1
|
Li Y, Wang X, Xu T, Xu F, Chen T, Li Z, Wang Y, Chen H, Ming J, Cai J, Jiang C, Meng X. Unveiling the role of TAGLN2 in glioblastoma: From proneural-mesenchymal transition to Temozolomide resistance. Cancer Lett 2024; 598:217107. [PMID: 38992489 DOI: 10.1016/j.canlet.2024.217107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Glioblastoma (GBM) presents a daunting challenge due to its resistance to temozolomide (TMZ), a hurdle exacerbated by the proneural-to-mesenchymal transition (PMT) from a proneural (PN) to a mesenchymal (MES) phenotype. TAGLN2 is prominently expressed in GBM, particularly in the MES subtype compared to low-grade glioma (LGG) and the PN subtype. Our research reveals TAGLN2's involvement in PMT and TMZ resistance through a series of in vitro and in vivo experiments. TAGLN2 knockdown can restrain proliferation and invasion, trigger DNA damage and apoptosis, and heighten TMZ sensitivity in GBM cells. Conversely, elevating TAGLN2 levels amplifies resistance to TMZ in cellular and intracranial xenograft mouse models. We demonstrate the interaction relationship between TAGLN2 and ERK1/2 through co-immunoprecipitation (Co-IP) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) spectrometry analysis. Knockdown of TAGLN2 results in a decrease in the expression of p-ERK1/2, whereas overexpression of TAGLN2 leads to an increase in p-ERK1/2 expression within the nucleus. Subsequently, the regulatory role of TAGLN2 in the expression and control of MGMT has been demonstrated. Finally, the regulation of TAGLN2 by NF-κB has been validated through chromatin immunoprecipitation and ChIP-PCR assays. In conclusion, our results confirm that TAGLN2 exerts its biological functions by interacting with the ERK/MGMT axis and being regulated by NF-κB, thereby facilitating the acquisition of promoting PMT and increased resistance to TMZ therapy in glioblastoma. These results provide valuable insights for the advancement of targeted therapeutic approaches to overcome TMZ resistance in clinical treatments.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianye Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fan Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tongzheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhengji Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianguang Ming
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Rodrigo MAM, Michalkova H, Jimenez AMJ, Petrlak F, Do T, Sivak L, Haddad Y, Kubickova P, de Los Rios V, Casal JI, Serrano-Macia M, Delgado TC, Boix L, Bruix J, Martinez Chantar ML, Adam V, Heger Z. Metallothionein-3 is a multifunctional driver that modulates the development of sorafenib-resistant phenotype in hepatocellular carcinoma cells. Biomark Res 2024; 12:38. [PMID: 38594765 PMCID: PMC11003176 DOI: 10.1186/s40364-024-00584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND & AIMS Metallothionein-3 (hMT3) is a structurally unique member of the metallothioneins family of low-mass cysteine-rich proteins. hMT3 has poorly characterized functions, and its importance for hepatocellular carcinoma (HCC) cells has not yet been elucidated. Therefore, we investigated the molecular mechanisms driven by hMT3 with a special emphasis on susceptibility to sorafenib. METHODS Intrinsically sorafenib-resistant (BCLC-3) and sensitive (Huh7) cells with or without up-regulated hMT3 were examined using cDNA microarray and methods aimed at mitochondrial flux, oxidative status, cell death, and cell cycle. In addition, in ovo/ex ovo chick chorioallantoic membrane (CAM) assays were conducted to determine a role of hMT3 in resistance to sorafenib and associated cancer hallmarks, such as angiogenesis and metastastic spread. Molecular aspects of hMT3-mediated induction of sorafenib-resistant phenotype were delineated using mass-spectrometry-based proteomics. RESULTS The phenotype of sensitive HCC cells can be remodeled into sorafenib-resistant one via up-regulation of hMT3. hMT3 has a profound effect on mitochondrial respiration, glycolysis, and redox homeostasis. Proteomic analyses revealed a number of hMT3-affected biological pathways, including exocytosis, glycolysis, apoptosis, angiogenesis, and cellular stress, which drive resistance to sorafenib. CONCLUSIONS hMT3 acts as a multifunctional driver capable of inducing sorafenib-resistant phenotype of HCC cells. Our data suggest that hMT3 and related pathways could serve as possible druggable targets to improve therapeutic outcomes in patients with sorafenib-resistant HCC.
Collapse
Affiliation(s)
- Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic.
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Ana Maria Jimenez Jimenez
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Frantisek Petrlak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Tomas Do
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Petra Kubickova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Vivian de Los Rios
- Department of Cellular and Molecular Medicine and Proteomic Facility, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, Madrid, 280 40, Spain
| | - J Ignacio Casal
- Department of Cellular and Molecular Medicine and Proteomic Facility, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, Madrid, 280 40, Spain
| | - Marina Serrano-Macia
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, 48160, Spain
| | - Teresa C Delgado
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, 48160, Spain
| | - Loreto Boix
- Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Bruix
- Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria L Martinez Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, 48160, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic.
| |
Collapse
|
3
|
He P, Dai Q, Wu X. New insight in urological cancer therapy: From epithelial-mesenchymal transition (EMT) to application of nano-biomaterials. ENVIRONMENTAL RESEARCH 2023; 229:115672. [PMID: 36906272 DOI: 10.1016/j.envres.2023.115672] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/21/2023]
Abstract
A high number of cancer-related deaths (up to 90) are due to metastasis and simple definition of metastasis is new colony formation of tumor cells in a secondary site. In tumor cells, epithelial-mesenchymal transition (EMT) stimulates metastasis and invasion, and it is a common characteristic of malignant tumors. Prostate cancer, bladder cancer and renal cancer are three main types of urological tumors that their malignant and aggressive behaviors are due to abnormal proliferation and metastasis. EMT has been well-documented as a mechanism for promoting invasion of tumor cells and in the current review, a special attention is directed towards understanding role of EMT in malignancy, metastasis and therapy response of urological cancers. The invasion and metastatic characteristics of urological tumors enhance due to EMT induction and this is essential for ensuring survival and ability in developing new colonies in neighboring and distant tissues and organs. When EMT induction occurs, malignant behavior of tumor cells enhances and their tend in developing therapy resistance especially chemoresistance promotes that is one of the underlying reasons for therapy failure and patient death. The lncRNAs, microRNAs, eIF5A2, Notch-4 and hypoxia are among common modulators of EMT mechanism in urological tumors. Moreover, anti-tumor compounds such as metformin can be utilized in suppressing malignancy of urological tumors. Besides, genes and epigenetic factors modulating EMT mechanism can be therapeutically targeted for interfering malignancy of urological tumors. Nanomaterials are new emerging agents in urological cancer therapy that they can improve potential of current therapeutics by their targeted delivery to tumor site. The important hallmarks of urological cancers including growth, invasion and angiogenesis can be suppressed by cargo-loaded nanomaterials. Moreover, nanomaterials can improve chemotherapy potential in urological cancer elimination and by providing phototherapy, they mediate synergistic tumor suppression. The clinical application depends on development of biocompatible nanomaterials.
Collapse
Affiliation(s)
- Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
4
|
Medina-Medina R, Iglesias-Flores E, Benítez JM, Marín-Pedrosa S, Salgueiro-Rodríguez I, Linares CI, González-Rubio S, Soto-Escribano P, Gros B, Rodríguez-Perálvarez ML, Cabriada JL, Chaparro M, Gisbert JP, Chicano-Gálvez E, Ortea I, Ferrín G, García-Sánchez V, Aguilar-Melero P. Development of a Prediction Model for Short-Term Remission of Patients with Crohn's Disease Treated with Anti-TNF Drugs. Int J Mol Sci 2023; 24:ijms24108695. [PMID: 37240037 DOI: 10.3390/ijms24108695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Therapy with anti-tumor necrosis factor (TNF) has dramatically changed the natural history of Crohn's disease (CD). However, these drugs are not without adverse events, and up to 40% of patients could lose efficacy in the long term. We aimed to identify reliable markers of response to anti-TNF drugs in patients with CD. A consecutive cohort of 113 anti-TNF naive patients with CD was stratified according to clinical response as short-term remission (STR) or non-STR (NSTR) at 12 weeks of treatment. We compared the protein expression profiles of plasma samples in a subset of patients from both groups prior to anti-TNF therapy by SWATH proteomics. We identified 18 differentially expressed proteins (p ≤ 0.01, fold change ≥ 2.4) involved in the organization of the cytoskeleton and cell junction, hemostasis/platelet function, carbohydrate metabolism, and immune response as candidate biomarkers of STR. Among them, vinculin was one of the most deregulated proteins (p < 0.001), whose differential expression was confirmed by ELISA (p = 0.054). In the multivariate analysis, plasma vinculin levels along with basal CD Activity Index, corticosteroids induction, and bowel resection were factors predicting NSTR.
Collapse
Affiliation(s)
- Rosario Medina-Medina
- Gastroenterology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain
| | - Eva Iglesias-Flores
- Gastroenterology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain
| | - Jose M Benítez
- Gastroenterology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain
| | - Sandra Marín-Pedrosa
- Gastroenterology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain
| | - Isabel Salgueiro-Rodríguez
- Gastroenterology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain
| | - Clara I Linares
- Gastroenterology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain
| | - Sandra González-Rubio
- Gastroenterology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain
| | - Pilar Soto-Escribano
- Gastroenterology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain
| | - Beatriz Gros
- Gastroenterology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain
| | - Manuel L Rodríguez-Perálvarez
- Gastroenterology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - José L Cabriada
- Gastroenterology Unit, Hospital Universitario de Galdakao, 48960 Galdakao, Spain
| | - María Chaparro
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain
| | - Javier P Gisbert
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain
| | - Eduardo Chicano-Gálvez
- Proteomics Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain
| | - Ignacio Ortea
- Proteomics Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain
| | - Gustavo Ferrín
- Gastroenterology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Valle García-Sánchez
- Gastroenterology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Patricia Aguilar-Melero
- Gastroenterology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
5
|
Jain V, Akhtar J, Priya R, Sakhuja P, Goyal S, Agarwal AK, Ghose V, Polisetty RV, Sirdeshmukh R, Siraj F, Gautam P. Tissue proteome analysis for profiling proteins associated with lymph node metastasis in gallbladder cancer. BMC Cancer 2023; 23:402. [PMID: 37142981 PMCID: PMC10161508 DOI: 10.1186/s12885-023-10840-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
Lymph node (LN) metastasis is the earliest sign of metastatic spread and an established predictor of poor outcome in gallbladder cancer (GBC). Patients with LN positive GBC have a significantly worse survival (median survival- 7 months) than patients with LN negative disease (median survival- ~ 23 months) in spite of standard treatment which includes extended surgery followed by chemotherapy, radiotherapy and targeted therapy. This study aims at understanding the underlying molecular processes associated with LN metastasis in GBC. Here, we used iTRAQ-based quantitative proteomic analysis using tissue cohort comprising of primary tumor of LN negative GBC (n = 3), LN positive GBC (n = 4) and non-tumor controls (Gallstone disease, n = 4), to identify proteins associated with LN metastasis. A total of 58 differentially expressed proteins (DEPs) were found to be specifically associated with LN positive GBC based on the criteria of p value ≤ 0.05, fold change ≥ 2 and unique peptides ≥ 2. These include the cytoskeleton and associated proteins such as keratin, type II cytoskeletal 7 (KRT7), keratin type I cytoskeletal 19 (KRT19), vimentin (VIM), sorcin (SRI) and nuclear proteins such as nucleophosmin Isoform 1 (NPM1), heterogeneous nuclear ribonucleoproteins A2/B1 isoform X1 (HNRNPA2B1). Some of them are reported to be involved in promoting cell invasion and metastasis. Bioinformatic analysis of the deregulated proteins in LN positive GBC using STRING database identified 'neutrophil degranulation' and 'HIF1 activation' to be among the top deregulated pathways. Western blot and IHC analysis showed a significant overexpression of KRT7 and SRI in LN positive GBC in comparison to LN negative GBC. KRT7, SRI and other proteins may be further explored for their diagnostics and therapeutic applications in LN positive GBC.
Collapse
Affiliation(s)
- Vaishali Jain
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Javed Akhtar
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
- Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Ratna Priya
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
- Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Puja Sakhuja
- Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, 110002, India.
| | - Surbhi Goyal
- Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, 110002, India
| | - Anil Kumar Agarwal
- Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, 110002, India
| | - Vivek Ghose
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India
| | - Ravindra Varma Polisetty
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, 110021, India
| | - Ravi Sirdeshmukh
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India
| | - Fouzia Siraj
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Poonam Gautam
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.
| |
Collapse
|
6
|
Khrunin AV, Khvorykh GV, Arapova AS, Kulinskaya AE, Koltsova EA, Petrova EA, Kimelfeld EI, Limborska SA. The Study of the Association of Polymorphisms in LSP1, GPNMB, PDPN, TAGLN, TSPO, and TUBB6 Genes with the Risk and Outcome of Ischemic Stroke in the Russian Population. Int J Mol Sci 2023; 24:ijms24076831. [PMID: 37047799 PMCID: PMC10095190 DOI: 10.3390/ijms24076831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
To date, there has been great progress in understanding the genetic basis of ischemic stroke (IS); however, several aspects of the condition remain underexplored, including the influence of genetic factors on post-stroke outcomes and the identification of causative loci. We proposed that an analysis of the results obtained from animal models of brain ischemia could be helpful. To this end, we developed a bioinformatic approach for exploring single-nucleotide polymorphisms (SNPs) in human orthologs of rat genes expressed differentially after induced brain ischemia. Using this approach, we identified and analyzed 11 SNPs from 6 genes in 553 Russian individuals (331 patients with IS and 222 controls). We assessed the association of SNPs with the risk of IS and IS outcomes. We found that the SNPs rs858239 (GPNMB), rs907611 (LSP1), and rs494356 (TAGLN) were associated with different parameters of IS functional outcomes. In addition, the SNP rs1261025 (PDPN) was associated significantly with IS itself (p = 0.0188, recessive model). All these associations were demonstrated for the first time. Analysis of the literature suggests that they should be characterized as being inflammation related. This supports the pivotal role of inflammation in both the incidence of stroke and post-stroke outcomes. We believe the findings reported here will help with stroke prognosis in the future.
Collapse
Affiliation(s)
- Andrey V. Khrunin
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Gennady V. Khvorykh
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Anna S. Arapova
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
- Faculty of Biotechnology and Industrial Ecology, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Anna E. Kulinskaya
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
- Faculty of Biotechnology and Industrial Ecology, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Evgeniya A. Koltsova
- Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Elizaveta A. Petrova
- Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Ekaterina I. Kimelfeld
- Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Svetlana A. Limborska
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
| |
Collapse
|
7
|
Sun C, Zhang K, Ni C, Wan J, Duan X, Lou X, Yao X, Li X, Wang M, Gu Z, Yang P, Li Z, Qin Z. Transgelin promotes lung cancer progression via activation of cancer-associated fibroblasts with enhanced IL-6 release. Oncogenesis 2023; 12:18. [PMID: 36990991 DOI: 10.1038/s41389-023-00463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), the principal constituent of the heterogenous tumor microenvironment, have been shown to promote tumor progression; however, the underlying mechanism is still less clear. Here, we find that transgelin (TAGLN) protein levels increased in primary CAFs isolated from human lung cancer, compared with those in paired normal fibroblasts. Tumor microarrays (TMAs) revealed that increased stromal TAGLN levels correlates with more lymphatic metastasis of tumor cells. In a subcutaneous tumor transplantation model, overexpression of Tagln in fibroblasts also increased tumor cell spread in mice. Further experiments show that Tagln overexpression promoted fibroblast activation and mobility in vitro. And TAGLN facilitates p-p65 entry into the nucleus, thereby activating the NF-κB signaling pathway in fibroblasts. Activated fibroblasts promote lung cancer progression via enhancing the release of pro-inflammatory cytokines, especially interleukine-6 (IL-6). Our study revealed that the high levels of stromal TAGLN is a predictive risk factor for patients with lung cancer. Targeting stromal TAGLN may present an alternative therapeutic strategy against lung cancer progression.
Collapse
Affiliation(s)
- Chanjun Sun
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Kaishang Zhang
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chen Ni
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jiajia Wan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xixi Duan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaohan Lou
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaohan Yao
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiangnan Li
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ming Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhuoyu Gu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Pengyuan Yang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhenzhen Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, No. 15 Datun Road, Chaoyang Area, 100101, Beijing, China.
| |
Collapse
|
8
|
Du TY, Gao YX, Zheng YS. Identification of key genes related to immune infiltration in cirrhosis via bioinformatics analysis. Sci Rep 2023; 13:1876. [PMID: 36725885 PMCID: PMC9892033 DOI: 10.1038/s41598-022-26794-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/20/2022] [Indexed: 02/03/2023] Open
Abstract
Cirrhosis is the most common subclass of liver disease worldwide and correlated to immune infiltration. However, the immune-related molecular mechanism underlying cirrhosis remains obscure. Two gene expression profiles GSE89377 and GSE139602 were investigated to identify differentially expressed genes (DEGs) related to cirrhosis. Enrichment analysis for DEGs was conducted. Next, the immune infiltration of DEGs was evaluated using CIBERSORT algorithm. The hub DEGs with tight connectivity were identified using the String and Cytoscape databases, and the expression difference of these hub genes between normal liver and cirrhosis samples was determined. Moreover, in order to evaluate the discriminatory ability of hub genes and obtained the area under the receiver operating characteristic curve values in the GSE89377 and GSE139602 datasets. Finally, the association between hub DEGs and immune cell infiltration was explored by Spearman method. Among the 299 DEGs attained, 136 were up-regulated and 163 were down-regulated. Then the enrichment function analysis of DEGs and CIBERSORT algorithm showed significant enrichment in immune and inflammatory responses. And four hub DEGs (ACTB, TAGLN, VIM, SOX9) were identified, which also showed a diagnostic value in the GSE89377 and GSE 139,602 datasets. Finally, the immune infiltration analysis indicated that, these hub DEGs were highly related to immune cells. This study revealed key DEGs involved in inflammatory immune responses of cirrhosis, which could be used as biomarkers for diagnosis or therapeutic targets of cirrhosis.
Collapse
Affiliation(s)
- Tong-Yue Du
- Department of Critical Care Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, No.-1-1, Zhongfu Road, Nanjing, 210003, China
| | - Ya-Xian Gao
- Department of Critical Care Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, No.-1-1, Zhongfu Road, Nanjing, 210003, China
| | - Yi-Shan Zheng
- Department of Critical Care Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, No.-1-1, Zhongfu Road, Nanjing, 210003, China.
| |
Collapse
|
9
|
Stabenau KA, Samuels TL, Lam TK, Mathison AJ, Wells C, Altman KW, Battle MA, Johnston N. Pepsinogen/Proton Pump Co-Expression in Barrett's Esophageal Cells Induces Cancer-Associated Changes. Laryngoscope 2023; 133:59-69. [PMID: 35315085 DOI: 10.1002/lary.30109] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 02/02/2023]
Abstract
EDUCATIONAL OBJECTIVE At the conclusion of this presentation, participants should better understand the carcinogenic potential of pepsin and proton pump expression in Barrett's esophagus. OBJECTIVE Barrett's esophagus (BE) is a well-known risk factor for esophageal adenocarcinoma (EAC). Gastric H+ /K+ ATPase proton pump and pepsin expression has been demonstrated in some cases of BE; however, the contribution of local pepsin and proton pump expression to carcinogenesis is unknown. In this study, RNA sequencing was used to examine global transcriptomic changes in a BE cell line ectopically expressing pepsinogen and/or gastric H+ /K+ ATPase proton pumps. STUDY DESIGN In vitro translational. METHODS BAR-T, a human BE cell line devoid of expression of pepsinogen or proton pumps, was transduced by lentivirus-encoding pepsinogen (PGA5) and/or gastric proton pump subunits (ATP4A, ATP4B). Changes relative to the parental line were assessed by RNA sequencing. RESULTS Top canonical pathways associated with protein-coding genes differentially expressed in pepsinogen and/or proton pump expressing BAR-T cells included those involved in the tumor microenvironment and epithelial-mesenchymal transition. Top upstream regulators of coding transcripts included TGFB1 and ERBB2, which are associated with the pathogenesis and prognosis of BE and EAC. Top upstream regulators of noncoding transcripts included p300-CBP, I-BET-151, and CD93, which have previously described associations with EAC or carcinogenesis. The top associated disease of both coding and noncoding transcripts was cancer. CONCLUSIONS These data support the carcinogenic potential of pepsin and proton pump expression in BE and reveal molecular pathways affected by their expression. Further study is warranted to investigate the role of these pathways in carcinogenesis associated with BE. LEVEL OF EVIDENCE NA Laryngoscope, 133:59-69, 2023.
Collapse
Affiliation(s)
- Kaleigh A Stabenau
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Tina L Samuels
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Tina K Lam
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Angela J Mathison
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Clive Wells
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kenneth W Altman
- Department of Otolaryngology, Geisinger Health System, Danville, California, USA
| | - Michele A Battle
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nikki Johnston
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
10
|
Zhang X, Han J, Fan D, Wang J, Lin X, Zhang H, Zhang C, Bai J, Huang H, Gu Y. Lysine-40 succinylation of TAGLN2 induces glioma angiogenesis and tumor growth through regulating TMSB4X. Cancer Gene Ther 2023; 30:172-181. [PMID: 36131066 DOI: 10.1038/s41417-022-00534-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/12/2022] [Accepted: 09/06/2022] [Indexed: 01/19/2023]
Abstract
Protein lysine succinylation (Ksucc) represents an important regulatory mechanism of tumor development. In this work, the difference of protein Ksucc between HCMEC/D3 co-cultured with U87 (glioma endothelia cells, GEC) and without U87 (normal endothelia cells, NEC) was investigated using TMT labeling and affinity enrichment followed by high-resolution LC-MS/MS analysis. Interestingly, TAGLN2 was highly succinylated at K40 in GEC (15.36 folds vs. NEC). Compared to the Vector group, TAGLN2WT and a succinylation-mimetic TAGLN2K40E greatly promoted the angiogenesis of glioma in vitro and in vivo. Furthermore, the adhesion and metastasis of U87 co-cultured with GEC in the TAGLN2WT or TAGLN2K40E group were also significantly promoted. This was consistent with the increased expression of VE-cadherin and actin cytoskeleton remodeling induced by TAGLN2 K40succ in GEC. In addition, high K40succ of TAGLN2 was associated with poor prognosis in patients with glioma. Overexpression of TAGLN2K40E also markedly promoted the proliferation and migration of glioma cells, further analysis of in vivo xenograft tumors showed that there was a significant decrease in tumor size and angiogenesis in the TAGLN2K40R group. Notably, the co-localization of TMSB4X and TAGLN2 mainly in the nucleus and cytoplasm of glioma cells was detected by immunofluorescence staining. We identified TMSB4X as a potential target of TAGLN2, which was proved to interact with TAGLN2WT rather than TAGLN2K40A. And the inhibition of TMSB4X could markedly attenuate the proliferation and migration of glioma cells induced by TAGLN2 K40succ. The results revealed K40succ of TAGLN2 could be a novelty diagnosis and therapeutic target for gliomas.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, P. R. China
| | - Jin Han
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, P. R. China
| | - Di Fan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Jiahong Wang
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, P. R. China
| | - Xiangdan Lin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Hong Zhang
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, P. R. China
| | - Cai Zhang
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, P. R. China
| | - Jialing Bai
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, P. R. China
| | - Hailan Huang
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, P. R. China
| | - Yanting Gu
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, P. R. China.
| |
Collapse
|
11
|
TAGLN2 Promotes the Proliferation, Migration, Invasion, and EMT of Clear Cell Renal Cell Carcinoma Through the PI3K/Akt Signaling Pathway. Biochem Genet 2022:10.1007/s10528-022-10319-z. [PMID: 36547768 DOI: 10.1007/s10528-022-10319-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The effect of Transgelin 2 (TAGLN2) on clear cell renal cell carcinoma (ccRCC) is unknown. This study explored the potential role and mechanism of ccRCC. The expression of TAGLN2 in Pan-cancers was analyzed using the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases. TCGA-KIRC database was used to analyze subsequent prognostic survival, pathway enrichment, and immune infiltration. Relevant experimental methods could explain the effect of TAGLN2 expression on tumor cell proliferation, migration, invasion, and apoptosis. Apoptosis, proliferation, Epithelial-to-Mesenchymal Transition (EMT), and PI3K/AKT signaling pathway-related protein expression were determined through western blotting. In the TCGA + GTEx database, mRNA-TAGLN2 expression was clearly increased in pan-cancer tissues, and the same result was found in ccRCC patients based on KIRC analysis results. In addition, TAGLN2 was associated with poor clinical stage, pathological grade, and survival prognosis. TAGLN2 is highly expressed in ccRCC tissues and in vitro TAGLN2 silencing of cells inhibits the proliferation, migration, invasion, and EMT of ccRCC cancer cells. Furthermore, TAGLN2-related differential genes enriched in the PI3K/AKT signaling pathway were negatively regulated after TAGLN2 silencing. Moreover, TAGLN2 may promote tumor immune escape and increase the risk of distant metastasis in immune infiltration-related analyses. TAGLN2 can be used as a single indicator to explain the survival probability of patients with ccRCC. In vitro TAGLN2 silencing inhibited the malignant properties of ccRCC by blocking the PI3K/AKT signaling pathway. In addition, TAGLN2 contributes to tumor immune escape and may be a potential therapeutic target for ccRCC.
Collapse
|
12
|
Tyavambiza C, Meyer M, Wusu AD, Madiehe AM, Meyer S. The Antioxidant and In Vitro Wound Healing Activity of Cotyledon orbiculata Aqueous Extract and the Synthesized Biogenic Silver Nanoparticles. Int J Mol Sci 2022; 23:ijms232416094. [PMID: 36555732 PMCID: PMC9781072 DOI: 10.3390/ijms232416094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The synthesis of silver nanoparticles using biogenic methods, particularly plants, has led to the discovery of several effective nanoparticles. In many instances, plant-derived silver nanoparticles have been shown to have more activity than the plant extract which was used to synthesize the nanoparticles. Silver nanoparticles have been successfully synthesized using the medicinal plant, Cotyledon orbiculata. This is a shrub found in the Western Cape province of South Africa. It has a long history of use in traditional medicine in the treatment of wounds and skin infections. The C. orbiculata synthesized silver nanoparticles (Cotyledon-AgNPs) were reported to have good antimicrobial and anti-inflammatory activities; however, their wound-healing properties have not been determined. This study aimed to determine the wound healing activity of Cotyledon-AgNPs using the scratch assay. Gene expression studies were also done to determine the nanoparticles' mechanism of action. The Cotyledon-AgNPs showed good antioxidant, growth-promoting and cell migration properties. Gene expression studies showed that the C. orbiculata water extract and Cotyledon-AgNPs promoted wound healing by upregulating genes involved in cell proliferation, migration and growth while downregulating pro-inflammatory genes. This confirms, for the first time that a water extract of C. orbiculata and silver nanoparticles synthesized from this extract are good wound-healing agents.
Collapse
Affiliation(s)
- Caroline Tyavambiza
- Department of Biomedical Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
- DSI/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa
| | - Adedoja Dorcas Wusu
- DSI/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa
| | - Abram Madimabe Madiehe
- DSI/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa
| | - Samantha Meyer
- Department of Biomedical Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
- Correspondence: ; Tel.: +27-21-959-6251
| |
Collapse
|
13
|
Liu F, Bouznad N, Kaller M, Shi X, König J, Jaeckel S, Hermeking H. Csf1r mediates enhancement of intestinal tumorigenesis caused by inactivation of Mir34a. Int J Biol Sci 2022; 18:5415-5437. [PMID: 36147476 PMCID: PMC9461672 DOI: 10.7150/ijbs.75503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
The CSF1 receptor (CSF1R) encoding mRNA represents a direct target of miR-34a. However, the in vivo relevance of the suppression of CSF1R by miR-34a for intestinal tumor suppression mediated by the p53/miR-34a pathway has remained unknown. Here, ApcMin/+ mice with intestinal-epithelial cell (IEC)-specific deletions of Mir34a showed increased formation of adenomas and decreased survival, whereas deletion of Csf1r decreased adenoma formation and increased survival. In adenomas deletion of Mir34a enhanced proliferation, STAT3 signaling, infiltration with fibroblasts, immune cells and microbes, and tumor stem cell abundance and decreased apoptosis. Deletion of Csf1r had the opposite effects. In addition, homeostasis of intestinal secretory and stem cells, and tumoroid formation were affected in opposite directions by deletion of Mir34a and CSF1R. Concomitant deletion of Csf1r and Mir34a neutralized the effects of the single deletions. mRNAs containing Mir34a seed-matching sites, which encode proteins related to EMT (epithelial-mesenchymal transition), stemness and Wnt signaling, were enriched after Mir34a inactivation in adenomas and derived tumoroids. Netrin-1/Ntn1 and Transgelin/Tagln were characterized as direct targets of Mir34a and Csf1r signaling. Mir34a-inactivation related expression signatures were associated with CMS4/CRISB+D, stage 4 CRCs and poor patient survival. In tumoroids the loss of Mir34a conferred resistance to 5-FU which was mediated by Csf1r. This study provides genetic evidence for a requirement of Mir34a-mediated Csf1r suppression for intestinal stem/secretory cell homeostasis and tumor suppression, and suggests that therapeutic targeting of CSF1R may be effective for the treatment of CRCs with defects in the p53/miR-34a pathway.
Collapse
Affiliation(s)
- Fangteng Liu
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Nassim Bouznad
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Xiaolong Shi
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Janine König
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Stephanie Jaeckel
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany.,German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
14
|
Smooth muscle protein 22α-Cre recombination in resting cardiac fibroblasts and hematopoietic precursors. Sci Rep 2022; 12:11564. [PMID: 35798848 PMCID: PMC9263136 DOI: 10.1038/s41598-022-15957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
The Cre-loxP system has been widely used for cell- or organ-specific gene manipulation, but it is important to precisely understand what kind of cells the recombination takes place in. Smooth muscle 22α (SM22α)-Cre mice have been utilized to alter genes in vascular smooth muscle cells (VSMCs), activated fibroblasts or cardiomyocytes (CMs). Moreover, previous reports indicated that SM22α-Cre is expressed in adipocytes, platelets or myeloid cells. However, there have been no report of whether SM22α-Cre recombination takes place in nonCMs in hearts. Thus, we used the double-fluorescent Cre reporter mouse in which GFP is expressed when recombination occurs. Immunofluorescence analysis demonstrated that recombination occurred in resting cardiac fibroblasts (CFs) or macrophages, as well as VSMCs and CMs. Flow cytometry showed that some CFs, resident macrophages, neutrophils, T cells, and B cells were positive for GFP. These results prompted us to analyze bone marrow cells, and we observed GFP-positive hematopoietic precursor cells (HPCs). Taken together, these results indicated that SM22α-Cre-mediated recombination occurs in resting CFs and hematopoietic cell lineages, including HPCs, which is a cautionary point when using SM22α-Cre mice.
Collapse
|
15
|
Endoplasmic Reticulum Stress and Impairment of Ribosome Biogenesis Mediate the Apoptosis Induced by Ocimum x africanum Essential Oil in a Human Gastric Cancer Cell Line. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060799. [PMID: 35744062 PMCID: PMC9227199 DOI: 10.3390/medicina58060799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Gastric cancer remains a major unmet clinical problem worldwide. Although conventional medical treatments are available, their curative effects are generally unsatisfactory. Consequently, it remains necessary to search natural products for potential alternatives in treating gastric cancer patients. Ocimum x africanum Lour. is a culinary herb that has been used in folk medicine for various diseases, but little is known regarding its anti-cancer activity against gastric cancer cells. In the current study, we focus on the anti-cancer mechanisms of O. x africanum essential oil (OAEO) in the AGS human gastric cancer cell line. Materials and Methods: After OAEO treatment, AGS cell viability was evaluated by MTT assay. Cell migration and apoptotic nuclear morphology were determined by wound-healing assay and DAPI staining, respectively. Gene expression levels of apoptosis-related genes were quantified by qRT–PCR. Differential protein expression was determined with an LC–MS/MS-based proteomics approach to identify the key proteins that may be important in the anti-cancer mechanisms of OAEO on AGS cells. The chemical constituents of OAEO were identified by GC–MS analysis. Results: We found OAEO to exhibit a potent growth-inhibiting effect on AGS cells, with an IC50 value of 42.73 µg/mL. After OAEO treatment for 24 h, AGS cell migration was significantly decreased relative to the untreated control. OAEO-treated AGS cells exhibited common features of apoptotic cell death, including cell shrinkage, membrane blebbing, chromatin condensation, and nuclear fragmentation. Apoptotic cell death was confirmed by qRT–PCR for apoptosis-related genes, revealing that OAEO decreased the expression of anti-apoptotic genes (BCL2 and BCL-xL) and activated pro-apoptotic genes and apoptotic caspase genes (TP53, BAX, CASP9, CASP12, and CASP3). Moreover, expression of CASP8 was not changed after treatment. Proteomic analysis revealed that OAEO may produce a signature effect on protein clusters relating to unfolded protein accumulation, thereby inducing severe ER stress and also impairing ribosome synthesis. STRING analysis revealed seven up-regulated and 11 down-regulated proteins, which were significantly associated with protein folding and ribosome biogenesis, respectively. Using GC–MS analysis, 6-methyl-5-hepten-2-one, citral, neral, and linalool were found to be the major chemical constituents in OAEO. Conclusions: Taken together, these results indicate that OAEO has a potential anti-proliferative effect on AGS cells. Our molecular findings show evidence supporting an important role of ER stress and ribosome biogenesis impairment in mediating the induction of cell death by OAEO through the mitochondrial-apoptotic pathway. This study, therefore, provides fundamental knowledge for future applications using OAEO as an alternative therapy in gastric cancer management.
Collapse
|
16
|
Szelenberger R, Jóźwiak P, Kacprzak M, Bijak M, Zielińska M, Olender A, Saluk-Bijak J. Variations in Blood Platelet Proteome and Transcriptome Revealed Altered Expression of Transgelin-2 in Acute Coronary Syndrome Patients. Int J Mol Sci 2022; 23:ijms23116340. [PMID: 35683019 PMCID: PMC9181388 DOI: 10.3390/ijms23116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023] Open
Abstract
Proteomic analyses based on mass spectrometry provide a powerful tool for the simultaneous identification of proteins and their signatures. Disorders detection at the molecular level delivers an immense impact for a better understanding of the pathogenesis and etiology of various diseases. Acute coronary syndrome (ACS) refers to a group of heart diseases generally associated with rupture of an atherosclerotic plaque and partial or complete thrombotic obstruction of the blood flow in the infarct-related coronary artery. The essential role in the pathogenesis of ACS is related to the abnormal, pathological activation of blood platelets. The multifactorial and complex character of ACS indicates the need to explain the molecular mechanisms responsible for thrombosis. In our study, we performed screening and comparative analysis of platelet proteome from ACS patients and healthy donors. Two-dimensional fluorescence difference gel electrophoresis and nanoscale liquid chromatography coupled to tandem mass spectrometry showed altered expressions of six proteins (i.e., vinculin, transgelin-2, fibrinogen β and γ chains, apolipoprotein a1, and tubulin β), with the overlapping increased expression at the mRNA level for transgelin-2. Dysregulation in protein expression identified in our study may be associated with an increased risk of thrombotic events, correlated with a higher aggregability of blood platelets and induced shape change, thus explaining the phenomenon of the hyperreactivity of blood platelets in ACS.
Collapse
Affiliation(s)
- Rafał Szelenberger
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
- Correspondence:
| | - Paweł Jóźwiak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Michał Kacprzak
- Department of Interventional Cardiology, Medical University of Lodz, 91-213 Lodz, Poland; (M.K.); (M.Z.)
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Marzenna Zielińska
- Department of Interventional Cardiology, Medical University of Lodz, 91-213 Lodz, Poland; (M.K.); (M.Z.)
| | - Alina Olender
- Chair and Department of Medical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
17
|
Xi Y, Liu J, Shen G. Low expression of IGFBP4 and TAGLN accelerate the poor overall survival of osteosarcoma. Sci Rep 2022; 12:9298. [PMID: 35665757 PMCID: PMC9166812 DOI: 10.1038/s41598-022-13163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/20/2022] [Indexed: 11/09/2022] Open
Abstract
Osteosarcoma is a common malignant bone tumor characterized by the production of osteoid stroma by the tumor. However, effect of IGFBP4 and TAGLN on the survival of osteosarcoma is unclear. The GEO database was used to identify the differentially expressed genes (DEGs) between control samples and osteosarcoma. Genes for biological process (BP), cellular composition (CC), and molecular function (MF) were examined using DAVID, Metascape, and GSEA. GSE14359 and GSE36001 were downloaded in the GEO database. GEO2R was used to find DEGs between control samples and osteosarcoma. The cytoHubb also found the hub genes of IGFBP4 and TAGLN. The Kaplan–Meier method was used to analyze overall survival. A total of 134 patients with osteosarcoma were enrolled in this study. The RNA levels of IGFBP4 and TAGLN were evaluated by RT-qPCR. The correlation between IGFBP4 and TAGLN expression and their associations with clinical indicators were analyzed using Spearman's rho test and Pearson's Chi-squared test. Univariate and multivariate Cox regression analyses were used to determine the potential prognostic factors. And the animal model was used to verify the role of hub genes on the osteosarcoma by the RT-qPCR and immunofluorescence. Support Vector Machine (SVM) was performed to construct the correlation among the expression of IGFBP4, TAGLN, and osteosarcoma. Through bioinformatics, IGFBP4 and TAGLN were identified as the hub genes of osteosarcoma. And osteosarcoma patients with high expression levels of IGFBP4 (HR = 0.56, P = 0.013) and TAGLN (HR = 0.52, P = 0.012) had better overall survival times than those with low expression levels. The results showed that pathologic grade (P = 0.017), tumor metastasis (P < 0.001), and enneking stage (P < 0.001) were significantly correlated with IGFBP4. Also, pathologic grade (P = 0.002), tumor metastasis (P < 0.001), and enneking stage (P < 0.001) were significantly related to the TAGLN. Spearman’s correlation coefficient displayed that IGFBP4 were significantly correlated with the tumor metastasis (ρ = − 0.843, P < 0.001), enneking stage (ρ = − 0.500, P < 0.001), and TAGLN (ρ = 0.821, P < 0.001). IGFBP4 (HR = 0.252, 95% CI 0.122–0.517, P < 0.001) and TAGLN (HR = 0.155, 95% CI 0.089–0.269, P < 0.001) were significantly associated with overall survival. Based on the qPCR and immunofluorescence, IGFBP4 and TAGLN were down-regulated in the osteosarcoma tissue than the control group. And the SVM presented that there exists strong relationship among the expression of IGFBP4, TAGLN, and osteosarcoma. IGFBP4 and TAGLN may be attractive molecular targets for osteosarcoma, opening a new avenue for research into the disease.
Collapse
Affiliation(s)
- Yue Xi
- Department of Orthopaedics, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, 1279 Sanmen Road, Hongkou District, Shanghai, 200011, China
| | - Jianlin Liu
- Department of Orthopaedics, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, 1279 Sanmen Road, Hongkou District, Shanghai, 200011, China
| | - Gufeng Shen
- Department of Orthopaedics, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, 1279 Sanmen Road, Hongkou District, Shanghai, 200011, China.
| |
Collapse
|
18
|
Ye T, Chen R, Zhou Y, Zhang J, Zhang Z, Wei H, Xu Y, Wang Y, Zhang Y. Salvianolic acid A (Sal A) suppresses malignant progression of glioma and enhances temozolomide (TMZ) sensitivity via repressing transgelin-2 (TAGLN2) mediated phosphatidylinositol-3-kinase (PI3K) / protein kinase B (Akt) pathway. Bioengineered 2022; 13:11646-11655. [PMID: 35505656 PMCID: PMC9276020 DOI: 10.1080/21655979.2022.2070963] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Glioma originated from excessively proliferative and highly invaded glial cells is a common intracranial malignant tumor with poor prognosis. Resistance to temozolomide (TMZ) is a clinical challenge in glioma treatment due to the fact that chemoresistance remains a main obstacle in the improvement of drug efficacy. Salvianolic acid A (Sal A), originated from traditional Chinese herbal medicine Salvia miltiorrhiza, possesses anti-tumor effects and could facilitate the delivery of drugs to brain tumor tissues. In the present work, effects of Sal A on the viability, proliferation, migration, invasion and apoptosis of human glioma cell line U87 cells as well as influence of Sal A on TMZ resistance were measured, so as to identify the biological function of Sal A in the malignant behaviors and chemoresistance of glioma cells. Additionally, activation of TAGLN2/PI3K/Akt pathway in glioma cells was also detected to investigate whether Sal A could regulate TAGLN2/PI3K/Akt to manipulate the progression of glioma and TMZ resistance. Results discovered that Sal A treatment reduced the viability, repressed the proliferation, migration and invasion of glioma cells as well as promoted the apoptosis of glioma cells. Besides, Sal A treatment suppressed TAGLN2/PI3K/Akt pathway in glioma cells. Sal A treatment strengthened the suppressing effect of TMZ on glioma cell proliferation and reinforced the promoting effect of TMZ on glioma cell apoptosis, which were abolished by upregulation of TAGLN2. To conclude, Sal A treatment could suppress the malignant behaviors of glioma cells and improve TMZ sensitivity through inactivating TAGLN2/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Tingting Ye
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Rongrong Chen
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Yu Zhou
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Juan Zhang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Zhongqin Zhang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Hui Wei
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Yan Xu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Yulan Wang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Yinlan Zhang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| |
Collapse
|
19
|
Wang H, Zhang X, Liu C, Chen S, Liu X, Fan S. TAGLN2-Regulated Trophoblast Migration, Invasion and Fusion are Impaired in Preeclampsia. Front Cell Dev Biol 2022; 10:810633. [PMID: 35281112 PMCID: PMC8904561 DOI: 10.3389/fcell.2022.810633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/27/2022] [Indexed: 12/01/2022] Open
Abstract
Preeclampsia (PE) is a serious disease during pregnancy that affects approximately eight million mothers and infants worldwide each year and is closely related to abnormal trophoblast function. However, research on placental trophoblast functional abnormalities is insufficient, and the etiology of PE is unclear. Here, we report that the expression of transgelin-2 (TAGLN2) was downregulated in the placenta of patients with PE. In addition, a lack of TAGLN2 significantly reduced the ability of trophoblasts to migrate, invade and fuse. A co-immunoprecipitation (Co-IP) and microscale thermophoresis analysis showed that TAGLN2 bound directly to E-cadherin. A decrease in TAGLN2 expression led to a reduction in cleavage of the E-cadherin extracellular domain, thereby regulating the function of trophoblasts. In addition, we found that a reduction in soluble E-cadherin may also have an effect on blood vessel formation in the placenta, which is necessary for normal placental development. What’s more, the in vivo mouse model provided additional evidence of TAGLN2 involvement in the development of PE. By injecting pregnant mice with Ad-TAGLN2, we successfully generated a human PE-like syndrome that resulted in high blood pressure and some adverse pregnancy outcomes. Overall, the association between TAGLN2 and PE gives a new insight into PE diagnosis and treatment.
Collapse
Affiliation(s)
- Hao Wang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Obstetrics and Gynecology, Sun Yat‐Sen Memorial Hospital, Guangzhou, China
| | - Xiaowei Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Chunfeng Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Shengfu Chen
- Department of Obstetrics and Gynecology, Sun Yat‐Sen Memorial Hospital, Guangzhou, China
| | - Xinyang Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Shangrong Fan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
- *Correspondence: Shangrong Fan,
| |
Collapse
|
20
|
Bouchalova P, Beranek J, Lapcik P, Potesil D, Podhorec J, Poprach A, Bouchal P. Transgelin Contributes to a Poor Response of Metastatic Renal Cell Carcinoma to Sunitinib Treatment. Biomedicines 2021; 9:biomedicines9091145. [PMID: 34572331 PMCID: PMC8467952 DOI: 10.3390/biomedicines9091145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) represents about 2-3% of all cancers with over 400,000 new cases per year. Sunitinib, a vascular endothelial growth factor tyrosine kinase receptor inhibitor, has been used mainly for first-line treatment of metastatic clear-cell RCC with good or intermediate prognosis. However, about one-third of metastatic RCC patients do not respond to sunitinib, leading to disease progression. Here, we aim to find and characterize proteins associated with poor sunitinib response in a pilot proteomics study. Sixteen RCC tumors from patients responding (8) vs. non-responding (8) to sunitinib 3 months after treatment initiation were analyzed using data-independent acquisition mass spectrometry, together with their adjacent non-cancerous tissues. Proteomics analysis quantified 1996 protein groups (FDR = 0.01) and revealed 27 proteins deregulated between tumors non-responding vs. responding to sunitinib, representing a pattern of deregulated proteins potentially contributing to sunitinib resistance. Gene set enrichment analysis showed an up-regulation of epithelial-to-mesenchymal transition with transgelin as one of the most significantly abundant proteins. Transgelin expression was silenced by CRISPR/Cas9 and RNA interference, and the cells with reduced transgelin level exhibited significantly slower proliferation. Our data indicate that transgelin is an essential protein supporting RCC cell proliferation, which could contribute to intrinsic sunitinib resistance.
Collapse
Affiliation(s)
- Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (P.B.); (J.B.); (P.L.)
| | - Jindrich Beranek
- Department of Biochemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (P.B.); (J.B.); (P.L.)
| | - Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (P.B.); (J.B.); (P.L.)
| | - David Potesil
- Proteomics Core Facility, Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic;
| | - Jan Podhorec
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (J.P.); (A.P.)
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, 656 53 Brno, Czech Republic
| | - Alexandr Poprach
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (J.P.); (A.P.)
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, 656 53 Brno, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (P.B.); (J.B.); (P.L.)
- Correspondence: ; Tel.: +420-549-493-251
| |
Collapse
|
21
|
Zhao Z, Lu L, Li W. TAGLN2 promotes the proliferation, invasion, migration and epithelial-mesenchymal transition of colorectal cancer cells by activating STAT3 signaling through ANXA2. Oncol Lett 2021; 22:737. [PMID: 34466149 PMCID: PMC8387864 DOI: 10.3892/ol.2021.12998] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-associated mortality worldwide and currently ranks third in the USA in terms of prevalence. Transgelin-2 (TAGLN2) was previously reported to serve as a tumor promoter in various types of cancer. The present study aimed to investigate the role of TAGLN2 in the progression of CRC and to determine the potential underlying mechanism. The expression level of TAGLN2 in CRC cells (HCT116, SNU-C1, LoVo and SW480) were first detected by reverse transcription quantitative PCR and western blotting. Following TAGLN2 knockdown through transfection with short hairpin (sh)RNAs against TAGLN2, CRC cell proliferation was determined using Cell Counting Kit-8 and 5′-ethynyl-2′-deoxyuridine assays. Cell migration and invasion were evaluated using wound healing and Transwell assays, respectively. The expression levels of matrix metalloproteinase (MMP)2, MMP9 and proteins associated with epithelial-mesenchymal transition (EMT), including N-cadherin (N-cad), vimentin, zinc finger E-box binding homeobox 2 (ZEB2) and E-cadherin (E-cad), were also evaluated by western blotting. Furthermore, following TAGLN2 overexpression and the use of signal transducer and activator of transcription 3 (STAT3) inhibitors to treat CRC cells, all the aforementioned biological parameters were evaluated. The potential relationship between annexin 2 (ANXA2) and STAT3 was confirmed by western blotting analysis. The expression level of TAGLN2 was found to be particularly high in CRC cells. Following TAGLN2 knockdown, CRC cell proliferation, migration, invasion and EMT were significantly inhibited. TAGLN2 knockdown also suppressed STAT3 phosphorylation in CRC cells. In addition, the promoting effects of TAGLN2 overexpression on the progression of CRC were reversed by STAT3 inhibitor. Furthermore, ANXA2 was positively associated with STAT3. Taken together, these findings demonstrated that TAGLN2 could promote the proliferation, invasion, migration and EMT of CRC cells by activating STAT3 and regulating ANXA2 expression. This may reveal the underlying mechanism by which TAGLN2 might regulate the progression of CRC and provide potential therapeutic targets for the treatment of CRC.
Collapse
Affiliation(s)
- Zhicheng Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Li Lu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Weidong Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
22
|
Maxwell MJ, Arnold A, Sweeney H, Chen L, Lih TSM, Schnaubelt M, Eberhart CG, Rubens JA, Zhang H, Clark DJ, Raabe EH. Unbiased Proteomic and Phosphoproteomic Analysis Identifies Response Signatures and Novel Susceptibilities After Combined MEK and mTOR Inhibition in BRAF V600E Mutant Glioma. Mol Cell Proteomics 2021; 20:100123. [PMID: 34298159 PMCID: PMC8363840 DOI: 10.1016/j.mcpro.2021.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 11/24/2022] Open
Abstract
The mitogen-activated protein kinase pathway is one of the most frequently altered pathways in cancer. It is involved in the control of cell proliferation, invasion, and metabolism, and can cause resistance to therapy. A number of aggressive malignancies, including melanoma, colon cancer, and glioma, are driven by a constitutively activating missense mutation (V600E) in the v-Raf murine sarcoma viral oncogene homolog B (BRAF) component of the pathway. Mitogen-activated protein kinase kinase (MEK) inhibition is initially effective in targeting these cancers, but reflexive activation of mammalian target of rapamycin (mTOR) signaling contributes to frequent therapy resistance. We have previously demonstrated that combination treatment with the MEK inhibitor trametinib and the dual mammalian target of rapamycin complex 1/2 inhibitor TAK228 improves survival and decreases vascularization in a BRAFV600E mutant glioma model. To elucidate the mechanism of action of this combination therapy and understand the ensuing tumor response, we performed comprehensive unbiased proteomic and phosphoproteomic characterization of BRAFV600E mutant glioma xenografts after short-course treatment with trametinib and TAK228. We identified 13,313 proteins and 30,928 localized phosphosites, of which 12,526 proteins and 17,444 phosphosites were quantified across all samples (data available via ProteomeXchange; identifier PXD022329). We identified distinct response signatures for each monotherapy and combination therapy and validated that combination treatment inhibited activation of the mitogen-activated protein kinase and mTOR pathways. Combination therapy also increased apoptotic signaling, suppressed angiogenesis signaling, and broadly suppressed the activity of the cyclin-dependent kinases. In response to combination therapy, both epidermal growth factor receptor and class 1 histone deacetylase proteins were activated. This study reports a detailed (phospho)proteomic analysis of the response of BRAFV600E mutant glioma to combined MEK and mTOR pathway inhibition and identifies new targets for the development of rational combination therapies for BRAF-driven tumors.
Collapse
Affiliation(s)
- Micah J Maxwell
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Antje Arnold
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heather Sweeney
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lijun Chen
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tung-Shing M Lih
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Schnaubelt
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles G Eberhart
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey A Rubens
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hui Zhang
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David J Clark
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric H Raabe
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
23
|
Stöckl JB, Schmid N, Flenkenthaler F, Drummer C, Behr R, Mayerhofer A, Arnold GJ, Fröhlich T. Age-Related Alterations in the Testicular Proteome of a Non-Human Primate. Cells 2021; 10:cells10061306. [PMID: 34074003 PMCID: PMC8225046 DOI: 10.3390/cells10061306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Aging of human testis and associated cellular changes is difficult to assess. Therefore, we used a translational, non-human primate model to get insights into underlying cellular and biochemical processes. Using proteomics and immunohistochemistry, we analyzed testicular tissue of young (age 2 to 3) and old (age 10 to 12) common marmosets (Callithrix jacchus). Using a mass spectrometry-based proteomics approach, we identified 63,124 peptides, which could be assigned to 5924 proteins. Among them, we found proteins specific for germ cells and somatic cells, such as Leydig and Sertoli cells. Quantitative analysis showed 31 differentially abundant proteins, of which 29 proteins were more abundant in older animals. An increased abundance of anti-proliferative proteins, among them CDKN2A, indicate reduced cell proliferation in old testes. Additionally, an increased abundance of several small leucine rich repeat proteoglycans and other extracellular matrix proteins was observed, which may be related to impaired cell migration and fibrotic events. Furthermore, an increased abundance of proteins with inhibitory roles in smooth muscle cell contraction like CNN1 indicates functional alterations in testicular peritubular cells and may mirror a reduced capacity of these cells to contract in old testes.
Collapse
Affiliation(s)
- Jan B. Stöckl
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany; (J.B.S.); (F.F.)
| | - Nina Schmid
- Biomedical Center (BMC), Anatomy III–Cell Biology, Medical Faculty, LMU München, 82152 Martinsried, Germany; (N.S.); (A.M.)
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany; (J.B.S.); (F.F.)
| | - Charis Drummer
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (C.D.); (R.B.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37077 Göttingen, Germany
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (C.D.); (R.B.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37077 Göttingen, Germany
| | - Artur Mayerhofer
- Biomedical Center (BMC), Anatomy III–Cell Biology, Medical Faculty, LMU München, 82152 Martinsried, Germany; (N.S.); (A.M.)
| | - Georg J. Arnold
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany; (J.B.S.); (F.F.)
- Correspondence: (G.J.A.); (T.F.)
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany; (J.B.S.); (F.F.)
- Correspondence: (G.J.A.); (T.F.)
| |
Collapse
|
24
|
Identification of targets of JS-K against HBV-positive human hepatocellular carcinoma HepG2.2.15 cells with iTRAQ proteomics. Sci Rep 2021; 11:10381. [PMID: 34001947 PMCID: PMC8129129 DOI: 10.1038/s41598-021-90001-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/22/2021] [Indexed: 12/05/2022] Open
Abstract
JS-K, a nitric oxide-releasing diazeniumdiolates, is effective against various tumors. We have discovered that JS-K was effective against Hepatitis B virus (HBV)-positive HepG2.2.15 cells. This study used iTRAQ to identify differentially expressed proteins following JS-K treatment of HepG2.2.15 cells. Silenced Transgelin (shTAGLN-2.15) cells were constructed, and the cell viability was analyzed by the CCK8 assay after treatment with JS-K. There were 182 differentially expressed proteins in JS-K treated-HepG2.2.15 cells; 73 proteins were up-regulated and 109 proteins were down-regulated. These proteins were categorized according to GO classification. KEGG enrichment analysis showed that Endocytosis, Phagosome and Proteoglycans were the most significant pathways. RT-PCR confirmed that the expression levels of TAGLN, IGFBP1, SMTN, SERPINE1, ANXA3, TMSB10, LGALS1 and KRT19 were significantly up-regulated, and the expression levels of C5, RBP4, CHKA, SIRT5 and TRIM14 were significantly down-regulated in JS-K treated-HepG2.2.15 cells. Western blotting confirmed the increased levels of USP13 and TAGLN proteins in JS-K treated-HepG2.2.15 cells. Molecular docking revealed the binding of JS-K to TAGLN and shTAGLN-2.15 cells were resistant to JS-K cytotoxicity, suggesting that TAGLN could be an important target in JS-K anti-HBV-positive liver cancer cells. These proteomic findings could shed new insights into mechanisms underlying the effect of JS-K against HBV-related HCC.
Collapse
|
25
|
Ono S. Diversification of the calponin family proteins by gene amplification and repeat expansion of calponin-like motifs. Cytoskeleton (Hoboken) 2021; 78:199-205. [PMID: 34333878 PMCID: PMC8958760 DOI: 10.1002/cm.21683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 11/10/2022]
Abstract
The calponin family proteins in vertebrates, including calponin and transgelin (also known as SM22 or NP25), regulate actin-myosin interaction and actin filament stability and are involved in regulation of muscle contractility and cell migration. Related proteins are also present in invertebrates and fungi. Animals have multiple genes encoding calponin family proteins with variable molecular features, which are often expressed in the same tissues or cells. However, functional studies of this class of proteins have been reported only in limited species. Through database searches, I found that the calponin family proteins were diversified in animals by gene amplification and repeat expansion of calponin-like (CLIK) motifs, which function as actin-binding sequences. Transgelin-like proteins with a single CLIK motif are the most primitive type and present in fungi and animals. In many animals, additional calponin family proteins containing multiple CLIK motifs, as represented by vertebrate calponins with three CLIK motifs, are present. Interestingly, in several invertebrate species, there are uncharacterized calponin-related proteins with highly expanded repeats of CLIK motifs (up to 23 repeats in mollusks). These variable molecular features of the calponin family proteins may be results of evolutionary adaptation to a broad range of cell biological events.
Collapse
Affiliation(s)
- Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
26
|
Kim HR, Park JS, Karabulut H, Yasmin F, Jun CD. Transgelin-2: A Double-Edged Sword in Immunity and Cancer Metastasis. Front Cell Dev Biol 2021; 9:606149. [PMID: 33898417 PMCID: PMC8060441 DOI: 10.3389/fcell.2021.606149] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Transgelin-2, a small actin-binding protein, is the only transgelin family member expressed in immune cells. In T and B lymphocytes, transgelin-2 is constitutively expressed, but in antigen-presenting cells, it is significantly upregulated upon lipopolysaccharide stimulation. Transgelin-2 acts as a molecular staple to stabilize the actin cytoskeleton, and it competes with cofilin to bind filamentous (F)-actin. This action may enable immune synapse stabilization during T-cell interaction with cognate antigen-presenting cells. Furthermore, transgelin-2 blocks Arp2/3 complex-nucleated actin branching, which is presumably related to small filopodia formation, enhanced phagocytic function, and antigen presentation. Overall, transgelin-2 is an essential part of the molecular armament required for host defense against neoplasms and infectious diseases. However, transgelin-2 acts as a double-edged sword, as its expression is also essential for a wide range of tumor development, including drug resistance and metastasis. Thus, targeting transgelin-2 can also have a therapeutic advantage for cancer treatment; selectively suppressing transgelin-2 expression may prevent multidrug resistance in cancer chemotherapy. Here, we review newly discovered molecular characteristics of transgelin-2 and discuss clinical applications for cancer and immunotherapy.
Collapse
Affiliation(s)
- Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Hatice Karabulut
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Fatima Yasmin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| |
Collapse
|
27
|
Hall M, Kültz D, Almaas E. Identification of key proteins involved in stickleback environmental adaptation with system-level analysis. Physiol Genomics 2020; 52:531-548. [PMID: 32956024 DOI: 10.1152/physiolgenomics.00078.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using abundance measurements of 1,490 proteins from four separate populations of three-spined sticklebacks, we implemented a system-level approach to correlate proteome dynamics with environmental salinity and temperature and the fish's population and morphotype. We identified robust and accurate fingerprints that classify environmental salinity, temperature, morphotype, and the population sample origin, observing that proteins with specific functions are enriched in these fingerprints. Highly apparent functions represented in all fingerprints include ion transport, proteostasis, growth, and immunity, suggesting that these functions are most diversified in populations inhabiting different environments. Applying a differential network approach, we analyzed the network of protein interactions that differs between populations. Looking at specific population combinations of differential interaction, we identify sets of connected proteins. We find that these sets and their corresponding enriched functions reflect key processes that have diverged between the four populations. Moreover, the extent of divergence, i.e., the number of enriched functions that differ between populations, is highest when all three environmental parameters are different between two populations. Key nodes in the differential interaction network signify functions that are also inherent in the fingerprints, most prominently proteostasis-related functions. However, the differential interaction network also reveals additional functions that have diverged between populations, notably cytoskeletal organization and morphogenesis. The strength of these analyses is that the results are purely data driven. With such an unbiased approach applied on a large proteomic data set, we find the strongest signals given by the data, making it possible to develop more discriminatory and complex biomarkers for specific contexts of interest.
Collapse
Affiliation(s)
- Martina Hall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway.,K. G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dietmar Kültz
- Department of Animal Sciences, University of California, Davis, California
| | - Eivind Almaas
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway.,K. G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
28
|
Dionizio A, Melo CGS, Sabino-Arias IT, Araujo TT, Ventura TMO, Leite AL, Souza SRG, Santos EX, Heubel AD, Souza JG, Perles JVCM, Zanoni JN, Buzalaf MAR. Effects of acute fluoride exposure on the jejunum and ileum of rats: Insights from proteomic and enteric innervation analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140419. [PMID: 32886984 DOI: 10.1016/j.scitotenv.2020.140419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Fluoride (F) is largely employed in dentistry, in therapeutic doses, to control caries. However, excessive intake may lead to adverse effects in the body. Since F is absorbed mostly from the gastrointestinal tract (GIT), gastrointestinal symptoms are the first signs following acute F exposure. Nevertheless, little is known about the mechanistic events that lead to these symptoms. Therefore, the present study evaluated changes in the proteomic profile as well as morphological changes in the jejunum and ileum of rats upon acute exposure to F. Male rats received, by gastric gavage, a single dose of F containing 0 (control) or 25 mg/Kg for 30 days. Upon exposure to F, there was a decrease in the thickness of the tunic muscularis for both segments and a decrease in the thickness of the wall only for the ileum. In addition, a decrease in the density of HuC/D-IR neurons and nNOS-IR neurons was found for the jejunum, but for the ileum only nNOS-IR neurons were decreased upon F exposure. Moreover, SP-IR varicosities were increased in both segments, while VIP-IR varicosities were increased in the jejunum and decreased in the ileum. As for the proteomic analysis, the proteins with altered expression were mostly negatively regulated and associated mainly with protein synthesis and energy metabolism. Proteomics also revealed alterations in proteins involved in oxidative/antioxidant defense, apoptosis and as well as in cytoskeletal proteins. Our results, when analyzed together, suggest that the gastrointestinal symptoms found in cases of acute F exposure might be related to the morphological alterations in the gut (decrease in the thickness of the tunica muscularis) that, at the molecular level, can be explained by alterations in the gut vipergic innervation and in proteins that regulate the cytoskeleton.
Collapse
Affiliation(s)
- Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | - Tamara Teodoro Araujo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Aline Lima Leite
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Erika Xavier Santos
- Department of Morphophysiological Sciences, State University of Maringá, Maringá, Brazil
| | | | - Juliana Gadelha Souza
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | | |
Collapse
|
29
|
Raymundo BR, Oh I, Xiu L, Kim C. Transgelin ( TAGLN) Regulates IQGAP1and Alters the Functions of Breast Cancer Cells. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bernardo R. Raymundo
- Department of Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul 136‐701 South Korea
| | - In‐Rok Oh
- Department of Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul 136‐701 South Korea
| | - Ling Xiu
- Department of Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul 136‐701 South Korea
| | - Chan‐Wha Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul 136‐701 South Korea
- Division of Life Sciences, College of Life Sciences and Biotechnology Korea University Seoul 136‐701 South Korea
| |
Collapse
|
30
|
Jiang Y, Sun Q, Fan M, He J, Zhang X, Xu H, Liao Z. Recombinant transgelin-like protein 1 from Mytilus shell induces formation of CaCO 3 polymorphic crystals in vitro. FEBS Open Bio 2020; 10:2216-2234. [PMID: 32902197 PMCID: PMC7530383 DOI: 10.1002/2211-5463.12972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Accepted: 09/03/2020] [Indexed: 11/23/2022] Open
Abstract
Transgelin is an actin cross-linking/gelling protein of the calponin family, which is associated with actin stress fibres, cell motility, adhesion and the maintenance of cell morphology. Transgelin-like proteins (TLPs) have also been identified as shell matrix proteins (SMPs) in several mollusc species; however, the functions of TLPs in biomineralization remain unknown. Transgelin-like protein 1 (TLP-1) was previously identified from the shell of Mytilus coruscus as a novel 19 kDa SMP with a calponin homology (CH) domain. To understand the role of TLP-1 in shell formation, the expression level and localization of the TLP-1 gene in biomineralization-related tissues were determined in this study. Furthermore, recombinant TLP-1 was expressed in a prokaryotic expression system with codon optimization, and an anti-rTLP-1 antibody was prepared based on the expressed recombinant TLP-1 (rTLP-1) protein. In vitro, rTLP-1 induced the formation of CaCO3 polymorphic crystals with distinct morphologies and inhibited crystallization rate and crystal interactions. Immunohistochemical, immunofluorescence, and pull-down analyses using the anti-rTLP-1 antibody revealed the specific locations of TLP-1 in biomineralization-related tissues and shell myostracum layer, and suggested the existence of a possible TLP-1 interaction network in the shell matrix. Our results are beneficial for understanding the functions of TLP-1, particularly through its CH domain, during shell mineralization.
Collapse
Affiliation(s)
- Yuting Jiang
- Laboratory of Marine Biology Protein EngineeringMarine Science and Technical CollegeZhejiang Ocean UniversityZhoushan CityChina
| | - Qi Sun
- Laboratory of Marine Biology Protein EngineeringMarine Science and Technical CollegeZhejiang Ocean UniversityZhoushan CityChina
| | - Meihua Fan
- Laboratory of Marine Biology Protein EngineeringMarine Science and Technical CollegeZhejiang Ocean UniversityZhoushan CityChina
| | - Jianyu He
- Department of BiologyUniversity of PisaCoNISMaItaly
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein EngineeringMarine Science and Technical CollegeZhejiang Ocean UniversityZhoushan CityChina
| | - Huanzhi Xu
- Laboratory of Marine Biology Protein EngineeringMarine Science and Technical CollegeZhejiang Ocean UniversityZhoushan CityChina
| | - Zhi Liao
- Laboratory of Marine Biology Protein EngineeringMarine Science and Technical CollegeZhejiang Ocean UniversityZhoushan CityChina
| |
Collapse
|
31
|
Fu J, Wang X, Yue Q. Functional loss of TAGLN inhibits tumor growth and increases chemosensitivity of non-small cell lung cancer. Biochem Biophys Res Commun 2020; 529:1086-1093. [PMID: 32819569 DOI: 10.1016/j.bbrc.2020.06.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/14/2020] [Indexed: 01/18/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of tumor mortality worldwide. However, the mechanisms underlying NSCLC tumorigenesis are incompletely understood. TAGLN, also named SM22, as a member of the calponin family, is highly expressed in many types of tumors. Nevertheless, its effects on NSCLC progression remain unclear. In this study, we found that TAGLN was over-expressed in tumor tissues of NSCLC patients and cell lines. Additionally, NSCLC patients with high expression showed worse overall survival rate. Then, gene silencing results indicated that TAGLN knockdown markedly inhibited proliferation and induced apoptosis in NSCLC cells, while rescue study exhibited opposite results. Moreover, suppressing TAGLN significantly reduced migration and invasion of NSCLC cells, and its over-expression promoted the migratory and invasive activities of NSCLC cells. The in vivo studies confirmed the oncogenic roles of TAGLN in NSCLC, along with clearly elevated metastasis. Notably, these effects were abrogated in mice with TAGLN deletion. Finally, we found that TAGLN knockdown could improve the sensitivity of NSCLC cells to sorafenib (SFB) and 5-FU treatment, further suppressing the proliferation, migration and invasion of NSCLC cells. Consistently, TAGLN deletion attenuated tumor xenografts growth and metastasis of NSCLC in mouse models by enhancing the anti-cancer effects of SFB and 5-FU. Altogether, these findings demonstrated that TAGLN functioned as an oncogene as well as a chemotherapeutic regulator during NSCLC development, which suggested a potential therapeutic strategy for NSCLC treatment mainly through repressing TAGLN expression.
Collapse
Affiliation(s)
- Juanjuan Fu
- Department of Pathology, The Fifth People's Hospital of Wuxi, Wuxi City, 214013, China
| | - Xiaoguang Wang
- Department of Pulmonary Medicine, Chinese People's Liberation Army 92493 Military Hospital, Huludao City, Liaoning Province, 125000, China
| | - Qingfang Yue
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| |
Collapse
|
32
|
Pouliquen DL, Boissard A, Coqueret O, Guette C. Biomarkers of tumor invasiveness in proteomics (Review). Int J Oncol 2020; 57:409-432. [PMID: 32468071 PMCID: PMC7307599 DOI: 10.3892/ijo.2020.5075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past two decades, quantitative proteomics has emerged as an important tool for deciphering the complex molecular events involved in cancers. The number of references involving studies on the cancer metastatic process has doubled since 2010, while the last 5 years have seen the development of novel technologies combining deep proteome coverage capabilities with quantitative consistency and accuracy. To highlight key findings within this huge amount of information, the present review identified a list of tumor invasive biomarkers based on both the literature and data collected on a biocollection of experimental cell lines, tumor models of increasing invasiveness and tumor samples from patients with colorectal or breast cancer. Crossing these different data sources led to 76 proteins of interest out of 1,245 mentioned in the literature. Information on these proteins can potentially be translated into clinical prospects, since they represent potential targets for the development and evaluation of innovative therapies, alone or in combination. Herein, a systematical review of the biology of each of these proteins, including their specific subcellular/extracellular or multiple localizations is presented. Finally, as an important advantage of quantitative proteomics is the ability to provide data on all these molecules simultaneously in cell pellets, body fluids or paraffin‑embedded sections of tumors/invaded tissues, the significance of some of their interconnections is discussed.
Collapse
Affiliation(s)
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| | | | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| |
Collapse
|
33
|
Elsafadi M, Manikandan M, Almalki S, Mahmood A, Shinwari T, Vishnubalaji R, Mobarak M, Alfayez M, Aldahmash A, Kassem M, Alajez NM. Transgelin is a poor prognostic factor associated with advanced colorectal cancer (CRC) stage promoting tumor growth and migration in a TGFβ-dependent manner. Cell Death Dis 2020; 11:341. [PMID: 32393769 PMCID: PMC7214449 DOI: 10.1038/s41419-020-2529-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is the fourth most common cancer type globally. Investigating the signaling pathways that maintain cancer cell phenotype can identify new biomarkers for targeted therapy. Aberrant transforming growth factor-β (TGFβ) signaling has been implicated in CRC progression, however, the exact mechanism by which TGFβ exerts its function is still being unraveled. Herein, we investigated TAGLN expression, prognostic value, and its regulation by TGFβ in CRC. While TAGLN was generally found to be downregulated in CRC, elevated expression of TAGLN was associated with advanced CRC stage and predicted poor overall survival (hazard ratio (HR) = 1.8, log-rank test P-value = 0.014) and disease-free survival (HR = 1.6, log-rank test P-value = 0.046), hence implicating TAGLN as poor prognostic factor in CRC. Forced expression of TAGLN was associated with enhanced CRC cell proliferation, clonogenic growth, cell migration and in vivo tumor formation in immunocompromised mice, while targeted depletion of TAGLN exhibited opposing biological effects. Global gene expression profiling of TAGLN-overexpressing or TAGLN-deficient CRC cell lines revealed deregulation of multiple cancer-related genes and signaling pathways. Transmission electron microscopy (TEM) revealed ultrastructural changes due to loss of TAGLN, including disruption of actin cytoskeleton organization and aberrant actin filament distribution. Hierarchical clustering, principle component, and ingenuity pathway analyses revealed distinct molecular profile associated with TAGLNhigh CRC patients with remarkable activation of a number of mechanistic networks, including SMARCA4, TGFβ1, and P38 MAPK. The P38 MAPK was the top predicted upstream regulator network promoting cell movement through regulation of several intermediate molecules, including TGFβ1. Concordantly, functional categories associated with cellular movement and angiogenesis were also enriched in TAGLNhigh CRC, supporting a model for the molecular mechanisms linking TGFβ-induced upregulation of TAGLN and CRC tumor progression and suggesting TAGLN as potential prognostic marker associated with advanced CRC pathological stage.
Collapse
Affiliation(s)
- Mona Elsafadi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Muthurangan Manikandan
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Sami Almalki
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Tasneem Shinwari
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Radhakrishnan Vishnubalaji
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Mohammad Mobarak
- Department of Histopathology, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Abdullah Aldahmash
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Moustapha Kassem
- Molecular Endocrinology Unit (KMEB), Department of Endocrinology, University Hospital of Odense and University of Southern Denmark, Odense, Denmark
| | - Nehad M Alajez
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
34
|
Buttacavoli M, Albanese NN, Roz E, Pucci-Minafra I, Feo S, Cancemi P. Proteomic Profiling of Colon Cancer Tissues: Discovery of New Candidate Biomarkers. Int J Mol Sci 2020; 21:ijms21093096. [PMID: 32353950 PMCID: PMC7247674 DOI: 10.3390/ijms21093096] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Colon cancer is an aggressive tumor form with a poor prognosis. This study reports a comparative proteomic analysis performed by using two-dimensional differential in-gel electrophoresis (2D-DIGE) between 26 pooled colon cancer surgical tissues and adjacent non-tumoral tissues, to identify potential target proteins correlated with carcinogenesis. The DAVID functional classification tool revealed that most of the differentially regulated proteins, acting both intracellularly and extracellularly, concur across multiple cancer steps. The identified protein classes include proteins involved in cell proliferation, apoptosis, metabolic pathways, oxidative stress, cell motility, Ras signal transduction, and cytoskeleton. Interestingly, networks and pathways analysis showed that the identified proteins could be biologically inter-connected to the tumor-host microenvironment, including innate immune response, platelet and neutrophil degranulation, and hemostasis. Finally, transgelin (TAGL), here identified for the first time with four different protein species, collectively down-regulated in colon cancer tissues, emerged as a top-ranked biomarker for colorectal cancer (CRC). In conclusion, our findings revealed a different proteomic profiling in colon cancer tissues characterized by the deregulation of specific pathways involved in hallmarks of cancer. All of these proteins may represent promising novel colon cancer biomarkers and potential therapeutic targets, if validated in larger cohorts of patients.
Collapse
Affiliation(s)
- Miriam Buttacavoli
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans, Building 16, 90128 Palermo, Italy
| | - Nadia Ninfa Albanese
- Experimental Center of Onco Biology (COBS), Via San Lorenzo Colli, 312, 90145 Palermo, Italy
| | - Elena Roz
- La Maddalena Hospital III Level Oncological Department, Via San Lorenzo Colli, 312, 90145 Palermo, Italy
| | - Ida Pucci-Minafra
- Experimental Center of Onco Biology (COBS), Via San Lorenzo Colli, 312, 90145 Palermo, Italy
| | - Salvatore Feo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans, Building 16, 90128 Palermo, Italy
| | - Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans, Building 16, 90128 Palermo, Italy
- Experimental Center of Onco Biology (COBS), Via San Lorenzo Colli, 312, 90145 Palermo, Italy
- Correspondence:
| |
Collapse
|
35
|
Dvorakova M, Lapcik P, Bouchalova P, Bouchal P. Transgelin Silencing Induces Different Processes in Different Breast Cancer Cell Lines. Proteomics 2020; 20:e1900383. [PMID: 32061197 DOI: 10.1002/pmic.201900383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Indexed: 12/30/2022]
Abstract
Transgelin is a protein reported to be a marker of several cancers. However, previous studies have shown both up- and down-regulation of transgelin in tumors when compared with non-tumor tissues and the mechanisms whereby transgelin may affect the development of cancer remain largely unknown. Transgelin is especially abundant in smooth muscle cells and is associated with actin stress fibers. These contractile structures participate in cell motility, adhesion, and the maintenance of cell morphology. Here, the role of transgelin in breast cancer is focused on. Initially, the effects of transgelin on cell migration of the breast cancer cell lines, BT 549 and PMC 42, is studied. Interestingly, transgelin silencing increased the migration of PMC 42 cells, but decreased the migration of BT 549 cells. To clarify these contradictory results, the changes in protein abundances after transgelin silencing in these two cell lines are analyzed using quantitative proteomics. The results confirmed the role of transgelin in the migration of BT 549 cells and suggest the involvement of transgelin in apoptosis and small molecule biochemistry in PMC 42 cells. The context-dependent function of transgelin reflects the different molecular backgrounds of these cell lines, which differ in karyotypes, mutation statuses, and proteome profiles.
Collapse
Affiliation(s)
- Monika Dvorakova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic.,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, 65653, Czech Republic
| | - Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| | - Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| |
Collapse
|
36
|
Transgelin, a p53 and PTEN-Upregulated Gene, Inhibits the Cell Proliferation and Invasion of Human Bladder Carcinoma Cells in Vitro and in Vivo. Int J Mol Sci 2019; 20:ijms20194946. [PMID: 31591355 PMCID: PMC6801752 DOI: 10.3390/ijms20194946] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/14/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022] Open
Abstract
Transgelin (TAGLN/SM22-α) is a regulator of the actin cytoskeleton, affecting the survival, migration, and apoptosis of various cancer cells divergently; however, the roles of TAGLN in bladder carcinoma cells remain inconclusive. We compared expressions of TAGLN in human bladder carcinoma cells to the normal human bladder tissues to determine the potential biological functions and regulatory mechanisms of TAGLN in bladder carcinoma cells. Results of RT-qPCR and immunoblot assays indicated that TAGLN expressions were higher in bladder smooth muscle cells, fibroblast cells, and normal epithelial cells than in carcinoma cells (RT-4, HT1376, TSGH-8301, and T24) in vitro. Besides, the results of RT-qPCR revealed that TAGLN expressions were higher in normal tissues than the paired tumor tissues. In vitro, TAGLN knockdown enhanced cell proliferation and invasion, while overexpression of TAGLN had the inverse effects in bladder carcinoma cells. Meanwhile, ectopic overexpression of TAGLN attenuated tumorigenesis in vivo. Immunofluorescence and immunoblot assays showed that TAGLN was predominantly in the cytosol and colocalized with F-actin. Ectopic overexpression of either p53 or PTEN induced TAGLN expression, while p53 knockdown downregulated TAGLN expression in bladder carcinoma cells. Our results indicate that TAGLN is a p53 and PTEN-upregulated gene, expressing higher levels in normal bladder epithelial cells than carcinoma cells. Further, TAGLN inhibited cell proliferation and invasion in vitro and blocked tumorigenesis in vivo. Collectively, it can be concluded that TAGLN is an antitumor gene in the human bladder.
Collapse
|
37
|
Chen Z, He S, Zhan Y, He A, Fang D, Gong Y, Li X, Zhou L. TGF-β-induced transgelin promotes bladder cancer metastasis by regulating epithelial-mesenchymal transition and invadopodia formation. EBioMedicine 2019; 47:208-220. [PMID: 31420300 PMCID: PMC6796540 DOI: 10.1016/j.ebiom.2019.08.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background Metastatic bladder cancer (BLCA) is a lethal disease with an unmet need for study. Transgelin (TAGLN) is an actin-binding protein that affects the dynamics of the actin cytoskeleton indicating its robust potential as a metastasis initiator. Here, we sought to explore the expression pattern of TAGLN and elucidate its specific functioning and mechanisms in BLCA. Methods A comprehensive assessment of TAGLN expression in BLCA was performed in three cohorts with a total of 847 patients. The potential effects of TAGLN on BLCA were further determined using clinical genomic analyses that guided the subsequent functional and mechanistic studies. In vitro migration, invasion assays and in vivo metastatic mouse model were performed to explore the biological functions of TAGLN in BLCA cells. Immunofluorescence, western blot and correlation analysis were used to investigate the molecular mechanisms of TAGLN. Findings TAGLN was highly expressed in BLCA and correlated with advanced prognostic features. TAGLN promoted cell colony formation and cell migration and invasion both in vitro and in vivo by inducing invadopodia formation and epithelial-mesenchymal transition, during which a significant correlation between TAGLN and Slug was observed. The progression-dependent correlation between TGF-β and TAGLN was analysed at both the cellular and tissue levels, while TGF-β-mediated migration was abolished by the suppression of TAGLN. Interpretation Overall, TAGLN is a promising novel prognosis biomarker of BLCA, and its metastatic mechanisms indicate that TAGLN may represent a novel target agent that can be utilized for the clinical management of invasive and metastatic BLCA. Fund This work was supported by the National Natural Science Foundation of China [81772703, 81672546, 81602253]; the Natural Science Foundation of Beijing [71772219, 7152146]. and Innovative Fund for Doctoral Students of Peking University Health Science Center (BUM2018BSS002). Funders had no role in the design of the study, data collection, data analysis, interpretation, or the writing of this report.
Collapse
Affiliation(s)
- Zhicong Chen
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Yonghao Zhan
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China; Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 45000, China
| | - Anbang He
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China.
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China.
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China.
| |
Collapse
|
38
|
Zadeh Fakhar HB, Zali H, Rezaie-Tavirani M, Darkhaneh RF, Babaabasi B. Proteome profiling of low grade serous ovarian cancer. J Ovarian Res 2019; 12:64. [PMID: 31315664 PMCID: PMC6637464 DOI: 10.1186/s13048-019-0535-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
Background Serous carcinoma, the subtype of ovarian cancer has the highest occurrence and mortality in women. Proteomic profiling using mass spectrometry (MS) has been used to detect biomarkers in tissue s obtained from patients with ovarian cancer. Thus, this study aimed at analyzing the interactome (protein-protein interaction (PPI)) and (MS) data to inspect PPI networks in patients with Low grade serous ovarian cancer. Methods For proteome profiling in Low grade serous ovarian cancer, 2DE and mass spectrometry were used. Differentially expressed proteins which had been determined in Low grade serous ovarian cancer and experimental group separately were integrated with PPI data to construct the (QQPPI) networks. Results Six Hub-bottlenecks proteins with significant centrality values, based on centrality parameters of the network (Degree and between), were found including Transgelin (TAGLN), Keratin (KRT14), Single peptide match to actin, cytoplasmic 1(ACTB), apolipoprotein A-I (APOA1), Peroxiredoxin-2 (PRDX2), and Haptoglobin (HP). Discussion This study showed these six proteins were introduced as hub-bottleneck protein. It can be concluded that regulation of gene expression can have a critical role in the pathology of Low-grade serous ovarian cancer.
Collapse
Affiliation(s)
| | - Hakimeh Zali
- Proteomics Research Center, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Babak Babaabasi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute, ACECR, Tehran, Iran
| |
Collapse
|
39
|
Yin LM, Ulloa L, Yang YQ. Transgelin-2: Biochemical and Clinical Implications in Cancer and Asthma. Trends Biochem Sci 2019; 44:885-896. [PMID: 31256982 DOI: 10.1016/j.tibs.2019.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/29/2022]
Abstract
Transgelin-2 has been regarded as an actin-binding protein that induces actin gelation and regulates actin cytoskeleton. However, transgelin-2 has recently been shown to relax the myosin cytoskeleton of the airway smooth muscle cells by acting as a receptor for extracellular metallothionein-2. From a clinical perspective, these results support transgelin-2 as a promising therapeutic target for diseases such as cancer and asthma. The inhibition of transgelin-2 prevents actin gelation and thereby cancer cell proliferation, invasion, and metastasis. Conversely, the activation of transgelin-2 with specific agonists relaxes airway smooth muscles and reduces pulmonary resistance in asthma. Here, we review new studies on the biochemical properties of transgelin-2 and discuss their clinical implications for the treatment of immune, oncogenic, and respiratory disorders.
Collapse
Affiliation(s)
- Lei-Miao Yin
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Luis Ulloa
- International Laboratory of Neuro-Immunomodulation, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China; Center of Immunology and Inflammation, Dept. of Surgery. Rutgers University-New Jersey Medical School, Newark, NJ 07101, USA.
| | - Yong-Qing Yang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.
| |
Collapse
|
40
|
Ma Y, Zhao X, Jia J, Yang Y, Fan R, Lv M, Ding F, Wu J, Zhang J. Analysis of Protein Expression in Human Cells Cocultured with Porcine Peripheral Blood Mononuclear Cells. Intervirology 2019; 61:237-246. [PMID: 30889573 DOI: 10.1159/000495179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/15/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Porcine endogenous retroviruses (PERV) involved in pig to human xenotransplantation have raised great concerns because of their ubiquitous nature in pigs and their ability of infecting human cells in vitro. Although no significant cytopathic effect attributed to PERV was evident on PERV-infected human embryonic kidney 293 (HEK293) cells, we did proteomic analysis to investigate the differences of protein profile in order to further characterize the effect of PERV infection. METHODS HEK293 cells were cocultured with porcine peripheral blood mononuclear cells (PBMCs). Protein profiles of PERV-infected and -noninfected HEK293 cells were analyzed by two-dimensional gel electrophoresis (2-DE). Protein spots with at least 1.5-fold alteration were identified by high-definition mass spectrometry (HDMS) analysis. Then real-time RT-PCR and Western blotting were performed to validate the proteomic results. RESULTS Differential analysis of PERV-infected and -noninfected HEK293 cells by 2-DE revealed ten differentially regulated proteins. The proteins identified by HDMS were involved in various cellular pathways including signal transduction, cell apoptosis, and protein synthesis. CONCLUSION The results of this study revealed differentially expressed proteins in HEK293 cells cocultured with porcine PBMCs and implied that these changes were probably induced by PERV infection. These results provide clues and potential links to understanding the molecular effect of the infection by human-tropic PERV.
Collapse
Affiliation(s)
- Yuyuan Ma
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China,
| | - Xiong Zhao
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Junting Jia
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, China
| | - Yongxian Yang
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Rui Fan
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Maomin Lv
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Fang Ding
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Jianmin Wu
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Guangxi Veterinary Research Institute, Nanning, China
| | - Jingang Zhang
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
41
|
Beyer SJ, Bell EH, McElroy JP, Fleming JL, Cui T, Becker A, Bassett E, Johnson B, Gulati P, Popp I, Staszewski O, Prinz M, Grosu AL, Haque SJ, Chakravarti A. Oncogenic transgelin-2 is differentially regulated in isocitrate dehydrogenase wild-type vs. mutant gliomas. Oncotarget 2018; 9:37097-37111. [PMID: 30647847 PMCID: PMC6324682 DOI: 10.18632/oncotarget.26365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/24/2018] [Indexed: 12/27/2022] Open
Abstract
The presence of an isocitrate dehydrogenase (IDH1/2) mutation in gliomas is associated with favorable outcomes compared to gliomas without the mutation (IDH1/2 wild-type, WT). The underlying biological mechanisms accounting for improved clinical outcomes in IDH1/2 mutant gliomas remain poorly understood, but may, in part, be due to the glioma CpG island methylator phenotype (G-CIMP) and epigenetic silencing of genes. We performed profiling of IDH1/2 WT versus IDH1/2 mutant Grade II and III gliomas and identified transgelin-2 (TAGLN2), an oncogene and actin-polymerizing protein, to be expressed at significantly higher levels in IDH1/2 WT gliomas compared to IDH1/2 mutant gliomas. This differential expression of TAGLN2 was primarily due to promoter hypermethylation in IDH1/2 mutant gliomas, suggesting involvement of TAGLN2 in the G-CIMP. Our results also suggest that TAGLN2 may be involved in progression due to higher expression in glioblastomas compared to IDH1/2 WT gliomas of lower grades. Furthermore, our results suggest that TAGLN2 functions as an oncogene by contributing to proliferation and invasion when overexpressed in IDH1/2 WT glioma cells. Taken together, this study demonstrates a possible link between increased TAGLN2 expression, invasion and poor patient outcomes in IDH1/2 WT gliomas and identifies TAGLN2 as a potential novel therapeutic target for IDH1/2 WT gliomas.
Collapse
Affiliation(s)
- Sasha J. Beyer
- Department of Radiation Oncology, Arthur G. James Hospital/The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Erica H. Bell
- Department of Radiation Oncology, Arthur G. James Hospital/The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Joseph P. McElroy
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Jessica L. Fleming
- Department of Radiation Oncology, Arthur G. James Hospital/The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Tiantian Cui
- Department of Radiation Oncology, Arthur G. James Hospital/The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Aline Becker
- Department of Radiation Oncology, Arthur G. James Hospital/The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Emily Bassett
- Department of Radiation Oncology, Arthur G. James Hospital/The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Benjamin Johnson
- Department of Radiation Oncology, Arthur G. James Hospital/The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Pooja Gulati
- Department of Radiation Oncology, Arthur G. James Hospital/The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ilinca Popp
- Department of Radiation Oncology, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany
| | - Ori Staszewski
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Anca L. Grosu
- Department of Radiation Oncology, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany
| | - Saikh Jaharul Haque
- Department of Radiation Oncology, Arthur G. James Hospital/The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, Arthur G. James Hospital/The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
42
|
Zhao F, Zhou LH, Ge YZ, Ping WW, Wu X, Xu ZL, Wang M, Sha ZL, Jia RP. MicroRNA-133b suppresses bladder cancer malignancy by targeting TAGLN2-mediated cell cycle. J Cell Physiol 2018; 234:4910-4923. [PMID: 30317571 DOI: 10.1002/jcp.27288] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/30/2018] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs), a group of small noncoding RNAs, are widely involved in the regulation of gene expression via binding to complementary sequences at 3'-untranslated regions (3'-UTRs) of target messenger RNAs. Recently, downregulation of miR-133b has been detected in various human malignancies. Here, the potential biological role of miR-133b in bladder cancer (BC) was investigated. In this study, we found the expression of miR-133b was markedly downregulated in BC tissues and cell lines (5637 and T24), and was correlated with poor overall survival. Notably, transgelin 2 (TAGLN2) was found to be widely upregulated in BC, and overexpression of TAGLN2 also significantly increased risks of advanced TMN stage. We further identified that upregulation of miR-133b inhibited glucose uptake, invasion, angiogenesis, colony formation and enhances gemcitabine chemosensitivity in BC cell lines by targeting TAGLN2. Additionally, we showed that miR-133b promoted the proliferation of BC cells, at least partially through a TAGLN2-mediated cell cycle pathway. Our results suggest a novel miR-133b/TAGLN2/cell cycle pathway axis controlling BC progression; a molecular mechanism which may offer a potential therapeutic target.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liu-Hua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Zheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen-Wen Ping
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhong-Le Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zuo-Liang Sha
- Department of Pathology, Pizhou People's Hospital, Xuzhou, China
| | - Rui-Peng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
43
|
Varberg KM, Garretson RO, Blue EK, Chu C, Gohn CR, Tu W, Haneline LS. Transgelin induces dysfunction of fetal endothelial colony-forming cells from gestational diabetic pregnancies. Am J Physiol Cell Physiol 2018; 315:C502-C515. [PMID: 29949406 PMCID: PMC6230685 DOI: 10.1152/ajpcell.00137.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022]
Abstract
Fetal exposure to gestational diabetes mellitus (GDM) predisposes children to future health complications including hypertension and cardiovascular disease. A key mechanism by which these complications occur is through the functional impairment of vascular progenitor cells, including endothelial colony-forming cells (ECFCs). Previously, we showed that fetal ECFCs exposed to GDM have decreased vasculogenic potential and altered gene expression. In this study, we evaluate whether transgelin (TAGLN), which is increased in GDM-exposed ECFCs, contributes to vasculogenic dysfunction. TAGLN is an actin-binding protein involved in the regulation of cytoskeletal rearrangement. We hypothesized that increased TAGLN expression in GDM-exposed fetal ECFCs decreases network formation by impairing cytoskeletal rearrangement resulting in reduced cell migration. To determine if TAGLN is required and/or sufficient to impair ECFC network formation, TAGLN was reduced and overexpressed in ECFCs from GDM and uncomplicated pregnancies, respectively. Decreasing TAGLN expression in GDM-exposed ECFCs improved network formation and stability as well as increased migration. In contrast, overexpressing TAGLN in ECFCs from uncomplicated pregnancies decreased network formation, network stability, migration, and alignment to laminar flow. Overall, these data suggest that increased TAGLN likely contributes to the vasculogenic dysfunction observed in GDM-exposed ECFCs, as it impairs ECFC migration, cell alignment, and network formation. Identifying the molecular mechanisms underlying fetal ECFC dysfunction following GDM exposure is key to ascertain mechanistically the basis for cardiovascular disease predisposition later in life.
Collapse
Affiliation(s)
- Kaela M Varberg
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine , Indianapolis, Indiana
- Herman B. Wells Center for Pediatric Research , Indianapolis, Indiana
| | - Rashell O Garretson
- Herman B. Wells Center for Pediatric Research , Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Emily K Blue
- Herman B. Wells Center for Pediatric Research , Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Chenghao Chu
- Department of Biostatistics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Cassandra R Gohn
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine , Indianapolis, Indiana
- Herman B. Wells Center for Pediatric Research , Indianapolis, Indiana
| | - Wanzhu Tu
- Department of Biostatistics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Laura S Haneline
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine , Indianapolis, Indiana
- Herman B. Wells Center for Pediatric Research , Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
- Indiana University Simon Cancer Center, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
44
|
Zhang H, Jiang M, Liu Q, Han Z, Zhao Y, Ji S. miR-145-5p inhibits the proliferation and migration of bladder cancer cells by targeting TAGLN2. Oncol Lett 2018; 16:6355-6360. [PMID: 30405771 PMCID: PMC6202496 DOI: 10.3892/ol.2018.9436] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/28/2018] [Indexed: 01/20/2023] Open
Abstract
MicroRNA-145-5p (miR-145-5p) is found to be involved in tumor development and progression. However, there are few studies on the effects of miR-145-5p on bladder cancer (BC). The role of miR-145-5p in BC was predicted by analysis of cell proliferation and migration in this study. The miR-145-5p and transgelin-2 (TAGLN2) expressions were evaluated via reverse transcription-quantitative PCR (RT-qPCR) or western blot analysis. The MTT and Transwell assay assessed cell proliferation and migration. TAGLN2 targeted to miR-145-5p was determined using luciferase assays. The results showed that the miR-145-5p downregulation was found in BC. miR-145-5p overexpression inhibited cell proliferation and migration in BC. Moreover, miR-145-5p directly targeted TAGLN2, and TAGLN2 expression was increased in BC. In addition, the high expression of TAGLN2 promoted cell proliferation and migration in BC. miR-145-5p appeared to regulate TAGLN2 in BC, and it also inhibited the cell proliferation and migration. The novel miR-145-5p/TAGLN2 axis may provide new therapeutic implications for BC.
Collapse
Affiliation(s)
- Haijian Zhang
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Meijuan Jiang
- Department of Neurology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Qingjun Liu
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Zhixing Han
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Yuqian Zhao
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Shiqi Ji
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| |
Collapse
|
45
|
Sun Y, Peng W, He W, Luo M, Chang G, Shen J, Zhao X, Hu Y. Transgelin-2 is a novel target of KRAS-ERK signaling involved in the development of pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:166. [PMID: 30041673 PMCID: PMC6056937 DOI: 10.1186/s13046-018-0818-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/29/2018] [Indexed: 02/08/2023]
Abstract
Background The KRAS mutation is the driving force of pancreatic ductal adenocarcinoma (PDAC). Downstream effectors of KRAS signal pathways are crucial to the development of PDAC. The purpose of this study was to investigate the relationship between KRAS mutation and transgelin-2. Transgelin-2 is highly expressed in PDAC tissues compared with adjacent normal tissues. The underlying mechanism for upregulating transgelin-2 is largely unknown. Methods Expression of transgelin-2 was analyzed by microarray data and qRT-PCR. The effect of KRAS signaling on transgelin-2 expression was examined in PDAC cells in the presence or absence of the ERK inhibitor. The interaction of transgelin-2 with ERK was confirmed by immunoprecipitation. ERK-mediated Phosphorylation of transglein-2 was detected by in vivo and in vitro kinase assays. The gain-of-function and loss-of-function approaches were used to examine the role of phosphorylation of transgelin-2 on cell proliferation. Phosphorylation of transgelin-2 was detected by immunohistochemistry in PDAC tissues. Results Here we found transgelin-2 expression was induced by KRAS mutation. In the case of KRAS mutation, ERK2 interacted with 29–31 amino acids of transgelin-2 and subsequently phosphorylated the S145 residue of transgelin-2. S145 phosphorylation of transgelin-2 played important roles in cell proliferation and tumorigenesis of PDAC. In addition, S145 phosphorylation of transgelin-2 was associated with a poor prognosis in patients with PDAC. Conclusions This study indicated that KRAS-ERK-mediated transeglin-2 phosphorylation played an important role in the development of PDAC. Inhibition of transgelin-2 phosphorylation may be a potential therapeutic strategy for targeting PDAC with KRAS mutation.
Collapse
Affiliation(s)
- Yan Sun
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenfang Peng
- Department of Endocrinology, Shanghai Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Weiwei He
- Department of Thoracic Surgery, Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Man Luo
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guilin Chang
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiping Shen
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Yu Hu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
46
|
In vitro evidence that platelet-rich plasma stimulates cellular processes involved in endometrial regeneration. J Assist Reprod Genet 2018; 35:757-770. [PMID: 29404863 DOI: 10.1007/s10815-018-1130-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The study aims to test the hypothesis that platelet-rich plasma (PRP) stimulates cellular processes involved in endometrial regeneration relevant to clinical management of poor endometrial growth or intrauterine scarring. METHODS Human endometrial stromal fibroblasts (eSF), endometrial mesenchymal stem cells (eMSC), bone marrow-derived mesenchymal stem cells (BM-MSC), and Ishikawa endometrial adenocarcinoma cells (IC) were cultured with/without 5% activated (a) PRP, non-activated (na) PRP, aPPP (platelet-poor-plasma), and naPPP. Treatment effects were evaluated with cell proliferation (WST-1), wound healing, and chemotaxis Transwell migration assays. Mesenchymal-to-epithelial transition (MET) was evaluated by cytokeratin and vimentin expression. Differential gene expression of various markers was analyzed by multiplex Q-PCR. RESULTS Activated PRP enhanced migration of all cell types, compared to naPRP, aPPP, naPPP, and vehicle controls, in a time-dependent manner (p < 0.05). The WST-1 assay showed increased stromal and mesenchymal cell proliferation by aPRP vs. naPRP, aPPP, and naPPP (p < 0.05), while IC proliferation was enhanced by aPRP and aPPP (p < 0.05). There was no evidence of MET. Expressions of MMP1, MMP3, MMP7, and MMP26 were increased by aPRP (p < 0.05) in eMSC and eSF. Transcripts for inflammation markers/chemokines were upregulated by aPRP vs. aPPP (p < 0.05) in eMSC and eSF. No difference in estrogen or progesterone receptor mRNAs was observed. CONCLUSIONS This is the first study evaluating the effect of PRP on different human endometrial cells involved in tissue regeneration. These data provide an initial ex vivo proof of principle for autologous PRP to promote endometrial regeneration in clinical situations with compromised endometrial growth and scarring.
Collapse
|
47
|
Zhou H, Zhang Y, Wu L, Xie W, Li L, Yuan Y, Chen Y, Lin Y, He X. Elevated transgelin/TNS1 expression is a potential biomarker in human colorectal cancer. Oncotarget 2017; 9:1107-1113. [PMID: 29416680 PMCID: PMC5787423 DOI: 10.18632/oncotarget.23275] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/04/2017] [Indexed: 11/25/2022] Open
Abstract
Transgelin is an actin-binding protein that regulates cell motility and other important cellular functions. Previous studies have suggested that transgelin expression is associated with cancer development and progression, but its specific role in colorectal cancer (CRC) remains controversial. We analyzed expression of transgelin and its candidate downstream target, tensin 1 (TNS1), in CRC patients using the ONCOMINE, Protein Atlas, and OncoLnc databases. Transgelin and TNS1 mRNA and protein levels were higher in CRC patients and CRC cell lines than in normal tissues and cells. Survival analyses using the OncoLnc database revealed that elevated TAGLN/TNS1 levels were associated with a poor overall survival in CRC patients. Transgelin suppression using siRNA decreased TNS1 expression in CRC cells, demonstrating that transgelin induces the TNS1 expression. Importantly, suppression of transgelin or TNS1 using siRNA decreased proliferation and invasiveness of CRC cells. These results suggest that transgelin/TNS1 signaling promotes CRC cell proliferation and invasion, and that transgelin/TNS1 expression levels could potentially serve as a prognostic and therapeutic target in CRC patients.
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiming Zhang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lihao Wu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenrui Xie
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lan Li
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Yuan
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Lin
- Department of Gastroenterology and Hepatology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinxiang He
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
48
|
Han MZ, Xu R, Xu YY, Zhang X, Ni SL, Huang B, Chen AJ, Wei YZ, Wang S, Li WJ, Zhang Q, Li G, Li XG, Wang J. TAGLN2 is a candidate prognostic biomarker promoting tumorigenesis in human gliomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:155. [PMID: 29110682 PMCID: PMC5674233 DOI: 10.1186/s13046-017-0619-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/09/2017] [Indexed: 01/06/2023]
Abstract
Background Transgelin-2 (TAGLN2) is a member of the calponin family of actin-bundling proteins that is involved in the regulation of cell morphology, motility, and cell transformation. Here, the clinical significance and potential function of TAGLN2 in malignant gliomas were investigated. Methods Molecular and clinical data was obtained from The Cancer Genome Atlas (TCGA) database. Gene ontology and pathway analysis was used to predict potential functions of TAGLN2. RNA knockdown was performed using siRNA or lentiviral contructs in U87MG and U251 glioma cell lines. Cells were characterized in vitro or implanted in vivo to generate orthotopic xenografts in order to assess molecular status, cell proliferation/survival, and invasion by Western blotting, flow cytometry, and 3D tumor spheroid invasion assay, respectively. Results Increased TAGLN2 expression was associated with increasing tumor grade (P < 0.001), the mesenchymal molecular glioma subtype and worse prognosis in patients (P < 0.001). Immunohistochemistry performed with anti-TAGLN2 on an independent cohort of patients (n = 46) confirmed these results. Gene silencing of TAGLN2 in U87MG and U251 significantly inhibited invasion and tumor growth in vitro and in vivo. Western blot analysis revealed that epithelial-mesenchymal transition (EMT) molecular markers, such as N-cadherin, E-cadherin, and Snail, were regulated in a manner corresponding to suppression of the EMT phenotype in knockdown experiments. Finally, TAGLN2 was induced ~ 2 to 3-fold in U87MG and U251 cells by TGFβ2, which was also elevated in GBM and highly correlated with TAGLN2 mRNA levels (P < 0.001). Conclusions Our findings indicate that TAGLN2 exerts a role in promoting the development of human glioma. The regulation and function of TAGLN2 therefore renders it as a candidate molecular target for the treatment of GBM. Electronic supplementary material The online version of this article (10.1186/s13046-017-0619-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-Zhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Yang-Yang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Shi-Lei Ni
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - An-Jing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Yu-Zhen Wei
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Shuai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Wen-Jie Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Xin-Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China.
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China. .,Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| |
Collapse
|
49
|
Proteomic features of delayed ocular symptoms caused by exposure to sulfur mustard: As studied by protein profiling of corneal epithelium. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1445-1454. [DOI: 10.1016/j.bbapap.2017.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 12/21/2022]
|
50
|
Khazaei N, Rastegar-Pouyani S, O'Toole N, Wee P, Mohammadnia A, Yaqubi M. Regulating the transcriptomes that mediate the conversion of fibroblasts to various nervous system neural cell types. J Cell Physiol 2017; 233:3603-3614. [PMID: 29044560 DOI: 10.1002/jcp.26221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/05/2017] [Indexed: 12/31/2022]
Abstract
Our understanding of the mechanism of cell fate transition during the direct reprogramming of fibroblasts into various central nervous system (CNS) neural cell types has been limited by the lack of a comprehensive analysis on generated cells, independently and in comparison with other CNS neural cell types. Here, we applied an integrative approach on 18 independent high throughput expression data sets to gain insight into the regulation of the transcriptome during the conversion of fibroblasts into induced neural stem cells, induced neurons (iNs), induced astrocytes, and induced oligodendrocyte progenitor cells (iOPCs). We found common down-regulated genes to be mostly related to fibroblast-specific functions, and suggest their potential as markers for screening of the silencing of the fibroblast-specific program. For example, Tagln was significantly down-regulated across all considered data sets. In addition, we identified specific profiles of up-regulated genes for each CNS neural cell types, which could be potential markers for maturation and efficiency screenings. Furthermore, we identified the main TFs involved in the regulation of the gene expression program during direct reprogramming. For example, in the generation of iNs from fibroblasts, the Rest TF was the main regulator of this reprogramming. In summary, our computational approach for meta-analyzing independent expression data sets provides significant details regarding the molecular mechanisms underlying the regulation of the gene expression program, and also suggests potentially useful candidate genes for screening down-regulation of fibroblast gene expression profile, maturation, and efficiency, as well as candidate TFs for increasing the efficiency of the reprogramming process.
Collapse
Affiliation(s)
- Niusha Khazaei
- Meakins-Christie Laboratories, Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montréal, Canada
| | | | - Nicholas O'Toole
- Douglas Mental Health University Institute, McGill University, Ludmer Centre for Neuroinformatics and Mental Health Montreal, Quebec, Canada
| | - Ping Wee
- Faculty of Medicine and Dentistry, Department of Medical Genetics and Signal Transduction Research Group, University of Alberta, Edmonton, Alberta, Canada
| | | | - Moein Yaqubi
- Department of Psychiatry, Sackler Program for Epigenetics and Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|