1
|
Garcia-Atutxa I, Mondragon-Teran P, Huerta-Saquero A, Villanueva-Flores F. Advancements in monkeypox vaccines development: a critical review of emerging technologies. Front Immunol 2024; 15:1456060. [PMID: 39464881 PMCID: PMC11502315 DOI: 10.3389/fimmu.2024.1456060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024] Open
Abstract
Monkeypox (mpox) is a zoonotic illness caused by the monkeypox virus (MPXV), with higher health concerns among people who are pregnant, children, and persons who are immunocompromised, including people with untreated and advanced HIV disease. Significant progress has been made in developing vaccines against mpox, yet critical challenges and limitations persist in ensuring their effectiveness, safety, and accessibility. The pertinence of this review is highlighted by the World Health Organization's declaration of a global health emergency on August 14, 2024, due to the recent mpox outbreak, underscoring the critical necessity for effective vaccine solutions in the face of a rapidly evolving virus. Here, we comprehensively analyze various vaccine platforms utilized in mpox prevention, including attenuated and non-replicating virus vaccines, viral vector-based vaccines, recombinant protein vaccines, and DNA and mRNA vaccines. We evaluate the advantages and limitations of each platform, highlighting the urgent need for ongoing research and innovation to enhance vaccine efficacy and safety. Recent advancements, such as incorporating immunostimulatory sequences, improved delivery systems, and developing polyvalent vaccines, are explored for their potential to offer broader protection against diverse orthopoxvirus strains. This work underscores the need to optimize currently available vaccines and investigate novel vaccination strategies to address future public health emergencies effectively. By focusing on these advanced methodologies, we aim to contribute to the development of robust and adaptable vaccine solutions for mpox and other related viral threats.
Collapse
Affiliation(s)
- Igor Garcia-Atutxa
- Computer Science Department, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - Paul Mondragon-Teran
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Xochitepec, Morelos, Mexico
| | - Alejandro Huerta-Saquero
- Departamento de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Ensenada, Mexico
| | - Francisca Villanueva-Flores
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Xochitepec, Morelos, Mexico
| |
Collapse
|
2
|
Jandrasits D, Züst R, Siegrist D, Engler OB, Weber B, Schmidt KM, Jonsdottir HR. Third-generation smallpox vaccines induce low-level cross-protecting neutralizing antibodies against Monkeypox virus in laboratory workers. Heliyon 2024; 10:e31490. [PMID: 38826712 PMCID: PMC11141380 DOI: 10.1016/j.heliyon.2024.e31490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Due to the discontinuation of routine smallpox vaccination after its eradication in 1980, a large part of the human population remains naïve against smallpox and other members of the orthopoxvirus genus. As a part of biosafety personnel protection programs, laboratory workers receive prophylactic vaccinations against diverse infectious agents, including smallpox. Here, we studied the levels of cross-protecting neutralizing antibodies as well as total IgG induced by either first- or third-generation smallpox vaccines against Monkeypox virus, using a clinical isolate from the 2022 outbreak. Serum neutralization tests indicated better overall neutralization capacity after vaccination with first-generation smallpox vaccines, compared to an attenuated third-generation vaccine. Results obtained from total IgG ELISA, however, did not show higher induction of orthopoxvirus-specific IgGs in first-generation vaccine recipients. Taken together, our results indicate a lower level of cross-protecting neutralizing antibodies against Monkeypox virus in recipients of third-generation smallpox vaccine compared to first-generation vaccine recipients, although total IgG levels were comparable.
Collapse
Affiliation(s)
- Damian Jandrasits
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute of Microbiology, Department for Environment Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), 6850, Mendrisio, Switzerland
| | - Roland Züst
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Denise Siegrist
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Olivier B. Engler
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Benjamin Weber
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | | | - Hulda R. Jonsdottir
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
- Department of Rheumatology and Immunology, Inselspital University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Hsu J, Kim S, Anandasabapathy N. Vaccinia Virus: Mechanisms Supporting Immune Evasion and Successful Long-Term Protective Immunity. Viruses 2024; 16:870. [PMID: 38932162 PMCID: PMC11209207 DOI: 10.3390/v16060870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Vaccinia virus is the most successful vaccine in human history and functions as a protective vaccine against smallpox and monkeypox, highlighting the importance of ongoing research into vaccinia due to its genetic similarity to other emergent poxviruses. Moreover, vaccinia's ability to accommodate large genetic insertions makes it promising for vaccine development and potential therapeutic applications, such as oncolytic agents. Thus, understanding how superior immunity is generated by vaccinia is crucial for designing other effective and safe vaccine strategies. During vaccinia inoculation by scarification, the skin serves as a primary site for the virus-host interaction, with various cell types playing distinct roles. During this process, hematopoietic cells undergo abortive infections, while non-hematopoietic cells support the full viral life cycle. This differential permissiveness to viral replication influences subsequent innate and adaptive immune responses. Dendritic cells (DCs), key immune sentinels in peripheral tissues such as skin, are pivotal in generating T cell memory during vaccinia immunization. DCs residing in the skin capture viral antigens and migrate to the draining lymph nodes (dLN), where they undergo maturation and present processed antigens to T cells. Notably, CD8+ T cells are particularly significant in viral clearance and the establishment of long-term protective immunity. Here, we will discuss vaccinia virus, its continued relevance to public health, and viral strategies permissive to immune escape. We will also discuss key events and populations leading to long-term protective immunity and remaining key gaps.
Collapse
Affiliation(s)
- Joy Hsu
- Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Suyon Kim
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Niroshana Anandasabapathy
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
4
|
Su C, Li S, Wen Y, Geng X, Yin Q, Wang Y, Xiong Y, Liu Z. A Quadrivalent mRNA Immunization Elicits Potent Immune Responses against Multiple Orthopoxviral Antigens and Neutralization of Monkeypox Virus in Rodent Models. Vaccines (Basel) 2024; 12:385. [PMID: 38675767 PMCID: PMC11053415 DOI: 10.3390/vaccines12040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The global outbreak of the 2022 monkeypox virus infection of humans and the 2023 documentation of a more virulent monkeypox in the Democratic Republic of the Congo raised public health concerns about the threat of human-to-human transmission of zoonotic diseases. Currently available vaccines may not be sufficient to contain outbreaks of a more transmissible and pathogenic orthopoxvirus. Development of a safe, effective, and scalable vaccine against orthopoxviruses to stockpile for future emergencies is imminent. In this study, we have developed an mRNA vaccine candidate, ALAB-LNP, expressing four vaccinia viral antigens A27, L1, A33, and B5 in tandem in one molecule, and evaluated the vaccine immunogenicity in rodent models. Immunization of animals with the candidate mRNA vaccine induced a potent cellular immune response and long-lasting antigen-specific binding antibody and neutralizing antibody responses against vaccinia virus. Strikingly, the sera from the vaccine-immunized mice cross-reacted with all four homologous antigens of multiple orthopoxviruses and neutralized monkeypox virus in vitro, holding promise for this mRNA vaccine candidate to be used for protection of humans from the infection of monkeypox and other orthopoxvirus.
Collapse
Affiliation(s)
- Caixia Su
- Department of Research and Development, Yither Biotech Co., Ltd., Pudong, Shanghai 200120, China
| | - Sha Li
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Hongshancelu Avenue, Wuhan 430071, China; (S.L.); (Y.W.)
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yang Wen
- Department of Research and Development, Yither Biotech Co., Ltd., Pudong, Shanghai 200120, China
| | - Xiya Geng
- Department of Research and Development, Yither Biotech Co., Ltd., Pudong, Shanghai 200120, China
| | - Quanyi Yin
- Department of Research and Development, Yither Biotech Co., Ltd., Pudong, Shanghai 200120, China
| | - Yun Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Hongshancelu Avenue, Wuhan 430071, China; (S.L.); (Y.W.)
| | - Yelin Xiong
- Department of Research and Development, Yither Biotech Co., Ltd., Pudong, Shanghai 200120, China
- Ab&B Biotech Co., Ltd., Taizhou 225300, China
| | - Zhihua Liu
- Department of Research and Development, Yither Biotech Co., Ltd., Pudong, Shanghai 200120, China
| |
Collapse
|
5
|
Eslami A, Alimoghadam S, Khoshravesh S, Shirani M, Alimoghadam R, Alavi Darazam I. Mpox vaccination and treatment: a systematic review. J Chemother 2024; 36:85-109. [PMID: 38069596 DOI: 10.1080/1120009x.2023.2289270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
The Human monkeypox virus (mpox) belongs to the Poxviridae family, characterized by double-stranded DNA. A 2022 outbreak, notably prevalent among men who have sex with men, was confirmed by the World Health Organization. To understand shifting prevalence patterns and clinical manifestations, we conducted a systematic review of recent animal and human studies. We comprehensively searched PubMed, Scopus, Web of Science, Cochrane Library, and Clinicaltrials.gov, reviewing 69 relevant articles from 4,342 screened records. Our analysis highlights Modified Vaccinia Ankara - Bavarian Nordic (MVA-BN)'s potential, though efficacy concerns exist. Tecovirimat emerged as a prominent antiviral in the recent outbreak. However, limited evidence underscores the imperative for further clinical trials in understanding and managing monkeypox.
Collapse
Affiliation(s)
- Arvin Eslami
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Mahsa Shirani
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ilad Alavi Darazam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Yan H, Peng Y, Zhang J, Peng R, Feng X, Su J, Yi H, Lu Y, Gao S, Liu J, Yang M, Liu X, Gao S, Chen Z. Rapid and highly potent humoral responses to mpox nanovaccine candidates adjuvanted by thermostable scaffolds. Vaccine 2024; 42:2072-2080. [PMID: 38423815 DOI: 10.1016/j.vaccine.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Monkeypox (mpox) is a zoonotic disease caused by monkeypox virus (MPXV) of the orthopoxvirus genus. The emergence and global spread of mpox in 2022 was declared as a public health emergency by World Health Organization. This mpox pandemic alarmed us that mpox still threaten global public health. Live vaccines could be used for immunization for this disease with side effects. New alternative vaccines are urgently needed for this re-emerging disease. Specific antibody responses play key roles for protection against MPXV, therefore, vaccines that induce high humoral immunity will be ideal candidates. In the present study, we developed thermostable nanovaccine candidates for mpox by conjugating MPXV antigens with thermostable nanoscafolds. Three MPXV protective antigens, L1, A29, and A33, and the thermostable Aquafex aeolicus lumazine synthase (AaLS), were expressed in E. coli and purified by Ni-NTA methods. The nanovaccines were generated by conjugation of the antigens with AaLS. Thermal stability test results showed that the nanovaccines remained unchanged after one week storage under 37℃ and only partial degradation under 60℃, indicating high thermostability. Very interesting, one dose immunization with the nanovaccine could induce high potent antibody responses, and two dose induced 2-month high titers of antibodes. In vitro virus neutralization test showed that nanovaccine candidates induced significantly higher levels of neutralization antibodies than monomers. These results indicated that the AaLS conjugation nanovaccines of MPXV antigens are highly thermostable in terms of storage and antigenic, being good alternative vaccine candidates for this re-emerging disease.
Collapse
Affiliation(s)
- Haozhen Yan
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Yuanli Peng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Jinsong Zhang
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Ruihao Peng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - XiangNing Feng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - JiaYue Su
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - HuaiMin Yi
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Yuying Lu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Shan Gao
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Jinsong Liu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Mingwei Yang
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Xinrui Liu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Shenyang Gao
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University. Jinzhou 121001, China
| | - Zeliang Chen
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University. Jinzhou 121001, China.
| |
Collapse
|
7
|
Natami M, Gorgzadeh A, Gholipour A, Fatemi SN, Firouzeh N, Zokaei M, Mohammed Ali SH, Kheradjoo H, Sedighi S, Gholizadeh O, Kalavi S. An overview on mRNA-based vaccines to prevent monkeypox infection. J Nanobiotechnology 2024; 22:86. [PMID: 38429829 PMCID: PMC10908150 DOI: 10.1186/s12951-024-02355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
The human monkeypox virus (Mpox) is classified as a member of the Poxviridae family and belongs to the Orthopoxvirus genus. Mpox possesses double-stranded DNA, and there are two known genetic clades: those originating in West Africa and the Congo Basin, commonly known as Central African clades. Mpox may be treated with either the vaccinia vaccination or the therapeutics. Modifying the smallpox vaccine for treating and preventing Mpox has shown to be beneficial because of the strong link between smallpox and Mpox viruses and their categorization in the same family. Cross-protection against Mpox is effective with two Food and Drug Administration (FDA)-approved smallpox vaccines (ACAM2000 and JYNNEOSTM). However, ACAM2000 has the potential for significant adverse effects, such as cardiac issues, whereas JYNNEOS has a lower risk profile. Moreover, Mpox has managed to resurface, although with modified characteristics, due to the discontinuation and cessation of the smallpox vaccine for 40 years. The safety and efficacy of the two leading mRNA vaccines against SARS-CoV-2 and its many variants have been shown in clinical trials and subsequent data analysis. This first mRNA treatment model involves injecting patients with messenger RNA to produce target proteins and elicit an immunological response. High potency, the possibility of safe administration, low-cost manufacture, and quick development is just a few of the benefits of RNA-based vaccines that pave the way for a viable alternative to conventional vaccines. When protecting against Mpox infection, mRNA vaccines are pretty efficient and may one day replace the present whole-virus vaccines. Therefore, the purpose of this article is to provide a synopsis of the ongoing research, development, and testing of an mRNA vaccine against Mpox.
Collapse
Affiliation(s)
- Mohammad Natami
- Department of Urology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Arsalan Gholipour
- Free Researchers, Biotechnology and Nanobiotechnology, Babolsar, Iran
| | | | - Nima Firouzeh
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Wang X, Gu Z, Sheng S, Song R, Jin R. The Current State and Progress of Mpox Vaccine Research. China CDC Wkly 2024; 6:118-125. [PMID: 38405601 PMCID: PMC10883320 DOI: 10.46234/ccdcw2024.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/21/2024] [Indexed: 02/27/2024] Open
Abstract
On July 23, 2022, the World Health Organization (WHO) declared the monkeypox (mpox) outbreak a "Public Health Emergency of International Concern." Since 2022, outbreaks of mpox in many countries around the world have primarily resulted in fatalities among immunocompromised individuals, such as untreated HIV/AIDS patients. Since the eradication of smallpox was declared by the WHO in 1980, the global vaccination against smallpox has been gradually discontinued. China also stopped routine smallpox vaccination in 1981. The protective effect of the smallpox vaccine has decreased over time due to aging and declining immunity in those who were vaccinated. For individuals, timely vaccination against smallpox is an effective means of protection against mpox. However, due to safety concerns with the smallpox vaccine and the limitations of current mpox vaccines, there is no vaccine that is safe, effective, and has low side effects applied in clinical settings. This article provides a comprehensive review of the development of mpox virus (MPXV) vaccines, their application in special populations, and the current state of vaccine research, considering the etiology, transmission, and prevention of the MPXV. Vaccination, as an effective method of epidemic prevention, can provide long-term immune protection and effectively reduce the severity of infection. However, as there is no licensed specific MPXV vaccine available globally, the vaccines currently used for mpox prevention are mostly smallpox vaccines. These smallpox vaccines can offer some degree of protection against mpox by activating cross-protection in the body.
Collapse
Affiliation(s)
- Xinlong Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhixia Gu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shugui Sheng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ronghua Jin
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Grabenstein JD, Hacker A. Vaccines against mpox: MVA-BN and LC16m8. Expert Rev Vaccines 2024; 23:796-811. [PMID: 39188013 DOI: 10.1080/14760584.2024.2397006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Global outbreaks involving mpox clade IIb began in mid-2022. Today, clade IIb and clade I outbreaks continue. Reliable mpox vaccines can prevent serious mpox disease and death. AREAS COVERED Globally, two vaccines hold mpox indications, regardless of mpox viral clade: MVA-BN (Bavarian Nordic) and LC16m8 (KM Biologics). This review summarizes the human and pivotal animal data establishing safety and efficacy for MVA-BN and LC16m8, including real-world evidence gathered during mpox outbreaks from 2022 through 2024. EXPERT OPINION Some regulatory decisions for MVA-BN and LC16m8 followed pathways based on surrogate outcomes, including lethal-challenge studies in nonhuman primates, among other atypical aspects. Nonetheless, MVA-BN and LC16m8 hold unencumbered registration in multiple countries. Effectiveness of MVA-BN as primary preventive vaccination (PPV) in humans against clade IIb mpox is clear from real-world studies; effectiveness of LC16m8 against clade IIb is likely from surrogate endpoints. Effectiveness of MVA-BN and LC16m8 as PPV against more-lethal clade I is likely, based on animal-challenge studies with multiple orthopoxvirus species and other studies. Both vaccines have solid safety records. MVA-BN's replication incompetence favors adoption, whereas LC16m8 has more pediatric data. Additional real-world evidence, in additional geographic settings and special populations (e.g. pregnancy, immune suppression, atopic dermatitis), is needed.
Collapse
Affiliation(s)
| | - Adam Hacker
- Coalition for Epidemic Preparedness & Innovation, Oslo, Norway
| |
Collapse
|
10
|
Albarnaz JD, Kite J, Oliveira M, Li H, Di Y, Christensen MH, Paulo JA, Antrobus R, Gygi SP, Schmidt FI, Huttlin EL, Smith GL, Weekes MP. Quantitative proteomics defines mechanisms of antiviral defence and cell death during modified vaccinia Ankara infection. Nat Commun 2023; 14:8134. [PMID: 38065956 PMCID: PMC10709566 DOI: 10.1038/s41467-023-43299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Modified vaccinia Ankara (MVA) virus does not replicate in human cells and is the vaccine deployed to curb the current outbreak of mpox. Here, we conduct a multiplexed proteomic analysis to quantify >9000 cellular and ~80% of viral proteins throughout MVA infection of human fibroblasts and macrophages. >690 human proteins are down-regulated >2-fold by MVA, revealing a substantial remodelling of the host proteome. >25% of these MVA targets are not shared with replication-competent vaccinia. Viral intermediate/late gene expression is necessary for MVA antagonism of innate immunity, and suppression of interferon effectors such as ISG20 potentiates virus gene expression. Proteomic changes specific to infection of macrophages indicate modulation of the inflammatory response, including inflammasome activation. Our approach thus provides a global view of the impact of MVA on the human proteome and identifies mechanisms that may underpin its abortive infection. These discoveries will prove vital to design future generations of vaccines.
Collapse
Affiliation(s)
- Jonas D Albarnaz
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
- Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK.
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK.
| | - Joanne Kite
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Marisa Oliveira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Hanqi Li
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Ying Di
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK
| | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Florian I Schmidt
- Institute of Innate Immunity, University of Bonn, 53127, Bonn, Germany
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
- Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK.
| |
Collapse
|
11
|
Klingelhöfer D, Braun M, Groneberg DA, Brüggmann D. Global mpox research in the light of the current outbreak: demands, drivers, and obstacles. Emerg Microbes Infect 2023; 12:2210696. [PMID: 37143355 PMCID: PMC10187091 DOI: 10.1080/22221751.2023.2210696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Following the current outbreak, the mpox virus (formerly: monkeypox virus) is a highly threatening pathogen with public health significance, although mpox is still considered a neglected disease. Previously confined mainly to Africa, the virus spread globally in 2022. However, knowledge about mpox is limited, causing a distorted perception of the disease. Therefore, this study aimed to collect all information on scientific mpox publishing and to analyse them according to their chronological, geographical, and epidemiological patterns. It was not until the global outbreak that the relatively small number of publications was replaced by the immense increase in annual publication numbers. The most important player is the USA with a central role in international networking. They collaborated mainly with the Democratic Republic of Congo, a primary endemic country where the first viral clades were determined. Nigeria and other African countries were also represented, although mainly in the form of co-authorships. The fact that few of the first authors are from low- or middle-economic countries demonstrates the need to promote equitable networking at the global level and their support for surveillance and targeted immunization programmes.
Collapse
Affiliation(s)
- Doris Klingelhöfer
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt, Germany
| | - Markus Braun
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt, Germany
| | - David A Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt, Germany
| | - Dörthe Brüggmann
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt, Germany
| |
Collapse
|
12
|
Peng F, Hu N, Liu Y, Xing C, Luo L, Li X, Wang J, Chen G, Xiao H, Liu C, Shen B, Feng J, Qiao C. Functional epitopes and neutralizing antibodies of vaccinia virus. Front Microbiol 2023; 14:1255935. [PMID: 37954238 PMCID: PMC10634548 DOI: 10.3389/fmicb.2023.1255935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Smallpox is an infectious disease caused by the variola virus, and it has a high mortality rate. Historically it has broken out in many countries and it was a great threat to human health. Smallpox was declared eradicated in 1980, and Many countries stopped nation-wide smallpox vaccinations at that time. In recent years the potential threat of bioterrorism using smallpox has led to resumed research on the treatment and prevention of smallpox. Effective ways of preventing and treating smallpox infection have been reported, including vaccination, chemical drugs, neutralizing antibodies, and clinical symptomatic therapies. Antibody treatments include anti-sera, murine monoclonal antibodies, and engineered humanized or human antibodies. Engineered antibodies are homologous, safe, and effective. The development of humanized and genetically engineered antibodies against variola virus via molecular biology and bioinformatics is therefore a potentially fruitful prospect with respect to field application. Natural smallpox virus is inaccessible, therefore most research about prevention and/or treatment of smallpox were done using vaccinia virus, which is much safer and highly homologous to smallpox. Herein we summarize vaccinia virus epitope information reported to date, and discuss neutralizing antibodies with potential value for field application.
Collapse
Affiliation(s)
- Fenghao Peng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Naijing Hu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yingjun Liu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cong Xing
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chenghua Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Beifen Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
13
|
Grosenbach DW, Russo AT, Blum ED, Hruby DE. Emerging pharmacological strategies for treating and preventing mpox. Expert Rev Clin Pharmacol 2023; 16:843-854. [PMID: 37592723 DOI: 10.1080/17512433.2023.2249820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION Since May 2022, there have been nearly 87,000 documented cases of mpox worldwide, with 119 deaths. Pharmacological interventions for mpox include the MVA-BN smallpox vaccine, tecovirimat, cidofovir, its pro-drug brincidofovir, and vaccinia immune globulin intravenous (VIGIV). AREAS COVERED The literature search and information gathering for this review included the PubMed database focusing on mpox and monkeypox, in combination with tecovirimat, brincidofovir, cidofovir, VIGIV, and smallpox vaccine. WHO.int, CDC.gov, FDA.gov, and ClinicalTrials.gov websites were accessed for the most recent information on the mpox outbreak. Mechanisms for deployment and access to treatment including expanded access, emergency use, and clinical trials will be discussed. Treatment outcomes with safety data will be presented. EXPERT OPINION The vaccine as a preventive measure, along with numerous treatment options, largely controlled the outbreak, although deployment of each could be improved upon to hasten and broaden access. More widespread coverage by the vaccine is necessary to prevent future resurgence of mpox. Tecovirimat has emerged as a safe frontline treatment for mpox, while brincidofovir use has been limited by safety concerns. VIGIV and cidofovir should be reserved for the most severe cases in which other options are not fully effective.
Collapse
|
14
|
Saadh MJ, Ghadimkhani T, Soltani N, Abbassioun A, Daniel Cosme Pecho R, Taha A, Jwad Kazem T, Yasamineh S, Gholizadeh O. Progress and prospects on vaccine development against monkeypox infection. Microb Pathog 2023; 180:106156. [PMID: 37201635 PMCID: PMC10186953 DOI: 10.1016/j.micpath.2023.106156] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The monkeypox virus (MPOX) is an uncommon zoonotic illness brought on by an orthopoxvirus (OPXV). MPOX can occur with symptoms similar to smallpox. Since April 25, 2023, 110 nations have reported 87,113 confirmed cases and 111 fatalities. Moreover, the outspread prevalence of MPOX in Africa and a current outbreak of MPOX in the U.S. have made it clear that naturally occurring zoonotic OPXV infections remain a public health concern. Existing vaccines, though they provide cross-protection to MPOX, are not specific for the causative virus, and their effectiveness in the light of the current multi-country outbreak is still to be verified. Furthermore, as a sequel of the eradication and cessation of smallpox vaccination for four decades, MPOX found a possibility to re-emerge, but with distinct characteristics. The World Health Organization (WHO) suggested that nations use affordable MPOX vaccines within a framework of coordinated clinical effectiveness and safety evaluations. Vaccines administered in the smallpox control program and conferred immunity against MPOX. Currently, vaccines approved by WHO for use against MPOX are replicating (ACAM2000), low replicating (LC16m8), and non-replicating (MVA-BN). Although vaccines are accessible, investigations have demonstrated that smallpox vaccination is approximately 85% efficient in inhibiting MPOX. In addition, developing new vaccine methods against MPOX can help prevent this infection. To recognize the most efficient vaccine, it is essential to assess effects, including reactogenicity, safety, cytotoxicity effect, and vaccine-associated side effects, especially for high-risk and vulnerable people. Recently, several orthopoxvirus vaccines have been produced and are being evaluated. Hence, this review aims to provide an overview of the efforts dedicated to several types of vaccine candidates with different strategies for MPOX, including inactivated, live-attenuated, virus-like particles (VLPs), recombinant protein, nucleic acid, and nanoparticle-based vaccines, which are being developed and launched.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Arian Abbassioun
- Department of Virology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Ali Taha
- Medical Technical College, Al-Farahidi University, Iraq
| | - Tareq Jwad Kazem
- Scientific Affairs Department, Al-Mustaqbal University, 51001, Hillah, Babylon, Iraq
| | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Gholizadeh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Gao F, He C, Liu M, Yuan P, Tian S, Zheng M, Zhang L, Zhou X, Xu F, Luo J, Li X. Cross-reactive immune responses to monkeypox virus induced by MVA vaccination in mice. Virol J 2023; 20:126. [PMID: 37337226 PMCID: PMC10278293 DOI: 10.1186/s12985-023-02085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/28/2023] [Indexed: 06/21/2023] Open
Abstract
Mpox (monkeypox) infection cases increased recently in non-Mpox outbreak areas, potentially causing an international threat. The desire to defend against a potential outbreak has led to renewed efforts to develop Mpox vaccines. In this report, mice were immunized with various doses of modified vaccinia virus Ankara (MVA) to evaluate the cross-reactive immune response of MVA immunization against protective antigens of the current monkeypox virus. We demonstrated that MVA induced specific antibodies against protective antigens (A29, A35, B6, M1, H3, and I1), mediating the neutralization abilities against the MVA and the monkeypox virus (MPXV). Moreover, recombinant protective antigens of the MPXV elicited cross-binding and cross-neutralizing activities for MVA. Hence, the MVA induced cross-reactive immune responses, which may guide future efforts to develop vaccines against the recent MPXV. Notably, compared to the other protective antigens, the predominant A29 and M1 antigens mediated higher cross-neutralizing immune responses against the MVA, which could serve as antigen targets for novel orthologous orthopoxvirus vaccine.
Collapse
Affiliation(s)
- Feixia Gao
- Shanghai Institute of Biological Products, Shanghai, China
| | - Cheng He
- Shanghai Institute of Biological Products, Shanghai, China
| | - Min Liu
- Shanghai Institute of Biological Products, Shanghai, China
| | - Ping Yuan
- Shanghai Institute of Biological Products, Shanghai, China
| | - Shihua Tian
- Shanghai Institute of Biological Products, Shanghai, China
| | - Mei Zheng
- Shanghai Institute of Biological Products, Shanghai, China
| | - Linya Zhang
- Shanghai Institute of Biological Products, Shanghai, China
| | - Xu Zhou
- Shanghai Institute of Biological Products, Shanghai, China
| | | | - Jian Luo
- Shanghai Institute of Biological Products, Shanghai, China.
| | - Xiuling Li
- Shanghai Institute of Biological Products, Shanghai, China.
| |
Collapse
|
16
|
Bruneau RC, Tazi L, Rothenburg S. Cowpox Viruses: A Zoo Full of Viral Diversity and Lurking Threats. Biomolecules 2023; 13:325. [PMID: 36830694 PMCID: PMC9953750 DOI: 10.3390/biom13020325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Cowpox viruses (CPXVs) exhibit the broadest known host range among the Poxviridae family and have caused lethal outbreaks in various zoo animals and pets across 12 Eurasian countries, as well as an increasing number of human cases. Herein, we review the history of how the cowpox name has evolved since the 1700s up to modern times. Despite early documentation of the different properties of CPXV isolates, only modern genetic analyses and phylogenies have revealed the existence of multiple Orthopoxvirus species that are currently constrained under the CPXV designation. We further chronicle modern outbreaks in zoos, domesticated animals, and humans, and describe animal models of experimental CPXV infections and how these can help shaping CPXV species distinctions. We also describe the pathogenesis of modern CPXV infections in animals and humans, the geographic range of CPXVs, and discuss CPXV-host interactions at the molecular level and their effects on pathogenicity and host range. Finally, we discuss the potential threat of these viruses and the future of CPXV research to provide a comprehensive review of CPXVs.
Collapse
Affiliation(s)
| | | | - Stefan Rothenburg
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
17
|
Monkeypox: Clinical Issues of Concern. J Transl Int Med 2023; 10:297-299. [PMID: 36860630 PMCID: PMC9969573 DOI: 10.2478/jtim-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
18
|
Martín-Delgado MC, Martín Sánchez FJ, Martínez-Sellés M, Molero García JM, Moreno Guillén S, Rodríguez-Artalejo FJ, Ruiz-Galiana J, Cantón R, De Lucas Ramos P, García-Botella A, García-Lledó A, Hernández-Sampelayo T, Gómez-Pavón J, González Del Castillo J, Muñoz P, Valerio M, Catalán P, Burillo A, Cobo A, Alcamí A, Bouza E. Monkeypox in humans: a new outbreak. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2022; 35:509-518. [PMID: 35785957 PMCID: PMC9728594 DOI: 10.37201/req/059.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022]
Abstract
Infection caused by Monkeypox Virus (MPVX) has small rodents as its natural reservoir and both monkeys and humans are occasional hosts. The causative agent is an Orthopoxvirus (MPVX) that was isolated in monkeys in 1958 and proved capable of passing to humans in 1970. It remained contained in Africa, causing isolated episodes of infection, until 2003 when an outbreak occurred in the United States following importation of animals from that continent. Since then, anecdotal cases have continued to be reported outside Africa, usually very clearly linked to travelers to those countries, but in May 2022, a broad outbreak of this disease has begun, now affecting several continents, with the emergence of human cases of MPVX (H-MPVX) infection mainly among Men that have Sex with Men (MSM). The disease has an incubation time ranging from 5 to 15 days and is characterized by the presence of pustules, fever, malaise and headache. The presence of significant regional lymphadenopathy is a differential feature with episodes of classical smallpox. Proctitis and pharyngitis, with minimal skin lesions, may be another form of presentation. Diagnosis can be confirmed by PCR testing of lesions or by demonstration of MPVX in other body fluids or tissues, although in the appropriate epidemiologic setting the clinical picture is highly suggestive of the disease. Effective drug treatment has been developed as part of programs to protect against potential bioterrorist agents and smallpox vaccinees are known to have high protection against monkeypox. New vaccines are available, but neither the drugs nor the vaccines are yet freely available on the market. The prognosis of the disease appears, at least in adults in developed countries, to be good, with very low mortality figures and much less aggressive behavior than that described in classical smallpox. Isolation measures, essential for the control of the outbreak, have been published by the health authorities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - E Bouza
- Servicio de Microbiología Clínica y Enfermedades Infecciosas del Hospital General Universitario Gregorio Marañón, Universidad Complutense. CIBERES. Ciber de Enfermedades Respiratorias. Madrid, Spain.
| |
Collapse
|
19
|
Lvov DK, Alkhovsky SV, Zhirnov OP. [130th anniversary of virology]. Vopr Virusol 2022; 67:357-384. [PMID: 36515283 DOI: 10.36233/0507-4088-140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 06/17/2023]
Abstract
130 years ago, in 1892, our great compatriot Dmitry Iosifovich Ivanovsky (18641920) discovered a new type of pathogen viruses. Viruses have existed since the birth of life on Earth and for more than three billion years, as the biosphere evolved, they are included in interpopulation interactions with representatives of all kingdoms of life: archaea, bacteria, protozoa, algae, fungi, plants, invertebrates, and vertebrates, including the Homo sapiens (Hominidae, Homininae). Discovery of D.I. Ivanovsky laid the foundation for a new science virology. The rapid development of virology in the 20th century was associated with the fight against emerging and reemerging infections, epidemics (epizootics) and pandemics (panzootics) of which posed a threat to national and global biosecurity (tick-borne and other encephalitis, hemorrhagic fevers, influenza, smallpox, poliomyelitis, HIV, parenteral hepatitis, coronaviral and other infections). Fundamental research on viruses created the basis for the development of effective methods of diagnostics, vaccine prophylaxis, and antiviral drugs. Russian virologists continue to occupy leading positions in some priority areas of modern virology in vaccinology, environmental studies oz zoonotic viruses, studies of viral evolution in various ecosystems, and several other areas. A meaningful combination of theoretical approaches to studying the evolution of viruses with innovative methods for studying their molecular genetic properties and the creation of new generations of vaccines and antiviral drugs on this basis will significantly reduce the consequences of future pandemics or panzootics. The review presents the main stages in the formation and development of virology as a science in Russia with an emphasis on the most significant achievements of soviet and Russian virologists in the fight against viral infectious diseases.
Collapse
Affiliation(s)
- D K Lvov
- D.I. Ivanovsky Institute of Virology of N.F Gamaleya National Research Center of Epidemiology and Microbiology of Ministry of Health of the Russian Federation
| | - S V Alkhovsky
- D.I. Ivanovsky Institute of Virology of N.F Gamaleya National Research Center of Epidemiology and Microbiology of Ministry of Health of the Russian Federation
| | - O P Zhirnov
- D.I. Ivanovsky Institute of Virology of N.F Gamaleya National Research Center of Epidemiology and Microbiology of Ministry of Health of the Russian Federation
| |
Collapse
|
20
|
Prevention and Treatment of Monkeypox: A Systematic Review of Preclinical Studies. Viruses 2022; 14:v14112496. [PMID: 36423105 PMCID: PMC9699130 DOI: 10.3390/v14112496] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The outbreak of monkeypox, coupled with the onslaught of the COVID-19 pandemic is a critical communicable disease. This study aimed to systematically identify and review research done on preclinical studies focusing on the potential monkeypox treatment and immunization. The presented juxtaposition of efficacy of potential treatments and vaccination that had been tested in preclinical trials could serve as a useful primer of monkeypox virus. The literature identified using key terms such as monkeypox virus or management or vaccine stringed using Boolean operators was systematically reviewed. Pubmed, SCOPUS, Cochrane, and preprint databases were used, and screening was performed in accordance with PRISMA guidelines. A total of 467 results from registered databases and 116 from grey literature databases were screened. Of these results, 72 studies from registered databases and three grey literature studies underwent full-text screening for eligibility. In this systematic review, a total of 27 articles were eligible according to the inclusion criteria and were used. Tecovirimat, known as TPOXX or ST-246, is an antiviral drug indicated for smallpox infection whereas brincidofovir inhibits the viral DNA polymerase after incorporation into viral DNA. The ability of tecovirimat in providing protection to poxvirus-challenged animals from death had been demonstrated in a number of animal studies. Non-inferior with regard to immunogenicity was reported for the live smallpox/monkeypox vaccine compared with a single dose of a licensed live smallpox vaccine. The trial involving the live vaccine showed a geometric mean titre of vaccinia-neutralizing antibodies post two weeks of the second dose of the live smallpox/monkeypox vaccine. Of note, up to the third generation of smallpox vaccines-particularly JYNNEOS and Lc16m8-have been developed as preventive measures for MPXV infection and these vaccines had been demonstrated to have improved safety compared to the earlier generations.
Collapse
|
21
|
Singh S, Kumar R, Singh SK. All That We Need to Know About the Current and Past Outbreaks of Monkeypox: A Narrative Review. Cureus 2022; 14:e31109. [DOI: 10.7759/cureus.31109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 11/07/2022] Open
|
22
|
Abstract
INTRODUCTION A monkeypox outbreak is spreading in territories where the virus is not generally prevalent. The rapid and sudden emergence of monkeypox in numerous nations at the same time means that unreported transmission may have persisted. The number of reported cases is on a constant increase worldwide. At least 20 non-African countries, like Canada, Portugal, Spain, and the United Kingdom, have reported more than 57662 as of September 9th suspected or confirmed cases. This is the largest epidemic seen outside of Africa. Scientists are struggling to determine the responsible genes for the higher virulence and transmissibility of the virus. Because the viruses are related, several countries have begun acquiring smallpox vaccinations, which are believed to be very effective against monkeypox. METHODS Bibliographic databases and web-search engines were used to retrieve studies that assessed monkeypox basic biology, life cycle, and transmission. Data were evaluated and used to explain the therapeutics that are under use or have potential. Finally, here is a comparison between how vaccines are being made now and how they were made in the past to stop the spread of new viruses. CONCLUSIONS Available vaccines are believed to be effective if administered within four days of viral exposure, as the virus has a long incubation period. As the virus is zoonotic, there is still a great deal of concern about the viral genetic shift and the risk of spreading to humans. This review will discuss the virus's biology and how dangerous it is. It will also look at how it spreads, what vaccines and treatments are available, and what technologies could be used to make vaccines quickly using mRNA technologies.
Collapse
|
23
|
Orlova OV, Glazkova DV, Bogoslovskaya EV, Shipulin GA, Yudin SM. Development of Modified Vaccinia Virus Ankara-Based Vaccines: Advantages and Applications. Vaccines (Basel) 2022; 10:vaccines10091516. [PMID: 36146594 PMCID: PMC9503770 DOI: 10.3390/vaccines10091516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a promising viral vector for vaccine development. MVA is well studied and has been widely used for vaccination against smallpox in Germany. This review describes the history of the origin of the virus and its properties as a vaccine, including a high safety profile. In recent years, MVA has found its place as a vector for the creation of vaccines against various diseases. To date, a large number of vaccine candidates based on the MVA vector have already been developed, many of which have been tested in preclinical and clinical studies. We discuss data on the immunogenicity and efficacy of some of these vaccines.
Collapse
|
24
|
Ahmed SF, Sohail MS, Quadeer AA, McKay MR. Vaccinia-Virus-Based Vaccines Are Expected to Elicit Highly Cross-Reactive Immunity to the 2022 Monkeypox Virus. Viruses 2022; 14:1960. [PMID: 36146766 PMCID: PMC9506226 DOI: 10.3390/v14091960] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Beginning in May 2022, a novel cluster of monkeypox virus infections was detected in humans. This virus has spread rapidly to non-endemic countries, sparking global concern. Specific vaccines based on the vaccinia virus (VACV) have demonstrated high efficacy against monkeypox viruses in the past and are considered an important outbreak control measure. Viruses observed in the current outbreak carry distinct genetic variations that have the potential to affect vaccine-induced immune recognition. Here, by investigating genetic variation with respect to orthologous immunogenic vaccinia-virus proteins, we report data that anticipates immune responses induced by VACV-based vaccines, including the currently available MVA-BN and ACAM2000 vaccines, to remain highly cross-reactive against the newly observed monkeypox viruses.
Collapse
Affiliation(s)
- Syed Faraz Ahmed
- Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Muhammad Saqib Sohail
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ahmed Abdul Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Matthew R. McKay
- Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
25
|
Dayyab FM, Daiyab HM, Farahat RA. Precautions and recommendations towards possible cardiac manifestations of monkeypox vaccination. Int J Surg 2022; 105:106898. [PMID: 36089260 PMCID: PMC9533822 DOI: 10.1016/j.ijsu.2022.106898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/28/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Farouq Muhammad Dayyab
- Cardiac Intensive Care Unit, Mohammed Bin Khalifa Bin Salman Al Khalifa Cardiac Center, Awali, Bahrain; Global Research Group (GRG), Kafrelsheikh, Egypt
| | | | - Ramadan Abdelmoez Farahat
- Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt; Global Research Group (GRG), Kafrelsheikh, Egypt.
| |
Collapse
|
26
|
Islam MR, Hossain MJ, Roy A, Hasan AHMN, Rahman MA, Shahriar M, Bhuiyan MA. Repositioning potentials of smallpox vaccines and antiviral agents in monkeypox outbreak: A rapid review on comparative benefits and risks. Health Sci Rep 2022; 5:e798. [PMID: 36032515 PMCID: PMC9399446 DOI: 10.1002/hsr2.798] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 01/14/2023] Open
Abstract
Background and aims There is a sought for vaccines and antiviral agents as countermeasures for the recent monkeypox outbreak. Here, we aimed to review and discuss the repurposing potentials of smallpox vaccines and drugs in monkeypox outbreaks based on their comparative benefits and risks. Therefore, we conducted this rapid review and discussed the repurposing potentials of smallpox vaccines and drugs in monkeypox infection. Methods Here, we searched Google Scholar and PubMed for relevant information and data. We found many articles that have suggested the use of smallpox vaccines and antiviral drugs in monkeypox outbreaks according to the study findings. We read the relevant articles to extract information. Results According to the available documents, we found two replication-competent and one replication-deficient vaccinia vaccines were effective against Orthopoxvirus. However, the healthcare authorities have authorized second-generation live vaccina virus vaccines against Orthopoxvirus in many countries. Smallpox vaccine is almost 85% effective in preventing monkeypox infection as monkeypox virus, variola virus, and vaccinia virus are similar. The United States and Canada have approved a replication-deficient third-generation smallpox vaccine for the prevention of monkeypox infection. However, the widely used second-generation smallpox vaccines contain a live virus and replicate it into the human cell. Therefore, there is a chance to cause virus-induced complications among the vaccinated subjects. In those circumstances, the available Orthopoxvirus inhibitors might be a good choice for treating monkeypox infections as they showed similar efficacy in monkeypox infection in different animal model clinical trials. Also, the combined use of antiviral drugs and vaccinia immune globulin can enhance significant effectiveness in immunocompromised subjects. Conclusion Repurposing of these smallpox vaccines and antiviral agents might be weapons to fight monkeypox infection. Also, we recommend further investigations of smallpox vaccines and Orthopoxvirus inhibitors in a human model study to explore their exact role in human monkeypox infections.
Collapse
Affiliation(s)
| | | | - Arpira Roy
- Department of BiotechnologySharda UniversityGreater NoidaIndia
| | | | - Md. Ashrafur Rahman
- Department of Pharmaceutical SciencesJerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC)AmarilloTexasUSA
| | | | | |
Collapse
|
27
|
A nucleic acid-based orthopoxvirus vaccine targeting the vaccinia virus L1, A27, B5 and A33 proteins protects rabbits against lethal rabbitpox virus aerosol challenge. J Virol 2021; 96:e0150421. [PMID: 34851148 DOI: 10.1128/jvi.01504-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the age of COVID, nucleic acid vaccines have garnered much attention, at least in part, because of the simplicity of construction, production, and flexibility to adjust and adapt to an evolving outbreak. Orthopoxviruses remain a threat on multiple fronts, especially as emerging zoonosis. In response, we developed a DNA vaccine, termed 4pox, that protected nonhuman primates against monkeypox virus (MPXV) induced severe disease. Here, we examined the protective efficacy of the 4pox DNA vaccine delivered by intramuscular (i.m.) electroporation (EP) in rabbits challenged with aerosolized rabbitpox virus (RPXV), a model that recapitulates the respiratory route of exposure and low dose associated with natural smallpox exposure in humans. We found that 4pox vaccinated rabbits developed immunogen-specific antibodies, including neutralizing antibodies and did not develop any clinical disease, indicating protection against aerosolized RPXV. In contrast, unvaccinated animals developed significant signs of disease, including lesions, and were euthanized. These findings demonstrate that an unformulated, non-adjuvanted DNA vaccine delivered (i.m.) can protect against an aerosol exposure. Importance The eradication of smallpox and subsequent cessation of vaccination has left a majority of the population susceptible to variola virus or other emerging poxvirus. This is exemplified by human monkeypox, as evidenced by the increase in reported endemic and imported cases over the past decades. Therefore, a malleable vaccine technology that can be mass produced, and doesn't require complex conditions for distribution and storage is sought. Herein, we show that a DNA vaccine, in the absence of a specialized formulation or adjuvant, can protect against a lethal aerosol insult of rabbitpox virus.
Collapse
|
28
|
Shahzamani K, Mahmoudian F, Ahangarzadeh S, Ranjbar MM, Beikmohammadi L, Bahrami S, Mohammadi E, Esfandyari S, Alibakhshi A, Javanmard SH. Vaccine design and delivery approaches for COVID-19. Int Immunopharmacol 2021; 100:108086. [PMID: 34454291 PMCID: PMC8380485 DOI: 10.1016/j.intimp.2021.108086] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022]
Abstract
COVID-19 is still a deadly disease that remains yet a major challenge for humans. In recent times, many large pharmaceutical and non-pharmaceutical companies have invested a lot of time and cost in fighting this disease. In this regard, today's scientific knowledge shows that designing and producing an effective vaccine is the best possible way to diminish the disease burden and dissemination or even eradicate the disease. Due to the urgent need, many vaccines are now available earlier than scheduled. New technologies have also helped to produce much more effective vaccines, although the potential side effects must be taken into account. Thus, in this review, the types of vaccines and vaccine designs made against COVID-19, the vaccination programs, as well as the delivery methods and molecules that have been used to deliver some vaccines that need a carrier will be described.
Collapse
Affiliation(s)
- Kiana Shahzamani
- Isfahan Gastroenterology and Hepatology Research Center (lGHRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Mahmoudian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Leila Beikmohammadi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Samira Bahrami
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elmira Mohammadi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran; Core Research Facilities, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Esfandyari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Alibakhshi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
29
|
García-Arriaza J, Esteban M, López D. Modified Vaccinia Virus Ankara as a Viral Vector for Vaccine Candidates against Chikungunya Virus. Biomedicines 2021; 9:biomedicines9091122. [PMID: 34572308 PMCID: PMC8466845 DOI: 10.3390/biomedicines9091122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/16/2023] Open
Abstract
There is a need to develop a highly effective vaccine against the emerging chikungunya virus (CHIKV), a mosquito-borne Alphavirus that causes severe disease in humans consisting of acute febrile illness, followed by chronic debilitating polyarthralgia and polyarthritis. In this review, we provide a brief history of the development of the first poxvirus vaccines that led to smallpox eradication and its implications for further vaccine development. As an example, we summarize the development of vaccine candidates based on the modified vaccinia virus Ankara (MVA) vector expressing different CHIKV structural proteins, paying special attention to MVA-CHIKV expressing all of the CHIKV structural proteins: C, E3, E2, 6K and E1. We review the characterization of innate and adaptive immune responses induced in mice and nonhuman primates by the MVA-CHIKV vaccine candidate and examine its efficacy in animal models, with promising preclinical findings needed prior to the approval of human clinical trials.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
- Correspondence: (J.G.-A.); (M.E.); (D.L.)
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
- Correspondence: (J.G.-A.); (M.E.); (D.L.)
| | - Daniel López
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Spain
- Correspondence: (J.G.-A.); (M.E.); (D.L.)
| |
Collapse
|
30
|
Volkmann A, Williamson AL, Weidenthaler H, Meyer TPH, Robertson JS, Excler JL, Condit RC, Evans E, Smith ER, Kim D, Chen RT. The Brighton Collaboration standardized template for collection of key information for risk/benefit assessment of a Modified Vaccinia Ankara (MVA) vaccine platform. Vaccine 2021; 39:3067-3080. [PMID: 33077299 PMCID: PMC7568176 DOI: 10.1016/j.vaccine.2020.08.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022]
Abstract
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety and characteristics of live, recombinant viral vector vaccines. The Modified Vaccinia Ankara (MVA) vector system is being explored as a platform for development of multiple vaccines. This paper reviews the molecular and biological features specifically of the MVA-BN vector system, followed by a template with details on the safety and characteristics of an MVA-BN based vaccine against Zaire ebolavirus and other filovirus strains. The MVA-BN-Filo vaccine is based on a live, highly attenuated poxviral vector incapable of replicating in human cells and encodes glycoproteins of Ebola virus Zaire, Sudan virus and Marburg virus and the nucleoprotein of the Thai Forest virus. This vaccine has been approved in the European Union in July 2020 as part of a heterologous Ebola vaccination regimen. The MVA-BN vector is attenuated following over 500 serial passages in eggs, showing restricted host tropism and incompetence to replicate in human cells. MVA has six major deletions and other mutations of genes outside these deletions, which all contribute to the replication deficiency in human and other mammalian cells. Attenuation of MVA-BN was demonstrated by safe administration in immunocompromised mice and non-human primates. In multiple clinical trials with the MVA-BN backbone, more than 7800 participants have been vaccinated, demonstrating a safety profile consistent with other licensed, modern vaccines. MVA-BN has been approved as smallpox vaccine in Europe and Canada in 2013, and as smallpox and monkeypox vaccine in the US in 2019. No signal for inflammatory cardiac disorders was identified throughout the MVA-BN development program. This is in sharp contrast to the older, replicating vaccinia smallpox vaccines, which have a known risk for myocarditis and/or pericarditis in up to 1 in 200 vaccinees. MVA-BN-Filo as part of a heterologous Ebola vaccination regimen (Ad26.ZEBOV/MVA-BN-Filo) has undergone clinical testing including Phase III in West Africa and is currently in use in large scale vaccination studies in Central African countries. This paper provides a comprehensive picture of the MVA-BN vector, which has reached regulatory approvals, both as MVA-BN backbone for smallpox/monkeypox, as well as for the MVA-BN-Filo construct as part of an Ebola vaccination regimen, and therefore aims to provide solutions to prevent disease from high-consequence human pathogens.
Collapse
Affiliation(s)
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine at the University of Cape Town, South Africa
| | | | | | | | | | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Eric Evans
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA
| | - Emily R Smith
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA.
| | - Denny Kim
- Janssen Pharmaceuticals, Titusville, NJ, USA
| | - Robert T Chen
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA
| |
Collapse
|
31
|
Junter GA, Lebrun L. Polysaccharide-based chromatographic adsorbents for virus purification and viral clearance. J Pharm Anal 2020; 10:291-312. [PMID: 32292625 PMCID: PMC7104128 DOI: 10.1016/j.jpha.2020.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses still pose a significant threat to human and animal health worldwide. In the fight against viral infections, high-purity viral stocks are needed for manufacture of safer vaccines. It is also a priority to ensure the viral safety of biopharmaceuticals such as blood products. Chromatography techniques are widely implemented at both academic and industrial levels in the purification of viral particles, whole viruses and virus-like particles to remove viral contaminants from biopharmaceutical products. This paper focuses on polysaccharide adsorbents, particulate resins and membrane adsorbers, used in virus purification/removal chromatography processes. Different chromatographic modes are surveyed, with particular attention to ion exchange and affinity/pseudo-affinity adsorbents among which commercially available agarose-based resins (Sepharose®) and cellulose-based membrane adsorbers (Sartobind®) occupy a dominant position. Mainly built on the development of new ligands coupled to conventional agarose/cellulose matrices, the development perspectives of polysaccharide-based chromatography media in this antiviral area are stressed in the conclusive part.
Collapse
Affiliation(s)
- Guy-Alain Junter
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| | - Laurent Lebrun
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| |
Collapse
|
32
|
Xiao Y, Zeng Y, Schante C, Joshi SB, Buchman GW, Volkin DB, Middaugh CR, Isaacs SN. Short-term and longer-term protective immune responses generated by subunit vaccination with smallpox A33, B5, L1 or A27 proteins adjuvanted with aluminum hydroxide and CpG in mice challenged with vaccinia virus. Vaccine 2020; 38:6007-6018. [PMID: 32741672 PMCID: PMC7456309 DOI: 10.1016/j.vaccine.2020.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/08/2020] [Accepted: 07/10/2020] [Indexed: 12/28/2022]
Abstract
Smallpox, a contagious and deadly disease caused by variola virus, was eradicated by a strategy that included vaccination with vaccinia virus, a live-virus vaccine. Because the threat of bioterrorism with smallpox persists and infections with zoonotic poxvirus infections like monkeypox continue, and there may be a time when an alternative vaccine platform is needed, recombinant-subunit vaccine strategies for poxviruses have been pursued. Our prior work focused on understanding the immune responses generated to vaccine-formulations containing the virus protein L1. In this work, we examine vaccine-formulations with additional key protein targets: A33 and B5 (components of the extracellular virus) and another protein on the mature virus (A27) adjuvanted with aluminum hydroxide (AH) with and without CpG- oligonucleotide. Each vaccine was formulated to allow either adsorption or non-adsorption of the protein (and CpG) to AH. Mice given a prime and single boost produced long-lasting antibody responses. A second boost (given ~5-months after the first) further increased antibody titers. Similar to our prior findings with L1 vaccine-formulations, the most protective A33 vaccine-formulations included CpG, resulted in the generation of IgG2a-antibody responses. Unlike the prior findings with L1 (where formulations that adsorbed both the protein and the CpG to AH resulted in 100% survival after challenge and minimal weight loss), the AH-adsorption status of A33 and CpG did not play as important a role, since both AH-adsorbed and non-adsorbed groups lost weight after challenge and had similar survival. Vaccination with B5-formulations gave different results. While CpG-containing formulations were the only ones that generated IgG2a-antibody responses, the vaccine-formulation that adsorbed B5 to AH (without CpG) was as equally effective in protecting mice after challenge. These results indicate that the mechanism of how antibodies against A33 and B5 protect differ. The data also show the complexity of designing optimized vaccine-formulations containing multiple adjuvants and recombinant protein-based antigens.
Collapse
Affiliation(s)
- Yuhong Xiao
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Division of Infectious Diseases, Philadelphia, PA 19104-6073, United States
| | - Yuhong Zeng
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - Carole Schante
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - Sangeeta B Joshi
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - George W Buchman
- Chesapeake-Perl, Inc., 8510 A Corridor Rd., Savage, MD 20763, United States
| | - David B Volkin
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - C Russell Middaugh
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - Stuart N Isaacs
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Division of Infectious Diseases, Philadelphia, PA 19104-6073, United States.
| |
Collapse
|
33
|
Abstract
COVID-19 is an emerging infectious disease that has turned into a pandemic. It spreads through droplet transmission of the new coronavirus SARS-CoV-2. It is an RNA virus displaying a spike protein as the major surface protein with significant sequence similarity to SARS-CoV which causes severe acute respiratory syndrome. The receptor binding domain of the spike protein interacts with the human angiotensin converting enzyme 2 and is considered as the antigenic determinant for stimulating an immune response. While multiple candidate vaccines are currently under different stages of development, there are no known therapeutic interventions at the moment. This review describes the key genetic features that are being considered for generating vaccine candidates by employing innovative technologies. It also highlights the global efforts being undertaken to deliver vaccines for COVID-19 through unprecedented international cooperation and future challenges post development.
Collapse
Affiliation(s)
- Raju Mukherjee
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India,
| |
Collapse
|
34
|
Working Safely with Vaccinia Virus: Laboratory Technique and Review of Published Cases of Accidental Laboratory Infections with Poxviruses. Methods Mol Biol 2020. [PMID: 31240668 DOI: 10.1007/978-1-4939-9593-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Vaccinia virus, the prototype Orthopoxvirus, is widely used in the laboratory as a model system to study various aspects of viral biology and virus-host interactions, as a protein expression system, as a vaccine vector, and as an oncolytic agent. The ubiquitous use of vaccinia viruses in laboratories around the world raises certain safety concerns because the virus can be a pathogen in individuals with immunological and dermatological abnormalities, and on occasion can cause serious problems in normal hosts. This chapter reviews standard operating procedures when working with vaccinia virus and reviews published cases of accidental laboratory infections with poxviruses.
Collapse
|
35
|
O’Connell AK, Douam F. Humanized Mice for Live-Attenuated Vaccine Research: From Unmet Potential to New Promises. Vaccines (Basel) 2020; 8:E36. [PMID: 31973073 PMCID: PMC7157703 DOI: 10.3390/vaccines8010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 01/24/2023] Open
Abstract
Live-attenuated vaccines (LAV) represent one of the most important medical innovations in human history. In the past three centuries, LAV have saved hundreds of millions of lives, and will continue to do so for many decades to come. Interestingly, the most successful LAVs, such as the smallpox vaccine, the measles vaccine, and the yellow fever vaccine, have been isolated and/or developed in a purely empirical manner without any understanding of the immunological mechanisms they trigger. Today, the mechanisms governing potent LAV immunogenicity and long-term induced protective immunity continue to be elusive, and therefore hamper the rational design of innovative vaccine strategies. A serious roadblock to understanding LAV-induced immunity has been the lack of suitable and cost-effective animal models that can accurately mimic human immune responses. In the last two decades, human-immune system mice (HIS mice), i.e., mice engrafted with components of the human immune system, have been instrumental in investigating the life-cycle and immune responses to multiple human-tropic pathogens. However, their use in LAV research has remained limited. Here, we discuss the strong potential of LAVs as tools to enhance our understanding of human immunity and review the past, current and future contributions of HIS mice to this endeavor.
Collapse
Affiliation(s)
| | - Florian Douam
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA;
| |
Collapse
|
36
|
Abstract
Disasters are increasing around the world. Children are greatly impacted by both natural disasters (forces of nature) and man-made (intentional, accidental) disasters. Their unique anatomical, physiological, behavioral, developmental, and psychological vulnerabilities must be considered when planning and preparing for disasters. The nurse or health care provider (HCP) must be able to rapidly identify acutely ill children during a disaster. Whether it is during a natural or man-made event, the nurse or HCP must intervene effectively to improve survival and outcomes. It is extremely vital to understand the medical management of these children during disasters, especially the use of appropriate medical countermeasures such as medications, antidotes, supplies, and equipment.
Collapse
|
37
|
Mukherjee R. Global efforts on vaccines for COVID-19: Since, sooner or later, we all will catch the coronavirus. J Biosci 2020; 45:68. [PMID: 32385219 PMCID: PMC7203076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/23/2020] [Indexed: 03/29/2024]
Abstract
COVID-19 is an emerging infectious disease that has turned into a pandemic. It spreads through droplet transmission of the new coronavirus SARS-CoV-2. It is an RNA virus displaying a spike protein as the major surface protein with significant sequence similarity to SARS-CoV which causes severe acute respiratory syndrome. The receptor binding domain of the spike protein interacts with the human angiotensin converting enzyme 2 and is considered as the antigenic determinant for stimulating an immune response. While multiple candidate vaccines are currently under different stages of development, there are no known therapeutic interventions at the moment. This review describes the key genetic features that are being considered for generating vaccine candidates by employing innovative technologies. It also highlights the global efforts being undertaken to deliver vaccines for COVID-19 through unprecedented international cooperation and future challenges post development.
Collapse
Affiliation(s)
- Raju Mukherjee
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India,
| |
Collapse
|
38
|
Swindle S. Biosafety in Handling Gene Transfer Vectors. ACTA ACUST UNITED AC 2018; 96:12.1.1-12.1.17. [DOI: 10.1002/cphg.54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Scott Swindle
- Occupational Medicine and Research Safety, The University of Alabama at Birmingham Birmingham Alabama
| |
Collapse
|
39
|
Bathke B, Pätzold J, Kassub R, Giessel R, Lämmermann K, Hinterberger M, Brinkmann K, Chaplin P, Suter M, Hochrein H, Lauterbach H. CD70 encoded by modified vaccinia virus Ankara enhances CD8 T-cell-dependent protective immunity in MHC class II-deficient mice. Immunology 2018; 154:285-297. [PMID: 29281850 PMCID: PMC5980220 DOI: 10.1111/imm.12884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 12/13/2022] Open
Abstract
The immunological outcome of infections and vaccinations is largely determined during the initial first days in which antigen-presenting cells instruct T cells to expand and differentiate into effector and memory cells. Besides the essential stimulation of the T-cell receptor complex a plethora of co-stimulatory signals not only ensures a proper T-cell activation but also instils phenotypic and functional characteristics in the T cells appropriate to fight off the invading pathogen. The tumour necrosis factor receptor/ligand pair CD27/CD70 gained a lot of attention because of its key role in regulating T-cell activation, survival, differentiation and maintenance, especially in the course of viral infections and cancer. We sought to investigate the role of CD70 co-stimulation for immune responses induced by the vaccine vector modified vaccinia virus Ankara-Bavarian Nordic® (MVA-BN® ). Short-term blockade of CD70 diminished systemic CD8 T-cell effector and memory responses in mice. The dependence on CD70 became even more apparent in the lungs of MHC class II-deficient mice. Importantly, genetically encoded CD70 in MVA-BN® not only increased CD8 T-cell responses in wild-type mice but also substituted for CD4 T-cell help. MHC class II-deficient mice that were immunized with recombinant MVA-CD70 were fully protected against a lethal virus infection, whereas MVA-BN® -immunized mice failed to control the virus. These data are in line with CD70 playing an important role for vaccine-induced CD8 T-cell responses and prove the potency of integrating co-stimulatory molecules into the MVA-BN® backbone.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mark Suter
- Vetsuisse Fakultät, Dekanat, Bereich Immunologie, Universität Zürich, Zurich, Switzerland
| | | | | |
Collapse
|
40
|
Jackson LA, Frey SE, El Sahly HM, Mulligan MJ, Winokur PL, Kotloff KL, Campbell JD, Atmar RL, Graham I, Anderson EJ, Anderson EL, Patel SM, Fields C, Keitel W, Rouphael N, Hill H, Goll JB. Safety and immunogenicity of a modified vaccinia Ankara vaccine using three immunization schedules and two modes of delivery: A randomized clinical non-inferiority trial. Vaccine 2017; 35:1675-1682. [PMID: 28256358 DOI: 10.1016/j.vaccine.2017.02.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 01/17/2023]
Abstract
INTRODUCTION To guide the use of modified vaccinia Ankara (MVA) vaccine in response to a release of smallpox virus, the immunogenicity and safety of shorter vaccination intervals, and administration by jet injector (JI), were compared to the standard schedule of administration on Days 1 and 29 by syringe and needle (S&N). METHODS Healthy adults 18-40years of age were randomly assigned to receive MVA vaccine subcutaneously by S&N on Days 1 and 29 (standard), Days 1 and 15, or Days 1 and 22, or to receive the vaccine subcutaneously by JI on Days 1 and 29. Blood was collected at four time points after the second vaccination for plaque reduction neutralization test (PRNT) (primary endpoint) and ELISA (secondary endpoint) antibody assays. For each subject, the peak PRNT (or ELISA) titer was defined by the highest PRNT (or ELISA) titer among all available measurements post second vaccination. Non-inferiority of a non-standard arm compared to the standard arm was met if the upper limit of the 98.33% confidence interval of the difference in the mean log2 peak titers between the standard and non-standard arm was less than 1. RESULTS Non-inferiority of the PRNT antibody response was not established for any of the three non-standard study arms. Non-inferiority of the ELISA antibody response was established for the Day 1 and 22 compressed schedule and for administration by JI. Solicited local reactions, such as redness and swelling, tended to be more commonly reported with JI administration. Four post-vaccination hypersensitivity reactions were observed. CONCLUSIONS Evaluations of the primary endpoint of PRNT antibody responses do not support alternative strategies of administering MVA vaccine by S&N on compressed schedules or administration by JI on the standard schedule. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01827371.
Collapse
Affiliation(s)
- Lisa A Jackson
- Group Health Research Institute, Seattle, WA, United States.
| | - Sharon E Frey
- Division of Infectious Diseases, Allergy, & Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Hana M El Sahly
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mark J Mulligan
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA, United States
| | - Patricia L Winokur
- University of Iowa and Iowa City VA Medical Center, Iowa City, IA, United States
| | - Karen L Kotloff
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States
| | - James D Campbell
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robert L Atmar
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Irene Graham
- Division of Infectious Diseases, Allergy, & Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Evan J Anderson
- Emory Children's Center, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Edwin L Anderson
- Division of Infectious Diseases, Allergy, & Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Shital M Patel
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Colin Fields
- Group Health Research Institute, Seattle, WA, United States
| | - Wendy Keitel
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Nadine Rouphael
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA, United States
| | - Heather Hill
- The Emmes Corporation, Rockville, MD, United States
| | | |
Collapse
|
41
|
Warfield KL, Aman MJ. Role of small biotechnology companies in the fledgling biodefense vaccine industry. Expert Rev Vaccines 2016; 15:1079-1082. [DOI: 10.1586/14760584.2016.1168702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Abstract
Oncolytic viruses (OVs) are being extensively studied for their potential roles in the development of cancer therapy regimens. In addition to their direct lytic effects, OVs can initiate and drive systemic antitumor immunity indirectly via release of tumor antigen, as well as by encoding and delivering immunostimulatory molecules. This combination makes them an effective platform for the development of immunotherapeutic strategies beyond their primary lytic function. Engineering the viruses to also express tumor-associated antigens (TAAs) allows them to simultaneously serve as therapeutic vaccines, targeting and amplifying an immune response to TAAs. Our group and others have shown that vaccinating intratumorally with a poxvirus that encodes TAAs, in addition to immune stimulatory molecules, can modulate the tumor microenvironment, overcome immune inhibitory pathways, and drive both local and systemic tumor specific immune responses.
Collapse
|
43
|
Tree JA, Hall G, Rees P, Vipond J, Funnell SGP, Roberts AD. Repeated high-dose (5 × 10(8) TCID50) toxicity study of a third generation smallpox vaccine (IMVAMUNE) in New Zealand white rabbits. Hum Vaccin Immunother 2016; 12:1795-801. [PMID: 26836234 PMCID: PMC4964806 DOI: 10.1080/21645515.2015.1134070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/02/2015] [Accepted: 12/15/2015] [Indexed: 11/04/2022] Open
Abstract
Concern over the release of variola virus as an agent of bioterrorism remains high and a rapid vaccination regimen is desirable for use in the event of a confirmed release of virus. A single, high-dose (5×10(8) TCID50) of Bavarian Nordic's IMVAMUNE was tested in a Phase-II clinical trial, in humans, as a substitute for the standard (1×10(8) TCID50), using a 2-dose, 28-days apart regimen. Prior to this clinical trial taking place a Good Laboratory Practice, repeated high-dose, toxicology study was performed using IMVAMUNE, in New Zealand white rabbits and the results are reported here. Male and female rabbits were dosed twice, subcutaneously, with 5×10(8) TCID50 of IMVAMUNE (test) or saline (control), 7-days apart. The clinical condition, body-weight, food consumption, haematology, blood chemistry, immunogenicity, organ-weight, and macroscopic and microscopic pathology were investigated. Haematological investigations indicated changes within the white blood cell profile that were attributed to treatment with IMVAMUNE; these comprised slight increases in neutrophil and monocyte numbers, on study days 1-3 and a marginal increase in lymphocyte numbers on day 10. Macroscopic pathology revealed reddening at the sites of administration and thickened skin in IMVAMUNE, treated animals. After the second dose of IMVAMUNE 9/10 rabbits seroconverted, as detected by antibody ELISA on day 10, by day 21, 10/10 rabbits seroconverted. Treatment-related changes were not detected in other parameters. In conclusion, the subcutaneous injection of 2 high-doses of IMVAMUNE, to rabbits, was well tolerated producing only minor changes at the site of administration. Vaccinia-specific antibodies were raised in IMVAMUNE-vaccinated rabbits only.
Collapse
Affiliation(s)
- Julia A. Tree
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Graham Hall
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Peter Rees
- Envigo CRS Limited, Occold, Eye, Suffolk, UK
| | - Julia Vipond
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Simon G. P. Funnell
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Allen D. Roberts
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| |
Collapse
|
44
|
Marín-López A, Barriales D, Moreno S, Ortego J, Calvo-Pinilla E. Defeating Bluetongue virus: new approaches in the development of multiserotype vaccines. Future Virol 2016. [DOI: 10.2217/fvl-2016-0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bluetongue virus (BTV) is a global threat to domestic and wild ruminants, causing massive economic losses throughout the world. New serotypes of the virus are rapidly emerging in different continents, unfortunately there is little cross-protection between BTV serotypes. The eradication of the virus from a region is particularly complicated in areas where multiple serotypes circulate for a long time. The present review summarizes the actual concerns about the spread of the virus and relevant approaches to develop efficient vaccines against BTV, in particular those focused on a multiserotype design.
Collapse
Affiliation(s)
| | - Diego Barriales
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos-Madrid, Spain
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos-Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos-Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos-Madrid, Spain
| |
Collapse
|
45
|
Troy JD, Hill HR, Ewell MG, Frey SE. Sex difference in immune response to vaccination: A participant-level meta-analysis of randomized trials of IMVAMUNE smallpox vaccine. Vaccine 2015; 33:5425-5431. [PMID: 26319063 PMCID: PMC4581981 DOI: 10.1016/j.vaccine.2015.08.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Previous research shows immune response to vaccination differs by sex but this has not been explored for IMVAMUNE, a replication-deficient smallpox vaccine developed in response to the potential for bioterrorism using smallpox. METHODS We conducted a participant-level meta-analysis (N=275, 136 men, 139 women) of 3 randomized trials of IMVAMUNE conducted at 13 centers in the US through a federally-funded extramural research program. Studies were eligible for inclusion if they tested the standard dose (1×10(8)TCID₅₀/mL on Days 0 and 28) of liquid formulation IMVAMUNE, were completed at the time of our search, and enrolled healthy vaccinia-naïve participants. Models of the peak log₂ ELISA and PRNT titers post-second vaccination were constructed for each study with sex as a covariate. Results from these models were combined into random effects meta-analyses of the sex difference in response to IMVAMUNE. We then compared this approach with fixed effects models using the combined participant level data. RESULTS In each study the mean peak log₂ ELISA titer was higher in men than women but no single study demonstrated a statistically significant difference. Combination of the adjusted study-specific estimates into the random effects model showed a higher mean peak log₂-titer in men compared with women (absolute difference [men-women]: 0.32, 95% CI: 0.02-0.60). Fixed effects models controlling for study showed a similar result (log₂ ELISA titer, men-women: 0.34, 95% CI: 0.04-0.63). This equates to a geometric mean peak titer that is approximately 27% higher in men than women (95% CI: 3-55%). Peak log₂ PRNT titers were also higher (although not significantly) in men (men-women: 0.14, 95% CI: -0.30 to 0.58). CONCLUSION Our results show statistically significant differences in response to IMVAMUNE comparing healthy, vaccinia-naïve men with women and suggest that sex should be considered in further development and deployment of IMVAMUNE and other MVA-based vaccines.
Collapse
Affiliation(s)
- Jesse D Troy
- The EMMES Corporation, 401 North Washington Street, Suite 700, Rockville, MD 20850, United States.
| | - Heather R Hill
- The EMMES Corporation, 401 North Washington Street, Suite 700, Rockville, MD 20850, United States.
| | - Marian G Ewell
- The EMMES Corporation, 401 North Washington Street, Suite 700, Rockville, MD 20850, United States.
| | - Sharon E Frey
- Saint Louis University School of Medicine, Department of Internal Medicine, Edward A. Doisy Research Center, 1100 S. Grand Bld., Saint Louis, MO 63104, United States.
| |
Collapse
|
46
|
Wollenberg A, Rothenberger C, Pinarci M, Feichtner K. Komplikationen des atopischen Ekzems im Kindesalter. Monatsschr Kinderheilkd 2015. [DOI: 10.1007/s00112-014-3169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Poxvirus Countermeasures During an Emergency in the United States. Disaster Med Public Health Prep 2015; 9:121-6. [DOI: 10.1017/dmp.2014.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractAlthough smallpox was eradicated worldwide by 1980, national security experts remain concerned that it could be used in a deliberate attack. The United States and other governments have given priority to developing and stockpiling vaccines and antivirals to protect their populations from the potential reintroduction of this deadly disease. Public health officials are also concerned about the spread of related zoonotic orthopoxviruses such as monkeypox and cowpox, against which smallpox vaccine provides protection. This report analyzes how medical countermeasures available in the US Strategic National Stockpile will be given priority and used in the event of an intentional or accidental release of smallpox in the United States. (Disaster Med Public Health Preparedness. 2015;9:121-126)
Collapse
|
48
|
Zitzmann-Roth EM, von Sonnenburg F, de la Motte S, Arndtz-Wiedemann N, von Krempelhuber A, Uebler N, Vollmar J, Virgin G, Chaplin P. Cardiac safety of Modified Vaccinia Ankara for vaccination against smallpox in a young, healthy study population. PLoS One 2015; 10:e0122653. [PMID: 25879867 PMCID: PMC4399887 DOI: 10.1371/journal.pone.0122653] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/16/2015] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Conventional smallpox vaccines based on replicating vaccinia virus (VV) strains (e.g. Lister Elstree, NYCBOH) are associated with a high incidence of myo-/pericarditis, a severe inflammatory cardiac complication. A new smallpox vaccine candidate based on a non-replicating Modified Vaccinia Ankara (MVA) poxvirus has been assessed for cardiac safety in a large placebo-controlled clinical trial. METHODS Cardiac safety of one and two doses of MVA compared to placebo was assessed in 745 healthy subjects. Vaccinia-naïve subjects received either one dose of MVA and one dose of placebo, two doses of MVA, or two doses of placebo by subcutaneous injection four weeks apart; vaccinia-experienced subjects received a single dose of MVA. Solicited and unsolicited adverse events (AE) and cardiac safety parameters (recorded as Adverse Events of Special Interest, AESI) were monitored after each injection. RESULTS A total of 5 possibly related AESI (3 cases of palpitations, 2 of tachycardia) were reported during the study. No case of myo- or pericarditis occurred. One possibly related serious AE (SAE) was reported during the 6-month follow-up period (sarcoidosis). The most frequently observed AEs were injection site reactions. CONCLUSIONS Vaccination with MVA was safe and well tolerated and did not increase the risk for development of myo-/pericarditis. TRIAL REGISTRATION ClinicalTrials.gov NCT00316524.
Collapse
Affiliation(s)
| | - Frank von Sonnenburg
- Department of Infectious Diseases and Tropical Medicine, Section of International Medicine and Public Health, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
HIV specific responses induced in nonhuman primates with ANRS HIV-Lipo-5 vaccine combined with rMVA-HIV prime or boost immunizations. Vaccine 2015; 33:2354-9. [PMID: 25839103 DOI: 10.1016/j.vaccine.2015.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/25/2015] [Accepted: 03/12/2015] [Indexed: 01/23/2023]
Abstract
We evaluated the immunogenicity of a prime/boost vaccine strategy combining 5 lipopeptides (HIV-Lipo-5) and a recombinant modified vaccinia virus Ankara (rMVA-HIV) in cynomolgus macaques. Both of these vaccine components deliver HIV LAI Gag, Pol, and Nef antigens. Systemic and local safety was excellent in all groups. Immunization with HIV-Lipo-5 alone induced significant serum anti-HIV antibody titers which were not modified by rMVA-HIV immunization. However, induction of T-cell responses, as measured by IFNγ and IL-2 producing cells upon short-term stimulation with HIV peptide pools, required combined immunization with rMVA-HIV. Responses were preferentially observed against Gag antigen. Interestingly, HIV-Lipo-5 efficiently primed HIV induced T-cell responses upon the injection of rMVA-HIV, which may help to reduce the required number of vector injections. Our results provide a rationale for the use of a strategy involving HIV-Lipo-5 priming followed by rMVA-HIV booster immunization as a prophylactic or therapeutic vaccine approach against HIV infection and AIDS.
Collapse
|
50
|
Kidokoro M, Shida H. Vaccinia Virus LC16m8∆ as a Vaccine Vector for Clinical Applications. Vaccines (Basel) 2014; 2:755-71. [PMID: 26344890 PMCID: PMC4494248 DOI: 10.3390/vaccines2040755] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/16/2014] [Accepted: 09/28/2014] [Indexed: 01/14/2023] Open
Abstract
The LC16m8 strain of vaccinia virus, the active ingredient in the Japanese smallpox vaccine, was derived from the Lister/Elstree strain. LC16m8 is replication-competent and has been administered to over 100,000 infants and 3,000 adults with no serious adverse reactions. Despite this outstanding safety profile, the occurrence of spontaneously-generated large plaque-forming virulent LC16m8 revertants following passage in cell culture is a major drawback. We identified the gene responsible for the reversion and deleted the gene (B5R) from LC16m8 to derive LC16m8Δ. LC16m8∆ is non-pathogenic in immunodeficient severe combined immunodeficiency (SCID) mice, genetically-stable and does not reverse to a large-plaque phenotype upon passage in cell culture, even under conditions in which most LC16m8 populations are replaced by revertants. Moreover, LC16m8∆ is >500-fold more effective than the non-replicating vaccinia virus (VV), Modified Vaccinia Ankara (MVA), at inducing murine immune responses against pathogenic VV. LC16m8∆, which expresses the SIV gag gene, also induced anti-Gag CD8⁺ T-cells more efficiently than MVA and another non-replicating VV, Dairen I minute-pock variants (DIs). Moreover, LC16m8∆ expressing HIV-1 Env in combination with a Sendai virus vector induced the production of anti-Env antibodies and CD8⁺ T-cells. Thus, the safety and efficacy of LC16m8∆ mean that it represents an outstanding platform for the development of human vaccine vectors.
Collapse
Affiliation(s)
- Minoru Kidokoro
- Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Hisatoshi Shida
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan.
| |
Collapse
|