1
|
Peletta A, Lemoine C, Courant T, Collin N, Borchard G. Meeting vaccine formulation challenges in an emergency setting: Towards the development of accessible vaccines. Pharmacol Res 2023; 189:106699. [PMID: 36796463 DOI: 10.1016/j.phrs.2023.106699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Vaccination is considered one of the most successful strategies to prevent infectious diseases. In the event of a pandemic or epidemic, the rapid development and distribution of the vaccine to the population is essential to reduce mortality, morbidity and transmission. As seen during the COVID-19 pandemic, the production and distribution of vaccines has been challenging, in particular for resource-constrained settings, essentially slowing down the process of achieving global coverage. Pricing, storage, transportation and delivery requirements of several vaccines developed in high-income countries resulted in limited access for low-and-middle income countries (LMICs). The capacity to manufacture vaccines locally would greatly improve global vaccine access. In particular, for the development of classical subunit vaccines, the access to vaccine adjuvants is a pre-requisite for more equitable access to vaccines. Vaccine adjuvants are agents required to augment or potentiate, and possibly target the specific immune response to such type of vaccine antigens. Openly accessible or locally produced vaccine adjuvants may allow for faster immunization of the global population. For local research and development of adjuvanted vaccines to expand, knowledge on vaccine formulation is of paramount importance. In this review, we aim to discuss the optimal characteristics of a vaccine developed in an emergency setting by focusing on the importance of vaccine formulation, appropriate use of adjuvants and how this may help overcome barriers for vaccine development and production in LMICs, achieve improved vaccine regimens, delivery and storage requirements.
Collapse
Affiliation(s)
- Allegra Peletta
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Rue Michel-Servet 1, 1221 Geneva, Switzerland.
| | - Céline Lemoine
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-les-Ouates, Switzerland.
| | - Thomas Courant
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-les-Ouates, Switzerland.
| | - Nicolas Collin
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-les-Ouates, Switzerland.
| | - Gerrit Borchard
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Rue Michel-Servet 1, 1221 Geneva, Switzerland.
| |
Collapse
|
2
|
Molina Estupiñan JL, Aradottir Pind AA, Foroutan Pajoohian P, Jonsdottir I, Bjarnarson SP. The adjuvants dmLT and mmCT enhance humoral immune responses to a pneumococcal conjugate vaccine after both parenteral or mucosal immunization of neonatal mice. Front Immunol 2023; 13:1078904. [PMID: 36741402 PMCID: PMC9896006 DOI: 10.3389/fimmu.2022.1078904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 01/21/2023] Open
Abstract
Immaturity of the neonatal immune system contributes to increased susceptibility to infectious diseases and poor vaccine responses. Therefore, better strategies for early life vaccination are needed. Adjuvants can enhance the magnitude and duration of immune responses. In this study we assessed the effects of the adjuvants dmLT and mmCT and different immunization routes, subcutaneous (s.c.) and intranasal (i.n.), on neonatal immune response to a pneumococcal conjugate vaccine Pn1-CRM197. Pn1-specific antibody (Ab) levels of neonatal mice immunized with Pn1-CRM197 alone were low. The adjuvants enhanced IgG Ab responses up to 8 weeks after immunization, more after s.c. than i.n. immunization. On the contrary, i.n. immunization with either adjuvant enhanced serum and salivary IgA levels more than s.c. immunization. In addition, both dmLT and mmCT enhanced germinal center formation and accordingly, dmLT and mmCT enhanced the induction and persistence of Pn1-specific IgG+ Ab-secreting cells (ASCs) in spleen and bone marrow (BM), irrespective of the immunization route. Furthermore, i.n. immunization enhanced Pn1-specific IgA+ ASCs in BM more than s.c. immunizatiofimmu.2022.1078904n. However, a higher i.n. dose of the Pn1-CRM197 was needed to achieve IgG response comparable to that elicited by s.c. immunization with either adjuvant. We conclude that dmLT and mmCT enhance both induction and persistence of the neonatal immune response to the vaccine Pn1-CRM197, following mucosal or parenteral immunization. This indicates that dmLT and mmCT are promising adjuvants for developing safe and effective early life vaccination strategies.
Collapse
Affiliation(s)
- Jenny Lorena Molina Estupiñan
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Audur Anna Aradottir Pind
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Poorya Foroutan Pajoohian
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Stefania P. Bjarnarson
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland,*Correspondence: Stefania P. Bjarnarson,
| |
Collapse
|
3
|
Sobia P, Archary D. Preventive HIV Vaccines-Leveraging on Lessons from the Past to Pave the Way Forward. Vaccines (Basel) 2021; 9:vaccines9091001. [PMID: 34579238 PMCID: PMC8472969 DOI: 10.3390/vaccines9091001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/05/2022] Open
Abstract
Almost four decades on, since the 1980’s, with hundreds of HIV vaccine candidates tested in both non-human primates and humans, and several HIV vaccines trials later, an efficacious HIV vaccine continues to evade us. The enormous worldwide genetic diversity of HIV, combined with HIV’s inherent recombination and high mutation rates, has hampered the development of an effective vaccine. Despite the advent of antiretrovirals as pre-exposure prophylaxis and preventative treatment, which have shown to be effective, HIV infections continue to proliferate, highlighting the great need for a vaccine. Here, we provide a brief history for the HIV vaccine field, with the most recent disappointments and advancements. We also provide an update on current passive immunity trials, testing proof of the concept of the most clinically advanced broadly neutralizing monoclonal antibodies for HIV prevention. Finally, we include mucosal immunity, the importance of vaccine-elicited immune responses and the challenges thereof in the most vulnerable environment–the female genital tract and the rectal surfaces of the gastrointestinal tract for heterosexual and men who have sex with men transmissions, respectively.
Collapse
Affiliation(s)
- Parveen Sobia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa
- Correspondence: ; Tel.: +27-(0)-31-655-0540
| |
Collapse
|
4
|
Obeid MA, Teeravatcharoenchai T, Connell D, Niwasabutra K, Hussain M, Carter K, Ferro VA. Examination of the effect of niosome preparation methods in encapsulating model antigens on the vesicle characteristics and their ability to induce immune responses. J Liposome Res 2020; 31:195-202. [PMID: 32396752 DOI: 10.1080/08982104.2020.1768110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Niosome nanoparticles can be prepared using different methods, each of which can affect the size and homogeneity of the prepared particles. The aim of this study was to establish if the method of preparation impacted on the prepared vesicles when loaded with a model protein and the type of immune responses induced to the vaccine antigen. Niosomes were prepared using both the traditional thin film hydration (TFH) technique and the microfluidic mixing (MM) technique. Influenza antigen was then entrapped in the niosomes and formulations tested for their ability to induce in vivo immune responses in immunised BALB/c mice. Niosomes prepared by MM had a mean size of 157 ± 1.8 nm and were significantly more uniform compared with the niosomes prepared using TFH (mean size 388 ± 10 nm). Niosomes play a key role as an adjuvant to help raise high antibody immune responses. This was confirmed in this study since animals treated with both types of niosomes and antigen were more responsive than unentrapped (free) antigen. Cytokine analysis showed that the TFH niosomes induced a Th1 immune response by raising IgG2a and high levels of IFN-ɣ, while the MM niosomes induced a Th2 immune response by inducing IgG1 (p < .05). These results confirmed that the method of preparation of the niosomes nanoparticles induced different immune responses and the average particle size of the niosomes differed depending on the method of manufacture. This indicates that particle size and uniformity are of importance and should be taken into consideration when designing an oral based delivery system for vaccine delivery.
Collapse
Affiliation(s)
- Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | | | - David Connell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Kanidta Niwasabutra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Muattaz Hussain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Katharine Carter
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
5
|
Forsyth VS, Himpsl SD, Smith SN, Sarkissian CA, Mike LA, Stocki JA, Sintsova A, Alteri CJ, Mobley HLT. Optimization of an Experimental Vaccine To Prevent Escherichia coli Urinary Tract Infection. mBio 2020; 11:e00555-20. [PMID: 32345645 PMCID: PMC7188996 DOI: 10.1128/mbio.00555-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infections (UTI) affect half of all women at least once during their lifetime. The rise in the numbers of extended-spectrum beta-lactamase-producing strains and the potential for carbapenem resistance within uropathogenic Escherichia coli (UPEC), the most common causative agent of UTI, create an urgent need for vaccine development. Intranasal immunization of mice with UPEC outer membrane iron receptors FyuA, Hma, IreA, and IutA, conjugated to cholera toxin, provides protection in the bladder or kidneys under conditions of challenge with UPEC strain CFT073 or strain 536. On the basis of these data, we sought to optimize the vaccination route (intramuscular, intranasal, or subcutaneous) in combination with adjuvants suitable for human use, including aluminum hydroxide gel (alum), monophosphoryl lipid A (MPLA), unmethylated CpG synthetic oligodeoxynucleotides (CpG), polyinosinic:polycytidylic acid (polyIC), and mutated heat-labile E. coli enterotoxin (dmLT). Mice intranasally vaccinated with dmLT-IutA and dmLT-Hma displayed significant reductions in bladder colonization (86-fold and 32-fold, respectively), with 40% to 42% of mice having no detectable CFU. Intranasal vaccination of mice with CpG-IutA and polyIC-IutA significantly reduced kidney colonization (131-fold) and urine CFU (22-fold), respectively. dmLT generated the most consistently robust antibody response in intranasally immunized mice, while MPLA and alum produced greater concentrations of antigen-specific serum IgG with intramuscular immunization. On the basis of these results, we conclude that intranasal administration of Hma or IutA formulated with dmLT adjuvant provides the greatest protection from UPEC UTI. This report advances our progress toward a vaccine against uncomplicated UTI, which will significantly improve the quality of life for women burdened by recurrent UTI and enable better antibiotic stewardship.IMPORTANCE Urinary tract infections (UTI) are among the most common bacterial infection in humans, affecting half of all women at least once during their lifetimes. The rise in antibiotic resistance and health care costs emphasizes the need to develop a vaccine against the most common UTI pathogen, Escherichia coli Vaccinating mice intranasally with a detoxified heat-labile enterotoxin and two surface-exposed receptors, Hma or IutA, significantly reduced bacterial burden in the bladder. This work highlights progress in the development of a UTI vaccine formulated with adjuvants suitable for human use and antigens that encode outer membrane iron receptors required for infection in the iron-limited urinary tract.
Collapse
Affiliation(s)
- Valerie S Forsyth
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Stephanie D Himpsl
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sara N Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Christina A Sarkissian
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Laura A Mike
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jolie A Stocki
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anna Sintsova
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Christopher J Alteri
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Ferber S, Gonzalez RJ, Cryer AM, von Andrian UH, Artzi N. Immunology-Guided Biomaterial Design for Mucosal Cancer Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903847. [PMID: 31833592 DOI: 10.1002/adma.201903847] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/11/2019] [Indexed: 05/23/2023]
Abstract
Cancer of mucosal tissues is a major cause of worldwide mortality for which only palliative treatments are available for patients with late-stage disease. Engineered cancer vaccines offer a promising approach for inducing antitumor immunity. The route of vaccination plays a major role in dictating the migratory pattern of lymphocytes, and thus vaccine efficacy in mucosal tissues. Parenteral immunization, specifically subcutaneous and intramuscular, is the most common vaccination route. However, this induces marginal mucosal protection in the absence of tissue-specific imprinting signals. To circumvent this, the mucosal route can be utilized, however degradative mucosal barriers must be overcome. Hence, vaccine administration route and selection of materials able to surmount transport barriers are important considerations in mucosal cancer vaccine design. Here, an overview of mucosal immunity in the context of cancer and mucosal cancer clinical trials is provided. Key considerations are described regarding the design of biomaterial-based vaccines that will afford antitumor immune protection at mucosal surfaces, despite limited knowledge surrounding mucosal vaccination, particularly aided by biomaterials and mechanistic immune-material interactions. Finally, an outlook is given of how future biomaterial-based mucosal cancer vaccines will be shaped by new discoveries in mucosal vaccinology, tumor immunology, immuno-therapeutic screens, and material-immune system interplay.
Collapse
Affiliation(s)
- Shiran Ferber
- Department of Medicine, Engineering in Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rodrigo J Gonzalez
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexander M Cryer
- Department of Medicine, Engineering in Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Boston, MA, 02139, USA
| | - Natalie Artzi
- Department of Medicine, Engineering in Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Moreno JAS, Panou DA, Stephansen K, Chronakis IS, Boisen A, Mendes AC, Nielsen LH. Preparation and Characterization of an Oral Vaccine Formulation Using Electrosprayed Chitosan Microparticles. AAPS PharmSciTech 2018; 19:3770-3777. [PMID: 30280354 DOI: 10.1208/s12249-018-1190-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
Chitosan particles loaded with the antigen ovalbumin (OVA) and the adjuvant Quil-A were produced by electrospray, using mixtures of water/ethanol/acetic acid as a solvent. Three different chitosans designed as HMC+70, HMC+85, and HMC+90 (called as 705010, 855010, and 905010) were tested and its efficacy to be used in oral vaccine delivery applications was investigated. The morphology, size, and zeta potential of the produced particles were investigated, together with the encapsulation efficiency and release of OVA from the three chitosan formulations. Moreover, the mucoadhesion and cytotoxicity of the chitosan microparticles was examined. All the three formulations with OVA and Quil-A were in the micrometer size range and had a positive zeta potential between 46 and 75 mV. Furthermore, all the three formulations displayed encapsulation efficiencies above 80% and the release of OVA over a period of 80 h was observed to be between 38 and 47%. None of the developed formulations exhibited high mucoadhesive properties, either cytotoxicity. The formulation prepared with HMC+70, OVA, and Quil-A had the highest stability within 2 h in buffer solution, as measured by dynamic light scattering. The electrosprayed formulation consisting of HMC+70 with OVA and Quil-A showed to be the most promising as an oral vaccine system.
Collapse
|
8
|
Spray dried cubosomes with ovalbumin and Quil-A as a nanoparticulate dry powder vaccine formulation. Int J Pharm 2018; 550:35-44. [DOI: 10.1016/j.ijpharm.2018.08.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 01/30/2023]
|
9
|
Moreno JAS, Mendes AC, Stephansen K, Engwer C, Goycoolea FM, Boisen A, Nielsen LH, Chronakis IS. Development of electrosprayed mucoadhesive chitosan microparticles. Carbohydr Polym 2018; 190:240-247. [DOI: 10.1016/j.carbpol.2018.02.062] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/06/2018] [Accepted: 02/20/2018] [Indexed: 11/30/2022]
|
10
|
Busignies V, Simon G, Mollereau G, Bourry O, Mazel V, Rosa-Calatrava M, Tchoreloff P. Development and pre-clinical evaluation in the swine model of a mucosal vaccine tablet for human influenza viruses: A proof-of-concept study. Int J Pharm 2018; 538:87-96. [DOI: 10.1016/j.ijpharm.2018.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 01/09/2023]
|
11
|
Engineering intranasal mRNA vaccines to enhance lymph node trafficking and immune responses. Acta Biomater 2017; 64:237-248. [PMID: 29030308 DOI: 10.1016/j.actbio.2017.10.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/08/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022]
Abstract
Intranasal mRNA vaccination provides immediate immune protection against pandemic diseases. Recent studies have shown that diverse forms of polyethyleneimine (PEI) have potent mucosal adjuvant activity, which could significantly facilitate the delivery of intranasal mRNA vaccines. Nevertheless, optimizing the chemical structure of PEI to maximize its adjuvanticity and decrease its toxicity remains a challenge. Here we show that the chemical structure of PEI strongly influences how well nanocomplexes of PEI and mRNA migrate to the lymph nodes and elicit immune responses. Conjugating cyclodextrin (CD) with PEI600 or PEI2k yielded CP (CD-PEI) polymers with different CD/PEI ratios. We analyzed the delivery efficacy of CP600, CP2k, and PEI25k as intranasal mRNA vaccine carriers by evaluating the lymph nodes migration and immune responses. Among these polymers, CP2k/mRNA showed significantly higher in vitro transfection efficiency, stronger abilities to migrate to lymph nodes and stimulate dendritic cells maturation in vivo, which further led to potent humoral and cellular immune responses, and showed lower local and systemic toxicity than PEI25k/mRNA. These results demonstrate the potential of CD-PEI2k/mRNA nanocomplex as a self-adjuvanting vaccine delivery vehicle that traffics to lymph nodes with high efficiency. STATEMENT OF SIGNIFICANCE As we face outbreaks of pandemic diseases such as Zika virus, intranasal mRNA vaccination provides instant massive protection against highly variant viruses. Various polymer-based delivery systems have been successfully applied in intranasal vaccine delivery. However, the influence of molecular structure of the polymeric carriers on the lymph node trafficking and dendritic cell maturation is seldom studied for intranasal vaccination. Therefore, engineering polymer-based vaccine delivery system and elucidating the relationship between molecular structure and the intranasal delivery efficiency are essential for maximizing the immune responses. We hereby construct self-adjuvanting polymer-based intranasal mRNA vaccines to enhance lymph node trafficking and further improve immune responses.
Collapse
|
12
|
Nielsen LH, Rades T, Boyd B, Boisen A. Microcontainers as an oral delivery system for spray dried cubosomes containing ovalbumin. Eur J Pharm Biopharm 2017; 118:13-20. [DOI: 10.1016/j.ejpb.2016.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/21/2016] [Accepted: 12/14/2016] [Indexed: 02/08/2023]
|
13
|
Gomez-Samblas M, García-Rodríguez JJ, Trelis M, Bernal D, Lopez-Jaramillo FJ, Santoyo-Gonzalez F, Vilchez S, Espino AM, Bolás-Fernández F, Osuna A. Self-adjuvanting C18 lipid vinil sulfone-PP2A vaccine: study of the induced immunomodulation against Trichuris muris infection. Open Biol 2017; 7:rsob.170031. [PMID: 28404797 PMCID: PMC5413912 DOI: 10.1098/rsob.170031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022] Open
Abstract
Despite the importance of the adjuvant in the immunization process, very few adjuvants merge with the antigens in vaccines. A synthetic self-adjuvant oleic-vinyl sulfone (OVS) linked to the catalytic region of recombinant serine/threonine phosphatase 2A from the nematode Angiostrongylus costaricensis (rPP2A) was used for intranasal immunization in mice previously infected with Trichuris muris. The animal intranasal immunization with rPP2A-OVS showed a reduction of 99.01% in the number of the nematode eggs and 97.90% in adult. The immunohistochemical analysis of the intestinal sections showed that in immunized animals with lipopeptide the mucus was significantly higher than in the other experimental groups. Also, these animals presented significantly different chemokine, CCL20 and CCL11, levels. However, although the number and size of Tuft cells did not vary between groups, the intensity of fluorescence per cell was significant in the group immunized with the rPP2A-OVS. The results of the present study suggest that mice immunized with the lipopeptide are capable of activating a combined Th17/Th9 response. This strategy of immunization may be of great applicability not only in immunotherapy and immunoprophylaxis to control diseases caused by nematodes but also in pathologies necessitating action at the level of the Th9 response in the intestinal mucosa.
Collapse
Affiliation(s)
- M Gomez-Samblas
- Instituto de Biotecnología, Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Universidad de Granada, Campus Universitario Fuentenueva, 18071 Granada, Spain
| | - J J García-Rodríguez
- Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n. Ciudad Universitaria, 28040 Madrid, Spain
| | - M Trelis
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100 Burjassot (Valencia), Spain.,Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute-La Fe, Universitat de Valencia, Av. Fdo. Abril Martorell, 106, 46026 Valencia, Spain
| | - D Bernal
- Departament de Bioquímica i Biologia Molecular, Universitat de València, C/ Dr Moliner, 50, 46100 Burjassot (Valencia), Spain
| | - F J Lopez-Jaramillo
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - F Santoyo-Gonzalez
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - S Vilchez
- Instituto de Biotecnología, Grupo de Bioquímica y Parasitología Molecular, Departamento de Bioquímica, Universidad de Granada, Campus Universitario Fuentenueva, 18071 Granada, Spain
| | - A M Espino
- Laboratory of Immunology and Molecular Parasitology, Department of Microbiology, University of Puerto Rico, School of Medicine. PO Box 365067, San Juan 00936-5067, Puerto Rico
| | - F Bolás-Fernández
- Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n. Ciudad Universitaria, 28040 Madrid, Spain
| | - A Osuna
- Instituto de Biotecnología, Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Universidad de Granada, Campus Universitario Fuentenueva, 18071 Granada, Spain
| |
Collapse
|
14
|
Woods N, Niwasabutra K, Acevedo R, Igoli J, Altwaijry N, Tusiimire J, Gray A, Watson D, Ferro V. Natural Vaccine Adjuvants and Immunopotentiators Derived From Plants, Fungi, Marine Organisms, and Insects. IMMUNOPOTENTIATORS IN MODERN VACCINES 2017. [PMCID: PMC7148613 DOI: 10.1016/b978-0-12-804019-5.00011-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Immunopotentiators derived from different natural sources are under investigation with varying success. This chapter gives an overview of developments from plants, fungi, marine organisms, and insects. Plant-derived immune stimulators consist of a diverse range of small molecules or large polysaccharides. Notable examples that have been assessed in both preclinical and clinical trials include saponins, tomatine, and inulin. Similarly, fungi produce a range of potential candidate molecules, with β-glucans showing the most promise. Other complex molecules that have established adjuvant activity include α-galactosylceramide (originally obtained from a marine sponge), chitosan (commonly produced from chitin from shrimps), and peptides (found in bee venom). Some organisms, for example, endophytic fungi and bees, produce immunostimulants using compounds obtained from plants. The main challenges facing this type of research and tools being developed to overcome them are examined.
Collapse
Affiliation(s)
- N. Woods
- University of Strathclyde, Glasgow, Scotland
| | | | | | - J. Igoli
- University of Strathclyde, Glasgow, Scotland,University of Agriculture, Makurdi, Benue State, Nigeria
| | | | | | - A.I. Gray
- University of Strathclyde, Glasgow, Scotland
| | - D.G. Watson
- University of Strathclyde, Glasgow, Scotland
| | - V.A. Ferro
- University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
15
|
Preparation of Multifunctional Liposomes as a Stable Vaccine Delivery-Adjuvant System by Procedure of Emulsification-Lyophilization. Methods Mol Biol 2016; 1404:635-649. [PMID: 27076327 DOI: 10.1007/978-1-4939-3389-1_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Liposomes have been proven to be useful carriers for vaccine antigens and can be modified as a versatile vaccine adjuvant-delivery system (VADS). To fulfill efficiently both functions of adjuvant and delivery, the liposomes are often modified with different functional molecules, such as lipoidal immunopotentiators, APC (antigen-presenting cell) targeting ligands, steric stabilization polymers, and charged lipids. Also, to overcome the weakness of instability, vaccines are often lyophilized as a dry product. In this chapter the procedure of emulsification-lyophilization (PEL) is introduced as an efficient method for preparing a stable anhydrous precursor to the multifunctional liposomes which bear dual modifications with APC targeting molecule of the mannosylated cholesterol and the adjuvant material of monophosphoryl lipid A. The techniques and procedures for synthesis of APC targeting molecule, i.e., the mannosylated cholesterol, and for characterization of the multifunctional liposomes are also described.
Collapse
|
16
|
Merlin M, Pezzotti M, Avesani L. Edible plants for oral delivery of biopharmaceuticals. Br J Clin Pharmacol 2016; 83:71-81. [PMID: 27037892 DOI: 10.1111/bcp.12949] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/08/2016] [Accepted: 03/25/2016] [Indexed: 12/22/2022] Open
Abstract
Molecular farming is the use of plants for the production of high value recombinant proteins. Over the last 25 years, molecular farming has achieved the inexpensive, scalable and safe production of pharmaceutical proteins using a range of strategies. One of the most promising approaches is the use of edible plant organs expressing biopharmaceuticals for direct oral delivery. This approach has proven to be efficacious in several clinical vaccination and tolerance induction trials as well as multiple preclinical studies for disease prevention. The production of oral biopharmaceuticals in edible plant tissues could revolutionize the pharmaceutical industry by reducing the cost of production systems based on fermentation, and also eliminating expensive downstream purification, cold storage and transportation costs. This review considers the unique features that make plants ideal as platforms for the oral delivery of protein-based therapeutics and describes recent developments in the production of plant derived biopharmaceuticals for oral administration.
Collapse
Affiliation(s)
- Matilde Merlin
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37 134, Verona, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37 134, Verona, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37 134, Verona, Italy
| |
Collapse
|
17
|
Inic-Kanada A, Stojanovic M, Schlacher S, Stein E, Belij-Rammerstorfer S, Marinkovic E, Lukic I, Montanaro J, Schuerer N, Bintner N, Kovacevic-Jovanovic V, Krnjaja O, Mayr UB, Lubitz W, Barisani-Asenbauer T. Delivery of a Chlamydial Adhesin N-PmpC Subunit Vaccine to the Ocular Mucosa Using Particulate Carriers. PLoS One 2015; 10:e0144380. [PMID: 26656797 PMCID: PMC4684359 DOI: 10.1371/journal.pone.0144380] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/17/2015] [Indexed: 11/18/2022] Open
Abstract
Trachoma, caused by the intracellular bacterium Chlamydia trachomatis (Ct), remains the world's leading preventable infectious cause of blindness. Recent attempts to develop effective vaccines rely on modified chlamydial antigen delivery platforms. As the mechanisms engaged in the pathology of the disease are not fully understood, designing a subunit vaccine specific to chlamydial antigens could improve safety for human use. We propose the delivery of chlamydia-specific antigens to the ocular mucosa using particulate carriers, bacterial ghosts (BGs). We therefore characterized humoral and cellular immune responses after conjunctival and subcutaneous immunization with a N-terminal portion (amino acid 1-893) of the chlamydial polymorphic membrane protein C (PmpC) of Ct serovar B, expressed in probiotic Escherichia coli Nissle 1917 bacterial ghosts (EcN BGs) in BALB/c mice. Three immunizations were performed at two-week intervals, and the immune responses were evaluated two weeks after the final immunization in mice. In a guinea pig model of ocular infection animals were immunized in the same manner as the mice, and protection against challenge was assessed two weeks after the last immunization. N-PmpC was successfully expressed within BGs and delivery to the ocular mucosa was well tolerated without signs of inflammation. N-PmpC-specific mucosal IgA levels in tears yielded significantly increased levels in the group immunized via the conjunctiva compared with the subcutaneously immunized mice. Immunization with N-PmpC EcN BGs via both immunization routes prompted the establishment of an N-PmpC-specific IFNγ immune response. Immunization via the conjunctiva resulted in a decrease in intensity of the transitional inflammatory reaction in conjunctiva of challenged guinea pigs compared with subcutaneously and non-immunized animals. The delivery of the chlamydial subunit vaccine to the ocular mucosa using a particulate carrier, such as BGs, induced both humoral and cellular immune responses. Further investigations are needed to improve the immunization scheme and dosage.
Collapse
Affiliation(s)
- Aleksandra Inic-Kanada
- OCUVAC–Center of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marijana Stojanovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera–TORLAK, Belgrade, Serbia
| | - Simone Schlacher
- OCUVAC–Center of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Stein
- OCUVAC–Center of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sandra Belij-Rammerstorfer
- OCUVAC–Center of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Emilija Marinkovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera–TORLAK, Belgrade, Serbia
| | - Ivana Lukic
- Department of Research and Development, Institute of Virology, Vaccines and Sera–TORLAK, Belgrade, Serbia
| | - Jacqueline Montanaro
- OCUVAC–Center of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nadine Schuerer
- OCUVAC–Center of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nora Bintner
- OCUVAC–Center of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Vesna Kovacevic-Jovanovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera–TORLAK, Belgrade, Serbia
| | - Ognjen Krnjaja
- Department of Research and Development, Institute of Virology, Vaccines and Sera–TORLAK, Belgrade, Serbia
| | | | | | - Talin Barisani-Asenbauer
- OCUVAC–Center of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
18
|
Singh S, Nehete PN, Yang G, He H, Nehete B, Hanley PW, Barry MA, Sastry KJ. Enhancement of Mucosal Immunogenicity of Viral Vectored Vaccines by the NKT Cell Agonist Alpha-Galactosylceramide as Adjuvant. Vaccines (Basel) 2015; 2:686-706. [PMID: 25553254 PMCID: PMC4278383 DOI: 10.3390/vaccines2040686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gene-based vaccination strategies, specifically viral vectors encoding vaccine immunogens are effective at priming strong immune responses. Mucosal routes offer practical advantages for vaccination by ease of needle-free administration, and immunogen delivery at readily accessible oral/nasal sites to efficiently induce immunity at distant gut and genital tissues. However, since mucosal tissues are inherently tolerant for induction of immune responses, incorporation of adjuvants for optimal mucosal vaccination strategies is important. We report here the effectiveness of alpha-galactosylceramide (α-GalCer), a synthetic glycolipid agonist of natural killer T (NKT) cells, as an adjuvant for enhancing immunogenicity of vaccine antigens delivered using viral vectors by mucosal routes in murine and nonhuman primate models. Significant improvement in adaptive immune responses in systemic and mucosal tissues was observed by including α-GalCer adjuvant for intranasal immunization of mice with vesicular stomatitis virus vector encoding the model antigen ovalbumin and adenoviral vectors expressing HIV env and Gag antigens. Activation of NKT cells in systemic and mucosal tissues along with significant increases in adaptive immune responses were observed in rhesus macaques immunized by intranasal and sublingual routes with protein or adenovirus vectored antigens when combined with α-GalCer adjuvant. These results support the utility of α-GalCer adjuvant for enhancing immunogenicity of mucosal vaccines delivered using viral vectors.
Collapse
Affiliation(s)
- Shailbala Singh
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; E-Mails: (S.S.); (G.Y.)
| | - Pramod N. Nehete
- Department of Veterinary Sciences, The University of Texas M.D. Anderson Cancer Center, Bastrop, TX 78602, USA; E-Mails: (P.N.N.); b (B.N.)
| | - Guojun Yang
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; E-Mails: (S.S.); (G.Y.)
| | - Hong He
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; E-Mail:
| | - Bharti Nehete
- Department of Veterinary Sciences, The University of Texas M.D. Anderson Cancer Center, Bastrop, TX 78602, USA; E-Mails: (P.N.N.); b (B.N.)
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health Rocky Mountain Laboratories, Hamilton, MT 59840, USA; E-Mail:
| | - Michael A. Barry
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55902, USA; E-Mail:
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55902, USA
- Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902, USA
| | - K. Jagannadha Sastry
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; E-Mails: (S.S.); (G.Y.)
- Department of Veterinary Sciences, The University of Texas M.D. Anderson Cancer Center, Bastrop, TX 78602, USA; E-Mails: (P.N.N.); b (B.N.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-713-563-3304; Fax: +1-713-563-3357
| |
Collapse
|
19
|
Tiligada E, Ishii M, Riccardi C, Spedding M, Simon HU, Teixeira MM, Landys Chovel Cuervo M, Holgate ST, Levi-Schaffer F. The expanding role of immunopharmacology: IUPHAR Review 16. Br J Pharmacol 2015; 172:4217-27. [PMID: 26173913 PMCID: PMC4556463 DOI: 10.1111/bph.13219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/05/2015] [Accepted: 05/20/2015] [Indexed: 02/06/2023] Open
Abstract
Drugs targeting the immune system such as corticosteroids, antihistamines and immunosuppressants have been widely exploited in the treatment of inflammatory, allergic and autoimmune disorders during the second half of the 20th century. The recent advances in immunopharmacological research have made available new classes of clinically relevant drugs. These comprise protein kinase inhibitors and biologics, such as monoclonal antibodies, that selectively modulate the immune response not only in cancer and autoimmunity but also in a number of other human pathologies. Likewise, more effective vaccines utilizing novel antigens and adjuvants are valuable tools for the prevention of transmissible infectious diseases and for allergen-specific immunotherapy. Consequently, immunopharmacology is presently considered as one of the expanding fields of pharmacology. Immunopharmacology addresses the selective regulation of immune responses and aims to uncover and exploit beneficial therapeutic options for typical and non-typical immune system-driven unmet clinical needs. While in the near future a number of new agents will be introduced, improving the effectiveness and safety of those currently in use is imperative for all researchers and clinicians working in the fields of immunology, pharmacology and drug discovery. The newly formed ImmuPhar (http://iuphar.us/index.php/sections-subcoms/immunopharmacology) is the Immunopharmacology Section of the International Union of Basic and Clinical Pharmacology (IUPHAR, http://iuphar.us/). ImmuPhar provides a unique international expert-lead platform that aims to dissect and promote the growing understanding of immune (patho)physiology. Moreover, it challenges the identification and validation of drug targets and lead candidates for the treatment of many forms of debilitating disorders, including, among others, cancer, allergies, autoimmune and metabolic diseases.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, University of AthensAthens, Greece
- Allergy Unit ‘D. Kalogeromitros’, 2nd Department of Dermatology and Venereology, ‘Attikon’ General University Hospital, Medical School, University of AthensAthens, Greece
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka UniversityOsaka, Japan
| | - Carlo Riccardi
- Department of Medicine, University of PerugiaPerugia, Italy
| | | | - Hans-Uwe Simon
- Institute of Pharmacology, University of BernBern, Switzerland
| | | | | | | | - Francesca Levi-Schaffer
- Pharmacology Unit, Faculty of Medicine, School of Pharmacy Institute for Drug Research, Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
20
|
Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem Rev 2015; 115:11109-46. [PMID: 26154342 DOI: 10.1021/acs.chemrev.5b00109] [Citation(s) in RCA: 518] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Darrell J Irvine
- The Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard University , 400 Technology Square, Cambridge, Massachusetts 02139, United States.,Howard Hughes Medical Institute , Chevy Chase, Maryland 20815, United States
| | | | | | | |
Collapse
|
21
|
Savelkoul HFJ, Ferro VA, Strioga MM, Schijns VEJC. Choice and Design of Adjuvants for Parenteral and Mucosal Vaccines. Vaccines (Basel) 2015; 3:148-71. [PMID: 26344951 PMCID: PMC4494243 DOI: 10.3390/vaccines3010148] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/11/2014] [Accepted: 02/24/2015] [Indexed: 11/16/2022] Open
Abstract
The existence of pathogens that escape recognition by specific vaccines, the need to improve existing vaccines and the increased availability of therapeutic (non-infectious disease) vaccines necessitate the rational development of novel vaccine concepts based on the induction of protective cell-mediated immune responses. For naive T-cell activation, several signals resulting from innate and adaptive interactions need to be integrated, and adjuvants may interfere with some or all of these signals. Adjuvants, for example, are used to promote the immunogenicity of antigens in vaccines, by inducing a pro-inflammatory environment that enables the recruitment and promotion of the infiltration of phagocytic cells, particularly antigen-presenting cells (APC), to the injection site. Adjuvants can enhance antigen presentation, induce cytokine expression, activate APC and modulate more downstream adaptive immune reactions (vaccine delivery systems, facilitating immune Signal 1). In addition, adjuvants can act as immunopotentiators (facilitating Signals 2 and 3) exhibiting immune stimulatory effects during antigen presentation by inducing the expression of co-stimulatory molecules on APC. Together, these signals determine the strength of activation of specific T-cells, thereby also influencing the quality of the downstream T helper cytokine profiles and the differentiation of antigen-specific T helper populations (Signal 3). New adjuvants should also target specific (innate) immune cells in order to facilitate proper activation of downstream adaptive immune responses and homing (Signal 4). It is desirable that these adjuvants should be able to exert such responses in the context of mucosal administered vaccines. This review focuses on the understanding of the potential working mechanisms of the most well-known classes of adjuvants to be used effectively in vaccines.
Collapse
Affiliation(s)
- Huub F J Savelkoul
- Cell Biology and Immunology, Wageningen University, Wageningen, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Marius M Strioga
- Department of Immunology, Center of Oncosurgery, National Cancer Institute, P. Baublio Str. 3b-321, LT-08406 Vilnius, Lithuania.
| | - Virgil E J C Schijns
- Cell Biology and Immunology, Wageningen University, Wageningen, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
- ERC-Belgium and ERC-The Netherlands, 5374 RE Schaijk, The Netherlands.
| |
Collapse
|
22
|
Abstract
Vaccination has a proven record as one of the most effective medical approaches to prevent the spread of infectious diseases. Traditional vaccine approaches involve the administration of whole killed or weakened microorganisms to stimulate protective immune responses. Such approaches deliver many microbial components, some of which contribute to protective immunity, and assist in guiding the type of immune response that is elicited. Despite their impeccable record, these approaches have failed to yield vaccines for many important infectious organisms. This has prompted a move towards more defined vaccines ('subunit vaccines'), where individual protective components are administered. This unit provides an overview of the components that are used for the development of modern vaccines including: an introduction to different vaccine types (whole organism, protein/peptide, polysaccharide, conjugate, and DNA vaccines); techniques for identifying subunit antigens; vaccine delivery systems; and immunostimulatory agents ('adjuvants'), which are fundamental for the development of effective subunit vaccines.
Collapse
|
23
|
Zhang TE, Yin LT, Li RH, Wang HL, Meng XL, Yin GR. Protective immunity induced by peptides of AMA1, RON2 and RON4 containing T-and B-cell epitopes via an intranasal route against toxoplasmosis in mice. Parasit Vectors 2015; 8:15. [PMID: 25582167 PMCID: PMC4297402 DOI: 10.1186/s13071-015-0636-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/02/2015] [Indexed: 11/10/2022] Open
Abstract
Background Toxoplasma gondii is a ubiquitous protozoan intracellular parasite, the causative agent of toxoplasmosis, and a worldwide zoonosis. Apical membrane antigen-1 (AMA1) and rhoptry neck protein (RON2, RON4) are involved in the invasion of T. gondii. Methods This study chemically synthesized peptides of TgAMA1, TgRON2 and TgRON4 that contained the T- and B-cell epitopes predicted by bioinformatics analysis. We evaluated the systemic response by proliferation, cytokine and antibody measurements as well as the mucosal response by examining the levels of antigen-specific secretory IgA (SIgA) in the nasal, vesical and intestinal washes obtained from mice after nasal immunization with single (AMA1, RON2, RON4) or mixtures of peptides (A1 + R2, A1 + R4, R2 + R4, A1 + R2 + R4). We also assessed the parasite burdens in the liver and brain as well as the survival of mice challenged with a virulent strain. Results The results showed that the mice immunized with single or mixed peptides produced effective mucosal and systemic immune responses with a high level of specific antibody responses, a strong lymphoproliferative response and significant levels of gamma interferon (IFN-γ), interleukin-2 (IL-2) and IL-4 production. These mice also elicited partial protection against acute and chronic T. gondii infection. Moreover, our study indicated that mixtures of peptides, especially the A1 + R2 mixture, were more powerful and efficient than any other single peptides. Conclusions These results demonstrated that intranasal immunisation with peptides of AMA1, RON2 and RON4 containing T- and B-cell epitopes can partly protect mice against toxoplasmosis, and a combination of peptides as a mucosal vaccine strategy is essential for future Toxoplasma vaccine development.
Collapse
Affiliation(s)
- Tie-E Zhang
- Research Institute of Medical Parasitology, Shanxi Medical University, Xinjian South Road, Taiyuan, Shanxi Province, 030001, China. .,Department of Clinical Laboratory, Central Hospital of the 12th Bureau Group of China Railway, Taiyuan, Shanxi, 030053, China.
| | - Li-Tian Yin
- Department of physiology, Key Laboratory of Cellular Physiology Co-constructed by Province and Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| | - Run-Hua Li
- Department of Biology, Taiyuan Normal University, Taiyuan, Shanxi, 030031, China.
| | - Hai-Long Wang
- Research Institute of Medical Parasitology, Shanxi Medical University, Xinjian South Road, Taiyuan, Shanxi Province, 030001, China.
| | - Xiao-Li Meng
- Research Institute of Medical Parasitology, Shanxi Medical University, Xinjian South Road, Taiyuan, Shanxi Province, 030001, China.
| | - Guo-Rong Yin
- Research Institute of Medical Parasitology, Shanxi Medical University, Xinjian South Road, Taiyuan, Shanxi Province, 030001, China.
| |
Collapse
|
24
|
Singh S, Yang G, Byrareddy SN, Barry MA, Sastry KJ. Natural killer T cell and TLR9 agonists as mucosal adjuvants for sublingual vaccination with clade C HIV-1 envelope protein. Vaccine 2014; 32:6934-6940. [PMID: 25444819 DOI: 10.1016/j.vaccine.2014.10.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/22/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023]
Abstract
The vast majority of HIV-1 infections occur at mucosa during sexual contact. It may therefore be advantageous to provide mucosal barrier protection against this entry by mucosal vaccination. While a number of mucosal routes of vaccination are possible, many like enteric oral vaccines or intranasal vaccines have significant impediments that limit vaccine efficacy or pose safety risks. In contrast, immunogens applied to the sublingual region of the mouth could provide a simple route for mucosal vaccination. While sublingual immunization is appealing, this site does not always drive strong immune responses, particularly when using protein antigens. To address this issue, we have tested the ability of two mucosal adjuvants: alpha-galactosylceramide (αGalCer) that is a potent stimulator of natural killer T cells and CpG-oligodeoxynucleotide (CpG-ODN) a TLR9 agonist for their ability to amplify immune responses against clade C gp140 HIV-1 envelope protein antigen. Immunization with envelope protein alone resulted in a weak T cell and antibody responses. In contrast, CD4(+) and CD8(+) T cells responses in systemic and mucosal tissues were significantly higher in mice immunized with gp140 in the presence of either αGalCer or CpG-ODN and these responses were further augmented when the two adjuvants were used together. While both the adjuvants effectively increased gp140-specific serum IgG and vaginal IgA antibody levels, combining both significantly improved these responses. Memory T cell responses 60 days after immunization revealed αGalCer to be more potent than CpG-ODN and the combination of the αGalCer and CpG-ODN adjuvants was more effective than either alone. Serum and vaginal washes collected 60 days after immunization with gp140 with both αGalCer and CpG-ODN adjuvants had significant neutralization activity against Tier 1 and Tier 2 SHIVs. These data support the utility of the sublingual route for mucosal vaccination particularly in combination with αGalCer and CpG-ODN adjuvants.
Collapse
Affiliation(s)
- Shailbala Singh
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Guojun Yang
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Siddappa N Byrareddy
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Michael A Barry
- Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology Program, Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - K Jagannadha Sastry
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States; Department of Veterinary Sciences, The University of Texas M.D. Anderson Cancer Center, Bastrop, TX, United States.
| |
Collapse
|
25
|
Tuero I, Robert-Guroff M. Challenges in mucosal HIV vaccine development: lessons from non-human primate models. Viruses 2014; 6:3129-58. [PMID: 25196380 PMCID: PMC4147690 DOI: 10.3390/v6083129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/23/2022] Open
Abstract
An efficacious HIV vaccine is urgently needed to curb the AIDS pandemic. The modest protection elicited in the phase III clinical vaccine trial in Thailand provided hope that this goal might be achieved. However, new approaches are necessary for further advances. As HIV is transmitted primarily across mucosal surfaces, development of immunity at these sites is critical, but few clinical vaccine trials have targeted these sites or assessed vaccine-elicited mucosal immune responses. Pre-clinical studies in non-human primate models have facilitated progress in mucosal vaccine development by evaluating candidate vaccine approaches, developing methodologies for collecting and assessing mucosal samples, and providing clues to immune correlates of protective immunity for further investigation. In this review we have focused on non-human primate studies which have provided important information for future design of vaccine strategies, targeting of mucosal inductive sites, and assessment of mucosal immunity. Knowledge gained in these studies will inform mucosal vaccine design and evaluation in human clinical trials.
Collapse
Affiliation(s)
- Iskra Tuero
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Marjorie Robert-Guroff
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
McAllister SC, Schleiss MR. Prospects and perspectives for development of a vaccine against herpes simplex virus infections. Expert Rev Vaccines 2014; 13:1349-60. [PMID: 25077372 DOI: 10.1586/14760584.2014.932694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herpes simplex viruses 1 and 2 are human pathogens that lead to significant morbidity and mortality in certain clinical settings. The development of effective antiviral medications, however, has had little discernible impact on the epidemiology of these pathogens, largely because the majority of infections are clinically silent. Decades of work have gone into various candidate HSV vaccines, but to date none has demonstrated sufficient efficacy to warrant licensure. This review examines developments in HSV immunology and vaccine development published since 2010, and assesses the prospects for improved immunization strategies that may result in an effective, licensed vaccine in the near future.
Collapse
Affiliation(s)
- Shane C McAllister
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, 3-216 McGuire Translational Research Facility, 2001 6th Street S.E., Minneapolis, MN 55455, USA
| | | |
Collapse
|
27
|
Abstract
In spite of several attempts over many years at developing a HIV vaccine based on classical strategies, none has convincingly succeeded to date. As HIV is transmitted primarily by the mucosal route, particularly through sexual intercourse, understanding antiviral immunity at mucosal sites is of major importance. An ideal vaccine should elicit HIV-specific antibodies and mucosal CD8⁺ cytotoxic T-lymphocyte (CTL) as a first line of defense at a very early stage of HIV infection, before the virus can disseminate into the secondary lymphoid organs in mucosal and systemic tissues. A primary focus of HIV preventive vaccine research is therefore the induction of protective immune responses in these crucial early stages of HIV infection. Numerous approaches are being studied in the field, including building upon the recent RV144 clinical trial. In this article, we will review current strategies and briefly discuss the use of adjuvants in designing HIV vaccines that induce mucosal immune responses.
Collapse
|
28
|
Rosales-Mendoza S. Plant-Based Vaccines as a Global Vaccination Approach: Current Perspectives. GENETICALLY ENGINEERED PLANTS AS A SOURCE OF VACCINES AGAINST WIDE SPREAD DISEASES 2014. [PMCID: PMC7114996 DOI: 10.1007/978-1-4939-0850-9_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This chapter provides a perspective on the evolution of the field of plant-based vaccine from the limitations identified in initial developments as to how this biotechnological approach has become sophisticated via the development of new technologies and has gained industry interest. Perspectives for the field at both the basic research and the industrial level are emphasized. Perspectives considered of relevance in terms of basic research include (1) advancing the development of oral formulations, (2) expanding the modalities of expression of immunogens, (3) diversifying production platforms, particularly those performed under full containment, and (4) targeting a broader number of diseases. These goals are expected to multiply the expectations for benefits derived from plant-based vaccine-production technology. On the other hand, technology transfer and regulatory issues represent a critical hurdle to this technology becoming a reality. It is also critical to achieve social acceptance as well as implement initiatives for the exploitation of the technology for humanitarian purposes and for the benefit of poor countries. This overview predicts considerable potential for plant-based vaccines to positively impact the field of vaccinology in the near future.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
29
|
Kraan H, Vrieling H, Czerkinsky C, Jiskoot W, Kersten G, Amorij JP. Buccal and sublingual vaccine delivery. J Control Release 2014; 190:580-92. [PMID: 24911355 PMCID: PMC7114675 DOI: 10.1016/j.jconrel.2014.05.060] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 11/25/2022]
Abstract
Because of their large surface area and immunological competence, mucosal tissues are attractive administration and target sites for vaccination. An important characteristic of mucosal vaccination is its ability to elicit local immune responses, which act against infection at the site of pathogen entry. However, mucosal surfaces are endowed with potent and sophisticated tolerance mechanisms to prevent the immune system from overreacting to the many environmental antigens. Hence, mucosal vaccination may suppress the immune system instead of induce a protective immune response. Therefore, mucosal adjuvants and/or special antigen delivery systems as well as appropriate dosage forms are required in order to develop potent mucosal vaccines. Whereas oral, nasal and pulmonary vaccine delivery strategies have been described extensively, the sublingual and buccal routes have received considerably less attention. In this review, the characteristics of and approaches for sublingual and buccal vaccine delivery are described and compared with other mucosal vaccine delivery sites. We discuss recent progress and highlight promising developments in the search for vaccine formulations, including adjuvants and suitable dosage forms, which are likely critical for designing a successful sublingual or buccal vaccine. Finally, we outline the challenges, hurdles to overcome and formulation issues relevant for sublingual or buccal vaccine delivery.
Collapse
Affiliation(s)
- Heleen Kraan
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| | - Hilde Vrieling
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Cecil Czerkinsky
- Institut de Pharmacologie Moleculaire et Cellulaire, UMR 7275 CNRS-INSERM-UNSA, Valbonne, France
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Gideon Kersten
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Jean-Pierre Amorij
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| |
Collapse
|
30
|
Enhancement of nasal HIV vaccination with adenoviral vector-based nanocomplexes using mucoadhesive and DC-targeting adjuvants. Pharm Res 2014; 31:2748-61. [PMID: 24792827 DOI: 10.1007/s11095-014-1372-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/21/2014] [Indexed: 01/09/2023]
Abstract
PURPOSE To investigate the vaccine effect of a replication-defective recombinant adenovirus 5 (rAd5)-based nanocomplex with chitooligosaccharides (Oligo) and mannosylated polyethyleneimine-triethyleneglycol (mPEI) as adjuvants for human immunodeficiency virus (HIV) infection. METHODS Physical characteristics were determined through detecting the size, zeta potential and morphology of Oligo-mPEI-rAd5 nanocomplex, and in vitro vaccine uptake and transduction efficiency were estimated. Nanocomplexes were then administered intranasally to Balb/c mice to evaluate in vivo rAd5 residence in nasal cavity and HIVgag-specific immune responses using cytotoxic T lymphocyte (CTL), intracellular cytokine staining (ICS) and ELISA assay. RESULTS The mucoadhesivity of Oligo prolonged nasal residence time, while the dendritic cell (DC) specificity of mPEI improved vaccine uptake. These two adjuvants jointly enhanced transduction efficiency of rAd5. Oligo-mPEI-rAd5 nanocomplex elicited potent HIVgag-specific CTL response and increased IFN-γ positive CD8(+)T and IL-4 positive CD4(+)T cells, indicating high cellular immune responses. This vaccine candidate also led to strong humoral immune responses (IgG/IgG1/IgG2a) with balanced Th1/Th2 CD4(+)T cell activity. Moreover, mice nasally immunized with Oligo-mPEI-rAd5 showed higher levels of SIgA in nasal washes than did mice immunized with rAd5. CONCLUSIONS Intranasal delivery of Oligo-mPEI-rAd5 with a prime-boost regimen is a potential immunization for HIV infection, inducing HIVgag-specific cellular, humoral and mucosal immune responses.
Collapse
|
31
|
Rosales-Mendoza S, Salazar-González JA. Immunological aspects of using plant cells as delivery vehicles for oral vaccines. Expert Rev Vaccines 2014; 13:737-49. [DOI: 10.1586/14760584.2014.913483] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Wang N, Wang T, Zhang M, Chen R, Niu R, Deng Y. Mannose derivative and lipid A dually decorated cationic liposomes as an effective cold chain free oral mucosal vaccine adjuvant-delivery system. Eur J Pharm Biopharm 2014; 88:194-206. [PMID: 24769065 DOI: 10.1016/j.ejpb.2014.04.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 01/24/2023]
Abstract
To develop convenient, effective cold chain-free subunit vaccines, a mannose-PEG-cholesterol conjugate (MPC) was synthesized as a lectin binding molecule and anchored onto liposomes which entrapped lipid A and model antigen to form a vaccine adjuvant-delivery system targeting antigen presenting cells. With MPC, soy phosphatidylcholine, stearylamine and monophosphoryl lipid A as emulsifiers dissolved in oil phase (O), and sucrose and BSA in water phase (W), the O/W emulsions were prepared and subsequently lyophilized. The lyophilized product was stable enough to be stored at room temperature and, upon rehydration, formed MPC-/lipid A-liposomes (MLLs) with a size under 300 nm and antigen association rates of around 36%. The MLLs given to mice via oral mucosal (o.m.) administration showed no side effects but induced potent immune responses as evidenced by the high levels of IgG in the sera and IgA in the salivary, intestinal and vaginal secretions of mice. High levels of IgG2a and IFN-γ in treated mice revealed that MLLs via o.m. vaccination induced a mixed Th1/Th2 response against antigens, establishing both humoral and cellular immunity. Thus, the MLLs may be a potent cold chain-free oral mucosal vaccine adjuvant-delivery system.
Collapse
Affiliation(s)
- Ning Wang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | - Ting Wang
- Department of Pharmacy, Anhui Medical University, Hefei, China; Department of Pharmacy, Jining Medical College, Sunshine City, China.
| | - Meiling Zhang
- Department of Pharmacy, Anhui Medical University, Hefei, China
| | - Ruonan Chen
- Department of Pharmacy, Anhui Medical University, Hefei, China
| | - Ruowen Niu
- Department of Pharmacy, Anhui Medical University, Hefei, China
| | - Yihui Deng
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
33
|
Bergmann-Leitner ES, Leitner WW. Adjuvants in the Driver's Seat: How Magnitude, Type, Fine Specificity and Longevity of Immune Responses Are Driven by Distinct Classes of Immune Potentiators. Vaccines (Basel) 2014; 2:252-96. [PMID: 26344620 PMCID: PMC4494256 DOI: 10.3390/vaccines2020252] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/20/2014] [Accepted: 03/28/2014] [Indexed: 12/16/2022] Open
Abstract
The mechanism by which vaccine adjuvants enhance immune responses has historically been considered to be the creation of an antigen depot. From here, the antigen is slowly released and provided to immune cells over an extended period of time. This "depot" was formed by associating the antigen with substances able to persist at the injection site, such as aluminum salts or emulsions. The identification of Pathogen-Associated Molecular Patterns (PAMPs) has greatly advanced our understanding of how adjuvants work beyond the simple concept of extended antigen release and has accelerated the development of novel adjuvants. This review focuses on the mode of action of different adjuvant classes in regards to the stimulation of specific immune cell subsets, the biasing of immune responses towards cellular or humoral immune response, the ability to mediate epitope spreading and the induction of persistent immunological memory. A better understanding of how particular adjuvants mediate their biological effects will eventually allow them to be selected for specific vaccines in a targeted and rational manner.
Collapse
Affiliation(s)
- Elke S Bergmann-Leitner
- US Military Malaria Research Program, Malaria Vaccine Branch, 503 Robert Grant Ave, 3W65, Silver Spring, MD 20910, USA.
| | - Wolfgang W Leitner
- Division on Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 6610 Rockledge Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Wang N, Wang T, Zhang M, Chen R, Deng Y. Using procedure of emulsification-lyophilization to form lipid A-incorporating cochleates as an effective oral mucosal vaccine adjuvant-delivery system (VADS). Int J Pharm 2014; 468:39-49. [PMID: 24704308 DOI: 10.1016/j.ijpharm.2014.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/07/2014] [Accepted: 04/02/2014] [Indexed: 12/22/2022]
Abstract
Using a procedure of emulsification-lyophilization (PEL), adjuvant lipid A-cochleates (LACs) were prepared as a carrier for model antigen bovine serum albumin (BSA). With phosphatidylserine and lipid A as emulsifiers dissolved in oil phase (O), sucrose and CaCl2 in the inner water phase (W1), and BSA, sucrose and PEG2000 in the outer water phase (W2), the W1/O/W2 emulsions were prepared and subsequently lyophilized to form a dry product which was stable enough to be stored at room temperature. Upon rehydration of the dry products, cochleates formed with a size of 800 nm and antigen association rates of 38%. After vaccination of mice through oral mucosal (o.m.) administration, LACs showed no side effects but induced potent immune responses as evidenced by high levels of IgG in the sera and IgA in the salivary, intestinal and vaginal secretions of mice. In addition, high levels of IgG2a and IFN-γ in the sera or culture supernatants of splenocytes of the immunized mice were also detected. These results revealed that LACs induced a mixed Th1/Th2 response against the loaded antigens. Thus, the LACs prepared by PEL were able to induce both systemic and mucosal immune responses and may act as a potent cold-chain-free oral mucosal vaccine adjuvant delivery system (VADS).
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/chemistry
- Administration, Oral
- Animals
- Cells, Cultured
- Chemistry, Pharmaceutical
- Drug Carriers
- Drug Stability
- Emulsions
- Excipients/chemistry
- Female
- Freeze Drying
- Immunity, Humoral/drug effects
- Immunity, Mucosal/drug effects
- Immunoglobulin A, Secretory/metabolism
- Immunoglobulin G/blood
- Interferon-gamma/metabolism
- Lipid A/administration & dosage
- Lipid A/chemistry
- Lipid A/immunology
- Mice
- Mouth Mucosa/drug effects
- Mouth Mucosa/immunology
- Particle Size
- Phagocytosis/drug effects
- Powders
- Serum Albumin, Bovine/administration & dosage
- Serum Albumin, Bovine/chemistry
- Serum Albumin, Bovine/immunology
- Technology, Pharmaceutical/methods
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th2 Cells/drug effects
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Ning Wang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Ting Wang
- Department of Pharmacy, Anhui Medical University, 81 Mei Hill Road, Hefei, Anhui Province 230032, China; Department of Pharmacy, Jining Medical College, 669 Xueyuan Road, Sunshine City, Shandong Province 276826, China.
| | - Meiling Zhang
- Department of Pharmacy, Anhui Medical University, 81 Mei Hill Road, Hefei, Anhui Province 230032, China
| | - Ruonan Chen
- Department of Pharmacy, Anhui Medical University, 81 Mei Hill Road, Hefei, Anhui Province 230032, China
| | - Yihui Deng
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|
35
|
Rosales-Mendoza S. Future directions for the development of Chlamydomonas-based vaccines. Expert Rev Vaccines 2014; 12:1011-9. [PMID: 24053395 DOI: 10.1586/14760584.2013.825455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Besides serving as a valuable model in biological sciences, Chamydomonas reinhardtii has been used during the last decade in the biotechnology arena to establish models for the low cost production of vaccines. Antigens from various pathogens including Plasmodium falciparum, foot and mouth disease virus, Staphylococcus aureus, classical swine fever virus (CSFV) as well as some auto-antigens, have been produced in C. reinhardtii. Although some of them have been functionally characterized with promising results, this review identifies future directions for the advancement in the exploitation of this robust and safe vaccine production platform. The present analysis reflects that important immunological implications exist for this system and remain unexplored, including the possible adjuvant effects of algae biomolecules, the effect of bioencapsulation on immunogenicity and the possible development of whole-cell vaccines as an approach to trigger cytotoxic immune responses. Recently described molecular strategies that aim to optimize the expression of nuclear-encoded target antigens are also discussed.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México +52 444 826 2440 +52 444 826 2440
| |
Collapse
|
36
|
Gebril AM, Lamprou DA, Alsaadi MM, Stimson WH, Mullen AB, Ferro VA. Assessment of the antigen-specific antibody response induced by mucosal administration of a GnRH conjugate entrapped in lipid nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:971-9. [PMID: 24374362 DOI: 10.1016/j.nano.2013.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 11/28/2013] [Accepted: 12/18/2013] [Indexed: 01/14/2023]
Abstract
UNLABELLED Vaccines administered parenterally have been developed against gonadotrophin-releasing hormone (GnRH) for anti-fertility and anti-cancer purposes. The aim of this study was to demonstrate whether mucosal delivery using GnRH immunogens entrapped in lipid nanoparticles (LNP) could induce anti-GnRH antibody titers. Immunogens consisting of KLH (keyhole limpet hemocyanin) conjugated to either GnRH-I or GnRH-III analogues were entrapped in LNP. Loaded non-ionic surfactant vesicles (NISVs) were administered subcutaneously, while nasal delivery was achieved using NISV in xanthan gum and oral delivery using NISV containing deoxycholate (bilosomes). NISV and bilosomes had similar properties: they were spherical, in the nanometre size range, with a slightly negative zeta potential and surface properties that changed with protein loading and inclusion of xanthan gum. Following immunization in female BALB/c mice, systemic antibody responses were similar for both GnRH-I and GnRH-III immunization. Only nasal delivery proved to be successful in terms of producing systemic and mucosal antibodies. FROM THE CLINICAL EDITOR The main research question addressed in this study was whether mucosal delivery using gonadotrophin-releasing hormone immunogens entrapped in lipid nanoparticles could induce anti-GnRH antibody titers. Only nasal delivery proved to be successful in terms of producing systemic and mucosal antibodies with this approach.
Collapse
Affiliation(s)
- Ayman M Gebril
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK; Faculty of Veterinary Medicine, Omar Al-Mukhtar University, Al-Bayda, Libya
| | - Dimitrios A Lamprou
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - Manal M Alsaadi
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - William H Stimson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - Alexander B Mullen
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
37
|
Brotman RM, Ravel J, Bavoil PM, Gravitt PE, Ghanem KG. Microbiome, sex hormones, and immune responses in the reproductive tract: challenges for vaccine development against sexually transmitted infections. Vaccine 2013; 32:1543-52. [PMID: 24135572 DOI: 10.1016/j.vaccine.2013.10.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/05/2013] [Accepted: 10/02/2013] [Indexed: 12/24/2022]
Abstract
The female and male reproductive tracts are complex eco-systems where immune cells, hormones, and microorganisms interact. The characteristics of the reproductive tract mucosa are distinct from other mucosal sites. Reproductive tract mucosal immune responses are compartmentalized, unique, and affected by resident bacterial communities and sex hormones. The female and male genital microbiomes are complex environments that fluctuate in response to external and host-associated stimuli. The female vaginal microbiota play an important role in preventing colonization by pathogenic organisms. Sex hormones and their duration of exposure affect the composition and stability of the microbiome as well as systemic and mucosal immune responses. In addition to the characteristics of the pathogen they are targeting, successful vaccines against sexually transmitted pathogens must take into account the differences between the systemic and mucosal immune responses, the compartmentalization of the mucosal immune responses, the unique characteristics of the reproductive tract mucosa, the role of the mucosal bacterial communities, the impact of sex hormones, and the interactions among all of these factors.
Collapse
Affiliation(s)
- Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Patrik M Bavoil
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA.
| | - Patti E Gravitt
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Khalil G Ghanem
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
38
|
The ocular conjunctiva as a mucosal immunization route: a profile of the immune response to the model antigen tetanus toxoid. PLoS One 2013; 8:e60682. [PMID: 23637758 PMCID: PMC3637207 DOI: 10.1371/journal.pone.0060682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/01/2013] [Indexed: 11/30/2022] Open
Abstract
Background In a quest for a needle-free vaccine administration strategy, we evaluated the ocular conjunctiva as an alternative mucosal immunization route by profiling and comparing the local and systemic immune responses to the subcutaneous or conjunctival administration of tetanus toxoid (TTd), a model antigen. Materials and methods BALB/c and C57BL/6 mice were immunized either subcutaneously with TTd alone or via the conjunctiva with TTd alone, TTd mixed with 2% glycerol or TTd with merthiolate-inactivated whole-cell B. pertussis (wBP) as adjuvants. Mice were immunized on days 0, 7 and 14 via both routes, and an evaluation of the local and systemic immune responses was performed two weeks after the last immunization. Four weeks after the last immunization, the mice were challenged with a lethal dose (2 × LD50) of tetanus toxin. Results The conjunctival application of TTd in BALB/c mice induced TTd-specific secretory IgA production and skewed the TTd-specific immune response toward a Th1/Th17 profile, as determined by the stimulation of IFNγ and IL-17A secretion and/or the concurrent pronounced reduction of IL-4 secretion, irrespective of the adjuvant. In conjunctivaly immunized C57BL/6 mice, only TTd administered with wBP promoted the establishment of a mixed Th1/Th17 TTd-specific immune response, whereas TTd alone or TTd in conjunction with glycerol initiated a dominant Th1 response against TTd. Immunization via the conjunctiva with TTd plus wBP adjuvant resulted in a 33% survival rate of challenged mice compared to a 0% survival rate in non-immunized animals (p<0.05). Conclusion Conjunctival immunization with TTd alone or with various adjuvants induced TTd-specific local and systemic immune responses, predominantly of the Th1 type. The strongest immune responses developed in mice that received TTd together with wBP, which implies that this alternative route might tailor the immune response to fight intracellular bacteria or viruses more effectively.
Collapse
|
39
|
Roberts RA, Shen T, Allen IC, Hasan W, DeSimone JM, Ting JPY. Analysis of the murine immune response to pulmonary delivery of precisely fabricated nano- and microscale particles. PLoS One 2013; 8:e62115. [PMID: 23593509 PMCID: PMC3625166 DOI: 10.1371/journal.pone.0062115] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/18/2013] [Indexed: 12/20/2022] Open
Abstract
Nanomedicine has the potential to transform clinical care in the 21st century. However, a precise understanding of how nanomaterial design parameters such as size, shape and composition affect the mammalian immune system is a prerequisite for the realization of nanomedicine's translational promise. Herein, we make use of the recently developed Particle Replication in Non-wetting Template (PRINT) fabrication process to precisely fabricate particles across and the nano- and micro-scale with defined shapes and compositions to address the role of particle design parameters on the murine innate immune response in both in vitro and in vivo settings. We find that particles composed of either the biodegradable polymer poly(lactic-co-glycolic acid) (PLGA) or the biocompatible polymer polyethylene glycol (PEG) do not cause release of pro-inflammatory cytokines nor inflammasome activation in bone marrow-derived macrophages. When instilled into the lungs of mice, particle composition and size can augment the number and type of innate immune cells recruited to the lungs without triggering inflammatory responses as assayed by cytokine release and histopathology. Smaller particles (80×320 nm) are more readily taken up in vivo by monocytes and macrophages than larger particles (6 µm diameter), yet particles of all tested sizes remained in the lungs for up to 7 days without clearance or triggering of host immunity. These results suggest rational design of nanoparticle physical parameters can be used for sustained and localized delivery of therapeutics to the lungs.
Collapse
Affiliation(s)
- Reid A. Roberts
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Tammy Shen
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Warefta Hasan
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Joseph M. DeSimone
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Carolina Center of Cancer Nanotechnology Excellence, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Institute for Advanced Materials, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Institute for Nanomedicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail: (JPYT); (JMDS)
| | - Jenny P. Y. Ting
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail: (JPYT); (JMDS)
| |
Collapse
|