1
|
Shen L, Luo H, Fan L, Tian X, Tang A, Wu X, Dong K, Su Z. Potential Immunoregulatory Mechanism of Plant Saponins: A Review. Molecules 2023; 29:113. [PMID: 38202696 PMCID: PMC10780299 DOI: 10.3390/molecules29010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Saponins are extracted from different parts of plants such as seeds, roots, stems, and leaves and have a variety of biological activities including immunomodulatory, anti-inflammatory effects, and hypoglycemic properties. They demonstrate inherent low immunogenicity and possess the capacity to effectively regulate both the innate and adaptive immune responses. Plant saponins can promote the growth and development of the body's immune organs through a variety of signaling pathways, regulate the activity of a variety of immune cells, and increase the secretion of immune-related cytokines and antigen-specific antibodies, thereby exerting the role of immune activity. However, the chemical structure of plant saponins determines its certain hemolytic and cytotoxicity. With the development of science and technology, these disadvantages can be avoided or reduced by certain technical means. In recent years, there has been a significant surge in interest surrounding the investigation of plant saponins as immunomodulators. Consequently, the objective of this review is to thoroughly examine the immunomodulatory properties of plant saponins and elucidate their potential mechanisms, with the intention of offering a valuable point of reference for subsequent research and advancement within this domain.
Collapse
Affiliation(s)
- Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyu Tian
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anguo Tang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaofeng Wu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ke Dong
- Sichuan Yuqiang Herbal Biotechnology Co., Ltd., Chengdu 611130, China
| | - Zhetong Su
- Guangxi Innovates Medical Technology Co., Ltd., Lipu 546600, China
| |
Collapse
|
2
|
Li T, Liu X, Han P, Aimaier A, Zhang Y, Li J. Syringaldehyde ameliorates mouse arthritis by inhibiting dendritic cell maturation and proinflammatory cytokine secretion. Int Immunopharmacol 2023; 121:110490. [PMID: 37339567 DOI: 10.1016/j.intimp.2023.110490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023]
Abstract
Syringaldehyde (SD), a kind of flavonoid polyphenolic small molecule compound, has the antioxidant and anti-inflammatory properties. But it is unknown whether SD has properties on the treatment of rheumatoid arthritis (RA) by modulating dendritic cells (DCs). We explored the effect of SD on the maturation of DCs in vitro and in vivo. The results showed that SD significantly down-regulated the expression of CD86, CD40 and MHC II, decreased the secretion of TNF-α, IL-6, IL-12p40 and IL-23, and increased IL-10 secretion and antigen phagocytosis in vitro induced by lipopolysaccharides in a dose-dependent manner through reducing the activation of MAPK/NF-κB signaling pathways. SD also significantly inhibited the expression of CD86, CD40 and MHC II on DCs in vivo. Moreover, SD suppressed the expression of CCR7 and the in vivo migration of DCs. In arthritis mouse models induced by λ-carrageenan and complete Freund's adjuvant, SD significantly alleviated paw and joint oedema, reduced the levels of pro-inflammatory cytokines TNF-α and IL-6 and increased the level of IL-10 in serum. Interestingly, SD significantly decreased the numbers of type I helper T cells (Th1), Th2, Th17 and Th17/Th1-like (CD4+IFN-γ+IL-17A+), but increased the numbers of regulatory T cells (Tregs) in spleens of mice. Importantly, the numbers of CD11c+IL-23+ and CD11c+IL-6+ cells were negatively correlated with the numbers of Th17 and Th17/Th1-like. These results suggested that SD ameliorated mouse arthritis through inhibiting the differentiation of Th1, Th17 and Th17/Th1-like and promoting the generation of Tregs via regulation of DC maturation.
Collapse
Affiliation(s)
- Teng Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Xiaoying Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Peng Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Alimu Aimaier
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yaosheng Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
3
|
Anderson J, Do LAH, Wurzel D, Quan Toh Z, Mulholland K, Pellicci DG, Licciardi PV. Severe respiratory syncytial virus disease in preterm infants: a case of innate immaturity. Thorax 2021; 76:942-950. [PMID: 33574121 DOI: 10.1136/thoraxjnl-2020-216291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/12/2021] [Accepted: 01/27/2021] [Indexed: 11/03/2022]
Abstract
Respiratory syncytial virus (RSV) is the most common viral pathogen associated with acute lower respiratory tract infection (LRTI) in children under 5 years of age. Severe RSV disease is associated with the development of chronic respiratory complications such as recurrent wheezing and asthma. A common risk factor for developing severe RSV disease is premature gestation and this is largely due to an immature innate immune system. This increases susceptibility to RSV since the innate immune system is less able to protect against pathogens at a time when adaptive immunity has not fully developed. This review focuses on comparing different aspects of innate immunity between preterm and term infants to better understand why preterm infants are more susceptible to severe RSV disease. Identifying early life innate immune biomarkers associated with the development of severe RSV disease, and understanding how these compare between preterm and term infants, remains a critically important question that would aid the development of interventions to reduce the burden of disease in this vulnerable population.
Collapse
Affiliation(s)
- Jeremy Anderson
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Lien Anh Ha Do
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Pediatrics, The University of Melbourne-Parkville Campus, Melbourne, Victoria, Australia
| | - Danielle Wurzel
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Pediatrics, The University of Melbourne-Parkville Campus, Melbourne, Victoria, Australia.,The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Zheng Quan Toh
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Pediatrics, The University of Melbourne-Parkville Campus, Melbourne, Victoria, Australia
| | - Kim Mulholland
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Pediatrics, The University of Melbourne-Parkville Campus, Melbourne, Victoria, Australia.,Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Daniel G Pellicci
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Pediatrics, The University of Melbourne-Parkville Campus, Melbourne, Victoria, Australia
| | - Paul V Licciardi
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia .,Department of Pediatrics, The University of Melbourne-Parkville Campus, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Yuan P, Aipire A, Yang Y, Wei X, Fu C, Zhou F, Mahabati M, Li J, Li J. Comparison of the structural characteristics and immunostimulatory activities of polysaccharides from wild and cultivated Pleurotus feruleus. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
5
|
Li D, Yang S, Peng H. [Characteristics of exosomes secreted by Toxoplasma gondii-infected mouse dendritic DC2.4 cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:727-732. [PMID: 32897220 DOI: 10.12122/j.issn.1673-4254.2020.05.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the changes in the exosomes secreted by mouse dendritic cell line DC2.4 after infection with Toxoplasma gondii and to analyze the possible regulatory mechanisms underlying such changes. METHODS The exosomes were extracted by ultracentrifugation from DC2.4 cells at 28 h after infection with Toxoplasma gondii. The morphology of the exosomes was examined with transmission electron microscopy, and the exosome size and density were determined using a nanoparticle tracker. High-throughput sequencing was carried out to identify the differentially expressed small RNAs in the exosomes derived from the infected cells. RESULTS T. gondii infection resulted in a significantly increased density of exosomes secreted by DC2.4 cells. Small RNA sequencing revealed that Toxoplasma infection caused an increase in the number of miRNAs and piRNAs in the exosomes. The significantly up-regulated piRNAs after the infection included piR-mmu-159, piR-mmu-1526, piR-mmu-9082, piR-mmu-17405, and piR-mmu-25576. CONCLUSIONS Toxoplasma infection causes accumulation and enrichment of exosomes secreted by DC2.4 cells with increased miRNAs and piRNAs in the exosomes.
Collapse
Affiliation(s)
- Dongliang Li
- Department of Pathogen Biology, School of Public Health, Southern Medical University. Guangzhou 510515, China
| | - Shujun Yang
- Department of Ultrasound Diagnosis, 74th Army Group Hospital, Guangzhou 510318, China
| | - Hongjuan Peng
- Department of Pathogen Biology, School of Public Health, Southern Medical University. Guangzhou 510515, China
| |
Collapse
|
6
|
Galeas-Pena M, McLaughlin N, Pociask D. The role of the innate immune system on pulmonary infections. Biol Chem 2019; 400:443-456. [PMID: 29604208 DOI: 10.1515/hsz-2018-0304] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
Inhalation is required for respiration and life in all vertebrates. This process is not without risk, as it potentially exposes the host to environmental pathogens with every breath. This makes the upper respiratory tract one of the most common routes of infection and one of the leading causes of morbidity and mortality in the world. To combat this, the lung relies on the innate immune defenses. In contrast to the adaptive immune system, the innate immune system does not require sensitization, previous exposure or priming to attack foreign particles. In the lung, the innate immune response starts with the epithelial barrier and mucus production and is reinforced by phagocytic cells and T cells. These cells are vital for the production of cytokines, chemokines and anti-microbial peptides that are critical for clearance of infectious agents. In this review, we discuss all aspects of the innate immune response, with a special emphasis on ways to target aspects of the immune response to combat antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Michelle Galeas-Pena
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Nathaniel McLaughlin
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Derek Pociask
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Zhang Y, Yang J, Li M, Cui M, Fu ZF, Zhao L, Zhou M. A Recombinant Rabies Virus Expressing Fms-like Tyrosine Kinase 3 Ligand (Flt3L) Induces Enhanced Immunogenicity in Mice. Virol Sin 2019; 34:662-672. [PMID: 31254272 DOI: 10.1007/s12250-019-00144-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
Rabies is a zoonotic disease that still causes 59,000 human deaths each year, and rabies vaccine is the most effective way to control the disease. Our previous studies suggested that the maturation of DC plays an important role in enhancing the immunogenicity of rabies vaccine. Flt3L has been reported to own the ability to accelerate the DC maturation, therefore, in this study, a recombinant rabies virus expressing mouse Flt3L, designated as LBNSE-Flt3L, was constructed, and its immunogenicity was characterized. It was found that LBNSE-Flt3L could enhance the maturation of DC both in vitro and in vivo, and significantly more TFH cells and Germinal Center B (GC B) cells were generated in mice immunized with LBNSE-Flt3L than those immunized with the parent virus LBNSE. Consequently, expressing of Flt3L could elevate the level of virus-neutralizing antibodies (VNA) in immunized mice which provides a better protection from a lethal rabies virus challenge. Taken together, our study extends the potential of Flt3L as a good adjuvant to develop novel rabies vaccine by enhancing the VNA production through activating the DC-TFH-GC B axis in immunized mice.
Collapse
Affiliation(s)
- Yachun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingming Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Kim MJ, Shim DH, Cha H, Moon K, Yang CM, Hwang SJ, Kim KW, Park JH, Lee C, Elias JA, Sohn MH, Lee JM. Chitinase 3-like 1 protein plays a critical role in respiratory syncytial virus-induced airway inflammation. Allergy 2019; 74:685-697. [PMID: 30402955 PMCID: PMC7159489 DOI: 10.1111/all.13661] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 09/09/2018] [Accepted: 09/19/2018] [Indexed: 12/28/2022]
Abstract
Background Chitinase 3‐like 1 protein (CHI3L1) (YKL‐40 in humans and breast regression protein [BRP]‐39 in mice) is required for optimal allergen sensitization and Th2 inflammation in various chronic inflammatory diseases including asthma. However, the role of CHI3L1 in airway inflammation induced by respiratory viruses has not been investigated. The aim of this study was to investigate the relationship between CHI3L1 and airway inflammation caused by respiratory syncytial virus (RSV) infection. Methods We measured YKL‐40 levels in human nasopharyngeal aspirate (NPA) from hospitalized children presenting with acute respiratory symptoms. Wild‐type (WT) and BRP‐39 knockout (KO) C57BL/6 mice were inoculated with live RSV (A2 strain). Bronchoalveolar lavage fluid and lung tissue samples were obtained on day 7 after inoculation to assess lung inflammation, airway reactivity, and expression of cytokines and BRP‐39. Results In human subjects, YKL‐40 and IL‐13 levels in NPA were higher in children with RSV infection than in control subjects. Expression of BRP‐39 and Th2 cytokines, IL‐13 in particular, was increased following RSV infection in mice. Airway inflammation caused by RSV infection was reduced in BRP‐39 KO mice as compared to WT mice. Th2 cytokine levels were not increased in the lungs of RSV‐infected BRP‐39 KO mice. BRP‐39 regulated M2 macrophage activation in RSV‐infected mice. Additionally, treatment with anti‐CHI3L1 antibody attenuated airway inflammation and Th2 cytokine production in RSV‐infected WT mice. Conclusion These findings suggest that CHI3L1 could contribute to airway inflammation induced by RSV infection. CHI3L1 could be a potential therapeutic candidate for attenuating Th2‐associated immunopathology during RSV infection.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Microbiology and Immunology Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
- Department of Pediatrics Severance Hospital Institute of Allergy Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| | - Doo Hee Shim
- Department of Microbiology and Immunology Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| | - Hye‐Ran Cha
- Department of Microbiology and Immunology Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| | - Kuk‐Young Moon
- Department of Microbiology and Immunology Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| | - Chang Mo Yang
- Department of Microbiology and Immunology Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| | - Su Jin Hwang
- Department of Microbiology and Immunology Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| | - Kyung Won Kim
- Department of Pediatrics Severance Hospital Institute of Allergy Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| | - Jeon Han Park
- Department of Microbiology and Immunology Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology Brown University Providence Rhode Island USA
| | - Jack A. Elias
- Department of Molecular Microbiology and Immunology Brown University Providence Rhode Island USA
| | - Myung Hyun Sohn
- Department of Pediatrics Severance Hospital Institute of Allergy Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| |
Collapse
|
9
|
Antigen-adjuvant effects of icariin in enhancing tumor-specific immunity in mastocytoma-bearing DBA/2J mice. Biomed Pharmacother 2018; 99:810-816. [PMID: 29710479 DOI: 10.1016/j.biopha.2018.01.139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/04/2018] [Accepted: 01/28/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer immunotherapy has attracted much attention in recent years because of the ability of immune system to identify tumor cells and limit their growth. Icariin (ICA) is a natural flavonoid glucoside isolated from Epimedium plants and has shown a variety of pharmacological activities such as anti-inflammatory effects, immunological regulation and anticancer potency. Furthermore, it has immunoadjuvant effects on enhancing Th1-immune response, suggesting that ICA may serve as an adjuvant for cancer immunotherapy. In this study, we used P815 mouse mastocytoma tumor model and immunized them with P815AB peptide and/or ICA. Our results demonstrated that ICA could increase the cytotoxic T lymphocytes (CTL) response for P815AB peptide on the tumor-bearing DBA/2J mice. In addition, the percentage of CD4+CD8+/CD3+CD69+/CD69+NKG2D+ positive cells in splenocytes of the tumor-bearing mice all significantly increased after combined immunization with ICA and P815AB peptide. This illustrated that ICA could enhance the immunogenicity of P815AB and improve the ability of T cells and CTLs in recognizing the tumor cells. Moreover, ICA improved the function of peritoneal macrophages with effects of inhibition on tumor growth. Besides, we discussed the possible mechanism of ICA to enhance body immunity by detecting the expression level of MHC-I and related genes in B16-F10 and RMA/S cells. The results suggested that ICA has the potential to up-regulate LMP/TAP related molecules and induce the expression of MHC-I, which increase the immune surveillance and keep cancer in remission. In conclusion, ICA showed an anti-tumor effect both in vitro and in vivo and may be an effective antigen adjuvant for cancer treatment by enhancing tumor-specific immunity.
Collapse
|
10
|
Rossi GA, Colin AA. Respiratory syncytial virus-Host interaction in the pathogenesis of bronchiolitis and its impact on respiratory morbidity in later life. Pediatr Allergy Immunol 2017; 28:320-331. [PMID: 28339145 DOI: 10.1111/pai.12716] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 02/06/2023]
Abstract
Respiratory syncytial virus (RSV) is the most common agent of severe airway disease in infants and young children. Large epidemiologic studies have demonstrated a clear relationship between RSV infection and subsequent recurrent wheezing and asthma into childhood, thought to be predominantly related to long-term changes in neuroimmune control of airway tone rather than to allergic sensitization. These changes appear to be governed by the severity of the first RSV infection in infancy which in term depends on viral characteristics and load, but perhaps as importantly, on the genetic susceptibility and on the constitutional characteristic of the host. A variety of viral and host factors and their interplay modify the efficiency of the response to infection, including viral replication and the magnitude of structural and functional damage to the respiratory structures, and ultimately the extent, severity, and duration of subsequent wheezing.
Collapse
Affiliation(s)
- Giovanni A Rossi
- Pulmonary and Allergy Disease Pediatric Unit and Cystic Fibrosis Center, Istituto Giannina Gaslini, Genoa, Italy
| | - Andrew A Colin
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
11
|
Capparis spinosa Fruit Ethanol Extracts Exert Different Effects on the Maturation of Dendritic Cells. Molecules 2017; 22:molecules22010097. [PMID: 28067853 PMCID: PMC6155734 DOI: 10.3390/molecules22010097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 11/20/2022] Open
Abstract
Capparis spinosa L. (C. spinosa) has been used as food and traditional medicine and shows anti-inflammatory and anti-oxidant activities. Here, we prepared the C. spinosa fruit ethanol extracts (CSEs) using different procedures and investigated the effects of CSE on the maturation of mouse bone marrow-derived dendritic cells (DCs) in the absence or presence of lipopolysaccharide (LPS). DC maturation and cytokine production were detected by flow cytometry and ELISA, respectively. We obtained three different CSEs and dissolved in water or DMSO, named CSE2W, CSEMW, CSE3W, CSE2D, CSEMD, and CSE3D, respectively. These CSEs showed different effects on DC maturation. CSEMW and CSEMD significantly increased the expressions of CD40, CD80, and CD86, in a dose-dependent manner. CSE2W and CSE2D also showed a modest effect on DC maturation, which enhanced the expression of CD40. CSE3W and CSE3D did not change DC maturation but suppressed LPS-induced DC maturation characterized by the decreased levels of CD40 and CD80. CSE3W and CSE3D also significantly inhibited the secretions of IL-12p40, IL-6, IL-1β, and TNF-α induced by LPS. CSE3W further increased the level of IL-10 induced by LPS. Moreover, CSE3D suppressed LPS-induced DC maturation in vivo, which decreased the expressions of CD40 and CD80. These results suggested that CSE3W and CSE3D might be used to treat inflammatory diseases.
Collapse
|
12
|
Boe DM, Boule LA, Kovacs EJ. Innate immune responses in the ageing lung. Clin Exp Immunol 2016; 187:16-25. [PMID: 27711979 DOI: 10.1111/cei.12881] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 12/19/2022] Open
Abstract
The world is undergoing an unprecedented shift in demographics, with the number of individuals over the age of 60 years projected to reach 2 billion or more by 2050, representing 22% of the global population. Elderly people are at a higher risk for chronic disease and more susceptible to infection, due in part to age-related dysfunction of the immune system resulting from low-grade chronic inflammation known as 'inflamm-ageing'. The innate immune system of older individuals exhibits a diminished ability to respond to microbial threats and clear infections, resulting in a greater occurrence of many infectious diseases in elderly people. In particular, the incidence of and mortality from lung infections increase sharply with age, with such infections often leading to worse outcomes, prolonged hospital stays and life-threatening complications, such as sepsis or acute respiratory distress syndrome. In this review, we highlight research on bacterial pneumonias and pulmonary viral infections and discuss age-related changes in innate immunity that contribute to the higher rate of these infections in older populations. By understanding more clearly the innate immune defects in elderly individuals, we can design age-specific therapies to address lung infections in such a vulnerable population.
Collapse
Affiliation(s)
- D M Boe
- Division of GI, Endocrine and Tumor Surgery, Department of Surgery, Mucosal Inflammation Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - L A Boule
- Division of GI, Endocrine and Tumor Surgery, Department of Surgery, Mucosal Inflammation Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - E J Kovacs
- Division of GI, Endocrine and Tumor Surgery, Department of Surgery, Mucosal Inflammation Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
13
|
Viral Bronchiolitis is Associated With Altered Cytokine Gene Expression and Lymphocyte Activation Status. Pediatr Infect Dis J 2016; 35:e326-e338. [PMID: 27434830 DOI: 10.1097/inf.0000000000001299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Disease severity in viral bronchiolitis is often difficult to predict at onset, and may be related to the host immune response. Recognizing the particular immunologic features of infants who develop severe disease might offer an opportunity for developing diagnostic tools to facilitate early intervention and improve outcomes. METHODS We compared cytokine gene expression (by real-time reverse-transcriptase polymerase chain reaction), cytokine concentrations (by enzyme-linked immunosorbent assay) and the activation status of lymphocytes (by flow cytometry) in the peripheral blood of children hospitalized with moderate and severe viral bronchiolitis and a group of age-matched controls. RESULTS Analysis was undertaken on 57 children with viral bronchiolitis and 33 controls. Interleukin-7 mRNA expression at enrollment in peripheral blood mononuclear cells differed significantly between those with moderate and severe bronchiolitis, and correlated with both the subsequent length of hospital stay and need for supplemental oxygen therapy. Serum interleukin-10 concentration also distinguished moderate from severe disease. Participants with viral bronchiolitis demonstrated a more activated γδ-T cell phenotype (Vδ1+), but a more naive TCR αβ-T cell compartment compared with controls. CONCLUSIONS Viral bronchiolitis is characterized by a distinct pattern of cytokine expression and lymphocyte activation. These changes suggest an inadequate innate response in severe disease, and may offer potential as markers of disease severity.
Collapse
|
14
|
Martinez EC, Garg R, Shrivastava P, Gomis S, van Drunen Littel-van den Hurk S. Intranasal treatment with a novel immunomodulator mediates innate immune protection against lethal pneumonia virus of mice. Antiviral Res 2016; 135:108-119. [PMID: 27771388 PMCID: PMC7126411 DOI: 10.1016/j.antiviral.2016.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/07/2016] [Accepted: 10/18/2016] [Indexed: 12/26/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in infants and young children. There are no licensed RSV vaccines available, and the few treatment options for high-risk individuals are either extremely costly or cause severe side effects and toxicity. Immunomodulation mediated by a novel formulation consisting of the toll-like receptor 3 agonist poly(I:C), an innate defense regulator peptide and a polyphosphazene (P-I-P) was evaluated in the context of lethal infection with pneumonia virus of mice (PVM). Intranasal delivery of a single dose of P-I-P protected adult mice against PVM when given 24 h prior to challenge. These animals experienced minimal weight loss, no clinical disease, 100% survival, and reduced lung pathology. Similar clinical outcomes were observed in mice treated up to 3 days prior to infection. P-I-P pre-treatment induced early mRNA and protein expression of key chemokine and cytokine genes, reduced the recruitment of neutrophils and eosinophils, decreased virus titers in the lungs, and modulated the delayed exacerbated nature of PVM disease without any short-term side effects. On day 14 post-infection, P-I-P-treated mice were confirmed to be PVM-free. These results demonstrate the capacity of this formulation to prevent PVM and possibly other viral respiratory infections. P-I-P pre-treatment, consisting of poly(I:C), IDR peptide and PCEP, was tested in the context of PVM infection in mice. P-I-P confers complete protection against lethal PVM infection by reducing clinical signs and immunopathology. P-I-P minimizes viral titers in the lungs reduces the influx of neutrophils and eosinophils into the tissue. P-I-P induces early upregulation of genes involved in host defense without any observable adverse effects. Survivor mice were PVM negative, suggesting that P-I-P mediates the successfully clearance of the virus in vivo.
Collapse
Affiliation(s)
- Elisa C Martinez
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, 107 Wiggins Road, S7N 5E5, Canada; Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, 120 Veterinary Road, S7N 5E3, Canada
| | - Ravendra Garg
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, 120 Veterinary Road, S7N 5E3, Canada
| | - Pratima Shrivastava
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, 120 Veterinary Road, S7N 5E3, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine (WCVM), University of Saskatchewan, Saskatoon, Saskatchewan, 52 Campus Drive, S7N 5B4, Canada
| | - Sylvia van Drunen Littel-van den Hurk
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, 107 Wiggins Road, S7N 5E5, Canada; Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, 120 Veterinary Road, S7N 5E3, Canada.
| |
Collapse
|
15
|
Mou C, Zhu L, Xing X, Lin J, Yang Q. Immune responses induced by recombinant Bacillus subtilis expressing the spike protein of transmissible gastroenteritis virus in pigs. Antiviral Res 2016; 131:74-84. [PMID: 26988122 DOI: 10.1016/j.antiviral.2016.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 01/08/2023]
Abstract
Transmissible gastroenteritis (TGE) causes severe diarrhea in suckling piglets, results in enormous economic loss in swine-producing areas of the world. To develop an effective, safe, and convenient vaccine for the prevention of TGE, we have constructed a recombinant Bacillus subtilis strain (B. subtilis CotGSG) displaying the transmissible gastroenteritis virus (TGEV) spike (S) protein and discussed its immune function to intestinal submucosal dendritic cells (DCs). Our results showed that the recombinant B. subtilis had the ability to recruit more DCs to sample B. subtilis CotGSG, migrate to MLNs, and induce immune responses. Immunized piglets with B. subtilis CotGSG could significantly elevate the specific SIgA titers in feces, IgG titers and neutralizing antibodies in serum. Collectively, our results suggested that recombinant B. subtilis CotGSG expressing the TGEV S protein could effectively induce immune responses via DCs, and provided a perspective on potential novel strategy and approach that may be applicable to the development of the next generation of TGEV vaccines.
Collapse
Affiliation(s)
- Chunxiao Mou
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| | - Liqi Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| | - Xianping Xing
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| | - Jian Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
16
|
Shrivastava P, Watkiss E, van Drunen Littel-van den Hurk S. The response of aged mice to primary infection and re-infection with pneumonia virus of mice depends on their genetic background. Immunobiology 2015; 221:494-502. [PMID: 26621546 DOI: 10.1016/j.imbio.2015.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/06/2023]
Abstract
The pneumonia virus of mice (PVM) model is used to study respiratory syncytial virus (RSV) pathogenesis. The outcome of PVM infection varies in different inbred mouse strains, BALB/c being highly susceptible and C57BL/6 more resistant. As the disease symptoms induced by RSV infection can become more severe as people age, we examined the primary and secondary immune responses to infection with PVM in aged BALB/c and C57BL/6 mice. Based on clinical parameters, aged C57BL/6 mice displayed less severe disease than young adult mice when infected with 3000pfu of PVM-15, while BALB/c mice were equally susceptible at both ages showing significant weight loss and high levels of virus replication. Furthermore, after primary infection the CD4(+) T cell numbers in the lungs were higher in young adult mice, while the CD8(+) T cell numbers were comparable in both age groups and strains. When either C57BL/6 or BALB/c mice were infected with PVM as young adults and then re-infected as aged mice, they were protected from clinical disease, while virus replication was reduced. In contrast to mice with a primary PVM-infection, re-infected mice did not have infiltration of neutrophils or inflammatory mediators in the lung. BALB/c mice had higher virus neutralizing antibody levels in the serum and lung than C57BL/6 mice upon re-infection. Re-infection with PVM led to significant influx of effector CD4(+) T cells into the lungs when compared to aged mice with a primary infection, while this cell population was decreased in the lung draining lymph nodes in both mouse strains. After re-infection the effector CD8(+) T cell population was also decreased in the lung draining lymph nodes in both mouse strain when compared to aged mice after primary infection. However, the central memory CD4(+) and CD8(+) T cells were significantly enhanced in numbers in the lungs and draining lymph nodes of both mouse strains after re-infection, and these numbers were higher for C57BL/6 mice.
Collapse
Affiliation(s)
- Pratima Shrivastava
- VIDO-InterVac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Ellen Watkiss
- VIDO-InterVac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan S7N 5E3, Canada; Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Sylvia van Drunen Littel-van den Hurk
- VIDO-InterVac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan S7N 5E3, Canada; Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
17
|
Xu JJ, Liu Z, Tang W, Wang GC, Chung HY, Liu QY, Zhuang L, Li MM, Li YL. Tangeretin from Citrus reticulate Inhibits Respiratory Syncytial Virus Replication and Associated Inflammation in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9520-9527. [PMID: 26468759 DOI: 10.1021/acs.jafc.5b03482] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Human respiratory syncytial virus (RSV) is a common pathogen that causes pneumonia and bronchiolitis in infants and young children. Our previous study showed that tangeretin from Citrus reticulate possessed potent in vitro anti-RSV effects comparable to that of ribavirin. Therefore, in this study, we investigated the in vivo anti-RSV activity of tangeretin in 3-week-old male BALB/c mice. A plaque reduction assay and fluorescence quantitative polymerase chain reaction (FQ-PCR) showed that tangeretin inhibited RSV replication in the lung of mice. Moreover, a luminex assay indicated tangeretin relieved RSV-induced lung inflammation by attenuating interleukin (IL)-1β secretion. Possible anti-inflammatory mechanisms of tangeretin were preliminarily explored using a RSV-infected macrophage model. A FQ-PCR, enzyme-linked immunosorbent assay (ELISA), and luciferase assay revealed that tangeretin inhibited RSV-induced inflammation by suppressing nuclear factor-κB (NF-κB) activation. This study demonstrates that tangeretin inhibited RSV replication and RSV-induced lung inflammation in vivo and may be useful in preventing and treating RSV infections and inflammation.
Collapse
Affiliation(s)
- Jiao-Jiao Xu
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories (NT), Hong Kong Special Administrative Region (SAR), People's Republic of China
| | | | | | | | - Hau Yin Chung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories (NT), Hong Kong Special Administrative Region (SAR), People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Alum Adjuvant Enhances Protection against Respiratory Syncytial Virus but Exacerbates Pulmonary Inflammation by Modulating Multiple Innate and Adaptive Immune Cells. PLoS One 2015; 10:e0139916. [PMID: 26468884 PMCID: PMC4607166 DOI: 10.1371/journal.pone.0139916] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/18/2015] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) is well-known for inducing vaccine-enhanced respiratory disease after vaccination of young children with formalin-inactivated RSV (FI-RSV) in alum formulation. Here, we investigated alum adjuvant effects on protection and disease after FI-RSV immunization with or without alum in comparison with live RSV reinfections. Despite viral clearance, live RSV reinfections caused weight loss and substantial pulmonary inflammation probably due to high levels of RSV specific IFN-γ+IL4-, IFN-γ-TNF-α+, IFN-γ+TNF-α- effector CD4 and CD8 T cells. Alum adjuvant significantly improved protection as evidenced by effective viral clearance compared to unadjuvanted FI-RSV. However, in contrast to unadjuvanted FI-RSV, alum-adjuvanted FI-RSV (FI-RSV-A) induced severe vaccine-enhanced RSV disease including weight loss, eosinophilia, and lung histopathology. Alum adjuvant in the FI-RSV-A was found to be mainly responsible for inducing high levels of RSV-specific IFN-γ-IL4+, IFN-γ-TNF-α+ CD4+ T cells, and proinflammatory cytokines IL-6 and IL-4 as well as B220+ plasmacytoid and CD4+ dendritic cells, and inhibiting the induction of IFN-γ+CD8 T cells. This study suggests that alum adjuvant in FI-RSV vaccines increases immunogenicity and viral clearance but also induces atypical T helper CD4+ T cells and multiple inflammatory dendritic cell subsets responsible for vaccine-enhanced severe RSV disease.
Collapse
|
19
|
Li J, Li J, Zhang F. The immunoregulatory effects of Chinese herbal medicine on the maturation and function of dendritic cells. JOURNAL OF ETHNOPHARMACOLOGY 2015; 171:184-195. [PMID: 26068430 DOI: 10.1016/j.jep.2015.05.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese herbal medicine (CHM) has a long-history for treatment of various human diseases including tumors, infection, autoimmune diseases in Asian countries, especially in China, Japan, Korea and India. CHM was traditionally used as water extracts and many Chinese herbs were considered to be good for health, which can regulate immune system to protect host from diseases. With the progress of technology, the components of CHM were identified and purified, which included polysaccharides, saponins, phenolic compounds, flavonoids and so on. Recently, accumulating evidence indicates that CHM and its components can regulate immune system through targeting dendritic cells (DCs). We hereby reviewed the immunoregulatory effects of CHM on the maturation, cytokine production and function of DCs. This should help to shed light on the potential mechanism of CHM to improve the usage and clinical efficacy of CHM. MATERIALS AND METHODS Literatures about the effects of CHM on DCs were searched in electronic databases such as Pubmed, Google Scholar and Scopus from 2000 to 2014. 'CHM', 'DC' or 'immune' were used as keywords for the searches. We only reviewed literatures published in English. RESULTS Over 600 publications were found about 'CHM&immune' and around 120 literatures about 'CHM&DC' were selected and reviewed in this paper. All publications are backed by preclinical or clinical evidences both in vitro and in vivo. Some CHM and its components promote the maturation, pro-inflammatory cytokine production and function of DCs and as the adjuvant enhance immune responses against tumor and infection. In contrast, other CHM and its components suppress the activation status of DCs to induce regulatory T cells, inhibit allergic and inflammatory responses, ameliorate autoimmune diseases, and prolong the allograft survival. A large body of evidence shows that CHM and its components regulate the activation status of DCs through TLRs, NF-κB, MAPK signaling pathways. CONCLUSION This review provides useful information for understanding the mechanism of CHM on the treatment of diseases, which facilitates to improve the efficacy of CHM. Based on the immunoregulatory effects of CHM on DCs, it indicated that some CHM and its components could be use to develop adjuvant to enhance antigen-specific immune responses or tolerogenic adjuvant to generate antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 14 Shengli Road, Urumqi 830046, China.
| | - Jinyu Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 14 Shengli Road, Urumqi 830046, China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 14 Shengli Road, Urumqi 830046, China
| |
Collapse
|
20
|
Li J, Wang X, Wang W, Luo J, Aipire A, Li J, Zhang F. Pleurotus ferulae water extract enhances the maturation and function of murine bone marrow-derived dendritic cells through TLR4 signaling pathway. Vaccine 2015; 33:1923-33. [DOI: 10.1016/j.vaccine.2015.02.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/29/2015] [Accepted: 02/24/2015] [Indexed: 01/07/2023]
|
21
|
Sariol CA, White LJ. Utility, limitations, and future of non-human primates for dengue research and vaccine development. Front Immunol 2014; 5:452. [PMID: 25309540 PMCID: PMC4174039 DOI: 10.3389/fimmu.2014.00452] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/05/2014] [Indexed: 11/13/2022] Open
Abstract
Dengue is considered the most important emerging, human arboviruses, with worldwide distribution in the tropics. Unfortunately, there are no licensed dengue vaccines available or specific anti-viral drugs. The development of a dengue vaccine faces unique challenges. The four serotypes co-circulate in endemic areas, and pre-existing immunity to one serotype does not protect against infection with other serotypes, and actually may enhance severity of disease. One foremost constraint to test the efficacy of a dengue vaccine is the lack of an animal model that adequately recapitulates the clinical manifestations of a dengue infection in humans. In spite of this limitation, non-human primates (NHP) are considered the best available animal model to evaluate dengue vaccine candidates due to their genetic relatedness to humans and their ability to develop a viremia upon infection and a robust immune response similar to that in humans. Therefore, most dengue vaccines candidates are tested in primates before going into clinical trials. In this article, we present a comprehensive review of published studies on dengue vaccine evaluations using the NHP model, and discuss critical parameters affecting the usefulness of the model. In the light of recent clinical data, we assess the ability of the NHP model to predict immunological parameters of vaccine performances in humans and discuss parameters that should be further examined as potential correlates of protection. Finally, we propose some guidelines toward a more standardized use of the model to maximize its usefulness and to better compare the performance of vaccine candidates from different research groups.
Collapse
Affiliation(s)
- Carlos A Sariol
- Department of Microbiology and Medical Zoology, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus , San Juan, PR , USA ; Department of Internal Medicine, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus , San Juan, PR , USA
| | - Laura J White
- Global Vaccine Incorporation , Research Triangle Park, NC , USA
| |
Collapse
|
22
|
Peng H, Shi M, Zhang L, Li Y, Sun J, Zhang L, Wang X, Xu X, Zhang X, Mao Y, Ji Y, Jiang J, Shi W. Activation of JNK1/2 and p38 MAPK signaling pathways promotes enterovirus 71 infection in immature dendritic cells. BMC Microbiol 2014; 14:147. [PMID: 24906853 PMCID: PMC4057572 DOI: 10.1186/1471-2180-14-147] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/30/2014] [Indexed: 02/05/2023] Open
Abstract
Background c-Jun NH2-terminal kinase/stress-activated kinase (JNK/SAPK) and the p38 mitogen-activated protein kinase (p38 MAPK) are important components of cellular signal transduction pathways, which have been reported to be involved in viral replication. However, little is known about JNK1/2 and p38 MAPK signaling pathways in enterovirus 71 (EV71)-infected immature dendritic cells (iDCs). Thus, iDCs were induced from peripheral blood mononuclear cells (PBMC) and performed to explore the expressions and phosphorylation of molecules in the two signaling pathways as well as secretions of inflammatory cytokines and interferons during EV71 replication. Results We showed that EV71 infection could activate both JNK1/2 and p38 MAPK in iDCs and phosphorylate their downstream transcription factors c-Fos and c-Jun, which further promoted the production of IL-2, IL-6, IL-10, and TNF-α. Moreover, EV71 infection also increased the release of IFN-β and IL-12 p40. Pretreatment of iDCs with SP600125 and SB203580 (20 μM) could severely impair viral replication and its induced phosphorylation of JNK1/2,p38 MAPK, c-Fos and c-Jun. In addition, treatment of EV71-infected iDCs with SP600125 and SB203580 could inhibit secretions of IL-6, IL-10 and TNF-α. Conclusion JNK1/2 and p38 MAPK signaling pathways are beneficial to EV71 infection and positively regulate secretions of inflammatory cytokines in iDCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Weifeng Shi
- Department of Clinical Laboratory, the Third Affiliated Hospital of Suzhou University, No, 185 Juqian street, Changzhou, Jiangsu 213003, P, R, China.
| |
Collapse
|
23
|
Kitazawa H, Villena J. Modulation of Respiratory TLR3-Anti-Viral Response by Probiotic Microorganisms: Lessons Learned from Lactobacillus rhamnosus CRL1505. Front Immunol 2014; 5:201. [PMID: 24860569 PMCID: PMC4026741 DOI: 10.3389/fimmu.2014.00201] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 04/23/2014] [Indexed: 01/24/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants and young children. Host immune response is implicated in both protective and immunopathological mechanisms during RSV infection. Activation of Toll-like receptor (TLR)-3 in innate immune cells by RSV can induce airway inflammation, protective immune response, and pulmonary immunopathology. A clear understanding of RSV–host interaction is important for the development of novel and effective therapeutic strategies. Several studies have centered on whether probiotic microorganisms with the capacity to stimulate the immune system (immunobiotics) might sufficiently stimulate the common mucosal immune system to improve defenses in the respiratory tract. In this regard, it was demonstrated that some orally administered immunobiotics do have the ability to stimulate respiratory immunity and increase resistance to viral infections. Moreover, during the last decade scientists have significantly advanced in the knowledge of the cellular and molecular mechanisms involved in the protective effect of immunobiotics in the respiratory tract. This review examines the most recent advances dealing with the use of immunobiotic bacteria to improve resistance against viral respiratory infections. More specifically, the article discuss the mechanisms involved in the capacity of the immunobiotic strain Lactobacillus rhamnosus CRL1505 to modulate the TLR3-mediated immune response in the respiratory tract and to increase the resistance to RSV infection. In addition, we review the role of interferon (IFN)-γ and interleukin (IL)-10 in the immunoregulatory effect of the CRL1505 strain that has been successfully used for reducing incidence and morbidity of viral airways infections in children.
Collapse
Affiliation(s)
- Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University , Sendai , Japan
| | - Julio Villena
- Immunobiotics Research Group , Tucuman , Argentina ; Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET) , Tucuman , Argentina
| |
Collapse
|
24
|
Dalençon F. Modern Vaccine Adjuvant/Formulation--Session 9: Adjuvants. Hum Vaccin Immunother 2013; 9:2013-4. [PMID: 23938771 DOI: 10.4161/hv.26074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Session 9 of the Modern Vaccine Adjuvant/Formulation meeting pointed out the permanent need for vaccine improvement and for adjuvant development. Indeed, the increasing use of recombinant subunit vaccines for both parenteral and mucosal vaccination necessitates the development of improved adjuvants. This session dealt with strategies for the development of new vaccine adjuvants with respect to the availability of new molecules targeting specifically the receptors of the systemic or mucosal immune system.
Collapse
Affiliation(s)
- François Dalençon
- Discovery Department; Sanofi Pasteur; Campus Mérieux; Marcy l'Etoile, France
| |
Collapse
|
25
|
Abstract
Respiratory syncytial virus (RSV) is a major worldwide pathogen for which there is still no effective vaccine or antiviral treatment available, and immunoprophylaxis with RSV-specific antibodies (e.g., palivizumab) is used in limited clinical settings. In this review, we discuss virus-host interactions relevant to RSV pathobiology and how advances in cell and systems biology have accelerated knowledge in this area. We also highlight recent advances in understanding the relationship between RSV bronchiolitis and sequelae of recurrent wheezing and asthma, new findings into an intriguing interaction between RSV and air pollution, and exciting developments toward the goal of realizing a safe and effective RSV vaccine.
Collapse
Affiliation(s)
- Peter Mastrangelo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 6231-1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| | - Richard G. Hegele
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 6231-1 King’s College Circle, Toronto, ON M5S 1A8 Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON Canada
| |
Collapse
|