1
|
Chou Y, Lee Y, Su C, Lee H, Hsieh C, Tien T, Lin C, Yeh H, Wu Y. Senescence induces miR-409 to down-regulate CCL5 and impairs angiogenesis in endothelial progenitor cells. J Cell Mol Med 2024; 28:e18489. [PMID: 38899522 PMCID: PMC11187746 DOI: 10.1111/jcmm.18489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/03/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
This study explores the impact of senescence on autocrine C-C motif chemokine ligand 5 (CCL5) in human endothelial progenitor cell (EPCs), addressing the poorly understood decline in number and function of EPCs during ageing. We examined the effects of replication-induced senescence on CCL5/CCL5 receptor (CCR5) signalling and angiogenic activity of EPCs in vitro and in vivo. We also explored microRNAs controlling CCL5 secretion in senescent EPCs, its impact on EPC angiogenic activity, and validated our findings in humans. CCL5 secretion and CCR5 levels in senescent EPCs were reduced, leading to attenuated angiogenic activity. CCL5 enhanced EPC proliferation via the CCR5/AKT/P70S6K axis and increased vascular endothelial growth factor (VEGF) secretion. Up-regulation of miR-409 in senescent EPCs resulted in decreased CCL5 secretion, inhibiting the angiogenic activity, though these negative effects were counteracted by the addition of CCL5 and VEGF. In a mouse hind limb ischemia model, CCL5 improved the angiogenic activity of senescent EPCs. Analysis involving 62 healthy donors revealed a negative association between CCL5 levels, age and Framingham Risk Score. These findings propose CCL5 as a potential biomarker for detection of EPC senescence and cardiovascular risk assessment, suggesting its therapeutic potential for age-related cardiovascular disorders.
Collapse
Affiliation(s)
- Yen‐Hung Chou
- Department of MedicineMacKay Medical CollegeNew TaipeiTaiwan
- Institute of Biomedical SciencesMacKay Medical CollegeNew TaipeiTaiwan
| | - Yi‐Nan Lee
- Division of Preventive Cardiology & Pulmonary Circulation Medicine, Department of Cardiovascular Medicine, Department of Internal Medicine and Department of Medical ResearchMacKay Memorial HospitalNew TaipeiTaiwan
| | - Cheng‐Huang Su
- Division of Preventive Cardiology & Pulmonary Circulation Medicine, Department of Cardiovascular Medicine, Department of Internal Medicine and Department of Medical ResearchMacKay Memorial HospitalNew TaipeiTaiwan
| | - Hsin‐I Lee
- Department of MedicineMacKay Medical CollegeNew TaipeiTaiwan
| | - Chin‐Ling Hsieh
- Division of Preventive Cardiology & Pulmonary Circulation Medicine, Department of Cardiovascular Medicine, Department of Internal Medicine and Department of Medical ResearchMacKay Memorial HospitalNew TaipeiTaiwan
| | - Ting‐Yi Tien
- Division of Preventive Cardiology & Pulmonary Circulation Medicine, Department of Cardiovascular Medicine, Department of Internal Medicine and Department of Medical ResearchMacKay Memorial HospitalNew TaipeiTaiwan
| | - Chao‐Feng Lin
- Department of MedicineMacKay Medical CollegeNew TaipeiTaiwan
- Division of Preventive Cardiology & Pulmonary Circulation Medicine, Department of Cardiovascular Medicine, Department of Internal Medicine and Department of Medical ResearchMacKay Memorial HospitalNew TaipeiTaiwan
| | - Hung‐I Yeh
- Division of Preventive Cardiology & Pulmonary Circulation Medicine, Department of Cardiovascular Medicine, Department of Internal Medicine and Department of Medical ResearchMacKay Memorial HospitalNew TaipeiTaiwan
| | - Yih‐Jer Wu
- Department of MedicineMacKay Medical CollegeNew TaipeiTaiwan
- Institute of Biomedical SciencesMacKay Medical CollegeNew TaipeiTaiwan
- Division of Preventive Cardiology & Pulmonary Circulation Medicine, Department of Cardiovascular Medicine, Department of Internal Medicine and Department of Medical ResearchMacKay Memorial HospitalNew TaipeiTaiwan
| |
Collapse
|
2
|
New Insights on the Regulation of the Insulin-Degrading Enzyme: Role of microRNAs and RBPs. Cells 2022; 11:cells11162538. [PMID: 36010613 PMCID: PMC9406717 DOI: 10.3390/cells11162538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
The evident implication of the insulin-degrading enzyme (IDE) in Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM), among its capacity to degrade insulin and amyloid-β peptide (Aβ), suggests that IDE could be an essential link in the relation between hyperinsulinemia, insulin resistance and AD. However, little is known about the cellular and molecular regulation of IDE expression, and even less has been explored regarding the post-transcriptional regulation of IDE, although it represents a great molecular target of interest for therapeutic treatments. We recently described that miR-7, a novel candidate for linking AD and T2DM at the molecular level, regulates IDE and other key genes in both pathologies, including some key genes involved in the insulin signaling pathway. Here, we explored whether other miRNAs as well as other post-transcriptional regulators, such as RNA binding proteins (RBP), could potentially participate in the regulation of IDE expression in vitro. Our data showed that in addition to miR-7, miR-125, miR-490 and miR-199 regulate IDE expression at the post-transcriptional level. Moreover, we also found that IDE contains multiple potential binding sites for several RBPs, and a narrow-down prediction analysis led us to speculate on a novel regulation of IDE by RALY and HuD. Taken together, these results demonstrate the novel players controlling IDE expression that could represent potential therapeutical targets to treat several metabolic diseases with a high impact on human health, including AD and T2DM.
Collapse
|
3
|
Monfared YK, Honardoost M, Cea M, Gholami S, Mirzaei-Dizgah I, Hashemipour S, Sarookhani MR, Farzam SA. Circulating salivary and serum miRNA-182, 320a, 375 and 503 expression levels in type 2 diabetes. J Diabetes Metab Disord 2022. [PMID: 36404826 PMCID: PMC9672281 DOI: 10.1007/s40200-022-01082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Aim Early-stage diagnosis of diabetes through non-invasive and diagnostic biofluid-like saliva has become a very popular approach to facilitate future preventive interventions and improve patient care. Meanwhile, the alteration of small non-coding RNA in human fluids has been suggested as a probable precedent for the early stages of diabetes. Methods In the present study, we checked the expression of miR-320a, 182-5p, 503, and 375 by using quantitative PCR in both stimulated and unstimulated saliva and blood samples of 40 adult patients with type-2 diabetes compared to 40 healthy individuals. In addition, we have sought to understand the possibility that miRNAs could provide new information about the status of type 2 diabetes in salivary samples beyond what can now be identified from blood samples and link their expression to the presence of clinically relevant risk factors. For this purpose, we have used a set of multivariate models. Results The results showed that three miRNAs were more highly expressed in patients with type 2 diabetes, while miR-320-a was down-regulated in those patients compared to healthy subjects. Furthermore, the data showed that miR-320a was the most reliable predictor for distinguishing diabetic patients from healthy subjects, with AUCs of 0.997, 0.97, and 0.99 (97.4% sensitivity and 100% specificity, p = 0.001) for serum, unstimulated, and stimulated saliva samples, respectively. Conclusions Interestingly, the results of this study indicated that the amount of four miRNAs expressed in stimulated saliva was the same as in serum samples, which could conclude that specific miR-320a and 503 in stimulated saliva may introduce credible, non-invasive, and diagnostic biomarkers that can be used to monitor diabetic patients' status, while there is a need to design more research studies to confirm these findings.
Collapse
|
4
|
Šimonienė D, Stukas D, Daukša A, Veličkienė D. Clinical Role of Serum miR-107 in Type 2 Diabetes and Related Risk Factors. Biomolecules 2022; 12:biom12040558. [PMID: 35454146 PMCID: PMC9027608 DOI: 10.3390/biom12040558] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Background: As the diagnostic and treatment options for diabetes improve, more attention nowadays is being paid to the exact identification of the etiopathological mechanism of type 2 diabetes (T2DM). Insulin resistance (IR) is a pathogenetic background for T2DM. Several studies demonstrate that miRNAs play an important role in systemic inflammation and thus in T2DM pathogenesis. Overexpression of miR-107 may cause an imbalance of glucose homeostasis, obesity, and dyslipidemia, by regulating insulin sensitivity through the insulin signaling pathway. Methods: 53 patients with T2DM and 54 nondiabetic patients were involved in the study. This study aimed to examine whether miR-107 expression in the serum of patients with diabetes was different from the control group (non-diabetic) and whether miR-107 expression correlated with lipid levels, BMI, and other factors, and finally, with insulin resistance in general. Results: miR-107 expression was higher in the T2DM group than in the control group (1.33 versus 0.63 (p = 0.016). In general, miR-107 expression was directly and positively associated with BMI (r = 0.3, p = 0.01), age (r = 0.3, p = 0.004), and male gender (p = 0.006). Moreover, miR-107 was related to dyslipidemia: Patients with higher miR-107 levels had lower HDL levels (in the control group: r = −0.262, p = 0.022 vs. diabetic group: r = −0.315, p = 0.007). Finally, the overexpression of miR-107 was associated with higher HOMA-IR in the diabetic group (r = 0.373, p = 0.035). Conclusion: MiR-107 expression is higher among diabetic patients than that of nondiabetic control subjects. Higher miR-107 levels are also related to dyslipidemia (lower HDL levels)—in the general cohort and non-diabetic subjects. Moreover, higher miR-107 expression is related to insulin resistance in the diabetic group. In general, higher miR-107 expression levels are related to a higher BMI, older age, and the male gender.
Collapse
Affiliation(s)
- Diana Šimonienė
- Department of Endocrinology, Lithuanian University of Health Sciences (LUHS), 50161 Kaunas, Lithuania;
- Correspondence: ; Tel.: +370-6-8979121
| | - Darius Stukas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences (LUHS), 44307 Kaunas, Lithuania; (D.S.); (A.D.)
| | - Albertas Daukša
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences (LUHS), 44307 Kaunas, Lithuania; (D.S.); (A.D.)
- Department of Surgery, Lithuanian University of Health Sciences (LUHS), 50161 Kaunas, Lithuania
| | - Džilda Veličkienė
- Department of Endocrinology, Lithuanian University of Health Sciences (LUHS), 50161 Kaunas, Lithuania;
- Institute of Endocrinology, Lithuanian University of Health Sciences (LUHS), 44307 Kaunas, Lithuania
| |
Collapse
|
5
|
Becker-Greene D, Li H, Perez-Cremades D, Wu W, Bestepe F, Ozdemir D, Niosi CE, Aydogan C, Orgill DP, Feinberg MW, Icli B. MiR-409-3p targets a MAP4K3-ZEB1-PLGF signaling axis and controls brown adipose tissue angiogenesis and insulin resistance. Cell Mol Life Sci 2021; 78:7663-7679. [PMID: 34698882 PMCID: PMC8655847 DOI: 10.1007/s00018-021-03960-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Endothelial cells (ECs) within the microvasculature of brown adipose tissue (BAT) are important in regulating the plasticity of adipocytes in response to increased metabolic demand by modulating the angiogenic response. However, the mechanism of EC-adipocyte crosstalk during this process is not completely understood. We used RNA sequencing to profile microRNAs derived from BAT ECs of obese mice and identified an anti-angiogenic microRNA, miR-409-3p. MiR-409-3p overexpression inhibited EC angiogenic properties; whereas, its inhibition had the opposite effects. Mechanistic studies revealed that miR-409-3p targets ZEB1 and MAP4K3. Knockdown of ZEB1/MAP4K3 phenocopied the angiogenic effects of miR-409-3p. Adipocytes co-cultured with conditioned media from ECs deficient in miR-409-3p showed increased expression of BAT markers, UCP1 and CIDEA. We identified a pro-angiogenic growth factor, placental growth factor (PLGF), released from ECs in response to miR-409-3p inhibition. Deficiency of ZEB1 or MAP4K3 blocked the release of PLGF from ECs and PLGF stimulation of 3T3-L1 adipocytes increased UCP1 expression in a miR-409-3p dependent manner. MiR-409-3p neutralization improved BAT angiogenesis, glucose and insulin tolerance, and energy expenditure in mice with diet-induced obesity. These findings establish miR-409-3p as a critical regulator of EC-BAT crosstalk by modulating a ZEB1-MAP4K3-PLGF signaling axis, providing new insights for therapeutic intervention in obesity.
Collapse
Affiliation(s)
- Dakota Becker-Greene
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
| | - Hao Li
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
| | - Daniel Perez-Cremades
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
- Department of Physiology, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Winona Wu
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
| | - Furkan Bestepe
- Molecular Cardiology Research Institute, Tufts University School of Medicine, 800 Washington St, Boston, MA, 02111, USA
| | - Denizhan Ozdemir
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
- Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | - Carolyn E Niosi
- Molecular Cardiology Research Institute, Tufts University School of Medicine, 800 Washington St, Boston, MA, 02111, USA
| | - Ceren Aydogan
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
- Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA.
| | - Basak Icli
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA.
- Molecular Cardiology Research Institute, Tufts University School of Medicine, 800 Washington St, Boston, MA, 02111, USA.
| |
Collapse
|
6
|
State of Evidence on Oral Health Problems in Diabetic Patients: A Critical Review of the Literature. J Clin Med 2021; 10:5383. [PMID: 34830663 PMCID: PMC8618619 DOI: 10.3390/jcm10225383&set/a 912874875+940716348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Diabetes mellitus (DM) is a global health problem, having recognized that in the next 20 years the number of diabetic patients in the world will increase to 642 million. DM exerts enormous repercussions on general health diabetic (especially derived from vascular, cardiac, renal, ocular, or neurological affectation). It entails in addition a high number of deaths directly related to the disease, as well as a high health care cost, estimated at $673 billion annually. Oral cavity is found among all the organs and systems affected in the course of DM. Important pathologies are developed with higher prevalence, such as periodontitis (PD), alterations in salivary flow, fungal infections, oral cancer, and oral potentially malignant disorders (OPMD). It has been proven that PD hinders the metabolic control of DM and that the presence of PD increases the possibility for developing diabetes. Despite the relevance of these oral pathologies, the knowledge of primary care physicians and diabetes specialists about the importance of oral health in diabetics, as well as the knowledge of dentists about the importance of DM for oral health of patients is scarce or non-existent. It is accepted that the correct management of diabetic patients requires interdisciplinary teams, including dentists. In this critical review, the existing knowledge and evidence-degree on the preventive, clinical, diagnosis, prognosis, and therapeutic aspects of oral diseases that occur with a significant frequency in the diabetic population are developed in extension.
Collapse
|
7
|
State of Evidence on Oral Health Problems in Diabetic Patients: A Critical Review of the Literature. J Clin Med 2021. [DOI: 10.3390/jcm10225383
expr 893869204 + 932072443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Diabetes mellitus (DM) is a global health problem, having recognized that in the next 20 years the number of diabetic patients in the world will increase to 642 million. DM exerts enormous repercussions on general health diabetic (especially derived from vascular, cardiac, renal, ocular, or neurological affectation). It entails in addition a high number of deaths directly related to the disease, as well as a high health care cost, estimated at $673 billion annually. Oral cavity is found among all the organs and systems affected in the course of DM. Important pathologies are developed with higher prevalence, such as periodontitis (PD), alterations in salivary flow, fungal infections, oral cancer, and oral potentially malignant disorders (OPMD). It has been proven that PD hinders the metabolic control of DM and that the presence of PD increases the possibility for developing diabetes. Despite the relevance of these oral pathologies, the knowledge of primary care physicians and diabetes specialists about the importance of oral health in diabetics, as well as the knowledge of dentists about the importance of DM for oral health of patients is scarce or non-existent. It is accepted that the correct management of diabetic patients requires interdisciplinary teams, including dentists. In this critical review, the existing knowledge and evidence-degree on the preventive, clinical, diagnosis, prognosis, and therapeutic aspects of oral diseases that occur with a significant frequency in the diabetic population are developed in extension.
Collapse
|
8
|
González-Moles MÁ, Ramos-García P. State of Evidence on Oral Health Problems in Diabetic Patients: A Critical Review of the Literature. J Clin Med 2021; 10:5383. [PMID: 34830663 PMCID: PMC8618619 DOI: 10.3390/jcm10225383] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus (DM) is a global health problem, having recognized that in the next 20 years the number of diabetic patients in the world will increase to 642 million. DM exerts enormous repercussions on general health diabetic (especially derived from vascular, cardiac, renal, ocular, or neurological affectation). It entails in addition a high number of deaths directly related to the disease, as well as a high health care cost, estimated at $673 billion annually. Oral cavity is found among all the organs and systems affected in the course of DM. Important pathologies are developed with higher prevalence, such as periodontitis (PD), alterations in salivary flow, fungal infections, oral cancer, and oral potentially malignant disorders (OPMD). It has been proven that PD hinders the metabolic control of DM and that the presence of PD increases the possibility for developing diabetes. Despite the relevance of these oral pathologies, the knowledge of primary care physicians and diabetes specialists about the importance of oral health in diabetics, as well as the knowledge of dentists about the importance of DM for oral health of patients is scarce or non-existent. It is accepted that the correct management of diabetic patients requires interdisciplinary teams, including dentists. In this critical review, the existing knowledge and evidence-degree on the preventive, clinical, diagnosis, prognosis, and therapeutic aspects of oral diseases that occur with a significant frequency in the diabetic population are developed in extension.
Collapse
Affiliation(s)
- Miguel Ángel González-Moles
- School of Dentistry, University of Granada, 18010 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Pablo Ramos-García
- School of Dentistry, University of Granada, 18010 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
9
|
Shahouzehi B, Eghbalian M, Fallah H, Aminizadeh S, Masoumi-Ardakani Y. Serum microRNA-33 levels in pre-diabetic and diabetic patients. Mol Biol Rep 2021; 48:4121-4128. [PMID: 34146198 DOI: 10.1007/s11033-021-06425-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/20/2021] [Indexed: 11/26/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia and abnormal insulin secretion. MicroRNAs are small, non-coding RNAs that are able to affect cell biological functions and act as biomarkers for some diseases such as DM. In current study, we measured serum miR-33 in three groups (n = 15) as follows; non-diabetic control, pre-diabetic, and DM patients. Real-time PCR method was used to quantify miR-33 expression. miR-33 expression was significantly increased in pre-diabetic subjects compared to other two groups (p < 0.001). FBS (p < 0.001), insulin (p < 0.001), HOMA-IR (p < 0.001), and TG (p = 0.026) were higher in diabetic subjects than the other two groups. In people that had high physical activity, the number of diabetic subjects were zero and most of them were in pre-diabetic group (p = 0.019). Serum miR-33 level significantly and positively correlated with pre-diabetic state (B = 2.67, p = 0.000), Sex (B = 1.03, p = 0.025), and FBS (B = 0.04, p = 0.036) and also miR-33 was significantly and negatively correlated with HOMA-IR (B = - 1.58, p = 0.04). These findings support the possible role of miR-33 to monitor pre-diabetes onset and progression. It needs to be evaluated in future studies with high number of participants to clarify its mechanism and diagnostic viability.
Collapse
Affiliation(s)
- Beydolah Shahouzehi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mostafa Eghbalian
- Department of Biostatistics and Epidemiology School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Fallah
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Soheil Aminizadeh
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Jahad Boulevard, Ebn-e-Sina Avenue, 7619813159, Kerman, Iran
| | - Yaser Masoumi-Ardakani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Jahad Boulevard, Ebn-e-Sina Avenue, 7619813159, Kerman, Iran.
| |
Collapse
|
10
|
Kordi M, Khoramshahi S, Eshghi S, Gaeeni A, Moosakhani A. The effect of high intensity interval training on some atrophic and anti-atrophic gene expression in rat skeletal muscle with diabetes. Sci Sports 2020. [DOI: 10.1016/j.scispo.2019.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Zedníková I, Chylíková B, Šeda O, Korabečná M, Pazourková E, Břešťák M, Krkavcová M, Calda P, Hořínek A. Genome-wide miRNA profiling in plasma of pregnant women with down syndrome fetuses. Mol Biol Rep 2020; 47:4531-4540. [PMID: 32472298 PMCID: PMC7295716 DOI: 10.1007/s11033-020-05545-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/23/2020] [Indexed: 12/14/2022]
Abstract
Down syndrome (DS) is one of the most common causes of intellectual disability and new approaches allowing its rapid and effective prenatal detection are being explored. In this study, we investigated the diagnostic potential of plasma microRNAs (miRNAs). This study builds upon our previous study in DS placentas, where seven miRNAs were found to be significantly up-regulated. A total of 70 first-trimester plasma samples from pregnant women were included in the present study (35 samples with DS fetuses; 35 with euploid fetuses). Genome-wide miRNA profiling was performed in the pilot study using Affymetrix GeneChip™ miRNA 4.1 Array Strips (18 samples). Selected miRNAs were then analysed in the validation study using quantitative reverse transcription PCR (RT-qPCR; 52 samples). Based on the current pilot study results (12 miRNAs), our previous research on chorionic villi samples (7 miRNAs) and the literature (4 miRNAs), a group of 23 miRNAs was selected for the validation study. Although the results of the pilot study were promising, the validation study using the more sensitive RT-qPCR technique and a larger group of samples revealed no significant differences in miRNA profiles between the compared groups. Our results suggest that testing of the first-trimester plasma miRNAs is probably not suitable for non-invasive prenatal testing (NIPT). Different results could be theoretically achieved at later gestational ages; however, such a result probably would have limited use in clinical practice.
Collapse
Affiliation(s)
- Iveta Zedníková
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
| | - Blanka Chylíková
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marie Korabečná
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Eva Pazourková
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Miroslav Břešťák
- Department of Obstetrics and Gynecology of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Screening Center ProfiG2, Prague, Czech Republic
| | | | - Pavel Calda
- Department of Obstetrics and Gynecology of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Aleš Hořínek
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- 3rd Department of Medicine, Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
12
|
Jiménez A, Organista-Juárez D, Torres-Castro A, Guzmán-Ruíz MA, Estudillo E, Guevara-Guzmán R. Olfactory Dysfunction in Diabetic Rats is Associated with miR-146a Overexpression and Inflammation. Neurochem Res 2020; 45:1781-1790. [PMID: 32405762 DOI: 10.1007/s11064-020-03041-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/18/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes (T2D) is associated with cognitive decline and dementia. Both neurodegenerative conditions are characterized by olfactory dysfunction (OD) which is also observed in diabetic patients. Diabetes and neurodegeneration display altered miRNAs expression; therefore, the study of miRNAs in the diabetic olfactory system is important in order to know the mechanisms involved in neurodegeneration induced by T2D. In this work we evaluated the expression of miRs206, 451, 146a and 34a in the olfactory bulb (OB) of T2D rats and its association with OD. T2D induction was performed by administering streptozotocin to neonatal rats. The olfactory function was evaluated after reaching the adulthood by employing the buried pellet and social recognition tests. After 18 weeks, animals were sacrificed to determinate miRNAs and protein expression in the OB. T2D animals showed a significant increase in the latency to find the odor stimulus in the buried pellet test and a significant reduction in the interest to investigate the novel juvenile subjects in the social recognition test, indicating OD. In miRNAs analysis we observed a significant increase of miR-146a expression in the OB of T2D rats when compared to controls. This increase in miR-146a correlated with the overexpression of IL-1β in the OB of T2D rats. The present results showed that OD in T2D rats is associated with IL-1β mediated-inflammation and miR-146a overexpression, suggesting that high levels of IL-1β could trigger miR-146a upregulation as a negative feedback of the inflammatory response in the OB of T2D rats.
Collapse
Affiliation(s)
- Adriana Jiménez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Diana Organista-Juárez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Areli Torres-Castro
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.,, IMSS Hospital General Regional 1 Dr. Carlos Mac Gregor Sánchez Navarro, Ciudad de México, México
| | - Mara A Guzmán-Ruíz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular IFC/UNAM, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez,", Ciudad de México, México
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
13
|
Zeinali F, Aghaei Zarch SM, Vahidi Mehrjardi MY, Kalantar SM, Jahan-mihan A, Karimi-Nazari E, Fallahzadeh H, Hosseinzadeh-Shamsi-Anar M, Rahmanian M, Fazeli MR, Mozaffari-Khosravi H. Effects of synbiotic supplementation on gut microbiome, serum level of TNF-α, and expression of microRNA-126 and microRNA-146a in patients with type 2 diabetes mellitus: study protocol for a double-blind controlled randomized clinical trial. Trials 2020; 21:324. [PMID: 32290852 PMCID: PMC7158024 DOI: 10.1186/s13063-020-04236-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The dramatic increase in the prevalence of type 2 diabetes mellitus (T2DM) is a global major challenge to health. Circulating microRNAs have been suggested as promising biomarkers for different disorders such as diabetes. Imbalances in the gut microbiome have been revealed to contribute to the progression of multiple diseases including T2DM. Recently, the consumption of probiotics and synbiotics in the treatment of various diseases has shown a substantial growth. The anti-diabetes and anti-inflammatory effects of synbiotics have been indicated, which may be due to their beneficial effects on the gut microbiome. However, further research is needed to assess the effects of synbiotics on the microbiota and their impacts on expression of microRNAs relating to T2DM. Thus, we will aim to assess the effects of synbiotics on microbiota, serum level of tumor necrosis factor-α (TNF-α), and expression of microRNA-126 and microRNA-146a in patients with T2DM. METHODS Seventy-two patients with T2DM will be recruited in this double-blind randomized parallel placebo-controlled clinical trial. After block matching based on age and sex, participants will be randomly assigned to receive 1000 mg/day synbiotic (Familact) or placebo for 12 weeks. The microRNA-126 and microRNA-146a expression levels will be measured by real-time polymerase chain reaction and serum TNF-α level will be assessed by enzyme-linked immunosorbent assay kit at the beginning and at the end of the study. Determination of the gut microbiota will be done by quantitative polymerase chain reaction methods at baseline and at the end of the trial. Biochemical assessments (glycemic and lipid profiles) will also be conducted at onset and end of the study. DISCUSSION This is the first randomized controlled trial that will determine the effect of synbiotic supplementation on the gut microbiota and its probable impacts on serum levels of TNF-α and expression of related microRNAs in patients with T2DM. TRIAL REGISTRATION Iranian Registry of Clinical Trials: IRCT20180624040228N2. Registered on 27 March 2019. http://www.irct.ir/trial/38371.
Collapse
Affiliation(s)
- Fahime Zeinali
- grid.412505.70000 0004 0612 5912Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- grid.412505.70000 0004 0612 5912Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohsen Aghaei Zarch
- grid.412505.70000 0004 0612 5912Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Seyed Mehdi Kalantar
- grid.412505.70000 0004 0612 5912Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- grid.412505.70000 0004 0612 5912Yazd Clinical and Research Center of infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Jahan-mihan
- grid.266865.90000 0001 2109 4358Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL USA
| | - Elham Karimi-Nazari
- grid.412505.70000 0004 0612 5912Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Fallahzadeh
- grid.412505.70000 0004 0612 5912Department of Biostatistics and Epidemiology, Research Center of Prevention and Epidemiology of Non-Communicable Disease, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Hosseinzadeh-Shamsi-Anar
- grid.412505.70000 0004 0612 5912Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- grid.412505.70000 0004 0612 5912Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Rahmanian
- grid.412505.70000 0004 0612 5912Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Reza Fazeli
- grid.411705.60000 0001 0166 0922Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Mozaffari-Khosravi
- grid.412505.70000 0004 0612 5912Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- grid.412505.70000 0004 0612 5912Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- grid.412505.70000 0004 0612 5912Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
14
|
Kallinikou D, Soldatou A, Tsentidis C, Louraki M, Kanaka-Gantenbein C, Kanavakis E, Karavanaki K. Diabetic neuropathy in children and adolescents with type 1 diabetes mellitus: Diagnosis, pathogenesis, and associated genetic markers. Diabetes Metab Res Rev 2019; 35:e3178. [PMID: 31083769 DOI: 10.1002/dmrr.3178] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/10/2019] [Accepted: 05/07/2019] [Indexed: 01/09/2023]
Abstract
Diabetic neuropathy (DN) is a common long-term complication of type 1 (T1D) and type 2 (T2D) diabetes mellitus, with significant morbidity and mortality. DN is defined as impaired function of the autonomic and/or peripheral nervous system, often subclinical, particularly in children and adolescents with T1D. Nerve conduction studies (NCS) and skin biopsies are considered gold-standard methods in the assessment of DN. Multiple environmental and genetic factors are involved in the pathogenesis of DN. Specifically, the role of metabolic control and glycemic variability is of paramount importance. A number of recently identified genes, including the AKR1B1, VEGF, MTHFR, APOE, and ACE genes, contribute significantly in the pathogenesis of DN. These genes may serve as biomarkers to predict future DN development or treatment response. In addition, they may serve as the basis for the development of new medications or gene therapy. In this review, the diagnostic evaluation, pathogenesis, and associated genetic markers of DN in children and adolescents with T1D are presented and discussed.
Collapse
Affiliation(s)
- Dimitra Kallinikou
- Diabetes and Metabolism Clinic, 2nd Department of Pediatrics, National and Kapodistrian University of Athens-Faculty of Medicine, "P.&A. Kyriakou" Children's Hospital, Athens, Greece
| | - Alexandra Soldatou
- Diabetes and Metabolism Clinic, 2nd Department of Pediatrics, National and Kapodistrian University of Athens-Faculty of Medicine, "P.&A. Kyriakou" Children's Hospital, Athens, Greece
| | - Charalambos Tsentidis
- Diabetes and Metabolism Clinic, 2nd Department of Pediatrics, National and Kapodistrian University of Athens-Faculty of Medicine, "P.&A. Kyriakou" Children's Hospital, Athens, Greece
| | - Maria Louraki
- Diabetes and Metabolism Clinic, 2nd Department of Pediatrics, National and Kapodistrian University of Athens-Faculty of Medicine, "P.&A. Kyriakou" Children's Hospital, Athens, Greece
| | - Christina Kanaka-Gantenbein
- Diabetes Center, Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens-Faculty of Medicine, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Emmanouil Kanavakis
- Diabetes and Metabolism Clinic, 2nd Department of Pediatrics, National and Kapodistrian University of Athens-Faculty of Medicine, "P.&A. Kyriakou" Children's Hospital, Athens, Greece
- Department of Medical Genetics, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Athens, Greece
| | - Kyriaki Karavanaki
- Diabetes and Metabolism Clinic, 2nd Department of Pediatrics, National and Kapodistrian University of Athens-Faculty of Medicine, "P.&A. Kyriakou" Children's Hospital, Athens, Greece
| |
Collapse
|
15
|
Abstract
Meta-analysis statistically assesses the results (e.g., effect sizes) across independent studies that are conducted in accordance with similar protocols and objectives. Current genomic meta-analysis studies do not perform extensive re-analysis on raw data because full data access would not be commonplace, although the best practice of open research for sharing well-formed data have been actively advocated. This chapter describes a simple and easy-to-follow method for conducting meta-analysis of multiple studies without using raw data. Examples for meta-analysis of microRNAs (miRNAs) are provided to illustrate the method. MiRNAs are potential biomarkers for early diagnosis and epigenetic monitoring of diseases. A number of miRNAs have been identified to be differentially expressed, i.e., overexpressed or underexpressed, under diseased states but only a small fraction would be highly effective biomarkers or therapeutic targets of diseases. The meta-analysis method as described in this chapter aims to identify the miRNAs that are consistently found dysregulated across independent studies as biomarkers.
Collapse
Affiliation(s)
- Hongmei Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Siu-Wai Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
- School of Informatics, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
16
|
Politi C, Ciccacci C, D'Amato C, Novelli G, Borgiani P, Spallone V. Recent advances in exploring the genetic susceptibility to diabetic neuropathy. Diabetes Res Clin Pract 2016; 120:198-208. [PMID: 27596057 DOI: 10.1016/j.diabres.2016.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 05/24/2016] [Accepted: 08/19/2016] [Indexed: 01/22/2023]
Abstract
Diabetic polyneuropathy and cardiovascular autonomic neuropathy are common and disabling complications of diabetes. Although glycaemic control and cardiovascular risk factors are major contributory elements in its development, diabetic neuropathy recognizes a multifactorial influence and a multiplicity of pathogenetic mechanisms. Thus genetic and environmental factors may contribute to its susceptibility, each with a modest contribution, by targeting various metabolic and microvascular pathways whose alterations intervene in diabetic neuropathy pathogenesis. This review is aimed at describing major data from the available literature regarding genetic susceptibility to diabetic neuropathies. It provides an overview of the genes reported as associated with the development or progression of these complications, i.e. ACE, MTHFR, GST, GLO1, APOE, TCF7L2, VEGF, IL-4, GPX1, eNOS, ADRA2B, GFRA2, MIR146A, MIR128A. The identification of genetic susceptibility can help in both expanding the comprehension of the pathogenetic mechanisms of diabetic nerve damage and identifying biomarkers of risk prediction and response to therapeutic intervention.
Collapse
Affiliation(s)
- Cristina Politi
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy
| | - Cinzia Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy
| | - Cinzia D'Amato
- Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy.
| | - Vincenza Spallone
- Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
17
|
Zhu H, Leung SW. Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies. Diabetologia 2015; 58:900-11. [PMID: 25677225 DOI: 10.1007/s00125-015-3510-2] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/12/2015] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS The aim was to identify potential microRNA (miRNA) biomarkers of type 2 diabetes. METHODS Controlled studies were retrieved from PubMed to compare miRNA expression profiles of type 2 diabetes and nondiabetic control samples. Meta-analysis under a random effects model was conducted. Subgroup analyses examined tissue specificity and species specificity. Sensitivity analyses were also performed to explain the heterogeneity among studies. Results were represented as log odds ratios (logOR), 95% confidence intervals (CI) and p values after Bonferroni correction. RESULTS Among 343 differentially expressed miRNAs in 38 miRNA expression profiling studies published between 1993 and March 2014, only 151 miRNAs were tested by multiple studies, out of which 102 miRNAs were reported to be upregulated or downregulated. Meta-analysis identified 51 significantly dysregulated miRNAs. The top upregulated miRNA was miR-142-3p (logOR 6.4721; 95% CI 4.9537, 7.9904; adjusted p = 4.60 × 10(-16)). The top downregulated miRNA was miR-126a (logOR 7.5237; 95% CI 4.7159, 10.3316; adjusted p = 3.01 × 10(-07)). The dysregulation of two miRNAs (miR-199a-3p and miR-223) was highly pancreas-specific and liver-specific. miR-30e was downregulated in patients with type 2 diabetes, while miR-92a was downregulated in animal models of diabetes. In sensitivity analysis, 40 out of 47 miRNAs (85%) were robustly and consistently dysregulated. CONCLUSIONS/INTERPRETATION This meta-analysis confirms that 40 miRNAs are significantly dysregulated in type 2 diabetes. miR-29a, miR-34a, miR-375, miR-103, miR-107, miR-132, miR-142-3p and miR-144 are potential circulating biomarkers of type 2 diabetes. In addition, miR-199a-3p and miR-223 are potential tissue biomarkers of type 2 diabetes.
Collapse
Affiliation(s)
- Hongmei Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, 999078, China
| | | |
Collapse
|
18
|
Chatterjee D, Mansfield DS, Woolley AT. MICROFLUIDIC DEVICES FOR LABEL-FREE AND NON-INSTRUMENTED QUANTITATION OF UNAMPLIFIED NUCLEIC ACIDS BY FLOW DISTANCE MEASUREMENT. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2014; 6:8173-8179. [PMID: 25530814 PMCID: PMC4269297 DOI: 10.1039/c4ay01845a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Timely biomarker quantitation has potential to improve human health but current methods have disadvantages either in terms of cost and complexity for benchtop instruments, or reduced performance in quantitation and/or multiplexing for point-of-care systems. We previously developed microfluidic devices wherein visually observed flow distances correlated with a model analyte's concentration.1 Here, we significantly expand over this prior result to demonstrate the measurement of unamplified DNA analogues of microRNAs (miRNAs), biomarkers whose levels can be altered in disease states. We have developed a method for covalently attaching nucleic acid receptors on poly(dimethylsiloxane) microchannel surfaces by silane and cross-linker treatments. We found a flow distance dependence on target concentrations from 10 μg/mL to 10 pg/mL for DNA in both buffer and synthetic urine. Moreover, flow time in addition to flow distance is correlated with target concentration. We also observed longer flow distances for single-base mismatches compared to the target sequence at the same concentration, indicating that our approach can be used to detect point mutations. Finally, experiments with DNA analogues of miRNA biomarkers for kidney disease (mir-200c-3p) and prostate cancer (mir-107) in synthetic urine showed the ability to detect these analytes near clinically relevant levels. Our results demonstrate that these novel microfluidic assays offer a simple route to sensitive, amplification-free nucleic acid quantitation, with strong potential for point-of-care application.
Collapse
Affiliation(s)
- Debolina Chatterjee
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Danielle S. Mansfield
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Adam T. Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
19
|
Ciccacci C, Morganti R, Di Fusco D, D'Amato C, Cacciotti L, Greco C, Rufini S, Novelli G, Sangiuolo F, Marfia GA, Borgiani P, Spallone V. Common polymorphisms in MIR146a, MIR128a and MIR27a genes contribute to neuropathy susceptibility in type 2 diabetes. Acta Diabetol 2014; 51:663-71. [PMID: 24682535 DOI: 10.1007/s00592-014-0582-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/17/2014] [Indexed: 12/18/2022]
Abstract
Diabetic polyneuropathy (DPN) and cardiovascular autonomic neuropathy (CAN) are common type 2 diabetes complications with a large inter-individual variability in terms of clinical manifestations and severity. Our aim was to evaluate a possible involvement of genetic polymorphisms in miRNA regions in the susceptibility to DPN and CAN. Nine polymorphisms in miRNA genes were studied in a sample of 132 type 2 diabetes patients (T2D) analysed for DPN and 128 T2D patients analysed for CAN. A genotype-phenotype correlation analysis was performed. The T allele of rs11888095 single nucleotide polymorphism (SNP) in MIR128a was significantly associated with a higher risk (ORadj = 4.89, P adj = 0.02), whereas the C allele of rs2910164 SNP in MIR146a was associated with a lower risk to develop DPN (ORadj = 0.49, P adj = 0.09), respectively. A multivariate logistic regression analysis confirmed that both SNPs contribute to DPN (p < 0.001 and p = 0.01 for MIR128a and MIR146a, respectively). MIR128a SNP significantly contributed also to DPN score (p = 0.026). Rs895819 SNP in MIR27a was significantly associated with a higher risk to develop early CAN (P adj = 0.023 and ORadj = 3.43). The rs2910164 SNP in MIR146a showed a protective effect respect to early CAN (P adj = 0.052, ORadj = 0.32) and to confirmed CAN (P adj = 0.041, ORadj = 0.13). The same SNP resulted significantly associated with a lower CAN score and a higher E/I (p = 0.002 and p = 0.003, respectively). In conclusion, we described associations of MIR128a and MIR146a SNPs with DPN susceptibility and of MIR146a and MIR27a SNPs with CAN susceptibility. This is the first study showing that genetic variability in miRNA genes could be involved in diabetic neuropathies susceptibility.
Collapse
Affiliation(s)
- Cinzia Ciccacci
- Genetics Section, Department of Biomedicine and Prevention, University of Rome ''Tor Vergata'', Via Montpellier 1, 00133, Rome, Italy,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Today's world population is currently faced with a new type of non-transmissible pandemic: obesity. This lifestyle-related condition is driving the emergence of the diabetes pandemic through the development of low-level chronic inflammation. In recent years, a novel class of non-coding RNA, microRNA (miRNA), have emerged as being important regulators of numerous biological functions. Among these functions are basic maintenance of cell signalling and tissue architecture. Disruption of miRNA levels can contribute not only to the development of the chronic inflammation observed in obese diabetics, but also the development of both pancreatic β-cell dysfunction and loss, along with insulin resistance in metabolic tissues. These primary events set the scene for dysfunction of other tissues, including the retina, kidney, peripheral nerves, heart and the vasculature as a whole. Here, miRNAs again play a deterministic role in the development of a range of diseases collectively termed diabetic complications. Disturbances in miRNA levels appear to be reflected in the serum of patients and this may prove to be diagnostic in patients prior to clinical manifestation of disease, thus improving management of diabetes and its associated complications. Not only are miRNAs displaying promise as an early biomarker for disease, but a number of these miRNAs are displaying therapeutic potential with several in pre-clinical development. The present review aims to highlight our current understanding of miRNAs and their interaction with inflammatory signalling in the development and progression of diabetes and its complications. Utilization of miRNAs as biomarkers and therapeutic targets will also be considered.
Collapse
|