1
|
Stevenson M, Hebron ML, Liu X, Balaraman K, Wolf C, Moussa C. c-KIT inhibitors reduce pathology and improve behavior in the Tg(SwDI) model of Alzheimer's disease. Life Sci Alliance 2024; 7:e202402625. [PMID: 39009412 PMCID: PMC11249953 DOI: 10.26508/lsa.202402625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Treatments for Alzheimer's disease have primarily focused on removing brain amyloid plaques to improve cognitive outcomes in patients. We developed small compounds, known as BK40143 and BK40197, and we hypothesize that these drugs alleviate microglial-mediated neuroinflammation and induce autophagic clearance of neurotoxic proteins to improve behavior in models of neurodegeneration. Specificity binding assays of BK40143 and BK40197 showed primary binding to c-KIT/Platelet Derived Growth Factor Receptors (PDGFR)α/β, whereas BK40197 also differentially binds to FYVE finger-containing phosphoinositide kinase (PIKFYVE). Both compounds penetrate the CNS, and treatment with these drugs inhibited the maturation of peripheral mast cells in transgenic mice, correlating with cognitive improvements on measures of memory and anxiety. In the brain, microglial activation was profoundly attenuated and amyloid-beta and tau were reduced via autophagy. Multi-kinase inhibition, including c-KIT, exerts multifunctional effects to reduce neurodegenerative pathology via autophagy and microglial activity and may represent a potential therapeutic option for neurodegeneration.
Collapse
Affiliation(s)
- Max Stevenson
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington DC, USA
| | - Michaeline L Hebron
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington DC, USA
| | - Xiaoguang Liu
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington DC, USA
| | - Kaluvu Balaraman
- Medicinal Chemistry Shared Resource, Department of Chemistry, Georgetown University Medical Center, Washington DC, USA
| | - Christian Wolf
- Medicinal Chemistry Shared Resource, Department of Chemistry, Georgetown University Medical Center, Washington DC, USA
| | - Charbel Moussa
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
2
|
Ansari MM, Sahu SK, Singh TG, Singh SRJ, Kaur P. Evolving significance of kinase inhibitors in the management of Alzheimer's disease. Eur J Pharmacol 2024; 979:176816. [PMID: 39038637 DOI: 10.1016/j.ejphar.2024.176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's disease is a neurodegenerative problem with progressive loss of memory and other cognitive function disorders resulting in the imbalance of neurotransmitter activity and signaling progression, which poses the need of the potential therapeutic target to improve the intracellular signaling cascade brought by kinases. Protein kinase plays a significant and multifaceted role in the treatment of Alzheimer's disease, by targeting pathological mechanisms like tau hyperphosphorylation, neuroinflammation, amyloid-beta production and synaptic dysfunction. In this review, we thoroughly explore the essential protein kinases involved in Alzheimer's disease, detailing their physiological roles, regulatory impacts, and the newest inhibitors and compounds that are progressing into clinical trials. All the findings of studies exhibited the promising role of kinase inhibitors in the management of Alzheimer's disease. However, it still poses the need of addressing current challenges and opportunities involved with this disorder for the future perspective of kinase inhibitors in the management of Alzheimer's disease. Further study includes the development of biomarkers, combination therapy, and next-generation kinase inhibitors with increased potency and selectivity for its future prospects.
Collapse
Affiliation(s)
- Md Mustafiz Ansari
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | | | - Sovia R J Singh
- University Language Centre- Chitkara Business School, Chitkara University, Punjab, India
| | - Paranjeet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
3
|
Stevenson M, Algarzae NK, Moussa C. Tyrosine kinases: multifaceted receptors at the intersection of several neurodegenerative disease-associated processes. FRONTIERS IN DEMENTIA 2024; 3:1458038. [PMID: 39221072 PMCID: PMC11361951 DOI: 10.3389/frdem.2024.1458038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Tyrosine kinases (TKs) are catalytic enzymes activated by auto-phosphorylation that function by phosphorylating tyrosine residues on downstream substrates. Tyrosine kinase inhibitors (TKIs) have been heavily exploited as cancer therapeutics, primarily due to their role in autophagy, blood vessel remodeling and inflammation. This suggests tyrosine kinase inhibition as an appealing therapeutic target for exploiting convergent mechanisms across several neurodegenerative disease (NDD) pathologies. The overlapping mechanisms of action between neurodegeneration and cancer suggest that TKIs may play a pivotal role in attenuating neurodegenerative processes, including degradation of misfolded or toxic proteins, reduction of inflammation and prevention of fibrotic events of blood vessels in the brain. In this review, we will discuss the distinct roles that select TKs have been shown to play in various disease-associated processes, as well as identify TKs that have been explored as targets for therapeutic intervention and associated pharmacological agents being investigated as treatments for NDDs.
Collapse
Affiliation(s)
- Max Stevenson
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| | - Norah K. Algarzae
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Charbel Moussa
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
4
|
Israr J, Alam S, Kumar A. Drug repurposing for respiratory infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:207-230. [PMID: 38942538 DOI: 10.1016/bs.pmbts.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Respiratory infections such as Coronavirus disease 2019 are a substantial worldwide health challenge, frequently resulting in severe sickness and death, especially in susceptible groups. Conventional drug development for respiratory infections faces obstacles such as extended timescales, substantial expenses, and the rise of resistance to current treatments. Drug repurposing is a potential method that has evolved to quickly find and reuse existing medications for treating respiratory infections. Drug repurposing utilizes medications previously approved for different purposes, providing a cost-effective and time-efficient method to tackle pressing medical needs. This chapter summarizes current progress and obstacles in repurposing medications for respiratory infections, focusing on notable examples of repurposed pharmaceuticals and their probable modes of action. The text also explores the significance of computational approaches, high-throughput screening, and preclinical investigations in identifying potential candidates for repurposing. The text delves into the significance of regulatory factors, clinical trial structure, and actual data in confirming the effectiveness and safety of repurposed medications for respiratory infections. Drug repurposing is a valuable technique for quickly increasing the range of treatments for respiratory infections, leading to better patient outcomes and decreasing the worldwide disease burden.
Collapse
Affiliation(s)
- Juveriya Israr
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India; Department of Biotechnology, Era University, Lucknow, Uttar Pradesh, India
| | - Shabroz Alam
- Department of Biotechnology, Era University, Lucknow, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Mandhana, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
5
|
Baek J, Kim H, Jun J, Kang D, Bae H, Cho H, Hah JM. Discovery of N-(5-amido-2-methylphenyl)-5-methylisoxazole-3-carboxamide as dual CSF-1R/c-Kit Inhibitors with improved stability and BBB permeability. Eur J Med Chem 2024; 268:116253. [PMID: 38401188 DOI: 10.1016/j.ejmech.2024.116253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
This study explores the potential of CSF-1R inhibitors as therapeutic agents for neurodegenerative diseases. CSF-1R, a receptor tyrosine kinase primarily expressed in macrophage lineages, plays a pivotal role in regulating various cellular processes. Recent research highlights the significance of CSF-1R inhibition in mitigating neuroinflammation, particularly in Alzheimer's disease, where microglial overactivation contributes to neurodegeneration. The research reveals a series of N-(5-amido-2-methylphenyl)-5-methylisoxazole-3-carboxamide CSF-1R inhibitors, where compounds 7d, 7e, and 9a exhibit outstanding inhibitory activities and selectivity, with IC50 values of 33, 31, and 64 nM, respectively. These most promising compounds in this series were profiled for cellular potency and subjected to in vitro pharmacokinetic profiling. These inhibitors exhibit minimal cytotoxicity, even at higher concentrations, and possess promising blood-brain barrier permeability, making them potential candidates for central nervous system diseases. The investigation into the in vitro ADME properties, including plasma and microsomal stability, reveals that these CSF-1R inhibitors maintain their structural integrity and plasma concentration. This resilience positions them for further development as therapeutic agents for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jihyun Baek
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do, 15588, Republic of Korea
| | - Hyejin Kim
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do, 15588, Republic of Korea
| | - Joonhong Jun
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do, 15588, Republic of Korea
| | - Dahyun Kang
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do, 15588, Republic of Korea
| | - Hyunah Bae
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do, 15588, Republic of Korea
| | - Hyunwook Cho
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do, 15588, Republic of Korea
| | - Jung-Mi Hah
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
6
|
Osaka H, Nishida K, Kanazawa T. Beyond lecanemab: Examining Phase III potential in Alzheimer's therapeutics. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2024; 3:e185. [PMID: 38868475 PMCID: PMC11114408 DOI: 10.1002/pcn5.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 06/14/2024]
Abstract
This review focuses on the development of therapeutic interventions for Alzheimer's dementia. While established treatments targeted acetylcholine and NMDA receptors, there is a growing demand for innovative therapies as the aging population increases. The paper highlights the US Food and Drug Administration's approval of aducanumab (Aduhelm) and lecanemab (Leqembi), emphasizing the developmental status of new treatments. Specifically, it covers seven principal drugs in Phase III trials, detailing their mechanisms of action, clinical trial specifics in the United States and Japan, and the current status of regulatory applications. The review focuses on amyloid removal (donanemab), tau protein mitigation (E2814), drug repositioning (Semaglutide, GV1001), and disease-modifying small molecules (fosgonimeton, hydralazine, masitinib). However, Gantenerumab and Solanezumab, unsuccessful in Phase III, are not covered. While the future approval status remains uncertain, we hope these drugs will offer beneficial therapeutic effects for potential dementia patients.
Collapse
Affiliation(s)
- Hitoshi Osaka
- Department of NeuropsychiatryOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| | - Keiichiro Nishida
- Department of NeuropsychiatryOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| | - Tetsufumi Kanazawa
- Department of NeuropsychiatryOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| |
Collapse
|
7
|
Ahsan R, Khan MM, Mishra A, Noor G, Ahmad U. Protein Kinases and their Inhibitors Implications in Modulating Disease Progression. Protein J 2023; 42:621-632. [PMID: 37768476 DOI: 10.1007/s10930-023-10159-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Protein phosphorylation plays an important role in cellular pathways, including cell cycle regulation, metabolism, differentiation and survival. The protein kinase superfamily network consists of 518 members involved in intrinsic or extrinsic interaction processes. Protein kinases are divided into two categories based on their ability to phosphorylate tyrosine, serine, and threonine residues. The complexity of the system implies its vulnerability. Any changes in the pathways of protein kinases may be implicated in pathological processes. Therefore, they are regarded as having an important role in human diseases and represent prospective therapeutic targets. This article provides a review of the protein kinase inhibitors approved by the FDA. Finally, we summarize the mechanism of action of protein kinases, including their role in the development and progression of protein kinase-related roles in various pathological conditions and the future therapeutic potential of protein kinase inhibitors, along with links to protein kinase databases. Further clinical studies aimed at examining the sequence of protein kinase inhibitor availability would better utilize current protein kinase inhibitors in diseases. Additionally, this review may help researchers and biochemists find new potent and selective protein kinase inhibitors and provide more indications for using existing drugs.
Collapse
Affiliation(s)
- Rabiya Ahsan
- Department of pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohd Muazzam Khan
- Department of pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India.
| | - Anuradha Mishra
- Department of pharmacology, Amity Institute of Pharmacy, Amity University, sector 125, Noida, Uttar Pradesh, 201313, India
| | - Gazala Noor
- Department of pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Usama Ahmad
- Department of pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
8
|
Khayer N, Motamed N, Marashi SA, Goshadrou F. RT-DOb, a switch gene for the gene pair {Csf1r, Milr1}, can influence the onset of Alzheimer's disease by regulating communication between mast cell and microglia. PLoS One 2023; 18:e0288134. [PMID: 37410787 DOI: 10.1371/journal.pone.0288134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
In biology, homeostasis is a central cellular phenomenon that plays a crucial role in survival. The central nervous system (CNS) is controlled by exquisitely sensitive homeostatic mechanisms when facing inflammatory or pathological insults. Mast cells and microglia play a crucial role in CNS homeostasis by eliminating damaged or unnecessary neurons and synapses. Therefore, decoding molecular circuits that regulate CNS homeostasis may lead to more effective therapeutic strategies that specifically target particular subsets for better therapy of Alzheimer's disease (AD). Based on a computational analysis of a microarray dataset related to AD, the H2-Ob gene was previously identified as a potential modulator of the homeostatic balance between mast cells and microglia. Specifically, it plays such a role in the presence of a three-way gene interaction in which the H2-Ob gene acts as a switch in the co-expression relationship of two genes, Csf1r and Milr1. Therefore, the importance of the H2-Ob gene as a potential therapeutic target for AD has led us to experimentally validate this relationship using the quantitative real-time PCR technique. In the experimental investigation, we confirmed that a change in the expression levels of the RT1-DOb gene (the rat ortholog of murine H2-Ob) can switch the co-expression relationship between Csf1r and Milr1. Furthermore, since the RT1-DOb gene is up-regulated in AD, the mentioned triplets might be related to triggering AD.
Collapse
Affiliation(s)
- Nasibeh Khayer
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, School of Biology, University of Tehran, Tehran, Iran
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Goshadrou
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Durojaye OA, Okoro NO, Odiba AS, Nwanguma BC. MasitinibL shows promise as a drug-like analog of masitinib that elicits comparable SARS-Cov-2 3CLpro inhibition with low kinase preference. Sci Rep 2023; 13:6972. [PMID: 37117213 PMCID: PMC10141821 DOI: 10.1038/s41598-023-33024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/06/2023] [Indexed: 04/30/2023] Open
Abstract
SARS-CoV-2 infection has led to several million deaths worldwide and ravaged the economies of many countries. Hence, developing therapeutics against SARS-CoV-2 remains a core priority in the fight against COVID-19. Most of the drugs that have received emergency use authorization for treating SARS-CoV-2 infection exhibit a number of limitations, including side effects and questionable efficacy. This challenge is further compounded by reinfection after vaccination and the high likelihood of mutations, as well as the emergence of viral escape mutants that render SARS-CoV-2 spike glycoprotein-targeting vaccines ineffective. Employing de novo drug synthesis or repurposing to discover broad-spectrum antivirals that target highly conserved pathways within the viral machinery is a focus of current research. In a recent drug repurposing study, masitinib, a clinically safe drug against the human coronavirus OC43 (HCoV-OC43), was identified as an antiviral agent with effective inhibitory activity against the SARS-CoV-2 3CLpro. Masitinib is currently under clinical trial in combination with isoquercetin in hospitalized patients (NCT04622865). Nevertheless, masitinib has kinase-related side effects; hence, the development of masitinib analogs with lower anti-tyrosine kinase activity becomes necessary. In this study, in an attempt to address this limitation, we executed a comprehensive virtual workflow in silico to discover drug-like compounds matching selected pharmacophore features in the SARS-CoV-2 3CLpro-bound state of masitinib. We identified a novel lead compound, "masitinibL", a drug-like analog of masitinib that demonstrated strong inhibitory properties against the SARS-CoV-2 3CLpro. In addition, masitinibL further displayed low selectivity for tyrosine kinases, which strongly suggests that masitinibL is a highly promising therapeutic that is preferable to masitinib.
Collapse
Affiliation(s)
- Olanrewaju Ayodeji Durojaye
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, Anhui, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Department of Chemical Sciences, Coal City University, Emene, Enugu State, Nigeria
| | - Nkwachukwu Oziamara Okoro
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Arome Solomon Odiba
- Department of Molecular Genetics and Biotechnology, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
| | - Bennett Chima Nwanguma
- Department of Molecular Genetics and Biotechnology, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
| |
Collapse
|
10
|
Masitinib for mild-to-moderate Alzheimer's disease: results from a randomized, placebo-controlled, phase 3, clinical trial. Alzheimers Res Ther 2023; 15:39. [PMID: 36849969 PMCID: PMC9972756 DOI: 10.1186/s13195-023-01169-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/15/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Masitinib is an orally administered tyrosine kinase inhibitor that targets activated cells of the neuroimmune system (mast cells and microglia). Study AB09004 evaluated masitinib as an adjunct to cholinesterase inhibitor and/or memantine in patients with mild-to-moderate dementia due to probable Alzheimer's disease (AD). METHODS Study AB09004 was a randomized, double-blind, two parallel-group (four-arm), placebo-controlled trial. Patients aged ≥50 years, with clinical diagnosis of mild-to-moderate probable AD and a Mini-Mental State Examination (MMSE) score of 12-25 were randomized (1:1) to receive masitinib 4.5 mg/kg/day (administered orally as two intakes) or placebo. A second, independent parallel group (distinct for statistical analysis and control arm), randomized patients (2:1) to masitinib at an initial dose of 4.5 mg/kg/day for 12 weeks that was then titrated to 6.0 mg/kg/day, or equivalent placebo. Multiple primary outcomes (each tested at a significance level of 2.5%) were least-squares mean change from baseline to week 24 in the Alzheimer's Disease Assessment Scale - cognitive subscale (ADAS-cog), or the Alzheimer's Disease Cooperative Study Activities of Daily Living Inventory scale (ADCS-ADL). Safety for each masitinib dose level was compared against a pooled placebo population. RESULTS Masitinib (4.5 mg/kg/day) (n=182) showed significant benefit over placebo (n=176) according to the primary endpoint of ADAS-cog, -1.46 (95% CI [-2.46, -0.45]) (representing an overall improvement in cognition) versus 0.69 (95% CI [-0.36, 1.75]) (representing increased cognitive deterioration), respectively, with a significant between-group difference of -2.15 (97.5% CI [-3.48, -0.81]); p<0.001. For the ADCS-ADL primary endpoint, the between-group difference was 1.82 (97.5% CI [-0.15, 3.79]); p=0.038 (i.e., 1.01 (95% CI [-0.48, 2.50]) (representing an overall functional improvement) versus -0.81 (95% CI [-2.36, 0.74]) (representing increased functional deterioration), respectively). Safety was consistent with masitinib's known profile (maculo-papular rash, neutropenia, hypoalbuminemia). Efficacy results from the independent parallel group of titrated masitinib 6.0 mg/kg/day versus placebo (n=186 and 91 patients, respectively) were inconclusive and no new safety signal was observed. CONCLUSIONS Masitinib (4.5 mg/kg/day) may benefit people with mild-to-moderate AD. A confirmatory study has been initiated to substantiate these data. TRIAL REGISTRATION EudraCT: 2010-021218-50. CLINICALTRIALS gov : NCT01872598.
Collapse
|
11
|
Gurung AB, Ali MA, Aljowaie RM, Almutairi SM, Sami H, Lee J. Masitinib analogues with the N-methylpiperazine group replaced - A new hope for the development of anti-COVID-19 drugs. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2023; 35:102397. [PMID: 36406239 PMCID: PMC9651948 DOI: 10.1016/j.jksus.2022.102397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/30/2022] [Accepted: 10/22/2022] [Indexed: 05/15/2023]
Abstract
Masitinib is an orally acceptable tyrosine kinase inhibitor that is currently investigated under clinical trials against cancer, asthma, Alzheimer's disease, multiple sclerosis and amyotrophic lateral sclerosis. A recent study confirmed the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activity of masitinib through inhibition of the main protease (Mpro) enzyme, an important pharmacological drug target to block the replication of the coronavirus. However, due to the adverse effects and lower potency of the drug, there are opportunities to design better analogues of masitinib. Herein, we substituted the N-methylpiperazine group of Masitinib with different chemical moieties and evaluated their drug-likeness and toxicities. The filtered analogues were subjected to molecular docking studies which revealed that the analogues with substituents methylamine in M10 (CID10409602), morpholine in M23 (CID59789397) and 4-methylmorpholine in M32 (CID143003625) have a stronger affinity to the drug receptor compared to masitinib. The molecular dynamics (MD) simulation analysis reveals that the identified analogues alter the mobility, structural compactness, accessibility to solvent molecules, and the number of hydrogen bonds in the native target enzyme. These structural alterations can help explain the inhibitory mechanisms of these analogues against the target enzyme. Thus, our studies provide avenues for the design of new masitinib analogues as the SARS-CoV-2 Mpro inhibitors.
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saeedah M Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hiba Sami
- Department of Microbiology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, India
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
12
|
Basu D, Pal R, Sarkar M, Barma S, Halder S, Roy H, Nandi S, Samadder A. To Investigate Growth Factor Receptor Targets and Generate Cancer Targeting Inhibitors. Curr Top Med Chem 2023; 23:2877-2972. [PMID: 38164722 DOI: 10.2174/0115680266261150231110053650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.
Collapse
Affiliation(s)
- Debroop Basu
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Riya Pal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, IndiaIndia
| | - Maitrayee Sarkar
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Soubhik Barma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sumit Halder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Harekrishna Roy
- Nirmala College of Pharmacy, Vijayawada, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
13
|
Piscopo P, Crestini A, Carbone E, Rivabene R, Ancidoni A, Lo Giudice M, Corbo M, Vanacore N, Lacorte E. A systematic review on drugs for synaptic plasticity in the treatment of dementia. Ageing Res Rev 2022; 81:101726. [PMID: 36031056 DOI: 10.1016/j.arr.2022.101726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
The aim of the present systematic review (SR) was to provide an overview of all published and unpublished clinical trials investigating the safety and efficacy of disease-modifying drugs targeting synaptic plasticity in dementia. Searches on CT.gov and EuCT identified 27 trials (4 phase-1, 1 phase-1/2, 18 phase-2, 1 phase-2/3, 1 phase-3, 1 phase-4, and 1 not reported). Twenty of them completed, and seven are currently active or enrolling. The structured bibliographic searches yielded 3585 records. A total of 12 studies were selected on Levetiracetam, Masitinib, Saracatinib, BI 40930, Bryostatin 1, PF-04447943 and Edonerpic drugs. We used RoB tool for quality analysis of randomized studies. Efficacy was assessed as a primary outcome in all studies except one and the main scale used was ADAS-Cog (7 studies), MMSE and CDR (4 studies). Safety and tolerability were reported in eleven studies. The incidence of SAEs was similar between treatment and placebo. At the moment, only one molecule reached phase-3. This could suggest that research on these drugs is still preliminary. Of all, three studies reported promising results on Levetiracetam, Bryostatin 1 and Masitinib.
Collapse
Affiliation(s)
- P Piscopo
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy.
| | - A Crestini
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - E Carbone
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - R Rivabene
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - A Ancidoni
- National Center for Disease Prevention ad Heath Promotion, Italian National Institute of Health, Rome, Italy
| | - M Lo Giudice
- Need Institute, Foundation for Cure and Rehabilitation of Neurological Diseases, Milan, Italy
| | - M Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy.
| | - N Vanacore
- National Center for Disease Prevention ad Heath Promotion, Italian National Institute of Health, Rome, Italy
| | - E Lacorte
- National Center for Disease Prevention ad Heath Promotion, Italian National Institute of Health, Rome, Italy
| |
Collapse
|
14
|
Alam MS, Sultana A, Sun H, Wu J, Guo F, Li Q, Ren H, Hao Z, Zhang Y, Wang G. Bioinformatics and network-based screening and discovery of potential molecular targets and small molecular drugs for breast cancer. Front Pharmacol 2022; 13:942126. [PMID: 36204232 PMCID: PMC9531711 DOI: 10.3389/fphar.2022.942126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Accurate identification of molecular targets of disease plays an important role in diagnosis, prognosis, and therapies. Breast cancer (BC) is one of the most common malignant cancers in women worldwide. Thus, the objective of this study was to accurately identify a set of molecular targets and small molecular drugs that might be effective for BC diagnosis, prognosis, and therapies, by using existing bioinformatics and network-based approaches. Nine gene expression profiles (GSE54002, GSE29431, GSE124646, GSE42568, GSE45827, GSE10810, GSE65216, GSE36295, and GSE109169) collected from the Gene Expression Omnibus (GEO) database were used for bioinformatics analysis in this study. Two packages, LIMMA and clusterProfiler, in R were used to identify overlapping differential expressed genes (oDEGs) and significant GO and KEGG enrichment terms. We constructed a PPI (protein–protein interaction) network through the STRING database and identified eight key genes (KGs) EGFR, FN1, EZH2, MET, CDK1, AURKA, TOP2A, and BIRC5 by using six topological measures, betweenness, closeness, eccentricity, degree, MCC, and MNC, in the Analyze Network tool in Cytoscape. Three online databases GSCALite, Network Analyst, and GEPIA were used to analyze drug enrichment, regulatory interaction networks, and gene expression levels of KGs. We checked the prognostic power of KGs through the prediction model using the popular machine learning algorithm support vector machine (SVM). We suggested four TFs (TP63, MYC, SOX2, and KDM5B) and four miRNAs (hsa-mir-16-5p, hsa-mir-34a-5p, hsa-mir-1-3p, and hsa-mir-23b-3p) as key transcriptional and posttranscriptional regulators of KGs. Finally, we proposed 16 candidate repurposing drugs YM201636, masitinib, SB590885, GSK1070916, GSK2126458, ZSTK474, dasatinib, fedratinib, dabrafenib, methotrexate, trametinib, tubastatin A, BIX02189, CP466722, afatinib, and belinostat for BC through molecular docking analysis. Using BC cell lines, we validated that masitinib inhibits the mTOR signaling pathway and induces apoptotic cell death. Therefore, the proposed results might play an effective role in the treatment of BC patients.
Collapse
Affiliation(s)
- Md Shahin Alam
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Adiba Sultana
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Hongyang Sun
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jin Wu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Fanfan Guo
- Department of Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Qing Li
- Department of Gastroenterology, the First People’s Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zongbing Hao
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Zongbing Hao, ; Yi Zhang, ; Guanghui Wang,
| | - Yi Zhang
- Department of Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Zongbing Hao, ; Yi Zhang, ; Guanghui Wang,
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Zongbing Hao, ; Yi Zhang, ; Guanghui Wang,
| |
Collapse
|
15
|
Mumtaz I, Ayaz MO, Khan MS, Manzoor U, Ganayee MA, Bhat AQ, Dar GH, Alghamdi BS, Hashem AM, Dar MJ, Ashraf GM, Maqbool T. Clinical relevance of biomarkers, new therapeutic approaches, and role of post-translational modifications in the pathogenesis of Alzheimer's disease. Front Aging Neurosci 2022; 14:977411. [PMID: 36158539 PMCID: PMC9490081 DOI: 10.3389/fnagi.2022.977411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive loss of cognitive functions like thinking, memory, reasoning, behavioral abilities, and social skills thus affecting the ability of a person to perform normal daily functions independently. There is no definitive cure for this disease, and treatment options available for the management of the disease are not very effective as well. Based on histopathology, AD is characterized by the accumulation of insoluble deposits of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs). Although several molecular events contribute to the formation of these insoluble deposits, the aberrant post-translational modifications (PTMs) of AD-related proteins (like APP, Aβ, tau, and BACE1) are also known to be involved in the onset and progression of this disease. However, early diagnosis of the disease as well as the development of effective therapeutic approaches is impeded by lack of proper clinical biomarkers. In this review, we summarized the current status and clinical relevance of biomarkers from cerebrospinal fluid (CSF), blood and extracellular vesicles involved in onset and progression of AD. Moreover, we highlight the effects of several PTMs on the AD-related proteins, and provide an insight how these modifications impact the structure and function of proteins leading to AD pathology. Finally, for disease-modifying therapeutics, novel approaches, and targets are discussed for the successful treatment and management of AD.
Collapse
Affiliation(s)
- Ibtisam Mumtaz
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Mir Owais Ayaz
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Mohamad Sultan Khan
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Umar Manzoor
- Laboratory of Immune and Inflammatory Disease, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, South Korea
| | - Mohd Azhardin Ganayee
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | - Aadil Qadir Bhat
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Ghulam Hassan Dar
- Sri Pratap College, Cluster University Srinagar, Jammu and Kashmir, India
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Jamal Dar
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Gulam Md. Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
16
|
Gąsiorowski K, Brokos JB, Sochocka M, Ochnik M, Chojdak-Łukasiewicz J, Zajączkowska K, Fułek M, Leszek J. Current and Near-Future Treatment of Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1144-1157. [PMID: 34856906 PMCID: PMC9886829 DOI: 10.2174/1570159x19666211202124239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/19/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Recent findings have improved our understanding of the multifactorial nature of AD. While in early asymptomatic stages of AD, increased amyloid-β synthesis and tau hyperphosphorylation play a key role, while in the latter stages of the disease, numerous dysfunctions of homeostatic mechanisms in neurons, glial cells, and cerebrovascular endothelium determine the rate of progression of clinical symptoms. The main driving forces of advanced neurodegeneration include increased inflammatory reactions in neurons and glial cells, oxidative stress, deficiencies in neurotrophic growth and regenerative capacity of neurons, brain insulin resistance with disturbed metabolism in neurons, or reduction of the activity of the Wnt-β catenin pathway, which should integrate the homeostatic mechanisms of brain tissue. In order to more effectively inhibit the progress of neurodegeneration, combination therapies consisting of drugs that rectify several above-mentioned dysfunctions should be used. It should be noted that many widely-used drugs from various pharmacological groups, "in addition" to the main therapeutic indications, have a beneficial effect on neurodegeneration and may be introduced into clinical practice in combination therapy of AD. There is hope that complex treatment will effectively inhibit the progression of AD and turn it into a slowly progressing chronic disease. Moreover, as the mechanisms of bidirectional communication between the brain and microbiota are better understood, it is expected that these pathways will be harnessed to provide novel methods to enhance health and treat AD.
Collapse
Affiliation(s)
| | | | - Marta Sochocka
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Michał Ochnik
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | - Michał Fułek
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wrocław Medical University, Wrocław, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wrocław Medical University, Wrocław, Poland,Address correspondence to this author at the Department of Psychiatry, Wrocław Medical University, 10 Ludwika Pasteura Str., 50-367 Wrocław, Poland; Tel:+48603880572; E-mail:
| |
Collapse
|
17
|
Villain N. Therapeutic news in Alzheimer's disease: Soon a disease-modifying therapy? Rev Neurol (Paris) 2022; 178:437-440. [PMID: 35489824 DOI: 10.1016/j.neurol.2022.02.456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022]
Abstract
Research on disease-modifying treatments for Alzheimer's disease has resulted in a series of failures over the past 20 years. However, in the last three years, four molecules have shown significant effects on clinical endpoints in phase II or III clinical trials (i.e., slowing of cognitive decline). Among these four molecules, three are anti-amyloid immunotherapies: aducanumab, donanemab, and lecanemab, responsible for a significant clearance of cerebral beta-amyloid deposits. These provisional data are still awaiting confirmation to put an end to the controversy surrounding the 2021 Food and Drug Administration's decision to give conditional approval to aducanumab, which is considered premature by many specialists. Confirmation is also necessary to assess the benefit (magnitude of the slowing of cognitive decline) and risk (edema and cerebral hemorrhage induced by these treatments) balance of these molecules. Masitinib, a treatment whose probable mechanism of action is neuroinflammation, has also shown positive effects that need to be confirmed. Therapies targeting the tau protein are less advanced and have yet to be proven. Patients have renewed hope since it may not be unreasonable that these disease-modifying therapies will be part of the French therapeutic arsenal within the next five years.
Collapse
Affiliation(s)
- N Villain
- AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Département de Neurologie, Institut de la Mémoire et de la Maladie d'Alzheimer, 47-83, boulevard de l'Hôpital, 75651 Paris Cedex 13, France; Institut du Cerveau - ICM, Sorbonne Université, INSERM U1127, CNRS 7225, Paris, France.
| |
Collapse
|
18
|
Drug Repurposing for COVID-19: A Review and a Novel Strategy to Identify New Targets and Potential Drug Candidates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092723. [PMID: 35566073 PMCID: PMC9099573 DOI: 10.3390/molecules27092723] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023]
Abstract
In December 2019, the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) was first identified in the province of Wuhan, China. Since then, there have been over 400 million confirmed cases and 5.8 million deaths by COVID-19 reported worldwide. The urgent need for therapies against SARS-CoV-2 led researchers to use drug repurposing approaches. This strategy allows the reduction in risks, time, and costs associated with drug development. In many cases, a repurposed drug can enter directly to preclinical testing and clinical trials, thus accelerating the whole drug discovery process. In this work, we will give a general overview of the main developments in COVID-19 treatment, focusing on the contribution of the drug repurposing paradigm to find effective drugs against this disease. Finally, we will present our findings using a new drug repurposing strategy that identified 11 compounds that may be potentially effective against COVID-19. To our knowledge, seven of these drugs have never been tested against SARS-CoV-2 and are potential candidates for in vitro and in vivo studies to evaluate their effectiveness in COVID-19 treatment.
Collapse
|
19
|
Pomilio AB, Vitale AA, Lazarowski AJ. Neuroproteomics Chip-Based Mass Spectrometry and Other Techniques for Alzheimer´S Disease Biomarkers – Update. Curr Pharm Des 2022; 28:1124-1151. [DOI: 10.2174/1381612828666220413094918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer's disease (AD) is a progressive neurodegenerative disease of growing interest given that there is cognitive damage and symptom onset acceleration. Therefore, it is important to find AD biomarkers for early diagnosis, disease progression, and discrimination of AD and other diseases.
Objective:
To update the relevance of mass spectrometry for the identification of peptides and proteins involved in AD useful as discriminating biomarkers.
Methods:
Proteomics and peptidomics technologies that show the highest possible specificity and selectivity for AD biomarkers are analyzed, together with the biological fluids used. In addition to positron emission tomography and magnetic resonance imaging, MALDI-TOF mass spectrometry is widely used to identify proteins and peptides involved in AD. The use of protein chips in SELDI technology and electroblotting chips for peptides makes feasible small amounts (L) of samples for analysis.
Results:
Suitable biomarkers are related to AD pathology, such as intracellular neurofibrillary tangles; extraneuronal senile plaques; neuronal and axonal degeneration; inflammation and oxidative stress. Recently, peptides were added to the candidate list, which are not amyloid-b or tau fragments, but are related to coagulation, brain plasticity, and complement/neuroinflammation systems involving the neurovascular unit.
Conclusion:
The progress made in the application of mass spectrometry and recent chip techniques is promising for discriminating between AD, mild cognitive impairment, and matched healthy controls. The application of this technique to blood samples from patients with AD has shown to be less invasive and fast enough to determine the diagnosis, stage of the disease, prognosis, and follow-up of the therapeutic response.
Collapse
Affiliation(s)
- Alicia B. Pomilio
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Arturo A. Vitale
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Alberto J. Lazarowski
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Córdoba 2351, C1120AAF Buenos Aires, Argentina
| |
Collapse
|
20
|
Goksu Erol AY, Kocanci FG, Demir-Dora D, Uysal H. Additive cell protective and oxidative stress reducing effects of combined treatment with cromolyn sodium and masitinib on MPTP-induced toxicity in SH-SY5Y neuroblastoma cells. Chem Biol Interact 2022; 354:109808. [PMID: 35007524 DOI: 10.1016/j.cbi.2022.109808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 01/14/2023]
Abstract
The suppression of oxidative-stress induced neurotoxicity by antioxidants serves as a potential preventive strategy for neurodegenerative diseases. In this study, we aimed to investigate the cell protective and antioxidant effects of masitinib and cromolyn sodium against toxin-induced neurodegeneration. First, human neuroblastoma SH-SY5Y cells were differentiated into neuron-like (d)-SH-SY5Y cells. The differentiated cells were confirmed by immuno-staining with anti-PGP9.5 antibody, a neuronal marker. Cell culture groups were formed, and a neurotoxin, 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine (MPTP) was applied on cells followed by masitinib and/or cromolyn sodium treatments. Survival rate of cells were detected by MTT assay. Anti-inflammatory Transforming Growth Factor-β1 (TGF-β1) and nitric oxide (NO) levels and total oxidant and antioxidant capacities (TOC and TAC) in cell conditioned media (CM) were measured. Morphological analysis and apoptotic nuclear assessment of cells were also noted. When (d)-SH-SY5Y cells were exposed to neurotoxin, cell viability rates of these cells were found to be decreased in a concentration-dependent manner. CM of toxin applied group displayed higher levels of TOC/TAC ratios and NO levels compared to control (p < 0.01). Both masitinib and cromolyn sodium protected cells from toxin-induced cell death as revealed by ameliorated rates of viability, reversed toxin-induced elevation of TOC/TAC ratios, and decreased NO levels in their CM (p < 0.01). Combined treatment significantly reduced TOC/TAC ratios and NO levels more effectively compared to mono-treatments. Both drugs also increased TGF-β1 levels significantly in cell CM. When these agents were tested for therapeutic effects against toxin-induced cell degeneration, better viability results were obtained by both masitinib and cromolyn sodium treatment, with significantly better amelioration provided by combined application of these drugs (p < 0.01). This study demonstrated new findings that combined treatment with cromolyn sodium, an FDA-approved drug of asthma, and masitinib, an orally administered drug with a low toxicity, exert neuroprotective and additive therapeutic effects. We propose that combination therapy of masitinib and cromolyn sodium may represent an innovative treatment in neurodegenerative diseases. Combination therapy may be more advantageous that it enables combined application of lower doses of both drugs, providing less side effects.
Collapse
Affiliation(s)
- Azize Yasemin Goksu Erol
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey; Akdeniz University, Faculty of Medicine, Department of Gene and Cell Therapy, Antalya, Turkey.
| | - Fatma Gonca Kocanci
- Alanya Alaaddin Keykubat University, Vocational High School of Health Services, Department of Medical Laboratory Techniques, Alanya, Antalya, Turkey
| | - Devrim Demir-Dora
- Akdeniz University, Faculty of Medicine, Department of Gene and Cell Therapy, Antalya, Turkey; Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey
| | - Hilmi Uysal
- Akdeniz University, Faculty of Medicine, Department of Neurology, Antalya, Turkey
| |
Collapse
|
21
|
Mansour HM, Fawzy HM, El-Khatib AS, Khattab MM. Repurposed anti-cancer epidermal growth factor receptor inhibitors: mechanisms of neuroprotective effects in Alzheimer's disease. Neural Regen Res 2022; 17:1913-1918. [PMID: 35142667 PMCID: PMC8848623 DOI: 10.4103/1673-5374.332132] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Numerous molecular mechanisms are being examined in an attempt to discover disease-modifying drugs to slow down the underlying neurodegeneration in Alzheimer’s disease. Recent studies have shown the beneficial effects of epidermal growth factor receptor inhibitors on the enhancement of behavioral and pathological sequelae in Alzheimer’s disease. Despite the promising effects of epidermal growth factor receptor inhibitors in Alzheimer’s disease, there is no irrefutable neuroprotective evidence in well-established animal models using epidermal growth factor receptor inhibitors due to many un-explored downstream signaling pathways. This caused controversy about the potential involvement of epidermal growth factor receptor inhibitors in any prospective clinical trial. In this review, the mystery beyond the under-investigation of epidermal growth factor receptor in Alzheimer’s disease will be discussed. Furthermore, their molecular mechanisms in neurodegeneration will be explained. Also, we will shed light on SARS-COVID-19 induced neurological manifestations mediated by epidermal growth factor modulation. Finally, we will discuss future perspectives and under-examined epidermal growth factor receptor downstream signaling pathways that warrant more exploration. We conclude that epidermal growth factor receptor inhibitors are novel effective therapeutic approaches that require further research in attempts to be repositioned in the delay of Alzheimer’s disease progression.
Collapse
Affiliation(s)
- Heba M Mansour
- Department of Pharmacology, Egyptian Drug Authority, EDA, formerly NODCAR, Giza, Egypt
| | - Hala M Fawzy
- Department of Pharmacology, Egyptian Drug Authority, EDA, formerly NODCAR, Giza, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
22
|
Marotta G, Basagni F, Rosini M, Minarini A. Role of Fyn Kinase Inhibitors in Switching Neuroinflammatory Pathways. Curr Med Chem 2021; 29:4738-4755. [PMID: 34939537 DOI: 10.2174/0929867329666211221153719] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
Fyn kinase is a member of the Src non-receptor tyrosine kinase family. Fyn is involved in multiple signaling pathways extending from cell proliferation and differentiation to cell adhesion and cell motility, and it has been found to be overexpressed in various types of cancers. In the central nervous system, Fyn exerts several different functions such as axon-glial signal transduction, oligodendrocyte maturation and myelination, and it is implicated in neuroinflammatory processes. Based on these premises, Fyn emerges as an attractive target in cancer and neurodegenerative disease therapy, particularly Alzheimer disease (AD), based on its activation by Aβ via cellular prion protein and its interaction with tau protein. However, Fyn is also a challenging target since the Fyn inhibitors discovered so far, due to the relevant homology of Fyn with other kinases, suffer from off-target effects. This review covers the efforts performed in the last decade to identify and optimize small molecules that effectively inhibit Fyn, both in enzymatic and in cell assays, including drug repositioning practices, as an opportunity of therapeutic intervention in neurodegeneration.
Collapse
Affiliation(s)
- Giambattista Marotta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126-Bologna. Italy
| | - Filippo Basagni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126-Bologna. Italy
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126-Bologna. Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126-Bologna. Italy
| |
Collapse
|
23
|
GSK-3β, FYN, and DYRK1A: Master Regulators in Neurodegenerative Pathways. Int J Mol Sci 2021; 22:ijms22169098. [PMID: 34445804 PMCID: PMC8396491 DOI: 10.3390/ijms22169098] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Protein kinases (PKs) have been recognized as central nervous system (CNS)-disease-relevant targets due to their master regulatory role in different signal transduction cascades in the neuroscience space. Among them, GSK-3β, FYN, and DYRK1A play a crucial role in the neurodegeneration context, and the deregulation of all three PKs has been linked to different CNS disorders with unmet medical needs, including Alzheimer’s disease (AD), Parkinson’s disease (PD), frontotemporal lobar degeneration (FTLD), and several neuromuscular disorders. The multifactorial nature of these diseases, along with the failure of many advanced CNS clinical trials, and the lengthy approval process of a novel CNS drug have strongly limited the CNS drug discovery. However, in the near-decade from 2010 to 2020, several computer-assisted drug design strategies have been combined with synthetic efforts to develop potent and selective GSK-3β, FYN, and DYRK1A inhibitors as disease-modifying agents. In this review, we described both structural and functional aspects of GSK-3β, FYN, and DYRK1A and their involvement and crosstalk in different CNS pathological signaling pathways. Moreover, we outlined attractive medicinal chemistry approaches including multi-target drug design strategies applied to overcome some limitations of known PKs inhibitors and discover improved modulators with suitable blood–brain barrier (BBB) permeability and drug-like properties.
Collapse
|
24
|
Liu Y, Cong L, Han C, Li B, Dai R. Recent Progress in the Drug Development for the Treatment of Alzheimer's Disease Especially on Inhibition of Amyloid-peptide Aggregation. Mini Rev Med Chem 2021; 21:969-990. [PMID: 33245270 DOI: 10.2174/1389557520666201127104539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
As the world 's population is aging, Alzheimer's disease (AD) has become a big concern since AD has started affecting younger people and the population of AD patients is increasing worldwide. It has been revealed that the neuropathological hallmarks of AD are typically characterized by the presence of neurotoxic extracellular amyloid plaques in the brain, which are surrounded by tangles of neuronal fibers. However, the causes of AD have not been completely understood yet. Currently, there is no drug to effectively prevent AD or to completely reserve the symptoms in the patients. This article reviews the pathological features associated with AD, the recent progress in research on the drug development to treat AD, especially on the discovery of natural product derivatives to inhibit Aβ peptide aggregation as well as the design and synthesis of Aβ peptide aggregation inhibitors to treat AD.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lin Cong
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 10081, China
| | - Chu Han
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bo Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 10081, China
| |
Collapse
|
25
|
Drayman N, DeMarco JK, Jones KA, Azizi SA, Froggatt HM, Tan K, Maltseva NI, Chen S, Nicolaescu V, Dvorkin S, Furlong K, Kathayat RS, Firpo MR, Mastrodomenico V, Bruce EA, Schmidt MM, Jedrzejczak R, Muñoz-Alía MÁ, Schuster B, Nair V, Han KY, O’Brien A, Tomatsidou A, Meyer B, Vignuzzi M, Missiakas D, Botten JW, Brooke CB, Lee H, Baker SC, Mounce BC, Heaton NS, Severson WE, Palmer KE, Dickinson BC, Joachimiak A, Randall G, Tay S. Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science 2021; 373:931-936. [PMID: 34285133 PMCID: PMC8809056 DOI: 10.1126/science.abg5827] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/14/2021] [Indexed: 01/16/2023]
Abstract
There is an urgent need for antiviral agents that treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We screened a library of 1900 clinically safe drugs against OC43, a human beta coronavirus that causes the common cold, and evaluated the top hits against SARS-CoV-2. Twenty drugs significantly inhibited replication of both viruses in cultured human cells. Eight of these drugs inhibited the activity of the SARS-CoV-2 main protease, 3CLpro, with the most potent being masitinib, an orally bioavailable tyrosine kinase inhibitor. X-ray crystallography and biochemistry show that masitinib acts as a competitive inhibitor of 3CLpro. Mice infected with SARS-CoV-2 and then treated with masitinib showed >200-fold reduction in viral titers in the lungs and nose, as well as reduced lung inflammation. Masitinib was also effective in vitro against all tested variants of concern (B.1.1.7, B.1.351, and P.1).
Collapse
Affiliation(s)
- Nir Drayman
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Corresponding author. (S.T.); (N.D.)
| | - Jennifer K. DeMarco
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Krysten A. Jones
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Saara-Anne Azizi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Heather M. Froggatt
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Kemin Tan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA.,Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Natalia Ivanovna Maltseva
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Siquan Chen
- Cellular Screening Center, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Vlad Nicolaescu
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Steve Dvorkin
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Kevin Furlong
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Rahul S. Kathayat
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Mason R. Firpo
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Vincent Mastrodomenico
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Emily A. Bruce
- Cellular Screening Center, The University of Chicago, Chicago, IL, USA.,Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Madaline M. Schmidt
- Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Robert Jedrzejczak
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | | | - Brooke Schuster
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Vishnu Nair
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Kyu-yeon Han
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA.,Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Amornrat O’Brien
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, Biophysics Core at Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Anastasia Tomatsidou
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA.,Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Bjoern Meyer
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Marco Vignuzzi
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Dominique Missiakas
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Jason W. Botten
- Cellular Screening Center, The University of Chicago, Chicago, IL, USA.,Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Christopher B. Brooke
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyun Lee
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, Biophysics Core at Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Susan C. Baker
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Bryan C. Mounce
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - William E. Severson
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA.,Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Kenneth E. Palmer
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bryan C. Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Andrzej Joachimiak
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Glenn Randall
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Savaş Tay
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA.,Corresponding author. (S.T.); (N.D.)
| |
Collapse
|
26
|
Potential Repositioning of Anti-cancer EGFR Inhibitors in Alzheimer's Disease: Current Perspectives and Challenging Prospects. Neuroscience 2021; 469:191-196. [PMID: 34139302 DOI: 10.1016/j.neuroscience.2021.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/23/2022]
Abstract
Clinical trials of new drugs for Alzheimer's disease (AD) have ended with disappointing results, with tremendous resources and time. Repositioning of existing anti-cancer epidermal growth factor receptors (EGFR) inhibitors in various preclinical AD models has gained growing attention in recent years because hyperactivation of EGFR has been implicated in many neurodegenerative disorders, including AD. Many recent studies have established that EGFR inhibition suppresses reactive astrocytes, enhances autophagy, ameliorates Aβ toxicity, neuroinflammation, and regenerates axonal degradation. However, there is no incontrovertible neuroprotective proof using EGFR inhibitors due to many under-explored signaling transductions, poor blood-brain barrier (BBB) permeability of the most tested drugs, and disappointing outcomes of most clinical trials. This has caused debate about the possible involvement of EGFR inhibitors in future clinical trials. In this perspective article, we recap recent studies to merge data on the neuroprotective effects of EGFR inhibition. By consequent analysis of previous data, we notably find the under-investigated neuroprotective pathways that highlight the importance of additional research of EGFR inhibitors in attempts to be repurposed as burgeoning therapeutic strategies for AD. Finally, we will discuss future prospective challenges in the repositioning of EGFR inhibitors in AD.
Collapse
|
27
|
Ancidoni A, Bacigalupo I, Remoli G, Lacorte E, Piscopo P, Sarti G, Corbo M, Vanacore N, Canevelli M. Anticancer drugs repurposed for Alzheimer's disease: a systematic review. ALZHEIMERS RESEARCH & THERAPY 2021; 13:96. [PMID: 33952306 PMCID: PMC8101105 DOI: 10.1186/s13195-021-00831-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
Background The relationship between cancer and dementia is triggering growing research interest. Several preclinical studies have provided the biological rationale for the repurposing of specific anticancer agents in Alzheimer’s disease (AD), and a growing number of research protocols are testing their efficacy and safety/tolerability in patients with AD. Methods The aim of the present systematic review was to provide an overview on the repurposing of approved anticancer drugs in clinical trials for AD by considering both ongoing and completed research protocols in all phases. In parallel, a systematic literature review was conducted on PubMed, ISI Web, and the Cochrane Library to identify published clinical studies on repurposed anticancer agents in AD. Results Based on a structured search on the ClinicalTrials.gov and the EudraCT databases, we identified 13 clinical trials testing 11 different approved anticancer agents (five tyrosine kinase inhibitors, two retinoid X receptor agonists, two immunomodulatory agents, one histone deacetylase inhibitor, and one monoclonal antibody) in the AD continuum. The systematic literature search led to the identification of five published studies (one phase I, three phase II, and one phase IIb/III) reporting the effects of antitumoral treatments in patients with mild cognitive impairment or AD dementia. The clinical findings and the methodological characteristics of these studies are described and discussed. Conclusion Anticancer agents are triggering growing interest in the context of repurposed therapies in AD. Several clinical trials are underway, and data are expected to be available in the near future. To date, data emerging from published clinical studies are controversial. The promising results emerging from preclinical studies and identified research protocols should be confirmed and extended by larger, adequately designed, and high-quality clinical trials.
Collapse
Affiliation(s)
- Antonio Ancidoni
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy.
| | - Ilaria Bacigalupo
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy
| | - Giulia Remoli
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy
| | - Eleonora Lacorte
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy
| | - Paola Piscopo
- Department of Neuroscience, Italian National Institute of Health, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Giulia Sarti
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Via Dezza 48, 20144, Milan, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy
| | - Marco Canevelli
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy.,Department of Human Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|
28
|
Stefanovski L, Meier JM, Pai RK, Triebkorn P, Lett T, Martin L, Bülau K, Hofmann-Apitius M, Solodkin A, McIntosh AR, Ritter P. Bridging Scales in Alzheimer's Disease: Biological Framework for Brain Simulation With The Virtual Brain. Front Neuroinform 2021; 15:630172. [PMID: 33867964 PMCID: PMC8047422 DOI: 10.3389/fninf.2021.630172] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the acceleration of knowledge and data accumulation in neuroscience over the last years, the highly prevalent neurodegenerative disease of AD remains a growing problem. Alzheimer's Disease (AD) is the most common cause of dementia and represents the most prevalent neurodegenerative disease. For AD, disease-modifying treatments are presently lacking, and the understanding of disease mechanisms continues to be incomplete. In the present review, we discuss candidate contributing factors leading to AD, and evaluate novel computational brain simulation methods to further disentangle their potential roles. We first present an overview of existing computational models for AD that aim to provide a mechanistic understanding of the disease. Next, we outline the potential to link molecular aspects of neurodegeneration in AD with large-scale brain network modeling using The Virtual Brain (www.thevirtualbrain.org), an open-source, multiscale, whole-brain simulation neuroinformatics platform. Finally, we discuss how this methodological approach may contribute to the understanding, improved diagnostics, and treatment optimization of AD.
Collapse
Affiliation(s)
- Leon Stefanovski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Jil Mona Meier
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Roopa Kalsank Pai
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Paul Triebkorn
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Tristram Lett
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Leon Martin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Konstantin Bülau
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany
| | - Ana Solodkin
- Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| | | | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|
29
|
Liu J, Ting JP, Al-Azzam S, Ding Y, Afshar S. Therapeutic Advances in Diabetes, Autoimmune, and Neurological Diseases. Int J Mol Sci 2021; 22:ijms22062805. [PMID: 33802091 PMCID: PMC8001105 DOI: 10.3390/ijms22062805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Since 2015, 170 small molecules, 60 antibody-based entities, 12 peptides, and 15 gene- or cell-therapies have been approved by FDA for diverse disease indications. Recent advancement in medicine is facilitated by identification of new targets and mechanisms of actions, advancement in discovery and development platforms, and the emergence of novel technologies. Early disease detection, precision intervention, and personalized treatments have revolutionized patient care in the last decade. In this review, we provide a comprehensive overview of current and emerging therapeutic modalities developed in the recent years. We focus on nine diseases in three major therapeutics areas, diabetes, autoimmune, and neurological disorders. The pathogenesis of each disease at physiological and molecular levels is discussed and recently approved drugs as well as drugs in the clinic are presented.
Collapse
Affiliation(s)
- Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA 17605, USA;
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
- Correspondence:
| |
Collapse
|
30
|
Harcha PA, Garcés P, Arredondo C, Fernández G, Sáez JC, van Zundert B. Mast Cell and Astrocyte Hemichannels and Their Role in Alzheimer's Disease, ALS, and Harmful Stress Conditions. Int J Mol Sci 2021; 22:ijms22041924. [PMID: 33672031 PMCID: PMC7919494 DOI: 10.3390/ijms22041924] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Considered relevant during allergy responses, numerous observations have also identified mast cells (MCs) as critical effectors during the progression and modulation of several neuroinflammatory conditions, including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). MC granules contain a plethora of constituents, including growth factors, cytokines, chemokines, and mitogen factors. The release of these bioactive substances from MCs occurs through distinct pathways that are initiated by the activation of specific plasma membrane receptors/channels. Here, we focus on hemichannels (HCs) formed by connexins (Cxs) and pannexins (Panxs) proteins, and we described their contribution to MC degranulation in AD, ALS, and harmful stress conditions. Cx/Panx HCs are also expressed by astrocytes and are likely involved in the release of critical toxic amounts of soluble factors—such as glutamate, adenosine triphosphate (ATP), complement component 3 derivate C3a, tumor necrosis factor (TNFα), apoliprotein E (ApoE), and certain miRNAs—known to play a role in the pathogenesis of AD, ALS, and other neurodegenerative disorders. We propose that blocking HCs on MCs and glial cells offers a promising novel strategy for ameliorating the progression of neurodegenerative diseases by reducing the release of cytokines and other pro-inflammatory compounds.
Collapse
Affiliation(s)
- Paloma A. Harcha
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Valparaíso 2381850, Chile
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| | - Polett Garcés
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Cristian Arredondo
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Germán Fernández
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Juan C. Sáez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Valparaíso 2381850, Chile
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| | - Brigitte van Zundert
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| |
Collapse
|
31
|
Sandhu JK, Kulka M. Decoding Mast Cell-Microglia Communication in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22031093. [PMID: 33499208 PMCID: PMC7865982 DOI: 10.3390/ijms22031093] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia, resident immune cells of the central nervous system (CNS), play a pivotal role in immune surveillance and maintenance of neuronal health. Mast cells are also important resident immune cells of the CNS but they are underappreciated and understudied. Both microglia and mast cells are endowed with an array of signaling receptors that recognize microbes and cellular damage. As cellular sensors and effectors in the CNS, they respond to many CNS perturbations and have been implicated in neuroinflammation and neurodegeneration. Mast cells contain numerous secretory granules packaged with a plethora of readily available and newly synthesized compounds known as 'mast cell mediators'. Mast cells act as 'first responders' to a pathogenic stimuli and respond by degranulation and releasing these mediators into the extracellular milieu. They alert other glial cells, including microglia to initiate neuroinflammatory processes that culminate in the resolution of injury. However, failure to resolve the pathogenic process can lead to persistent activation, release of pro-inflammatory mediators and amplification of neuroinflammatory responses, in turn, resulting in neuronal dysfunction and demise. This review discusses the current understanding of the molecular conversation between mast cells and microglia in orchestrating immune responses during two of the most prevalent neurodegenerative diseases, namely Alzheimer's disease and Parkinson's disease. Here we also survey the potential emerging therapeutic approaches targeting common pathways in mast cells and microglia to extinguish the fire of inflammation.
Collapse
Affiliation(s)
- Jagdeep K. Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Correspondence: (J.K.S.); (M.K.); Tel.: +1-613-993-5304 (J.K.S.); +1-780-641-1687 (M.K.)
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: (J.K.S.); (M.K.); Tel.: +1-613-993-5304 (J.K.S.); +1-780-641-1687 (M.K.)
| |
Collapse
|
32
|
Fang J, Pieper AA, Nussinov R, Lee G, Bekris L, Leverenz JB, Cummings J, Cheng F. Harnessing endophenotypes and network medicine for Alzheimer's drug repurposing. Med Res Rev 2020; 40:2386-2426. [PMID: 32656864 PMCID: PMC7561446 DOI: 10.1002/med.21709] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022]
Abstract
Following two decades of more than 400 clinical trials centered on the "one drug, one target, one disease" paradigm, there is still no effective disease-modifying therapy for Alzheimer's disease (AD). The inherent complexity of AD may challenge this reductionist strategy. Recent observations and advances in network medicine further indicate that AD likely shares common underlying mechanisms and intermediate pathophenotypes, or endophenotypes, with other diseases. In this review, we consider AD pathobiology, disease comorbidity, pleiotropy, and therapeutic development, and construct relevant endophenotype networks to guide future therapeutic development. Specifically, we discuss six main endophenotype hypotheses in AD: amyloidosis, tauopathy, neuroinflammation, mitochondrial dysfunction, vascular dysfunction, and lysosomal dysfunction. We further consider how this endophenotype network framework can provide advances in computational and experimental strategies for drug-repurposing and identification of new candidate therapeutic strategies for patients suffering from or at risk for AD. We highlight new opportunities for endophenotype-informed, drug discovery in AD, by exploiting multi-omics data. Integration of genomics, transcriptomics, radiomics, pharmacogenomics, and interactomics (protein-protein interactions) are essential for successful drug discovery. We describe experimental technologies for AD drug discovery including human induced pluripotent stem cells, transgenic mouse/rat models, and population-based retrospective case-control studies that may be integrated with multi-omics in a network medicine methodology. In summary, endophenotype-based network medicine methodologies will promote AD therapeutic development that will optimize the usefulness of available data and support deep phenotyping of the patient heterogeneity for personalized medicine in AD.
Collapse
Affiliation(s)
- Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospital Case Medical Center; Department of Psychiatry, Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, OH 44106, USA
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Garam Lee
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| | - Lynn Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - James B. Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
- Department of Brain Health, School of Integrated Health Sciences, UNLV, Las Vegas, NV 89154, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
33
|
Drayman N, Jones KA, Azizi SA, Froggatt HM, Tan K, Maltseva NI, Chen S, Nicolaescu V, Dvorkin S, Furlong K, Kathayat RS, Firpo MR, Mastrodomenico V, Bruce EA, Schmidt MM, Jedrzejczak R, Muñoz-Alía MÁ, Schuster B, Nair V, Botten JW, Brooke CB, Baker SC, Mounce BC, Heaton NS, Dickinson BC, Jaochimiak A, Randall G, Tay S. Drug repurposing screen identifies masitinib as a 3CLpro inhibitor that blocks replication of SARS-CoV-2 in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32908976 DOI: 10.1101/2020.08.31.274639] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is an urgent need for anti-viral agents that treat SARS-CoV-2 infection. The shortest path to clinical use is repurposing of drugs that have an established safety profile in humans. Here, we first screened a library of 1,900 clinically safe drugs for inhibiting replication of OC43, a human beta-coronavirus that causes the common-cold and is a relative of SARS-CoV-2, and identified 108 effective drugs. We further evaluated the top 26 hits and determined their ability to inhibit SARS-CoV-2, as well as other pathogenic RNA viruses. 20 of the 26 drugs significantly inhibited SARS-CoV-2 replication in human lung cells (A549 epithelial cell line), with EC50 values ranging from 0.1 to 8 micromolar. We investigated the mechanism of action for these and found that masitinib, a drug originally developed as a tyrosine-kinase inhibitor for cancer treatment, strongly inhibited the activity of the SARS-CoV-2 main protease 3CLpro. X-ray crystallography revealed that masitinib directly binds to the active site of 3CLpro, thereby blocking its enzymatic activity. Mastinib also inhibited the related viral protease of picornaviruses and blocked picornaviruses replication. Thus, our results show that masitinib has broad anti-viral activity against two distinct beta-coronaviruses and multiple picornaviruses that cause human disease and is a strong candidate for clinical trials to treat SARS-CoV-2 infection.
Collapse
|
34
|
Li T, Martin E, Abada YS, Boucher C, Cès A, Youssef I, Fenaux G, Forand Y, Legrand A, Nachiket N, Dhenain M, Hermine O, Dubreuil P, Delarasse C, Delatour B. Effects of Chronic Masitinib Treatment in APPswe/PSEN1dE9 Transgenic Mice Modeling Alzheimer’s Disease. J Alzheimers Dis 2020; 76:1339-1345. [DOI: 10.3233/jad-200466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tengfei Li
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Elodie Martin
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Yah-se Abada
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Céline Boucher
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Aurélia Cès
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Ihsen Youssef
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Grégory Fenaux
- CRCM, [Signaling, Hematopoiesis and Mechanism of Oncogenesis, Equipe Labellisée Ligue Contre le Cancer], Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille Univ, UM105; CNRS, UMR7258, Marseille, France
| | - Yona Forand
- CRCM, [Signaling, Hematopoiesis and Mechanism of Oncogenesis, Equipe Labellisée Ligue Contre le Cancer], Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille Univ, UM105; CNRS, UMR7258, Marseille, France
| | - Annaelle Legrand
- CRCM, [Signaling, Hematopoiesis and Mechanism of Oncogenesis, Equipe Labellisée Ligue Contre le Cancer], Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille Univ, UM105; CNRS, UMR7258, Marseille, France
| | - Nadkarni Nachiket
- Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-Roses, France
| | - Marc Dhenain
- Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-Roses, France
| | - Olivier Hermine
- Department of Hematology, INSERM UMR1163 and CNRS URL 8254, Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, Necker Children’s Hospital, APHP, Paris, France
| | - Patrice Dubreuil
- CRCM, [Signaling, Hematopoiesis and Mechanism of Oncogenesis, Equipe Labellisée Ligue Contre le Cancer], Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille Univ, UM105; CNRS, UMR7258, Marseille, France
| | - Cécile Delarasse
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 17, Paris, France
| | - Benoît Delatour
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
35
|
Fyn Tyrosine Kinase as Harmonizing Factor in Neuronal Functions and Dysfunctions. Int J Mol Sci 2020; 21:ijms21124444. [PMID: 32580508 PMCID: PMC7352836 DOI: 10.3390/ijms21124444] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/25/2022] Open
Abstract
Fyn is a non-receptor or cytoplasmatic tyrosine kinase (TK) belonging to the Src family kinases (SFKs) involved in multiple transduction pathways in the central nervous system (CNS) including synaptic transmission, myelination, axon guidance, and oligodendrocyte formation. Almost one hundred years after the original description of Fyn, this protein continues to attract extreme interest because of its multiplicity of actions in the molecular signaling pathways underlying neurodevelopmental as well as neuropathologic events. This review highlights and summarizes the most relevant recent findings pertinent to the role that Fyn exerts in the brain, emphasizing aspects related to neurodevelopment and synaptic plasticity. Fyn is a common factor in healthy and diseased brains that targets different proteins and shapes different transduction signals according to the neurological conditions. We will primarily focus on Fyn-mediated signaling pathways involved in neuronal differentiation and plasticity that have been subjected to considerable attention lately, opening the fascinating scenario to target Fyn TK for the development of potential therapeutic interventions for the treatment of CNS injuries and certain neurodegenerative disorders like Alzheimer’s disease.
Collapse
|
36
|
Albertini C, Salerno A, Sena Murteira Pinheiro P, Bolognesi ML. From combinations to multitarget‐directed ligands: A continuum in Alzheimer's disease polypharmacology. Med Res Rev 2020; 41:2606-2633. [DOI: 10.1002/med.21699] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Claudia Albertini
- Department of Pharmacy and Biotechnology Alma Mater Studiorum–University of Bologna Bologna Italy
| | - Alessandra Salerno
- Department of Pharmacy and Biotechnology Alma Mater Studiorum–University of Bologna Bologna Italy
| | - Pedro Sena Murteira Pinheiro
- Department of Pharmacy and Biotechnology Alma Mater Studiorum–University of Bologna Bologna Italy
- Programa de Pós‐Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro Brazil
| | - Maria L. Bolognesi
- Department of Pharmacy and Biotechnology Alma Mater Studiorum–University of Bologna Bologna Italy
| |
Collapse
|
37
|
Chen CD, Zeldich E, Khodr C, Camara K, Tung TY, Lauder EC, Mullen P, Polanco TJ, Liu YY, Zeldich D, Xia W, Van Nostrand WE, Brown LE, Porco JA, Abraham CR. Small Molecule Amyloid-β Protein Precursor Processing Modulators Lower Amyloid-β Peptide Levels via cKit Signaling. J Alzheimers Dis 2020; 67:1089-1106. [PMID: 30776010 DOI: 10.3233/jad-180923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of neurotoxic amyloid-β (Aβ) peptides consisting of 39-43 amino acids, proteolytically derived fragments of the amyloid-β protein precursor (AβPP), and the accumulation of the hyperphosphorylated microtubule-associated protein tau. Inhibiting Aβ production may reduce neurodegeneration and cognitive dysfunction associated with AD. We have previously used an AβPP-firefly luciferase enzyme complementation assay to conduct a high throughput screen of a compound library for inhibitors of AβPP dimerization, and identified a compound that reduces Aβ levels. In the present study, we have identified an analog, compound Y10, which also reduced Aβ. Initial kinase profiling assays identified the receptor tyrosine kinase cKit as a putative Y10 target. To elucidate the precise mechanism involved, AβPP phosphorylation was examined by IP-western blotting. We found that Y10 inhibits cKit phosphorylation and increases AβPP phosphorylation mainly on tyrosine residue Y743, according to AβPP751 numbering. A known cKit inhibitor and siRNA specific to cKit were also found to increase AβPP phosphorylation and lower Aβ levels. We also investigated a cKit downstream signaling molecule, the Shp2 phosphatase, and found that known Shp2 inhibitors and siRNA specific to Shp2 also increase AβPP phosphorylation, suggesting that the cKit signaling pathway is also involved in AβPP phosphorylation and Aβ production. We further found that inhibitors of both cKit and Shp2 enhance AβPP surface localization. Thus, regulation of AβPP phosphorylation by small molecules should be considered as a novel therapeutic intervention for AD.
Collapse
Affiliation(s)
- Ci-Di Chen
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Ella Zeldich
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Christina Khodr
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Kaddy Camara
- Department of Chemistry, Boston University, Boston, MA, USA.,Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Tze Yu Tung
- Department of Biology, Boston University, Boston, MA, USA
| | - Emma C Lauder
- Department of Neuroscience, Boston University, Boston, MA, USA
| | - Patrick Mullen
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Taryn J Polanco
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Yen-Yu Liu
- Department of Biology, Boston University, Boston, MA, USA
| | - Dean Zeldich
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Weiming Xia
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.,Bedford Geriatric Research Education Clinical Center, Bedford VA Medical Center, Bedford, MA, USA
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Lauren E Brown
- Department of Chemistry, Boston University, Boston, MA, USA.,Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA.,Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - John A Porco
- Department of Chemistry, Boston University, Boston, MA, USA.,Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Carmela R Abraham
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.,Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
38
|
Husna Ibrahim N, Yahaya MF, Mohamed W, Teoh SL, Hui CK, Kumar J. Pharmacotherapy of Alzheimer's Disease: Seeking Clarity in a Time of Uncertainty. Front Pharmacol 2020; 11:261. [PMID: 32265696 PMCID: PMC7105678 DOI: 10.3389/fphar.2020.00261] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is recognized as a major health hazard that mostly affects people older than 60 years. AD is one of the biggest medical, economic, and social concerns to patients and their caregivers. AD was ranked as the 5th leading cause of global deaths in 2016 by the World Health Organization (WHO). Many drugs targeting the production, aggregation, and clearance of Aβ plaques failed to give any conclusive clinical outcomes. This mainly stems from the fact that AD is not a disease attributed to a single-gene mutation. Two hallmarks of AD, Aβ plaques and neurofibrillary tangles (NFTs), can simultaneously induce other AD etiologies where every pathway is a loop of consequential events. Therefore, the focus of recent AD research has shifted to exploring other etiologies, such as neuroinflammation and central hyperexcitability. Neuroinflammation results from the hyperactivation of microglia and astrocytes that release pro-inflammatory cytokines due to the neurological insults caused by Aβ plaques and NFTs, eventually leading to synaptic dysfunction and neuronal death. This review will report the failures and side effects of many anti-Aβ drugs. In addition, emerging treatments targeting neuroinflammation in AD, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and receptor-interacting serine/threonine protein kinase 1 (RIPK1), that restore calcium dyshomeostasis and microglia physiological function in clearing Aβ plaques, respectively, will be deliberately discussed. Other novel pharmacotherapy strategies in treating AD, including disease-modifying agents (DMTs), repurposing of medications used to treat non-AD illnesses, and multi target-directed ligands (MTDLs) are also reviewed. These approaches open new doors to the development of AD therapy, especially combination therapy that can cater for several targets simultaneously, hence effectively slowing or stopping AD.
Collapse
Affiliation(s)
- Nurul Husna Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wael Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Faculty of Medicine, Department of Clinical Pharmacology, Menoufia University, Shebin El-Kom, Egypt
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Chua Kien Hui
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
- Glycofood Sdn Bhd, Selangor, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
39
|
Matrone C, Iannuzzi F, Annunziato L. The Y 682ENPTY 687 motif of APP: Progress and insights toward a targeted therapy for Alzheimer's disease patients. Ageing Res Rev 2019; 52:120-128. [PMID: 31039414 DOI: 10.1016/j.arr.2019.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/04/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder for which no curative treatments, disease modifying strategies or effective symptomatic therapies exist. Current pharmacologic treatments for AD can only decelerate the progression of the disease for a short time, often at the cost of severe side effects. Therefore, there is an urgent need for biomarkers able to diagnose AD at its earliest stages, to conclusively track disease progression, and to accelerate the clinical development of innovative therapies. Scientific research and economic efforts for the development of pharmacotherapies have recently homed in on the hypothesis that neurotoxic β-amyloid (Aβ) peptides in their oligomeric or fibrillary forms are primarily responsible for the cognitive impairment and neuronal death seen in AD. As such, modern pharmacologic approaches are largely based on reducing production by inhibiting β and γ secretase cleavage of the amyloid precursor protein (APP) or on dissolving existing cerebral Aβ plaques or to favor Aβ clearance from the brain. The following short review aims to persuade the reader of the idea that APP plays a much larger role in AD pathogenesis. APP plays a greater role in AD pathogenesis than its role as the precursor for Aβ peptides: both the abnormal cleavage of APP leading to Aβ peptide accumulation and the disruption of APP physiological functions contribute to AD pathogenesis. We summarize our recent results on the role played by the C-terminal APP motif -the Y682ENPTY68 motif- in APP function and dysfunction, and we provide insights into targeting the Tyr682 residue of APP as putative novel strategy in AD.
Collapse
|
40
|
Elieh Ali Komi D, Grauwet K. Role of Mast Cells in Regulation of T Cell Responses in Experimental and Clinical Settings. Clin Rev Allergy Immunol 2018; 54:432-445. [PMID: 28929455 DOI: 10.1007/s12016-017-8646-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mast cells secrete a wide spectrum of stored or newly synthesized pro-inflammatory, anti-inflammatory, and/or immunosuppressive mediators and express several costimulatory and inhibitory surface molecules. Mast cells finely tune activities of T cells, B cells, and regulatory cells and effectively contribute to the development of different T cell-associated responses by influencing their recruitment, activation, proliferation, and differentiation. The interaction between mast cells and T cells, with regard to cellular functionality and immune responses, can be assessed in both activating and inhibitory regulations. While Th2 cytokines, including IL-5 and IL-9, stimulate stem cell factor (SCF)-dependent proliferation of mast cells, Th1 cytokine IFN-γ suppresses SCF-mediated differentiation of mast cell progenitors. Mast cell mediators such as CCL5 have a role in the recruitment of CD8+ T cells to viral infection sites where their ability in clearance of viral reservoirs is needed. The capacity of mast cells in presenting antigens by classes I and II MHC molecules to CD4+ and CD8+ T cells respectively is considered one of the main antigen-dependent interactions of mast cells with T cells. Interestingly, Tregs recruit mast cells to different sites through secretion of IL-9, while the OX40L (expressed on mast cell)-OX40(expressed on T cell) interaction inhibits the extent of the mast cell degranulation. Recently, the capability of exosomes to carry regulatory receptors of the mast cell surface and their role in T cell activation has been investigated. Functional interplay between mast cells and T cell subsets has been suggested primarily by investigating their co-localization in inflamed tissues and involvement of mast cells in autoimmune diseases. In this review, the interactions of mast cells with T cells are reviewed in cell-to-cell, cytokine, and exosome categories.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Korneel Grauwet
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, BTM building Rm 08012, Boston, MA, 02115, USA.
| |
Collapse
|
41
|
Wages PA, Kim HYH, Korade Z, Porter NA. Identification and characterization of prescription drugs that change levels of 7-dehydrocholesterol and desmosterol. J Lipid Res 2018; 59:1916-1926. [PMID: 30087204 PMCID: PMC6168312 DOI: 10.1194/jlr.m086991] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/26/2018] [Indexed: 12/18/2022] Open
Abstract
Regulating blood cholesterol (Chol) levels by pharmacotherapy has successfully improved cardiovascular health. There is growing interest in the role of Chol precursors in the treatment of diseases. One sterol precursor, desmosterol (Des), is a potential pharmacological target for inflammatory and neurodegenerative disorders. However, elevating levels of the precursor 7-dehydrocholesterol (7-DHC) by inhibiting the enzyme 7-dehydrocholesterol reductase is linked to teratogenic outcomes. Thus, altering the sterol profile may either increase risk toward an adverse outcome or confer therapeutic benefit depending on the metabolite affected by the pharmacophore. In order to characterize any unknown activity of drugs on Chol biosynthesis, a chemical library of Food and Drug Administration-approved drugs was screened for the potential to modulate 7-DHC or Des levels in a neural cell line. Over 20% of the collection was shown to impact Chol biosynthesis, including 75 compounds that alter 7-DHC levels and 49 that modulate Des levels. Evidence is provided that three tyrosine kinase inhibitors, imatinib, ponatinib, and masitinib, elevate Des levels as well as other substrates of 24-dehydrocholesterol reductase, the enzyme responsible for converting Des to Chol. Additionally, the mechanism of action for ponatinib and masitinib was explored, demonstrating that protein levels are decreased as a result of treatment with these drugs.
Collapse
Affiliation(s)
- Phillip A Wages
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Hye-Young H Kim
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Zeljka Korade
- Department of Pediatrics, Biochemistry, and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Ned A Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
42
|
Cox D, Raeburn C, Sui X, Hatters DM. Protein aggregation in cell biology: An aggregomics perspective of health and disease. Semin Cell Dev Biol 2018; 99:40-54. [PMID: 29753879 DOI: 10.1016/j.semcdb.2018.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/21/2018] [Accepted: 05/04/2018] [Indexed: 01/08/2023]
Abstract
Maintaining protein homeostasis (proteostasis) is essential for cellular health and is governed by a network of quality control machinery comprising over 800 genes. When proteostasis becomes imbalanced, proteins can abnormally aggregate or become mislocalized. Inappropriate protein aggregation and proteostasis imbalance are two of the central pathological features of common neurodegenerative diseases including Alzheimer, Parkinson, Huntington, and motor neuron diseases. How aggregation contributes to the pathogenic mechanisms of disease remains incompletely understood. Here, we integrate some of the key and emerging ideas as to how protein aggregation relates to imbalanced proteostasis with an emphasis on Huntington disease as our area of main expertise. We propose the term "aggregomics" be coined in reference to how aggregation of particular proteins concomitantly influences the spatial organization and protein-protein interactions of the surrounding proteome. Meta-analysis of aggregated interactomes from various published datasets reveals chaperones and RNA-binding proteins are common components across various disease contexts. We conclude with an examination of therapeutic avenues targeting proteostasis mechanisms.
Collapse
Affiliation(s)
- Dezerae Cox
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, Australia
| | - Candice Raeburn
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, Australia
| | - Xiaojing Sui
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, Australia
| | - Danny M Hatters
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, Australia.
| |
Collapse
|
43
|
Hampel H, Vergallo A, Aguilar LF, Benda N, Broich K, Cuello AC, Cummings J, Dubois B, Federoff HJ, Fiandaca M, Genthon R, Haberkamp M, Karran E, Mapstone M, Perry G, Schneider LS, Welikovitch LA, Woodcock J, Baldacci F, Lista S. Precision pharmacology for Alzheimer’s disease. Pharmacol Res 2018; 130:331-365. [DOI: 10.1016/j.phrs.2018.02.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
|
44
|
Skaper SD, Facci L, Zusso M, Giusti P. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Front Cell Neurosci 2018; 12:72. [PMID: 29618972 PMCID: PMC5871676 DOI: 10.3389/fncel.2018.00072] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/27/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system (“neuroinflammation”), especially when prolonged, can be particularly injurious. While inflammation per se may not cause disease, it contributes importantly to disease pathogenesis across both the peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury, depression, and autism spectrum disorder] nervous systems. The existence of extensive lines of communication between the nervous system and immune system represents a fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory molecules are critical for regulation of host responses to inflammation. Although these mediators can originate from various non-neuronal cells, important sources in the above neuropathologies appear to be microglia and mast cells, together with astrocytes and possibly also oligodendrocytes. Understanding neuroinflammation also requires an appreciation that non-neuronal cell—cell interactions, between both glia and mast cells and glia themselves, are an integral part of the inflammation process. Within this context the mast cell occupies a key niche in orchestrating the inflammatory process, from initiation to prolongation. This review will describe the current state of knowledge concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia interactions, then conclude with a consideration of how a cell's endogenous mechanisms might be leveraged to provide a therapeutic strategy to target neuroinflammation.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
45
|
Nygaard HB. Targeting Fyn Kinase in Alzheimer's Disease. Biol Psychiatry 2018; 83:369-376. [PMID: 28709498 PMCID: PMC5729051 DOI: 10.1016/j.biopsych.2017.06.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 01/06/2023]
Abstract
The past decade has brought tremendous progress in unraveling the pathophysiology of Alzheimer's disease (AD). While increasingly sophisticated immunotherapy targeting soluble and aggregated brain amyloid-beta (Aβ) continues to dominate clinical research in AD, a deeper understanding of Aβ physiology has led to the recognition of distinct neuronal signaling pathways linking Aβ to synaptotoxicity and neurodegeneration and to new targets for therapeutic intervention. Identifying specific signaling pathways involving Aβ has allowed for the development of more precise therapeutic interventions targeting the most relevant molecular mechanisms leading to AD. In this review, I highlight the discovery of cellular prion protein as a high-affinity receptor for Aβ oligomers, and the downstream signaling pathway elucidated to date, converging on nonreceptor tyrosine kinase Fyn. I discuss preclinical studies targeting Fyn as a therapeutic intervention in AD and our recent experience with the safety, tolerability, and cerebrospinal fluid penetration of the Src family kinase inhibitor saracatinib in patients with AD. Fyn is an attractive target for AD therapeutics, not only based on its activation by Aβ via cellular prion protein but also due to its known interaction with tau, uniquely linking the two key pathologies in AD. Fyn is also a challenging target, with broad expression throughout the body and significant homology with other members of the Src family kinases, which may lead to unintended off-target effects. A phase 2a proof-of-concept clinical trial in patients with AD is currently under way, providing critical first data on the potential effectiveness of targeting Fyn in AD.
Collapse
Affiliation(s)
- Haakon B. Nygaard
- Assistant Professor of Medicine (Neurology), University of British Columbia, Department of Medicine, Division of Neurology, Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
46
|
Smith LM, Zhu R, Strittmatter SM. Disease-modifying benefit of Fyn blockade persists after washout in mouse Alzheimer's model. Neuropharmacology 2017; 130:54-61. [PMID: 29191754 DOI: 10.1016/j.neuropharm.2017.11.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/09/2017] [Accepted: 11/26/2017] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease remains without a disease-modifying therapy that improves symptoms after therapy withdrawal. Because no investigational agents have demonstrated disease-modifying effects clinically, we tested whether the Fyn inhibitor, saracatinib, provides persistent improvement in a transgenic model. Aged APPswe/PS1ΔE9 mice were treated with saracatinib or memantine for 4 weeks and spatial memory improved to control levels. After drug washout, there was sustained rescue of both memory function and synapse density by saracatinib, but a loss of benefit from memantine. These data demonstrate a disease-modifying persistent benefit for saracatinib in a preclinincal Alzheimer's model, and distinguish its action from that of memantine.
Collapse
Affiliation(s)
- Levi M Smith
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rong Zhu
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT 06510, USA; Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
47
|
Immunoregulatory effect of mast cells influenced by microbes in neurodegenerative diseases. Brain Behav Immun 2017; 65:68-89. [PMID: 28676349 DOI: 10.1016/j.bbi.2017.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
When related to central nervous system (CNS) health and disease, brain mast cells (MCs) can be a source of either beneficial or deleterious signals acting on neural cells. We review the current state of knowledge about molecular interactions between MCs and glia in neurodegenerative diseases such as Multiple Sclerosis, Alzheimer's disease, Amyotrophic Lateral Sclerosis, Parkinson's disease, Epilepsy. We also discuss the influence on MC actions evoked by the host microbiota, which has a profound effect on the host immune system, inducing important consequences in neurodegenerative disorders. Gut dysbiosis, reduced intestinal motility and increased intestinal permeability, that allow bacterial products to circulate and pass through the blood-brain barrier, are associated with neurodegenerative disease. There are differences between the microbiota of neurologic patients and healthy controls. Distinguishing between cause and effect is a challenging task, and the molecular mechanisms whereby remote gut microbiota can alter the brain have not been fully elucidated. Nevertheless, modulation of the microbiota and MC activation have been shown to promote neuroprotection. We review this new information contributing to a greater understanding of MC-microbiota-neural cells interactions modulating the brain, behavior and neurodegenerative processes.
Collapse
|
48
|
Dovrolis N, Kolios G, Spyrou G, Maroulakou I. Laying in silico pipelines for drug repositioning: a paradigm in ensemble analysis for neurodegenerative diseases. Drug Discov Today 2017; 22:805-813. [PMID: 28363518 DOI: 10.1016/j.drudis.2017.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/17/2017] [Accepted: 03/21/2017] [Indexed: 12/22/2022]
Abstract
When faced with time- and money-consuming problems, new practices in pharmaceutical R&D arose when trying to alleviate them. Drug repositioning has great promise and when combined with today's computational power and intelligence it becomes more precise and potent. This work showcases current approaches of creating a computational pipeline for drug repositioning, along with an extensive example of how researchers can influence therapeutic approaches and further understanding, through either single or multiple disease studies. This paradigm is based on three neurodegenerative diseases with pathophysiological similarities. It is our goal to provide the readers with all the information needed to enrich their research and note expectations along the way.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Greece
| | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Greece
| | - George Spyrou
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, Cyprus
| | - Ioanna Maroulakou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Greece.
| |
Collapse
|
49
|
Cardoso S, Carvalho C, Correia SC, Seiça RM, Moreira PI. Alzheimer's Disease: From Mitochondrial Perturbations to Mitochondrial Medicine. Brain Pathol 2016; 26:632-47. [PMID: 27327899 PMCID: PMC8028979 DOI: 10.1111/bpa.12402] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 05/18/2016] [Indexed: 01/17/2023] Open
Abstract
Age-related neurodegenerative diseases such as Alzheimer's disease (AD) are distressing conditions causing countless levels of suffering for which treatment is often insufficient or inexistent. Considered to be the most common cause of dementia and an incurable, progressive neurodegenerative disorder, the intricate pathogenic mechanisms of AD continue to be revealed and, consequently, an effective treatment needs to be developed. Among the diverse hypothesis that have been proposed to explain AD pathogenesis, the one concerning mitochondrial dysfunction has raised as one of the most discussed with an actual acceptance in the field. It posits that manipulating mitochondrial function and understanding the deficits that result in mitochondrial injury may help to control and/or limit the development of AD. To achieve such goal, the concept of mitochondrial medicine places itself as a promising gathering of strategies to directly manage the major insidious disturbances of mitochondrial homeostasis as well as attempts to directly or indirectly manage its consequences in the context of AD. The aim of this review is to summarize the evolution that occurred from the establishment of mitochondrial homeostasis perturbation as masterpieces in AD pathogenesis up until the development of mitochondrial medicine. Following a brief glimpse in the past and current hypothesis regarding the triad of aging, mitochondria and AD, this manuscript will address the major mechanisms currently believed to participate in above mentioned events. Both pharmacological and lifestyle interventions will also be reviewed as AD-related mitochondrial therapeutics.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Institute for Interdisciplinary Research, University of CoimbraCoimbraPortugal
| | - Cristina Carvalho
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Institute for Interdisciplinary Research, University of CoimbraCoimbraPortugal
| | - Sónia C. Correia
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Institute for Interdisciplinary Research, University of CoimbraCoimbraPortugal
| | - Raquel M. Seiça
- Laboratory of Physiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
- IBILI‐Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of CoimbraCoimbraPortugal
| | - Paula I. Moreira
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Laboratory of Physiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
50
|
Cardoso S, Seiça RM, Moreira PI. Mitochondria as a target for neuroprotection: implications for Alzheimer´s disease. Expert Rev Neurother 2016; 17:77-91. [PMID: 27366815 DOI: 10.1080/14737175.2016.1205488] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD), the most common form of dementia, is marked by progressive loss of memory and impairment of cognitive ability. Despite decades of intensive research and scientific advances, the intricate pathogenic mechanisms of AD are still not fully understood and, consequently, an effective treatment is yet to be developed. As widely accepted, the alterations of mitochondrial function are actively engaged in a plethora of neurodegenerative diseases, including AD. With growing interest in the mitochondria as a potential target for understanding AD, it has even been hypothesized that deficits in these organelles may be at the heart of the progression of AD itself. Areas covered: The purpose of this review is to summarize relevant studies that suggest a role for mitochondrial (dys)function in AD and to provide a survey on latest developments regarding AD-related mitochondrial therapeutics. Expert commentary: As outlined in a plethora of studies, there is no doubt that mitochondria play a major role in several stages of AD progression. Even though more in-depth studies are needed before pharmaceutical industry can apply such knowledge to human medicine, the continuous advances in AD research field will certainly facilitate and accelerate the development of more effective preventive or therapeutic strategies to fight this devastating disease.
Collapse
Affiliation(s)
- Susana Cardoso
- a CNC-Center for Neuroscience and Cell Biology , University of Coimbra , Coimbra , Portugal.,b Institute for Interdisciplinary Research , University of Coimbra , Coimbra , Portugal
| | - Raquel M Seiça
- c Laboratory of Physiology - Faculty of Medicine , University of Coimbra , Coimbra , Portugal.,d IBILI-Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Paula I Moreira
- a CNC-Center for Neuroscience and Cell Biology , University of Coimbra , Coimbra , Portugal.,c Laboratory of Physiology - Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| |
Collapse
|