were detected in HepG2. Furthermore, KCa3.1 potassium channel blocker TRAM-34 was capable to inhibit the proliferation and induce the apoptosis of HepG2 cells, which can be partially attenuated by 1-EBIO, an activator of KCa3.1 channel. Moreover, the migration of HepG2 was obviously inhibited by TRAM-34. Consistently, knockdown of KCa3.1 channel using its siRNA was also able to induce apoptosis and suppress proliferation and migration of HepG2. Meanwhile, intracellular ROS level was found augmented in HepG2 treated with TRAM-34. More importantly, p53 protein was found translocation from the cytoplasm into the nuclei of HepG2. Collectively, inhibition of KCa3.1 channel suppressed the growth and migration, and promoted the apoptosis of human hepatocellular carcinoma cells by regulating intracellular ROS level and promoting p53 activation. This data suggests TRAM-34 as a promising anti-tumor drug for liver cancer.
Collapse
Affiliation(s)
- Yu Liu
- 1. Department of Laboratory Medicine, Affiliated Fourth Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Liang Zhao
- 2. Department of Pharmacology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Wenya Ma
- 2. Department of Pharmacology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Xuefeng Cao
- 3. Department of Anesthesiology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, China
| | - Hongyang Chen
- 2. Department of Pharmacology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Dan Feng
- 2. Department of Pharmacology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Jing Liang
- 2. Department of Pharmacology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Kun Yin
- 2. Department of Pharmacology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Xiaofeng Jiang
- 1. Department of Laboratory Medicine, Affiliated Fourth Hospital of Harbin Medical University, Harbin 150081, PR China
| |
Collapse
|
33
|
Ohya S, Nakamura E, Horiba S, Kito H, Matsui M, Yamamura H, Imaizumi Y. Role of the K(Ca)3.1 K+ channel in auricular lymph node CD4+ T-lymphocyte function of the delayed-type hypersensitivity model. Br J Pharmacol 2015; 169:1011-23. [PMID: 23594188 DOI: 10.1111/bph.12215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 02/18/2013] [Accepted: 03/01/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE The intermediate-conductance Ca(2+)-activated K(+) channel (K(Ca)3.1) modulates the Ca(2+) response through the control of the membrane potential in the immune system. We investigated the role of K(Ca)3.1 on the pathogenesis of delayed-type hypersensitivity (DTH) in auricular lymph node (ALN) CD4(+) T-lymphocytes of oxazolone (Ox)-induced DTH model mice. EXPERIMENTAL APPROACH The expression patterns of K(Ca)3.1 and its possible transcriptional regulators were compared among ALN T-lymphocytes of three groups [non-sensitized (Ox-/-), Ox-sensitized, but non-challenged (Ox+/-) and Ox-sensitized and -challenged (Ox+/+)] using real-time polymerase chain reaction, Western blotting and flow cytometry. KCa 3.1 activity was measured by whole-cell patch clamp and the voltage-sensitive dye imaging. The effects of K(Ca)3.1 blockade were examined by the administration of selective K(Ca)3.1 blockers. KEY RESULTS Significant up-regulation of K(Ca)3.1a was observed in CD4(+) T-lymphocytes of Ox+/- and Ox+/+, without any evident changes in the expression of the dominant-negative form, K(Ca)3.1b. Negatively correlated with this, the repressor element-1 silencing transcription factor (REST) was significantly down-regulated. Pharmacological blockade of K(Ca)3.1 resulted in an accumulation of the CD4(+) T-lymphocytes of Ox+/+ at the G0/G1 phase of the cell cycle, and also significantly recovered not only the pathogenesis of DTH, but also the changes in the K(Ca)3.1 expression and activity in the CD4(+) T-lymphocytes of Ox+/- and Ox+/+. CONCLUSIONS AND IMPLICATIONS The up-regulation of K(Ca)3.1a in conjunction with the down-regulation of REST may be involved in CD4(+) T-lymphocyte proliferation in the ALNs of DTH model mice; and K(Ca)3.1 may be an important target for therapeutic intervention in allergy diseases such as DTH.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Ehling P, Cerina M, Budde T, Meuth SG, Bittner S. The CNS under pathophysiologic attack--examining the role of K₂p channels. Pflugers Arch 2014; 467:959-72. [PMID: 25482672 DOI: 10.1007/s00424-014-1664-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/17/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
Abstract
Members of the two-pore domain K(+) channel (K2P) family are increasingly recognized as being potential targets for therapeutic drugs and could play a role in the diagnosis and treatment of neurologic disorders. Their broad and diverse expression pattern in pleiotropic cell types, importance in cellular function, unique biophysical properties, and sensitivity toward pathophysiologic parameters represent the basis for their involvement in disorders of the central nervous system (CNS). This review will focus on multiple sclerosis (MS) and stroke, as there is growing evidence for the involvement of K2P channels in these two major CNS disorders. In MS, TASK1-3 channels are expressed on T lymphocytes and are part of a signaling network regulating Ca(2+)- dependent pathways that are mandatory for T cell activation, differentiation, and effector functions. In addition, TASK1 channels are involved in neurodegeneration, resulting in autoimmune attack of CNS cells. On the blood-brain barrier, TREK1 channels regulate immune cell trafficking under autoinflammatory conditions. Cerebral ischemia shares some pathophysiologic similarities with MS, including hypoxia and extracellular acidosis. On a cellular level, K2P channels can have both proapoptotic and antiapoptotic effects, either promoting neurodegeneration or protecting neurons from ischemic cell death. TASK1 and TREK1 channels have a neuroprotective effect on stroke development, whereas TASK2 channels have a detrimental effect on neuronal survival under ischemic conditions. Future research in preclinical models is needed to provide a more detailed understanding of the contribution of K2P channel family members to neurologic disorders, before translation to the clinic is an option.
Collapse
Affiliation(s)
- Petra Ehling
- Department of Neurology, University of Münster, Münster, Germany,
| | | | | | | | | |
Collapse
|
35
|
Abstract
There is an urgent need to identify novel interventions for mitigating the progression of diabetic nephropathy. Diabetic nephropathy is characterized by progressive renal fibrosis, in which tubulointerstitial fibrosis has been shown to be the final common pathway of all forms of chronic progressive renal disease, including diabetic nephropathy. Therefore targeting the possible mechanisms that drive this process may provide novel therapeutics which allow the prevention and potentially retardation of the functional decline in diabetic nephropathy. Recently, the Ca2+-activated K+ channel KCa3.1 (KCa3.1) has been suggested as a potential therapeutic target for nephropathy, based on its ability to regulate Ca2+ entry into cells and modulate Ca2+-signalling processes. In the present review, we focus on the physiological role of KCa3.1 in those cells involved in the tubulointerstitial fibrosis, including proximal tubular cells, fibroblasts, inflammatory cells (T-cells and macrophages) and endothelial cells. Collectively these studies support further investigation into KCa3.1 as a therapeutic target in diabetic nephropathy.
Collapse
|
36
|
Zhang M, Meng XY, Cui M, Pascal JM, Logothetis DE, Zhang JF. Selective phosphorylation modulates the PIP2 sensitivity of the CaM-SK channel complex. Nat Chem Biol 2014; 10:753-9. [PMID: 25108821 DOI: 10.1038/nchembio.1592] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/19/2014] [Indexed: 11/09/2022]
Abstract
Phosphatidylinositol bisphosphate (PIP2) regulates the activities of many membrane proteins, including ion channels, through direct interactions. However, the affinity of PIP2 is so high for some channel proteins that its physiological role as a modulator has been questioned. Here we show that PIP2 is a key cofactor for activation of small conductance Ca2+-activated potassium channels (SKs) by Ca(2+)-bound calmodulin (CaM). Removal of the endogenous PIP2 inhibits SKs. The PIP2-binding site resides at the interface of CaM and the SK C terminus. We further demonstrate that the affinity of PIP2 for its target proteins can be regulated by cellular signaling. Phosphorylation of CaM T79, located adjacent to the PIP2-binding site, by casein kinase 2 reduces the affinity of PIP2 for the CaM-SK channel complex by altering the dynamic interactions among amino acid residues surrounding the PIP2-binding site. This effect of CaM phosphorylation promotes greater channel inhibition by G protein-mediated hydrolysis of PIP2.
Collapse
Affiliation(s)
- Miao Zhang
- 1] Department of Molecular Physiology and Biophysics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA. [2] Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Xuan-Yu Meng
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Meng Cui
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John M Pascal
- Department of Biochemistry &Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Diomedes E Logothetis
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ji-Fang Zhang
- 1] Department of Molecular Physiology and Biophysics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA. [2] Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA. [3] Graduate Program in Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Ohya S, Fukuyo Y, Kito H, Shibaoka R, Matsui M, Niguma H, Maeda Y, Yamamura H, Fujii M, Kimura K, Imaizumi Y. Upregulation of KCa3.1 K(+) channel in mesenteric lymph node CD4(+) T lymphocytes from a mouse model of dextran sodium sulfate-induced inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2014; 306:G873-85. [PMID: 24674776 DOI: 10.1152/ajpgi.00156.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intermediate-conductance Ca(2+)-activated K(+) channel KCa3.1/KCNN4 plays an important role in the modulation of Ca(2+) signaling through the control of the membrane potential in T lymphocytes. Here, we study the involvement of KCa3.1 in the enlargement of the mesenteric lymph nodes (MLNs) in a mouse model of inflammatory bowel disease (IBD). The mouse model of IBD was prepared by exposing male C57BL/6J mice to 5% dextran sulfate sodium for 7 days. Inflammation-induced changes in KCa3.1 activity and the expressions of KCa3.1 and its regulators in MLN CD4(+) T lymphocytes were monitored by real-time PCR, Western blot, voltage-sensitive dye imaging, patch-clamp, and flow cytometric analyses. Concomitant with an upregulation of KCa3.1a and nucleoside diphosphate kinase B (NDPK-B), a positive KCa3.1 regulator, an increase in KCa3.1 activity was observed in MLN CD4(+) T lymphocytes in the IBD model. Pharmacological blockade of KCa3.1 elicited the following results: 1) a significant decrease in IBD disease severity, as assessed by diarrhea, visible fecal blood, inflammation, and crypt damage of the colon and MLN enlargement compared with control mice, and 2) the restoration of the expression levels of KCa3.1a, NDPK-B, and Th1 cytokines in IBD model MLN CD4(+) T lymphocytes. These findings suggest that the increase in KCa3.1 activity induced by the upregulation of KCa3.1a and NDPK-B may be involved in the pathogenesis of IBD by mediating the enhancement of the proliferative response in MLN CD4(+) T lymphocyte and, therefore, that the pharmacological blockade of KCa3.1 may decrease the risk of IBD.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan; Department of Molecular & Cellular Pharmacology, Nagoya City University, Nagoya, Japan;
| | - Yuka Fukuyo
- Department of Molecular & Cellular Pharmacology, Nagoya City University, Nagoya, Japan
| | - Hiroaki Kito
- Department of Molecular & Cellular Pharmacology, Nagoya City University, Nagoya, Japan
| | - Rina Shibaoka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Miki Matsui
- Department of Molecular & Cellular Pharmacology, Nagoya City University, Nagoya, Japan
| | - Hiroki Niguma
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yasuhiro Maeda
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan; and
| | - Hisao Yamamura
- Department of Molecular & Cellular Pharmacology, Nagoya City University, Nagoya, Japan
| | - Masanori Fujii
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kazunori Kimura
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan; and Department of Clinical Pharmacy, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuji Imaizumi
- Department of Molecular & Cellular Pharmacology, Nagoya City University, Nagoya, Japan
| |
Collapse
|
38
|
Blass B. Fused Thiazin-3-ones as KCa3.1 Inhibitors. ACS Med Chem Lett 2014; 5:460-1. [PMID: 24900861 DOI: 10.1021/ml500090s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Benjamin Blass
- Temple University School of Pharmacy , 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
39
|
Milroy LG, Grossmann TN, Hennig S, Brunsveld L, Ottmann C. Modulators of Protein–Protein Interactions. Chem Rev 2014; 114:4695-748. [DOI: 10.1021/cr400698c] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lech-Gustav Milroy
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands
| | - Tom N. Grossmann
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn Straße 15, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Sven Hennig
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn Straße 15, 44227 Dortmund, Germany
| | - Luc Brunsveld
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
40
|
High glucose induces CCL20 in proximal tubular cells via activation of the KCa3.1 channel. PLoS One 2014; 9:e95173. [PMID: 24733189 PMCID: PMC3986377 DOI: 10.1371/journal.pone.0095173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/24/2014] [Indexed: 02/05/2023] Open
Abstract
Background Inflammation plays a key role in the development and progression of diabetic nephropathy (DN). KCa3.1, a calcium activated potassium channel protein, is associated with vascular inflammation, atherogenesis, and proliferation of endothelial cells, macrophages, and fibroblasts. We have previously demonstrated that the KCa3.1 channel is activated by TGF-β1 and blockade of KCa3.1 ameliorates renal fibrotic responses in DN through inhibition of the TGF-β1 pathway. The present study aimed to identify the role of KCa3.1 in the inflammatory responses inherent in DN. Methods Human proximal tubular cells (HK2 cells) were exposed to high glucose (HG) in the presence or absence of the KCa3.1 inhibitor TRAM34 for 6 days. The proinflammatory cytokine chemokine (C-C motif) ligand 20 (CCL20) expression was examined by real-time PCR and enzyme-linked immunosorbent assay (ELISA). The activity of nuclear factor-κB (NF-κB) was measured by nuclear extraction and electrophoretic mobility shift assay (EMSA). In vivo, the expression of CCL20, the activity of NF-κB and macrophage infiltration (CD68 positive cells) were examined by real-time PCR and/or immunohistochemistry staining in kidneys from diabetic or KCa3.1-/- mice, and in eNOS-/- diabetic mice treated with the KCa3.1 channel inhibitor TRAM34. Results In vitro data showed that TRAM34 inhibited CCL20 expression and NF-κB activation induced by HG in HK2 cells. Both mRNA and protein levels of CCL20 significantly decreased in kidneys of diabetic KCa3.1-/- mice compared to diabetic wild type mice. Similarly, TRAM34 reduced CCL20 expression and NF-κB activation in diabetic eNOS-/- mice compared to diabetic controls. Blocking the KCa3.1 channel in both animal models led to a reduction in phosphorylated NF-κB. Conclusions Overexpression of CCL20 in human proximal tubular cells is inhibited by blockade of KCa3.1 under diabetic conditions through inhibition of the NF-κB pathway.
Collapse
|
41
|
Fu RG, Zhang T, Wang L, Du Y, Jia LN, Hou JJ, Yao GL, Liu XD, Zhang L, Chen L, Gui BS, Xue RL. Inhibition of the K+ channel K(Ca)3.1 reduces TGF-β1-induced premature senescence, myofibroblast phenotype transition and proliferation of mesangial cells. PLoS One 2014; 9:e87410. [PMID: 24489911 PMCID: PMC3905019 DOI: 10.1371/journal.pone.0087410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/25/2013] [Indexed: 01/15/2023] Open
Abstract
Objective KCa3.1 channel participates in many important cellular functions. This study planned to investigate the potential involvement of KCa3.1 channel in premature senescence, myofibroblast phenotype transition and proliferation of mesangial cells. Methods & Materials Rat mesangial cells were cultured together with TGF-β1 (2 ng/ml) and TGF-β1 (2 ng/ml) + TRAM-34 (16 nM) separately for specified times from 0 min to 60 min. The cells without treatment served as controls. The location of KCa3.1 channels in mesangial cells was determined with Confocal laser microscope, the cell cycle of mesangial cells was assessed with flow cytometry, the protein and mRNA expression of KCa3.1, α-smooth muscle actin (α-SMA) and fibroblast-specific protein-1 (FSP-1) were detected with Western blot and RT-PCR. One-way analysis of variance (ANOVA) and Student-Newman-Keuls-q test (SNK-q) were used to do statistical analysis. Statistical significance was considered at P<0.05. Results Kca3.1 channels were located in the cell membranes and/or in the cytoplasm of mesangial cells. The percentage of cells in G0-G1 phase and the expression of Kca3.1, α-SMA and FSP-1 were elevated under the induction of TGF-β1 when compared to the control and decreased under the induction of TGF-β1+TRAM-34 when compared to the TGF-β1 induced (P<0.05 or P<0.01). Conclusion Targeted disruption of KCa3.1 inhibits TGF-β1-induced premature aging, myofibroblast-like phenotype transdifferentiation and proliferation of mesangial cells.
Collapse
Affiliation(s)
- Rong-Guo Fu
- Department of Nephrology, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Tao Zhang
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Li Wang
- Department of Nephrology, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Yan Du
- Department of Nephrology, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Li-Ning Jia
- Department of Nephrology, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Jing-Jing Hou
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Gang-Lian Yao
- Department of Nephrology, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Xiao-Dan Liu
- Cadre's ward, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Lei Zhang
- Medical Laboratory, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Ling Chen
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Bao-Song Gui
- Department of Nephrology, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
- * E-mail: (RLX); (BSG)
| | - Rong-Liang Xue
- Department of Anesthesia, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
- * E-mail: (RLX); (BSG)
| |
Collapse
|
42
|
Huang C, Day ML, Poronnik P, Pollock CA, Chen XM. Inhibition of KCa3.1 suppresses TGF-β1 induced MCP-1 expression in human proximal tubular cells through Smad3, p38 and ERK1/2 signaling pathways. Int J Biochem Cell Biol 2013; 47:1-10. [PMID: 24291552 DOI: 10.1016/j.biocel.2013.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/13/2013] [Accepted: 11/18/2013] [Indexed: 11/18/2022]
Abstract
It is well known that TGF-β1 plays a central role in renal fibrosis due in large part to stimulation of inflammatory responses. KCa3.1, a potassium channel protein, has been suggested as a potential therapeutic target for diseases such as sickle cell anemia, autoimmunity, atherosclerosis and more recently, kidney fibrosis. Blockade of KCa3.1 has been shown to ameliorate renal fibrosis in diabetic mice in association with reduced TGF-β1 signaling. However, the centrality of KCa3.1 activation to TGF-β1 induced inflammation remains unknown. In this study, human proximal tubular cells (HK2 cells) were incubated with TGF-β1 (2 ng/ml) for 48 h in the presence or absence of KCa3.1 siRNA or the KCa3.1 inhibitor TRAM34. HK2 cells overexpressing KCa3.1 were studied in parallel. The mRNA and protein expression of monocyte chemoattractant protein-1 (MCP-1) were measured by qRT-PCR and ELISA. Downstream TGF-β1 signaling molecules Smad3, p38 and ERK1/2 were measured by Western blot analysis. Using whole-cell patch clamp techniques we found that TGFβ-1 induced a large KCa3.1 K-current that was inhibited by TRAM34. TGF-β1 also increased MCP-1 mRNA and protein expression in HK2 cells compared to control, an effect that was reversed by in the presence of KCa3.1 siRNA. Similarly, TRAM34 significantly reduced the TGF-β1-mediated increase in MCP-1 at both the mRNA and protein levels. Inhibition of KCa3.1 with KCa3.1 siRNA or TRAM34 also reduced TGF-β1-induced phosphorylation of Smad3, p38 and ERK1/2 MAPK pathways. Conversely overexpression of KCa3.1 induced TGF-β1 signaling cascades and expression of MCP-1. The present study is consistent with a key role for KCa3.1 renal proximal tubular cells in mediating the TGF-β1 induction of MCP-1 expression in HK2 cells via Smad3, p38 and ERK1/2 MAPK signaling pathways.
Collapse
Affiliation(s)
- Chunling Huang
- Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; Xiamen Center of Clinical Laboratory, Xiamen Zhongshan Hospital, Medical College of Xiamen University, Xiamen 361004, China
| | - Margot L Day
- School of Medical Sciences, Discipline of Physiology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Philip Poronnik
- School of Medical Sciences, Discipline of Physiology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Carol A Pollock
- Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
| | - Xin-Ming Chen
- Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| |
Collapse
|
43
|
Huang C, Shen S, Ma Q, Gill A, Pollock CA, Chen XM. KCa3.1 mediates activation of fibroblasts in diabetic renal interstitial fibrosis. Nephrol Dial Transplant 2013; 29:313-24. [PMID: 24166472 PMCID: PMC3910344 DOI: 10.1093/ndt/gft431] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Fibroblast activation plays a critical role in diabetic nephropathy (DN). The Ca2+-activated K+ channel KCa3.1 mediates cellular proliferation of many cell types including fibroblasts. KCa3.1 has been reported to be a potential molecular target for pharmacological intervention in a diverse array of clinical conditions. However, the role of KCa3.1 in the activation of myofibroblasts in DN is unknown. These studies assessed the effect of KCa3.1 blockade on renal injury in experimental diabetes. METHODS As TGF-β1 plays a central role in the activation of fibroblasts to myofibroblasts in renal interstitial fibrosis, human primary renal interstitial fibroblasts were incubated with TGF-β1+/- the selective inhibitor of KCa3.1, TRAM34, for 48 h. Two streptozotocin-induced diabetic mouse models were used in this study: wild-type KCa3.1+/+ and KCa3.1-/- mice, and secondly eNOS-/- mice treated with or without a selective inhibitor of KCa3.1 (TRAM34). Then, markers of fibroblast activation and fibrosis were determined. RESULTS Blockade of KCa3.1 inhibited the upregulation of type I collagen, fibronectin, α-smooth muscle actin, vimentin and fibroblast-specific protein-1 in renal fibroblasts exposed to TGF-β1 and in kidneys from diabetic mice. TRAM34 reduced TGF-β1-induced phosphorylation of Smad2/3 and ERK1/2 but not P38 and JNK MAPK in interstitial fibroblasts. CONCLUSIONS These results suggest that blockade of KCa3.1 attenuates diabetic renal interstitial fibrogenesis through inhibiting activation of fibroblasts and phosphorylation of Smad2/3 and ERK1/2. Therefore, therapeutic interventions to prevent or ameliorate DN through targeted inhibition of KCa3.1 deserve further consideration.
Collapse
Affiliation(s)
- Chunling Huang
- Kolling Institute of Medical Research, Sydney medical school and University of Sydney, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Koshy S, Wu D, Hu X, Tajhya RB, Huq R, Khan FS, Pennington MW, Wulff H, Yotnda P, Beeton C. Blocking KCa3.1 channels increases tumor cell killing by a subpopulation of human natural killer lymphocytes. PLoS One 2013; 8:e76740. [PMID: 24146918 PMCID: PMC3795664 DOI: 10.1371/journal.pone.0076740] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/29/2013] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are large granular lymphocytes that participate in both innate and adaptive immune responses against tumors and pathogens. They are also involved in other conditions, including organ rejection, graft-versus-host disease, recurrent spontaneous abortions, and autoimmune diseases such as multiple sclerosis. We demonstrate that human NK cells express the potassium channels Kv1.3 and KCa3.1. Expression of these channels does not vary with expression levels of maturation markers but varies between adherent and non-adherent NK cell subpopulations. Upon activation by mitogens or tumor cells, adherent NK (A-NK) cells preferentially up-regulate KCa3.1 and non-adherent (NA-NK) cells preferentially up-regulate Kv1.3. Consistent with this different phenotype, A-NK and NA-NK do not display the same sensitivity to the selective KCa3.1 blockers TRAM-34 and NS6180 and to the selective Kv1.3 blockers ShK-186 and PAP-1 in functional assays. Kv1.3 block inhibits the proliferation and degranulation of NA-NK cells with minimal effects on A-NK cells. In contrast, blocking KCa3.1 increases the degranulation and cytotoxicity of A-NK cells, but not of NA-NK cells. TRAM-34, however, does not affect their ability to form conjugates with target tumor cells, to migrate, or to express chemokine receptors. TRAM-34 and NS6180 also increase the proliferation of both A-NK and NA-NK cells. This results in a TRAM-34-induced increased ability of A-NK cells to reduce in vivo tumor growth. Taken together, our results suggest that targeting KCa3.1 on NK cells with selective blockers may be beneficial in cancer immunotherapy.
Collapse
Affiliation(s)
- Shyny Koshy
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Danli Wu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xueyou Hu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rajeev B. Tajhya
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Redwan Huq
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fatima S. Khan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - Heike Wulff
- Department of Pharmacology, University of California, Davis, California, United States of America
| | - Patricia Yotnda
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
45
|
Bittner S, Meuth SG. Targeting ion channels for the treatment of autoimmune neuroinflammation. Ther Adv Neurol Disord 2013; 6:322-36. [PMID: 23997817 DOI: 10.1177/1756285613487782] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pharmacological targeting of ion channels has long been recognized as an attractive strategy for the treatment of various diseases. Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system with a prominent neurodegenerative component. A multitude of different cell types are involved in the complex pathophysiology of this disorder, including cells of the immune system (e.g. T and B lymphocytes and microglia), the neurovascular unit (e.g. endothelial cells and astrocytes) and the central nervous system (e.g. astrocytes and neurons). The pleiotropic expression and function of ion channels gives rise to the attractive opportunity of targeting different players and pathophysiological aspects of MS by the modulation of ion channel function in a cell-type and context-specific manner. We discuss the emerging knowledge about ion channels in the context of autoimmune neuroinflammation. While some pharmacological targets are at the edge of clinical translation, others have only recently been discovered and are still under investigation. Special focus is given to those candidates that could be attractive novel targets for future therapeutic approaches in neuroimmune autoinflammation.
Collapse
Affiliation(s)
- Stefan Bittner
- Department of Neurology, University of Münster, Münster, Germany
| | | |
Collapse
|
46
|
Huang C, Shen S, Ma Q, Chen J, Gill A, Pollock CA, Chen XM. Blockade of KCa3.1 ameliorates renal fibrosis through the TGF-β1/Smad pathway in diabetic mice. Diabetes 2013; 62:2923-34. [PMID: 23656889 PMCID: PMC3717839 DOI: 10.2337/db13-0135] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Ca(2+)-activated K(+) channel KCa3.1 mediates cellular signaling processes associated with dysfunction of vasculature. However, the role of KCa3.1 in diabetic nephropathy is unknown. We sought to assess whether KCa3.1 mediates the development of renal fibrosis in two animal models of diabetic nephropathy. Wild-type and KCa3.1(-/-) mice, and secondly eNOS(-/-) mice, had diabetes induced with streptozotocin and then were treated with/without a selective inhibitor of KCa3.1 (TRAM34). Our results show that the albumin-to-creatinine ratio significantly decreased in diabetic KCa3.1(-/-) mice compared with diabetic wild-type mice and in diabetic eNOS(-/-) mice treated with TRAM34 compared with diabetic mice. The expression of monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule 1 (ICAM1), F4/80, plasminogen activator inhibitor type 1 (PAI-1), and type III and IV collagen significantly decreased (P < 0.01) in kidneys of diabetic KCa3.1(-/-) mice compared with diabetic wild-type mice. Similarly, TRAM34 reduced the expression of the inflammatory and fibrotic markers described above in diabetic eNOS(-/-) mice. Furthermore, blocking the KCa3.1 channel in both animal models led to a reduction of transforming growth factor-β1 (TGF-β1) and TGF-β1 type II receptor (TβRII) and phosphorylation of Smad2/3. Our results provide evidence that KCa3.1 mediates renal fibrosis in diabetic nephropathy through the TGF-β1/Smad signaling pathway. Blockade of KCa3.1 may be a novel target for therapeutic intervention in patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Chunling Huang
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney Medical School, and University of Sydney, St Leonards, Sydney, New South Wales, Australia
- Xiamen Center of Clinical Laboratory, Xiamen Zhongshan Hospital, Medical College of Xiamen University, Xiamen, China
| | - Sylvie Shen
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney Medical School, and University of Sydney, St Leonards, Sydney, New South Wales, Australia
| | - Qing Ma
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney Medical School, and University of Sydney, St Leonards, Sydney, New South Wales, Australia
| | - Jason Chen
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia
| | - Anthony Gill
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia
| | - Carol A. Pollock
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney Medical School, and University of Sydney, St Leonards, Sydney, New South Wales, Australia
| | - Xin-Ming Chen
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney Medical School, and University of Sydney, St Leonards, Sydney, New South Wales, Australia
| |
Collapse
|
47
|
Cekic AB, Alhan E, Usta A, Türkyılmaz S, Kural BV, Erçin C. Effects of clotrimazol on the acute necrotizing pancreatitis in rats. Inflammation 2013; 36:1576-83. [PMID: 23892997 DOI: 10.1007/s10753-013-9702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study aims to investigate the influence of clotrimazol (CLTZ) on acute necrotizing pancreatitis (ANP) induced by glycodeoxycholic acid in rats. Rats were divided into five groups as sham + saline, sham + CLTZ, sham + polyethylene glycol, ANP + saline, and ANP + CLTZ. ANP in rats was induced by glycodeoxycholic acid. The extent of acinar cell injury, mortality, systemic cardiorespiratory variables, functional capillary density (FCD), renal/hepatic functions, and changes in some enzyme markers for pancreatic and lung tissue were investigated during ANP in rats. The use of CLTZ after the induction of ANP resulted in a significant decrease in the mortality rate, pancreatic necrosis, and serum activity of amylase, alanine aminotransferase, interleukin-6, lactate dehydrogenase in bronchoalveolar lavage fluid, serum concentration of urea, and tissue activity of myeloperoxidase, and malondialdehyde in the pancreas and lung and a significant increase in concentrations of calcium, blood pressure, urine output, pO2, and FCD. This study showed that CLTZ demonstrated beneficial effect on the course of ANP in rats. Therefore, it may be used in the treatment of acute pancreatitis.
Collapse
|
48
|
Endothelial small-conductance and intermediate-conductance KCa channels: an update on their pharmacology and usefulness as cardiovascular targets. J Cardiovasc Pharmacol 2013; 61:102-12. [PMID: 23107876 DOI: 10.1097/fjc.0b013e318279ba20] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Most cardiovascular researchers are familiar with intermediate-conductance KCa3.1 and small-conductance KCa2.3 channels because of their contribution to endothelium-derived hyperpolarization. However, to immunologists and neuroscientists, these channels are primarily known for their role in lymphocyte activation and neuronal excitability. KCa3.1 is involved in the proliferation and migration of T cells, B cells, mast cells, macrophages, fibroblasts, and dedifferentiated vascular smooth muscle cells and is, therefore, being pursued as a potential target for use in asthma, immunosuppression, and fibroproliferative disorders. In contrast, the 3 KCa2 channels (KCa2.1, KCa2.2, and KCa2.3) contribute to the neuronal medium afterhyperpolarization and, depending on the type of neuron, are involved in determining firing rates and frequencies or in regulating bursting. KCa2 activators are accordingly being studied as potential therapeutics for ataxia and epilepsy, whereas KCa2 channel inhibitors like apamin have long been known to improve learning and memory in rodents. Given this background, we review the recent discoveries of novel KCa3.1 and KCa2.3 modulators and critically assess the potential of KCa activators for the treatment of diabetes and cardiovascular diseases by improving endothelium-derived hyperpolarizations.
Collapse
|
49
|
Bi D, Toyama K, Lemaître V, Takai J, Fan F, Jenkins DP, Wulff H, Gutterman DD, Park F, Miura H. The intermediate conductance calcium-activated potassium channel KCa3.1 regulates vascular smooth muscle cell proliferation via controlling calcium-dependent signaling. J Biol Chem 2013; 288:15843-53. [PMID: 23609438 PMCID: PMC3668741 DOI: 10.1074/jbc.m112.427187] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 04/12/2013] [Indexed: 01/14/2023] Open
Abstract
The intermediate conductance calcium-activated potassium channel KCa3.1 contributes to a variety of cell activation processes in pathologies such as inflammation, carcinogenesis, and vascular remodeling. We examined the electrophysiological and transcriptional mechanisms by which KCa3.1 regulates vascular smooth muscle cell (VSMC) proliferation. Platelet-derived growth factor-BB (PDGF)-induced proliferation of human coronary artery VSMCs was attenuated by lowering intracellular Ca(2+) concentration ([Ca(2+)]i) and was enhanced by elevating [Ca(2+)]i. KCa3.1 blockade or knockdown inhibited proliferation by suppressing the rise in [Ca(2+)]i and attenuating the expression of phosphorylated cAMP-response element-binding protein (CREB), c-Fos, and neuron-derived orphan receptor-1 (NOR-1). This antiproliferative effect was abolished by elevating [Ca(2+)]i. KCa3.1 overexpression induced VSMC proliferation, and potentiated PDGF-induced proliferation, by inducing CREB phosphorylation, c-Fos, and NOR-1. Pharmacological stimulation of KCa3.1 unexpectedly suppressed proliferation by abolishing the expression and activity of KCa3.1 and PDGF β-receptors and inhibiting the rise in [Ca(2+)]i. The stimulation also attenuated the levels of phosphorylated CREB, c-Fos, and cyclin expression. After KCa3.1 blockade, the characteristic round shape of VSMCs expressing high l-caldesmon and low calponin-1 (dedifferentiation state) was maintained, whereas KCa3.1 stimulation induced a spindle-shaped cellular appearance, with low l-caldesmon and high calponin-1. In conclusion, KCa3.1 plays an important role in VSMC proliferation via controlling Ca(2+)-dependent signaling pathways, and its modulation may therefore constitute a new therapeutic target for cell proliferative diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Dan Bi
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557
| | - Kazuyoshi Toyama
- the Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Vincent Lemaître
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557
| | - Jun Takai
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557
| | - Fan Fan
- the Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - David P. Jenkins
- the Department of Pharmacology, University of California, Davis, California 95616
| | - Heike Wulff
- the Department of Pharmacology, University of California, Davis, California 95616
| | - David D. Gutterman
- the Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Frank Park
- the Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Hiroto Miura
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557
- the Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| |
Collapse
|
50
|
The potassium channel KCa3.1 as new therapeutic target for the prevention of obliterative airway disease. Transplantation 2013; 95:285-92. [PMID: 23325003 DOI: 10.1097/tp.0b013e318275a2f4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The calcium-activated potassium channel KCa3.1 is critically involved in T-cell activation as well as in the proliferation of smooth muscle cells and fibroblasts. We sought to investigate whether KCa3.1 contributes to the pathogenesis of obliterative airway disease (OAD) and whether knockout or pharmacologic blockade would prevent the development of OAD. METHODS Tracheas from CBA donors were heterotopically transplanted into the omentum of C57Bl/6J wild-type or KCa3.1 mice. C57Bl/6J recipients were either left untreated or received the KCa3.1 blocker TRAM-34 (120 mg/kg/day). Histopathology and immunologic assays were performed on postoperative day 5 or 28. RESULTS Subepithelial T-cell and macrophage infiltration on postoperative day 5, as seen in untreated allografts, was significantly reduced in the KCa3.1 and TRAM-34 groups. Also, systemic Th1 activation was significantly and Th2 mildly reduced by KCa3.1 knockout or blockade. After 28 days, luminal obliteration of tracheal allografts was reduced from 89%±21% in untreated recipients to 53%±26% (P=0.010) and 59%±33% (P=0.032) in KCa3.1 and TRAM-34-treated animals, respectively. The airway epithelium was mostly preserved in syngeneic grafts, mostly destroyed in the KCa3.1 and TRAM-34 groups, and absent in untreated allografts. Allografts triggered an antibody response in untreated recipients, which was significantly reduced in KCa3.1 animals. KCa3.1 was detected in T cells, airway epithelial cells, and myofibroblasts. TRAM-34 dose-dependently suppressed proliferation of wild-type C57B/6J splenocytes but did not show any effect on KCa3.1 splenocytes. CONCLUSIONS Our findings suggest that KCa3.1 channels are involved in the pathogenesis of OAD and that KCa3.1 blockade holds promise to reduce OAD development.
Collapse
|