1
|
Akoumianakis I. Editorial commentary: Revisiting time-restricted-eating interventions for cardiometabolic risk reduction: Do they have a clinically relevant role? Trends Cardiovasc Med 2024; 34:402-403. [PMID: 38135261 DOI: 10.1016/j.tcm.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Affiliation(s)
- Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Level 6 West Wing, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK.
| |
Collapse
|
2
|
Metabolomic Profile of Young Adults Born Preterm. Metabolites 2021; 11:metabo11100697. [PMID: 34677412 PMCID: PMC8538752 DOI: 10.3390/metabo11100697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
Prematurity is a risk factor for the development of chronic adult diseases. Metabolomics can correlate the biochemical changes to a determined phenotype, obtaining real information about the state of health of a subject at that precise moment. Significative differences in the metabolomic profile of preterm newborns compared to those born at term have been already identified at birth. An observational case–control study was performed at the University Hospital of Siena. The aim was to evaluate and compare the metabolomic profiles of young adults born preterm to those born at term. Urinary samples were collected from 67 young adults (18–23 years old) born preterm (mean gestational age of 30 weeks, n = 49), and at term of pregnancy (mean gestational age of 38 weeks, n = 18). The urinary spectra of young adults born preterm was different from those born at term and resembled what was previously described at birth. The Random Forest algorithm gave the best classification (accuracy 82%) and indicated the following metabolites as responsible for the classification: citrate, CH2 creatinine, fumarate and hippurate. Urine spectra are promising tools for the early identification of neonates at risk of disease in adulthood and may provide insight into the pathogenesis and effects of fetal programming and infants’ outcomes.
Collapse
|
3
|
Sandhu SA, Angel CA, Campbell KL, Hickman IJ, MacLaughlin HL. Standardised Outcome Reporting for the Nutrition Management of Complex Chronic Disease: A Rapid Review. Nutrients 2021; 13:3388. [PMID: 34684389 PMCID: PMC8538850 DOI: 10.3390/nu13103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/05/2022] Open
Abstract
Individuals with coexisting chronic diseases or with complex chronic disease are among the most challenging and costly patients to treat, placing a growing demand on healthcare systems. Recommending effective treatments, including nutrition interventions, relies on standardised outcome reporting from randomised controlled trials (RCTs) to enable data synthesis. This rapid review sought to determine how the scope and consistency of the outcomes reported by RCTs investigating nutrition interventions for the management of complex chronic disease compared to what is recommended by the core outcome sets (COS) for individual disease states. Peer-reviewed RCTs published between January 2010 and July 2020 were systematically sourced from PubMed, CINAHL and Embase, and COS were sourced from the International Consortium for Health Outcomes Measurements (ICHOM) and the Core Outcome Measures in Effectiveness Trials (COMET) database. A total of 45 RCTs (43 studies) and 7 COS were identified. Outcomes were extracted from both the RCTs and COS and were organised using COMET Taxonomy Core Areas. A total of 66 outcomes and 439 outcome measures were reported by the RCTs. The RCTs demonstrated extensive outcome heterogeneity, with only five outcomes (5/66, 8%) being reported with relative consistency (cited by ≥50% of publications). Furthermore, the scope of the outcomes reported by studies was limited, with a notable paucity of patient-reported outcomes. Poor agreement (25%) was observed between the outcomes reported in the RCTs and those recommended by the COS. This review urges greater uptake of the existing COS and the development of a COS for complex chronic disease to be considered so that evidence can be better synthesised regarding effective nutrition interventions.
Collapse
Affiliation(s)
- Savita A Sandhu
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia;
| | - Chloe A Angel
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia;
| | - Katrina L Campbell
- Healthcare Excellence and Innovation, Metro North Hospital and Health Service, Brisbane 4029, Australia;
| | - Ingrid J Hickman
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane 4102, Australia;
- Faculty of Medicine, University of Queensland, Brisbane 4006, Australia
| | - Helen L MacLaughlin
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia;
- Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
| |
Collapse
|
4
|
Plasma Metabolomic Profiling in 1391 Subjects with Overweight and Obesity from the SPHERE Study. Metabolites 2021; 11:metabo11040194. [PMID: 33805234 PMCID: PMC8064361 DOI: 10.3390/metabo11040194] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Overweight and obesity have high prevalence worldwide and assessing the metabolomic profile is a useful approach to study their related metabolic processes. In this study, we assessed the metabolomic profile of 1391 subjects affected by overweight and obesity, enrolled in the frame of the SPHERE study, using a validated LC-MS/MS targeted metabolomic approach determining a total of 188 endogenous metabolites. Multivariable censored linear regression Tobit models, correcting for age, sex, and smoking habits, showed that 83 metabolites were significantly influenced by body mass index (BMI). Among compounds with the highest association, aromatic and branched chain amino acids (in particular tyrosine, valine, isoleucine, and phenylalanine) increased with the increment of BMI, while some glycerophospholipids decreased, in particular some lysophosphatidylcholines (as lysoPC a C18:2) and several acylalkylphosphatidylcholines (as PC ae C36:2, PC ae C34:3, PC ae C34:2, and PC ae C40:6). The results of this investigation show that several endogenous metabolites are influenced by BMI, confirming the evidence with the strength of a large number of subjects, highlighting differences among subjects with different classes of obesity and showing unreported associations between BMI and different phosphatidylcholines.
Collapse
|
5
|
Oz O, Koyuncu I, Gonel A. A Pilot Study for Investigation of Plasma Amino Acid Profile in Neurofibromatosis Type 1 Patients. Comb Chem High Throughput Screen 2020; 25:114-122. [PMID: 33280590 DOI: 10.2174/1386207323666201204143206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurofibromatosis, also known as Von Recklinghausen disease, is a systemic and progressive genetic disease that primarily affects the skin, eyes, nervous system and bones. The disease can occur in a variety of ways and can vary from individuals. Metabolomic-based research using blood samples has enabled new diagnostic methods to be used in the diagnosis of various diseases, especially cancer. Among metabolites, profiling of plasma free amino acids (PFAA) is a promising approach because PFAAs bind all organ systems and play an important role in metabolism. OBJECTIVE This study aimed to determine the characteristics of PFAA profiles in neurofibromatosis patients and the possibility of using them for early detection and treatment of the disease. METHOD Patients with a diagnosis of Neurofibromatosis Type I confirmed by genetic analysis and healthy individuals of the same age group without any disease were included in the study. We analysed the nineteen plasma free amino acids (phenylalanine, proline, threonine, arginine, asparagine, cystine, valine, glutamate, tyrosine, serine, glutamine, glycine, tryptophane, leucine, lysine, methionine, isoleucine, aspartate and alanine) from neurofibromatosis Type I patients and control group by liquid chromatography tandem mass spectrometry (LC-MS/MS) in Metabolism Laboratory of Harran University Research and Application Hospital. The results of the plasma free amino acid levels were divided into 3 groups as essential, semi-essential and non-essential. The differences of amino acid levels between groups were determined. RESULTS Eight amino acid levels (methionine, arginine, cystine, glutamine, proline, asparagine, serine, aspartate) were significantly altered in patients with neurofibromatosis type 1. In essential amino acids, methionine levels were significantly higher in the patient group than the control group. While the levels of arginine and glutamine in semi-essential amino acids were statistically significantly higher in the patient group, a significant decrease was observed in cystine and proline levels compared to the control group's amino acid levels. In non-essential amino acids group, asparagine, serine and aspartate amino acid levels were significantly higher in the patient group compared to the control group. CONCLUSION The current research predicates that eight amino acids, nsmely methionine, arginine, cystine, glutamine, proline, asparagine, serine, aspartate can be considered to be valuable biomarkers for neurofibromatosis type I. This present study is the first to build models for neurofibromatosis Type I screening using plasma free amino acids and the amino acid profile will guide the predicting of the complications that may occur during the course of the disease.
Collapse
Affiliation(s)
- Ozlem Oz
- Department of Medical Genetics, Harran University. Turkey
| | - Ismail Koyuncu
- Department of Medicinal Biochemistry, Harran University. Turkey
| | - Ataman Gonel
- Department of Medicinal Biochemistry, Harran University. Turkey
| |
Collapse
|
6
|
Peng A, Lin L, Zhao M, Sun B. Identifying mechanisms underlying the amelioration effect of Chrysanthemum morifolium Ramat. 'Boju' extract on hyperuricemia using biochemical characterization and UPLC-ESI-QTOF/MS-based metabolomics. Food Funct 2020; 10:8042-8055. [PMID: 31746890 DOI: 10.1039/c9fo01821b] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study was aimed at evaluating the prospect of edible chrysanthemum extract as a potential substance for the prevention and treatment of hyperuricemia. Chrysanthemum morifolium Ramat. 'Boju' extract (CBE), which had the strongest xanthine oxidase inhibitory activity, showed a significant hypouricemic effect on potassium oxonate-induced hyperuricemic rats through inhibiting serum xanthine oxidase activity, regulating renal uric acid transport-related protein (ABCG2, URAT1 and GLUT9) expression and blood lipid levels, and protecting renal function. Serum metabolomics based on UPLC-ESI-QTOF/MS was used to illustrate mechanisms underlying the amelioration effect of CBE on hyperuricemia. A total of 35 potential biomarkers were identified. CBE prevented the pathological process of hyperuricemia by regulating 16/17 biomarkers associated with tryptophan, sphingolipid, glycerophospholipid and arachidonic acid metabolisms. CBE could alleviate hyperuricemia-related diseases including chronic kidney disease, hyperlipidemia and inflammation via reducing indoxyl sulfate, lysophosphatidylcholines and arachidonic acid levels, exhibiting its applicability and superiority in the treatment of hyperuricemia.
Collapse
Affiliation(s)
- An Peng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | | | |
Collapse
|
7
|
Kumar V, Kumar AA, Joseph V, Dan VM, Jaleel A, Kumar TRS, Kartha CC. Untargeted metabolomics reveals alterations in metabolites of lipid metabolism and immune pathways in the serum of rats after long-term oral administration of Amalaki rasayana. Mol Cell Biochem 2019; 463:147-160. [PMID: 31595424 DOI: 10.1007/s11010-019-03637-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/25/2019] [Indexed: 01/03/2023]
Abstract
Amalaki rasayana, a traditional preparation, is widely used by Ayurvedic physicians for the treatment of inflammatory conditions, cardiovascular diseases, and cancer. Metabolic alterations induced by Amalaki rasayana intervention are unknown. We investigated the modulations in serum metabolomic profiles in Wistar rats following long-term oral administration of Amalaki rasayana. Global metabolic profiling was performed of the serum of rats administered with either Amalaki rasayana (AR) or ghee + honey (GH) for 18 months and control animals which were left untreated. Amalaki rasayana components were confirmed from AR extract using HR-LCMS analysis. Significant reductions in prostaglandin J2, 11-dehydrothromboxane B2, and higher levels of reduced glutathione and glycitein metabolites were observed in the serum of AR administered rats compared to the control groups. Eleven different metabolites classified as phospholipids, glycerophospholipids, glucoside derivatives, organic acids, and glycosphingolipid were exclusively observed in the AR administered rats. Pathway analysis suggests that altered metabolites in AR administered rats are those associated with different biochemical pathways of arachidonic acid metabolism, fatty acid metabolism, leukotriene metabolism, G-protein mediated events, phospholipid metabolism, and the immune system. Targeted metabolomics confirmed the presence of gallic acid, ellagic acid, and arachidonic acid components in the AR extract. The known activities of these components can be correlated with the altered metabolic profile following long-term AR administration. AR also activates IGF1R-Akt-Foxo3 signaling axis in heart tissues of rats administered with AR. Our study identifies AR components that induce alterations in lipid metabolism and immune pathways in animals which consume AR for an extended period.
Collapse
Affiliation(s)
- Vikas Kumar
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, 695014, Kerala, India.,Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - A Aneesh Kumar
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, 695014, Kerala, India.,Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vinod Joseph
- NCIM Research Centre, National Chemical Laboratory (NCL), Pune, Maharashtra, India
| | - Vipin Mohan Dan
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Trivandrum, Kerala, India
| | - Abdul Jaleel
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, 695014, Kerala, India.,Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - T R Santhosh Kumar
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, 695014, Kerala, India.,Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India.,Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Chandrasekharan C Kartha
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, 695014, Kerala, India.
| |
Collapse
|
8
|
Gong LL, Yang S, Zhang W, Han FF, Lv YL, Xuan LL, Liu H, Liu LH. Discovery of metabolite profiles of metabolic syndrome using untargeted and targeted LC-MS based lipidomics approach. J Pharm Biomed Anal 2019; 177:112848. [PMID: 31479998 DOI: 10.1016/j.jpba.2019.112848] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/07/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022]
Abstract
Metabolic syndrome (MetS) is an important risk factor for type 2 diabetes, cardiovascular diseases and all-cause morbidity and mortality. Biomarkers can provide insight into the mechanism, facilitate early detection, and monitor progression of MetS and its response to therapeutic interventions. To identify potential biomarkers, we applied a non-targeted and targeted lipidomics method to characterize plasma metabolic profile in MetS patients. Metabolic profiling was performed on a non-target set (40 cases and 40 controls) on UHPLC-Q-TOF/MS and target set (80 MetS patients and 80 healthy controls) on UHPLC-Q-orbitrap MS. Using comprehensive screening and validation workflow, we identified a panel of three metabolites including PC(18:1/P-16:0), PC(o-22:3/22:3), PC(P-18:1/16:1). Our results indicated that the identified biomarkers may improve the risk prediction and provide a novel tool for monitoring of the progression of disease and response to treatment in MetS patients.
Collapse
Affiliation(s)
- Li-Li Gong
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Song Yang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wen Zhang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Fei-Fei Han
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ya-Li Lv
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ling-Ling Xuan
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - He Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Li-Hong Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Bagheri M, Djazayery A, Farzadfar F, Qi L, Yekaninejad MS, Aslibekyan S, Chamari M, Hassani H, Koletzko B, Uhl O. Plasma metabolomic profiling of amino acids and polar lipids in Iranian obese adults. Lipids Health Dis 2019; 18:94. [PMID: 30967146 PMCID: PMC6456979 DOI: 10.1186/s12944-019-1037-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/29/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Obesity, widely recognized as a serious health concern, is characterized by profoundly altered metabolism. However, the intermediate metabolites involved in this change remain largely unknown. OBJECTIVE We conducted targeted metabolomics profiling to identify moieties associated with adult obesity. METHODS In this case-control study of Iranian adults, 200 obese patients were compared with 100 controls based on 104 metabolites profiled by a targeted metabolomic approach using liquid chromatography coupled to triple quadrupole mass spectrometry (LC-MS/MS). The analysis comprised acylcarnitines, diacyl-phosphatidylcholines (PCaa), acyl-alkyl-phosphatidylcholines (PCae), sphingomyelins (SM), lyso-phospholipids (LPC) and amino acids. We performed multivariable linear regression to identify metabolites associated with obesity, adjusting for age, sex, total energy intake, total physical activity, smoking, and alcohol consumption. The Bonferroni correction was used to adjust for multiple testing. RESULTS A pattern of 19 metabolites was significantly associated with obesity. Branched chain amino acids, alanine, glutamic acid, proline, tyrosine LPCa C16:1, PCaa C32:1, PCaa C32:2 and PCaa C38:3 were positively, while serine, asparagine, LPCa C18:1, LPCa C18:2, LPCe C18:0, PCae C34:3, PCae C38:4 and PCae C40:6 were negatively associated with obesity (all p < 0.00048). CONCLUSIONS A metabolomic profile containing 9 amino acids and 10 polar lipids may serve as a potential biomarker of adult obesity. Further studies are warranted to replicate these findings as well as investigate potential changes in this profile after weight reduction.
Collapse
Affiliation(s)
- Minoo Bagheri
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, Tehran, 1416-643931 Iran
| | - Abolghasem Djazayery
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, Tehran, 1416-643931 Iran
| | - Farshad Farzadfar
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Lu Qi
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Maryam Chamari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, Tehran, 1416-643931 Iran
| | - Hossein Hassani
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, Tehran, 1416-643931 Iran
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Ludwig-Maximilians-Universität München, Dr. von Hauner Children’s Hospital, 80337 Munich, Germany
| | - Olaf Uhl
- Division of Metabolic and Nutritional Medicine, Ludwig-Maximilians-Universität München, Dr. von Hauner Children’s Hospital, 80337 Munich, Germany
| |
Collapse
|
10
|
Forster GM, Stockman J, Noyes N, Heuberger AL, Broeckling CD, Bantle CM, Ryan EP. A Comparative Study of Serum Biochemistry, Metabolome and Microbiome Parameters of Clinically Healthy, Normal Weight, Overweight, and Obese Companion Dogs. Top Companion Anim Med 2018; 33:126-135. [PMID: 30502863 DOI: 10.1053/j.tcam.2018.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/30/2018] [Accepted: 08/11/2018] [Indexed: 12/20/2022]
Abstract
The aim of this study was to compare fecal microbiome, plasma, fecal and urine metabolomes, and serum biochemistry of adult companion dogs according to body condition scores. Blood, serum/plasma, urine, and fecal samples were collected from 66 clinically healthy, adult companion dogs of either normal weight (NW), overweight (OW), or obese dogs (OB). analyses included fecal microbiome analyses via 16S ribosomal RNA gene amplicon; sequencing, nontargeted plasma, fecal, and urine metabolomics using liquid chromatography/gas chromatography-mass; spectrometry, and serum biochemistry for each dog. Few significant differences in serum biochemistry and fecal microbiome Operational Taxonomic Unit (OTU) were found between weight groups and there was high OTU variation between individual dogs. NW dogs had higher relative abundance of the genus Eubacterium (log-fold change 4.3, adjusted P value = .003) and lower relative abundance of the family Bifidobacteriaceae (log-fold change -3.6, adjusted P value = .02) compared to OB dogs. The microbiome of NW dogs had higher OTU richness compared with OB dogs. Metabolome analysis showed 185 plasma, 37 fecal, and 45 urine metabolites that significantly differed between NW and OW or OB dogs. There were notable significant differences in relative abundance of several plasma phospholipid moieties and fecal volatile fatty acids between weight phenotypes. The combinations of host and gut microbiota and metabolic shifts suggest a pattern that could help detection of early metabolic changes in overweight dogs before the development of obesity related disease. The results of this study support the need for continued investigation into sensitive measures of metabolic aberrancies in overweight dogs.
Collapse
Affiliation(s)
- Genevieve M Forster
- College of Veterinary Medicine and Biomedical Sciences, Departments of Clinical Sciences, Colorado State University, Fort Collins, CO, USA; College of Veterinary Medicine and Biomedical Sciences, Environmental and Radiological Health Sciences Colorado State University, Fort Collins, CO, USA
| | - Jonathan Stockman
- College of Veterinary Medicine and Biomedical Sciences, Departments of Clinical Sciences, Colorado State University, Fort Collins, CO, USA; College of Veterinary Medicine and Biomedical Sciences, Environmental and Radiological Health Sciences Colorado State University, Fort Collins, CO, USA
| | - Noelle Noyes
- College of Veterinary Medicine and Biomedical Sciences, Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Adam L Heuberger
- College of Agricultural Sciences, Departments of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Corey D Broeckling
- College of Agricultural Sciences, Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Collin M Bantle
- College of Veterinary Medicine and Biomedical Sciences, Environmental and Radiological Health Sciences Colorado State University, Fort Collins, CO, USA
| | - Elizabeth P Ryan
- College of Veterinary Medicine and Biomedical Sciences, Environmental and Radiological Health Sciences Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
11
|
The impact of probiotics' administration on glycemic control, body composition, gut microbiome, mitochondria, and other hormonal signals in adolescents with prediabetes - A randomized, controlled trial study protocol. Contemp Clin Trials Commun 2018; 11:55-62. [PMID: 30003169 PMCID: PMC6041374 DOI: 10.1016/j.conctc.2018.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/20/2018] [Accepted: 06/01/2018] [Indexed: 12/28/2022] Open
Abstract
Background Recent studies have demonstrated that a significant proportion of adolescents exhibit abdominal obesity in early–middle adolescence, and impaired glucose metabolism. Dysregulation of glucose metabolism is aggravated by the existing osteosarcopenia not only in obese but also in overweight youth. Biochemical inflammation, derived from glucose metabolism dysregulation, in combination with increased stress levels lead to the accumulation of reactive oxygen species, also known as ROS, which seem to afflict the integrity of the gastrointestinal wall, gut mucosa, and commensal, intestinal gut microflora. The current scientific protocol aims to assess the administration of probiotics in prediabetic adolescents in relation with their glycemic control, body composition, and intestinal microbiome. Methods/Design This is a study protocol of a two-armed RCT, that recruits adolescents with prediabetes, who will receive either a 4-month, life-style intervention, or a life-style intervention along with a probiotic supplement. The primary outcome is the differences in gut microbiome synthesis, body composition analysis parameters, and concentrations of hormones, before and after the intervention. Discussion This study aims to halt the progression of obesity and diabetes and aspires to contribute new evidence for upgraded treatment of obesity and diabetes. Trial registration Australian New Zealand Clinical Trial Registry (ACTRN12615000470594).
Collapse
|
12
|
Zhao X, Gang X, Liu Y, Sun C, Han Q, Wang G. Using Metabolomic Profiles as Biomarkers for Insulin Resistance in Childhood Obesity: A Systematic Review. J Diabetes Res 2016; 2016:8160545. [PMID: 27517054 PMCID: PMC4969529 DOI: 10.1155/2016/8160545] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/28/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022] Open
Abstract
A growing body of evidence has shown the intimate relationship between metabolomic profiles and insulin resistance (IR) in obese adults, while little is known about childhood obesity. In this review, we searched available papers addressing metabolomic profiles and IR in obese children from inception to February 2016 on MEDLINE, Web of Science, the Cochrane Library, ClinicalTrials.gov, and EMASE. HOMA-IR was applied as surrogate markers of IR and related metabolic disorders at both baseline and follow-up. To minimize selection bias, two investigators independently completed this work. After critical selection, 10 studies (including 2,673 participants) were eligible and evaluated by using QUADOMICS for quality assessment. Six of the 10 studies were classified as "high quality." Then we generated all the metabolites identified in each study and found amino acid metabolism and lipid metabolism were the main affected metabolic pathways in obese children. Among identified metabolites, branched-chain amino acids (BCAAs), aromatic amino acids (AAAs), and acylcarnitines were reported to be associated with IR as biomarkers most frequently. Additionally, BCAAs and tyrosine seemed to be relevant to future metabolic risk in the long-term follow-up cohorts, emphasizing the importance of early diagnosis and prevention strategy. Because of limited scale and design heterogeneity of existing studies, future studies might focus on validating above findings in more large-scale and longitudinal studies with elaborate design.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Yujia Liu
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Chenglin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Qing Han
- Hospital of Orthopedics, The Second Hospital of Jilin University, Changchun 130021, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
13
|
Lee DY, Kim E, Choi MH. Technical and clinical aspects of cortisol as a biochemical marker of chronic stress. BMB Rep 2016; 48:209-16. [PMID: 25560699 PMCID: PMC4436856 DOI: 10.5483/bmbrep.2015.48.4.275] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Indexed: 12/17/2022] Open
Abstract
Stress is now recognized as a universal premorbid factor associated with many risk factors of various chronic diseases. Acute stress may induce an individual's adaptive response to environmental demands. However, chronic, excessive stress causes cumulative negative impacts on health outcomes through "allostatic load". Thus, monitoring the quantified levels of long-term stress mediators would provide a timely opportunity for prevention or earlier intervention of stress-related chronic illnesses. Although either acute or chronic stress could be quantified through measurement of changes in physiological parameters such as heart rate, blood pressure, and levels of various metabolic hormones, it is still elusive to interpret whether the changes in circulating levels of stress mediators such as cortisol can reflect the acute, chronic, or diurnal variations. Both serum and salivary cortisol levels reveal acute changes at a single point in time, but the overall long-term systemic cortisol exposure is difficult to evaluate due to circadian variations and its protein-binding capacity. Scalp hair has a fairy predictable growth rate of approximately 1 cm/month, and the most 1 cm segment approximates the last month's cortisol production as the mean value. The analysis of cortisol in hair is a highly promising technique for the retrospective assessment of chronic stress.
Collapse
Affiliation(s)
- Do Yup Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Korea
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Man Ho Choi
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Korea
| |
Collapse
|
14
|
Zhao X, Han Q, Liu Y, Sun C, Gang X, Wang G. The Relationship between Branched-Chain Amino Acid Related Metabolomic Signature and Insulin Resistance: A Systematic Review. J Diabetes Res 2016; 2016:2794591. [PMID: 27642608 PMCID: PMC5014958 DOI: 10.1155/2016/2794591] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/16/2016] [Accepted: 08/01/2016] [Indexed: 01/22/2023] Open
Abstract
Recent studies have shown the positive association between increased circulating BCAAs (valine, leucine, and isoleucine) and insulin resistance (IR) in obese or diabetic patients. However, results seem to be controversial in different races, diets, and distinct tissues. Our aims were to evaluate the relationship between BCAA and IR as well as later diabetes risk and explore the phenotypic and genetic factors influencing BCAA level based on available studies. We performed systematic review, searching MEDLINE, EMASE, ClinicalTrials.gov, the Cochrane Library, and Web of Science from inception to March 2016. After selection, 23 studies including 20,091 participants were included. Based on current evidence, we found that BCAA is a useful biomarker for early detection of IR and later diabetic risk. Factors influencing BCAA level can be divided into four parts: race, gender, dietary patterns, and gene variants. These factors might not only contribute to the elevated BCAA level but also show obvious associations with insulin resistance. Genes related to BCAA catabolism might serve as potential targets for the treatment of IR associated metabolic disorders. Moreover, these factors should be controlled properly during study design and data analysis. In the future, more large-scale studies with elaborate design addressing BCAA and IR are required.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Qing Han
- Hospital of Orthopedics, The Second Hospital of Jilin University, Changchun 130021, China
| | - Yujia Liu
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Chenglin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
- *Xiaokun Gang: and
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
- *Guixia Wang:
| |
Collapse
|
15
|
Fotakis C, Zoga M, Baskakis C, Tsiaka T, Boutsikou T, Briana DD, Dendrinou K, Malamitsi-Puchner A, Zoumpoulakis P. Investigating the metabolic fingerprint of term infants with normal and increased fetal growth. RSC Adv 2016. [DOI: 10.1039/c6ra12403h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An NMR metabolomic approach was employed to highlight the metabolic changes underlying prenatal disorders and determine metabolites that could serve as potential markers in relation to large for gestational age (LGA) newborns.
Collapse
Affiliation(s)
- C. Fotakis
- Institute of Biology, Medicinal Chemistry and Biotechnology
- National Hellenic Research Foundation
- Athens
- Greece
| | - M. Zoga
- Department of Neonatology
- National and Kapodistrian University of Athens
- Athens
- Greece
| | - C. Baskakis
- Institute of Biology, Medicinal Chemistry and Biotechnology
- National Hellenic Research Foundation
- Athens
- Greece
| | - Th. Tsiaka
- Institute of Biology, Medicinal Chemistry and Biotechnology
- National Hellenic Research Foundation
- Athens
- Greece
| | - T. Boutsikou
- Department of Neonatology
- National and Kapodistrian University of Athens
- Athens
- Greece
| | - D. D. Briana
- Department of Neonatology
- National and Kapodistrian University of Athens
- Athens
- Greece
| | - K. Dendrinou
- Department of Neonatology
- National and Kapodistrian University of Athens
- Athens
- Greece
| | - A. Malamitsi-Puchner
- Department of Neonatology
- National and Kapodistrian University of Athens
- Athens
- Greece
| | - P. Zoumpoulakis
- Institute of Biology, Medicinal Chemistry and Biotechnology
- National Hellenic Research Foundation
- Athens
- Greece
| |
Collapse
|
16
|
Li S, Todor A, Luo R. Blood transcriptomics and metabolomics for personalized medicine. Comput Struct Biotechnol J 2015; 14:1-7. [PMID: 26702339 PMCID: PMC4669660 DOI: 10.1016/j.csbj.2015.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/05/2015] [Accepted: 10/23/2015] [Indexed: 01/13/2023] Open
Abstract
Molecular analysis of blood samples is pivotal to clinical diagnosis and has been intensively investigated since the rise of systems biology. Recent developments have opened new opportunities to utilize transcriptomics and metabolomics for personalized and precision medicine. Efforts from human immunology have infused into this area exquisite characterizations of subpopulations of blood cells. It is now possible to infer from blood transcriptomics, with fine accuracy, the contribution of immune activation and of cell subpopulations. In parallel, high-resolution mass spectrometry has brought revolutionary analytical capability, detecting > 10,000 metabolites, together with environmental exposure, dietary intake, microbial activity, and pharmaceutical drugs. Thus, the re-examination of blood chemicals by metabolomics is in order. Transcriptomics and metabolomics can be integrated to provide a more comprehensive understanding of the human biological states. We will review these new data and methods and discuss how they can contribute to personalized medicine.
Collapse
Affiliation(s)
- Shuzhao Li
- Department of Medicine, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Andrei Todor
- Department of Medicine, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Ruiyan Luo
- Division of Epidemiology and Biostatistics, School of Public Health, Georgia State University, One Park Place, Atlanta, GA 30303, USA
| |
Collapse
|
17
|
Park SE, Park CY, Sweeney G. Biomarkers of insulin sensitivity and insulin resistance: Past, present and future. Crit Rev Clin Lab Sci 2015; 52:180-90. [PMID: 26042993 DOI: 10.3109/10408363.2015.1023429] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Insulin resistance in insulin target tissues including liver, skeletal muscle and adipose tissue is an early step in the progression towards type 2 diabetes. Accurate diagnostic parameters reflective of insulin resistance are essential. Longstanding tests for fasting blood glucose and HbA1c are useful and although the hyperinsulinemic euglycemic clamp remains a "gold standard" for accurately determining insulin resistance, it cannot be implemented on a routine basis. The study of adipokines, and more recently myokines and hepatokines, as potential biomarkers for insulin sensitivity is now an attractive and relatively straightforward approach. This review discusses potential biomarkers including adiponectin, RBP4, chemerin, A-FABP, FGF21, fetuin-A, myostatin, IL-6, and irisin, all of which may play significant roles in determining insulin sensitivity. We also review potential future directions of new biological markers for measuring insulin resistance, including metabolomics and gut microbiome. Collectively, these approaches will provide clinicians with the tools for more accurate, and perhaps personalized, diagnosis of insulin resistance.
Collapse
Affiliation(s)
- Se Eun Park
- a Division of Endocrinology and Metabolism, Department of Internal Medicine , Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine , Seoul , South Korea and
| | | | | |
Collapse
|
18
|
Enhancing metabolomics research through data mining. J Proteomics 2015; 127:275-88. [PMID: 25668325 DOI: 10.1016/j.jprot.2015.01.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Metabolomics research, like other disciplines utilizing high-throughput technologies, generates a large amount of data for every sample. Although handling this data is a challenge and one of the biggest bottlenecks of the metabolomics workflow, it is also the clue to accomplish valuable results. This work has been designed to supply methodological data mining guidelines, describing systematically the steps to be followed in metabolomics data exploration. Instrumental raw data refinement in the pre-processing step and assessment of the statistical assumptions in pre-treatment directly affect the results of subsequent univariate and multivariate analyses. A study of aging in a healthy population was selected to represent this data mining process. Multivariate analysis of variance and linear regression methods were used to analyze the metabolic changes underlying aging. Selection of both multivariate methods aims to illustrate the treatment of age from two rather different perspectives, as a categorical variable and a continuous variable. BIOLOGICAL SIGNIFICANCE Metabolomics is a discipline involving the analysis of a large amount of data to gather relevant information. Researchers in this field have to overcome the challenges of complex data processing and statistical analysis issues. A wide range of tasks has to be executed, from the minimization of batch-to-batch/systematic variations in pre-processing, to the application of common data analysis techniques relying on statistical assumptions. In this work, a real-data metabolic profiling research on aging was used to illustrate the proposed workflow and suggest a set of guidelines for analyzing metabolomics data. This article is part of a Special Issue entitled: HUPO 2014.
Collapse
|
19
|
Application of metabolomics in autoimmune diseases: Insight into biomarkers and pathology. J Neuroimmunol 2015; 279:25-32. [DOI: 10.1016/j.jneuroim.2015.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/09/2014] [Accepted: 01/05/2015] [Indexed: 12/31/2022]
|
20
|
Gogna N, Krishna M, Oommen AM, Dorai K. Investigating correlations in the altered metabolic profiles of obese and diabetic subjects in a South Indian Asian population using an NMR-based metabolomic approach. MOLECULAR BIOSYSTEMS 2014; 11:595-606. [PMID: 25464928 DOI: 10.1039/c4mb00507d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is well known that obesity/high body mass index (BMI) plays a key role in the evolution of insulin resistance and type-2 diabetes mellitus (T2DM). However, the exact mechanism underlying its contribution is still not fully understood. This work focuses on an NMR-based metabolomic investigation of the serum profiles of diabetic, obese South Indian Asian subjects. (1)H 1D and 2D NMR experiments were performed to profile the altered metabolic patterns of obese diabetic subjects and multivariate statistical methods were used to identify metabolites that contributed significantly to the differences in the samples of four different subject groups: diabetic and non-diabetic with low and high BMIs. Our analysis revealed that the T2DM-high BMI group has higher concentrations of saturated fatty acids, certain amino acids (leucine, isoleucine, lysine, proline, threonine, valine, glutamine, phenylalanine, histidine), lactic acid, 3-hydroxybutyric acid, choline, 3,7-dimethyluric acid, pantothenic acid, myoinositol, sorbitol, glycerol, and glucose, as compared to the non-diabetic-low BMI (control) group. Of these 19 identified significant metabolites, the levels of saturated fatty acids, lactate, valine, isoleucine, and phenylalanine are also higher in obese non-diabetic subjects as compared to control subjects, implying that this set of metabolites could be identified as potential biomarkers for the onset of diabetes in subjects with a high BMI. Our work validates the utility of NMR-based metabolomics in conjunction with multivariate statistical analysis to provide insights into the underlying metabolic pathways that are perturbed in diabetic subjects with a high BMI.
Collapse
Affiliation(s)
- Navdeep Gogna
- Indian Institute of Science Education & Research (IISER) Mohali, Knowledge City Sector 81, Mohali PO Manauli, 140306 Punjab, India.
| | | | | | | |
Collapse
|
21
|
Anderson SG, Dunn WB, Banerjee M, Brown M, Broadhurst DI, Goodacre R, Cooper GJS, Kell DB, Cruickshank JK. Evidence that multiple defects in lipid regulation occur before hyperglycemia during the prodrome of type-2 diabetes. PLoS One 2014; 9:e103217. [PMID: 25184286 PMCID: PMC4153569 DOI: 10.1371/journal.pone.0103217] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 06/30/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Blood-vessel dysfunction arises before overt hyperglycemia in type-2 diabetes (T2DM). We hypothesised that a metabolomic approach might identify metabolites/pathways perturbed in this pre-hyperglycemic phase. To test this hypothesis and for specific metabolite hypothesis generation, serum metabolic profiling was performed in young women at increased, intermediate and low risk of subsequent T2DM. METHODS Participants were stratified by glucose tolerance during a previous index pregnancy into three risk-groups: overt gestational diabetes (GDM; n = 18); those with glucose values in the upper quartile but below GDM levels (UQ group; n = 45); and controls (n = 43, below the median glucose values). Follow-up serum samples were collected at a mean 22 months postnatally. Samples were analysed in a random order using Ultra Performance Liquid Chromatography coupled to an electrospray hybrid LTQ-Orbitrap mass spectrometer. Statistical analysis included principal component (PCA) and multivariate methods. FINDINGS Significant between-group differences were observed at follow-up in waist circumference (86, 95%CI (79-91) vs 80 (76-84) cm for GDM vs controls, p<0.05), adiponectin (about 33% lower in GDM group, p = 0.004), fasting glucose, post-prandial glucose and HbA1c, but the latter 3 all remained within the 'normal' range. Substantial differences in metabolite profiles were apparent between the 2 'at-risk' groups and controls, particularly in concentrations of phospholipids (4 metabolites with p ≤ 0.01), acylcarnitines (3 with p ≤ 0.02), short- and long-chain fatty acids (3 with p< = 0.03), and diglycerides (4 with p ≤ 0.05). INTERPRETATION Defects in adipocyte function from excess energy storage as relatively hypoxic visceral and hepatic fat, and impaired mitochondrial fatty acid oxidation may initiate the observed perturbations in lipid metabolism. Together with evidence from the failure of glucose-directed treatments to improve cardiovascular outcomes, these data and those of others indicate that a new, quite different definition of type-2 diabetes is required. This definition would incorporate disturbed lipid metabolism prior to hyperglycemia.
Collapse
Affiliation(s)
- Simon G. Anderson
- Institute of Cardiovascular Sciences, Core Technology Facility, The University of Manchester, Manchester, United Kingdom
| | - Warwick B. Dunn
- Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Centre for Advanced Discovery & Experimental Therapeutics (CADET), Central Manchester NHS Foundation Trust and School of Biomedicine, The University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Moulinath Banerjee
- Institute of Cardiovascular Sciences, Core Technology Facility, The University of Manchester, Manchester, United Kingdom
| | - Marie Brown
- Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - David I. Broadhurst
- Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Division of General Internal Medicine, Department of Medicine, 4126A Katz Group Centre for Pharmacy & Health, University of Alberta, Edmonton, Alberta, Canada
| | - Royston Goodacre
- Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Garth J. S. Cooper
- Centre for Advanced Discovery & Experimental Therapeutics (CADET), Central Manchester NHS Foundation Trust and School of Biomedicine, The University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Douglas B. Kell
- Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - J. Kennedy Cruickshank
- Institute of Cardiovascular Sciences, Core Technology Facility, The University of Manchester, Manchester, United Kingdom
- Diabetes & Nutritional Sciences Division, King's College London, London, United Kingdom
| |
Collapse
|
22
|
Pinto J, Domingues MRM, Galhano E, Pita C, Almeida MDC, Carreira IM, Gil AM. Human plasma stability during handling and storage: impact on NMR metabolomics. Analyst 2014; 139:1168-77. [DOI: 10.1039/c3an02188b] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stability of human plasma composition was investigated by NMR, considering different collection tubes, time at room temperature (RT), short- and long-term storage conditions and up to 5 consecutive freeze–thaw cycles.
Collapse
Affiliation(s)
- Joana Pinto
- CICECO – Department of Chemistry
- Campus Universitário de Santiago
- Universidade de Aveiro
- 3810-193 Aveiro, Portugal
| | - M. Rosário M. Domingues
- QOPNA – Department of Chemistry
- Campus Universitário de Santiago
- University of Aveiro
- 3810-193 Aveiro, Portugal
| | - Eulália Galhano
- Maternidade Bissaya Barreto
- Centro Hospitalar e Universitário de Coimbra – CHUC
- 3000 Coimbra, Portugal
| | - Cristina Pita
- Maternidade Bissaya Barreto
- Centro Hospitalar e Universitário de Coimbra – CHUC
- 3000 Coimbra, Portugal
| | - Maria do Céu Almeida
- Maternidade Bissaya Barreto
- Centro Hospitalar e Universitário de Coimbra – CHUC
- 3000 Coimbra, Portugal
| | - Isabel M. Carreira
- Cytogenetics and Genomics Laboratory
- Faculty of Medicine
- University of Coimbra
- Portugal
- CIMAGO Center for Research in Environment, Genetics and Oncobiology
| | - Ana M. Gil
- CICECO – Department of Chemistry
- Campus Universitário de Santiago
- Universidade de Aveiro
- 3810-193 Aveiro, Portugal
| |
Collapse
|
23
|
Abstract
The beneficial metabolic effects of adiponectin which confer insulin-sensitizing and anti-diabetic effects are well established. Skeletal muscle is an important target tissue for adiponectin where it regulates glucose and fatty acid metabolism directly and via insulin sensitizing effects. Cell surface receptors and the intracellular signaling events via which adiponectin orchestrates metabolism are now becoming well characterized. The initially accepted dogma of adiponectin action was that the physiological effects were mediated via endocrine effects of adipose-derived adiponectin. However, in recent years it has been established that skeletal muscle can also produce and secrete adiponectin that can elicit important functional effects. There is evidence that skeletal muscle adiponectin resistance may develop in obesity and play a role in the pathogenesis of diabetes. In summary, adiponectin acting in an autocrine and endocrine manner has important metabolic and insulin sensitizing effects on skeletal muscle which contribute to the overall anti-diabetic outcome of adiponectin action.
Collapse
Affiliation(s)
- Ying Liu
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
24
|
Dessì A, Puddu M, Ottonello G, Fanos V. Metabolomics and fetal-neonatal nutrition: between "not enough" and "too much". Molecules 2013; 18:11724-32. [PMID: 24071981 PMCID: PMC6270346 DOI: 10.3390/molecules181011724] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 12/18/2022] Open
Abstract
Metabolomics is a new analytical technique defined as the study of the complex system of metabolites that is capable of describing the biochemical phenotype of a biological system. In recent years the literature has shown an increasing interest in paediatric obesity and the onset of diabetes and the metabolic syndrome in adulthood. Some studies show that fetal malnutrition, both excessive and insufficient, may permanently alter the metabolic processes of the fetus and increase the risk of future chronic pathologies. At present then, attention is being focused mainly on the formulation of new hypotheses, by means of metabolomics, concerning the biological mechanisms to departure from fetal-neonatal life that may predispose to the development of these diseases.
Collapse
Affiliation(s)
- Angelica Dessì
- Neonatal Intensive Care Unit, Puericulture Institute and Neonatal Section, Azienda Ospedaliera Universitaria, Cagliari 09124, Italy.
| | | | | | | |
Collapse
|
25
|
Nieman DC, Shanely RA, Gillitt ND, Pappan KL, Lila MA. Serum metabolic signatures induced by a three-day intensified exercise period persist after 14 h of recovery in runners. J Proteome Res 2013; 12:4577-84. [PMID: 23984841 DOI: 10.1021/pr400717j] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study investigated changes in the human serum metabolome elicited by a 3-day period of intensified training. Runners (N = 15, mean ± SD age, 35.2 ± 8.7 years) ran for 2.5 h/day on treadmills at ∼70% VO2max for 3 days in a row, with blood samples collected pre-exercise, and immediately and 14 h post-exercise. Samples were analyzed using gas and liquid chromatography/mass spectrometry (GC-MS, LC-MS), with compounds identified based on comparison to more than 2800 purified standards. Repeated measures ANOVA was used to identify metabolites that differed significantly across time, with multiple testing corrected by the false discovery rate (FDR) (q-value). Immediately following the 3-day exercise period, significant 2-fold or higher increases in 75 metabolites were measured, with all but 22 of these metabolites related to lipid/carnitine metabolism, 13 to amino acid/peptide metabolism, 4 to hemoglobin/porphyrin metabolism, and 3 to Krebs cycle intermediates (q-values < 0.001). After a 14 h overnight recovery period, 50 of the 75 metabolites remained elevated, with 8 decreased (primarily amino acid-related metabolites) (q-values < 0.05). Among the top 20 metabolites, the mean fold changes were 12.4 ± 5.3 and 2.9 ± 1.3 immediately and 14-h post-exercise, respectively. Significant decreases (40-70%, q < 0.01) in 22 metabolites (primarily related to lysolipid and bile acid metabolism) were measured post-exercise, with all but 4 of these still decreased after 14 h rest recovery (q < 0.025). Runners experienced a profound systemic shift in blood metabolites related to energy production especially from the lipid super pathway following 3 days of heavy exertion that was not fully restored to pre-exercise levels after 14 h recovery.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina, United States
| | | | | | | | | |
Collapse
|
26
|
Lecomte V, Youngson NA, Maloney CA, Morris MJ. Parental programming: How can we improve study design to discern the molecular mechanisms? Bioessays 2013; 35:787-93. [DOI: 10.1002/bies.201300051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Virginie Lecomte
- School of Medical Sciences; University of New South Wales; Sydney NSW Australia
| | - Neil A. Youngson
- School of Medical Sciences; University of New South Wales; Sydney NSW Australia
| | | | - Margaret J. Morris
- School of Medical Sciences; University of New South Wales; Sydney NSW Australia
| |
Collapse
|