1
|
Zhu X, Wang X, Liu T, Zhang D, Jin T. Design of multi-epitope vaccine against porcine rotavirus using computational biology and molecular dynamics simulation approaches. Virol J 2024; 21:160. [PMID: 39039549 PMCID: PMC11264426 DOI: 10.1186/s12985-024-02440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Porcine Rotavirus (PoRV) is a significant pathogen affecting swine-rearing regions globally, presenting a substantial threat to the economic development of the livestock sector. At present, no specific pharmaceuticals are available for this disease, and treatment options remain exceedingly limited. This study seeks to design a multi-epitope peptide vaccine for PoRV employing bioinformatics approaches to robustly activate T-cell and B-cell immune responses. Two antigenic proteins, VP7 and VP8*, were selected from PoRV, and potential immunogenic T-cell and B-cell epitopes were predicted using immunoinformatic tools. These epitopes were further screened according to non-toxicity, antigenicity, non-allergenicity, and immunogenicity criteria. The selected epitopes were linked with linkers to form a novel multi-epitope vaccine construct, with the PADRE sequence (AKFVAAWTLKAAA) and RS09 peptide attached at the N-terminus of the designed peptide chain to enhance the vaccine's antigenicity. Protein-protein docking of the vaccine constructs with toll-like receptors (TLR3 and TLR4) was conducted using computational methods, with the lowest energy docking results selected as the optimal predictive model. Subsequently, molecular dynamics (MD) simulation methods were employed to assess the stability of the protein vaccine constructs and TLR3 and TLR4 receptors. The results indicated that the vaccine-TLR3 and vaccine-TLR4 docking models remained stable throughout the simulation period. Additionally, the C-IMMSIM tool was utilized to determine the immunogenic triggering capability of the vaccine protein, demonstrating that the constructed vaccine protein could induce both cell-mediated and humoral immune responses, thereby playing a role in eliciting host immune responses. In conclusion, this study successfully constructed a multi-epitope vaccine against PoRV and validated the stability and efficacy of the vaccine through computational analysis. However, as the study is purely computational, experimental evaluation is required to validate the safety and immunogenicity of the newly constructed vaccine protein.
Collapse
MESH Headings
- Animals
- Swine
- Molecular Dynamics Simulation
- Rotavirus/immunology
- Rotavirus/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/chemistry
- Computational Biology
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Rotavirus Vaccines/immunology
- Rotavirus Vaccines/chemistry
- Rotavirus Vaccines/genetics
- Rotavirus Infections/prevention & control
- Rotavirus Infections/immunology
- Rotavirus Infections/virology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/chemistry
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/chemistry
- Molecular Docking Simulation
- Swine Diseases/prevention & control
- Swine Diseases/immunology
- Swine Diseases/virology
- Capsid Proteins/immunology
- Capsid Proteins/genetics
- Capsid Proteins/chemistry
- Vaccine Development
- Immunogenicity, Vaccine
Collapse
Affiliation(s)
- Xiaochen Zhu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xinyuan Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Tingting Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Dongchao Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China.
- Tianjin Engineering Technology Center of Livestock Pathogen Detection and Genetic Engineering Vaccine, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China.
| | - Tianming Jin
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
- Tianjin Engineering Technology Center of Livestock Pathogen Detection and Genetic Engineering Vaccine, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China.
| |
Collapse
|
2
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2024. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
3
|
Latifi T, Kachooei A, Jalilvand S, Zafarian S, Roohvand F, Shoja Z. Correlates of immune protection against human rotaviruses: natural infection and vaccination. Arch Virol 2024; 169:72. [PMID: 38459213 DOI: 10.1007/s00705-024-05975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/12/2023] [Indexed: 03/10/2024]
Abstract
Species A rotaviruses are the leading viral cause of acute gastroenteritis in children under 5 years of age worldwide. Despite progress in the characterization of the pathogenesis and immunology of rotavirus-induced gastroenteritis, correlates of protection (CoPs) in the course of either natural infection or vaccine-induced immunity are not fully understood. There are numerous factors such as serological responses (IgA and IgG), the presence of maternal antibodies (Abs) in breast milk, changes in the intestinal microbiome, and rotavirus structural and non-structural proteins that contribute to the outcome of the CoP. Indeed, while an intestinal IgA response and its surrogate, the serum IgA level, are suggested as the principal CoPs for oral rotavirus vaccines, the IgG level is more likely to be a CoP for parenteral non-replicating rotavirus vaccines. Integrating clinical and immunological data will be instrumental in improving rotavirus vaccine efficacy, especially in low- and middle-income countries, where vaccine efficacy is significantly lower than in high-income countries. Further knowledge on CoPs against rotavirus disease will be helpful for next-generation vaccine development. Herein, available data and literature on interacting components and proposed CoPs against human rotavirus disease are reviewed, and limitations and gaps in our knowledge in this area are discussed.
Collapse
Affiliation(s)
- Tayebeh Latifi
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Atefeh Kachooei
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Zafarian
- Department of Microbial Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Carossino M, Vissani MA, Barrandeguy ME, Balasuriya UBR, Parreño V. Equine Rotavirus A under the One Health Lens: Potential Impacts on Public Health. Viruses 2024; 16:130. [PMID: 38257830 PMCID: PMC10819593 DOI: 10.3390/v16010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Group A rotaviruses are a well-known cause of viral gastroenteritis in infants and children, as well as in many mammalian species and birds, affecting them at a young age. This group of viruses has a double-stranded, segmented RNA genome with high genetic diversity linked to point mutations, recombination, and, importantly, reassortment. While initial molecular investigations undertaken in the 1900s suggested host range restriction among group A rotaviruses based on the fact that different gene segments were distributed among different animal species, recent molecular surveillance and genome constellation genotyping studies conducted by the Rotavirus Classification Working Group (RCWG) have shown that animal rotaviruses serve as a source of diversification of human rotavirus A, highlighting their zoonotic potential. Rotaviruses occurring in various animal species have been linked with contributing genetic material to human rotaviruses, including horses, with the most recent identification of equine-like G3 rotavirus A infecting children. The goal of this article is to review relevant information related to rotavirus structure/genomic organization, epidemiology (with a focus on human and equine rotavirus A), evolution, inter-species transmission, and the potential zoonotic role of equine and other animal rotaviruses. Diagnostics, surveillance and the current status of human and livestock vaccines against RVA are also reviewed.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Maria Aldana Vissani
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Maria E. Barrandeguy
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
5
|
Kostina LV, Filatov IE, Eliseeva OV, Latyshev OE, Chernoryzh YY, Yurlov KI, Lesnova EI, Khametova KM, Cherepushkin SA, Savochkina TE, Tsibezov VV, Kryshen KL, Alekseeva LI, Zaykova ON, Grebennikova TV. [Study of the safety and immunogenicity of VLP-based vaccine for the prevention of rotavirus infection in neonatal minipig model]. Vopr Virusol 2023; 68:415-427. [PMID: 38156575 DOI: 10.36233/0507-4088-194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION In Russia, almost half of the cases of acute intestinal infections of established etiology in 2022 are due to rotavirus infection (RVI). There is no specific treatment for rotavirus gastroenteritis. There is a need to develop modern, effective and safe vaccines to combat rotavirus infection that are not capable of multiplying (replicating) in the body of the vaccinated person. A promising approach is to create vaccines based on virus-like particles (VLPs). OBJECTIVE Study of the safety and immunogenicity of a vaccine against rotavirus infection based on virus-like particles of human rotavirus A in newborn minipigs with multiple intramuscular administration. MATERIALS AND METHODS Newborn minipigs were used as an animal model in this study. The safety of the tested vaccine was assessed based on thermometry data, clinical examination, body weight gain, clinical and biochemical blood parameters, as well as necropsy and histological examination. When studying the immunogenic properties of the Gam-VLP-rota vaccine in doses of 30 and 120 µg, the cellular, humoral and secretory immune response was studied. RESULTS The results of assessing the general condition of animals during the immunization period, data from clinical, laboratory and pathomorphological studies indicate the safety of the vaccine against human rotavirus infection based on VLP (Gam-VLP-rota) when administered three times intramuscularly. Good local tolerance of the tested vaccine was demonstrated. The results of the assessment of humoral immunity indicate the formation of a stable immune response after three-time immunization with Gam-VLP-rota, stimulation of the production of antigen-specific IgG antibodies and their functional activity to neutralize human rotavirus A. It was shown that following the triple immunization with the minimum tested concentration of 30 µg/dose, animals developed a cell-mediated immune response. The results of the IgA titer in blood serum and intestinal lavages indicate the formation of both a systemic immunological response and the formation of specific secretory immunity to human rotavirus A. CONCLUSION Thus, three-time intramuscular immunization of minipigs with the Gam-VLP-rota vaccine forms stable protective humoral and cellular immunity in experimental animals. Evaluated vaccine is safe and has good local tolerability.
Collapse
Affiliation(s)
- L V Kostina
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - I E Filatov
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - O V Eliseeva
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - O E Latyshev
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - Y Y Chernoryzh
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - K I Yurlov
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - E I Lesnova
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - K M Khametova
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - S A Cherepushkin
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - T E Savochkina
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - V V Tsibezov
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | | | | | - O N Zaykova
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - T V Grebennikova
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| |
Collapse
|
6
|
Latifi T, Jalilvand S, Golsaz-Shirazi F, Arashkia A, Kachooei A, Afchangi A, Zafarian S, Roohvand F, Shoja Z. Characterization and immunogenicity of a novel chimeric hepatitis B core-virus like particles (cVLPs) carrying rotavirus VP8*protein in mice model. Virology 2023; 588:109903. [PMID: 37832344 DOI: 10.1016/j.virol.2023.109903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Given the efficacy and safety issues of the WHO for approved/prequalified live attenuated rotavirus (RV) vaccines, studies on alternative non-replicating modals and proper RV antigens are actively undertaken. Herein, we report the novel chimeric hepatitis B core-virus like particles (VLPs) carrying RV VP8*26-231 protein of a P [8] strain (cVLPVP8*), as a parenteral VLP RV vaccine candidate. SDS-PAGE and Western blotting analyses indicated the expected size of the E. coli-derived HBc-VP8* protein that self-assembled to cVLPVP8* particles. Immunization in mice indicated development of higher levels of IgG and IgA as well as higher IgG1/IgG2a ratios by cVLPVP8* vaccination compared to the VP8* alone. Assessment of neutralizing antibodies (nAbs) indicated development of heterotypic nAbs with cross-reactivity to a heterotypic RV strain by cVLPVP8* immunization compared to VP8* alone. The observed anti-VP8* cross-reactivity might indicate the possibility of developing a Pan-genomic RVA vaccine based on the cVLPVP8* formulation that deserves further challenge studies.
Collapse
Affiliation(s)
- Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Arashkia
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Kachooei
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atefeh Afchangi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Saman Zafarian
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Department of Microbial Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Filatov IE, Tsibezov VV, Balandina MV, Norkina SN, Latyshev OE, Eliseeva OV, Cherepushkin SA, Verkhovsky OA, Grebennikova TV. [Virus-like particles based on rotavarus A recombinant VP2/VP6 proteins for assessment the antibody immune response by ELISA]. Vopr Virusol 2023; 68:161-171. [PMID: 37264851 DOI: 10.36233/0507-4088-169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Rotavirus infection is one of the main concerns in infectious pathology in humans, mammals and birds. Newborn piglets or rodents are usually being used as a laboratory model for the evaluation of immunogenicity and efficacy for all types of vaccines against rotavirus A (RVA), and the use of ELISA for the detection of virus-specific antibodies of specific isotype is an essential step of this evaluation. OBJECTIVE Development of indirect solid-phase ELISA with VP2/VP6 rotavirus VLP as an antigen to detect and assess the distribution of RVA-specific IgG, IgM and IgA in the immune response to rotavirus A. MATERIALS AND METHODS VP2/VP6 rotavirus VLP production and purification, electron microscopy, PAGE, immunoblotting, ELISA, virus neutralization assay. RESULTS The study presents the results of development of a recombinant baculovirus with RVA genes VP2-eGFP/VP6, assessment of its infectious activity and using it for VLP production. The morphology of the VP2/VP6 rotavirus VLPs was assessed, the structural composition was determined, and the high antigenic activity of the VLP was established. VLP-based ELISA assay was developed and here we report results for RVA-specific antibody detection in sera of different animals. CONCLUSION The developed ELISA based on VP2/VP6 rotavirus VLP as a universal antigen makes it possible to detect separately IgG, IgM and IgA antibodies to rotavirus A, outlining its scientific and practical importance for the evaluation of immunogenicity and efficacy of traditional vaccines against rotavirus A and those under development.
Collapse
Affiliation(s)
- I E Filatov
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - V V Tsibezov
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - M V Balandina
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - S N Norkina
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - O E Latyshev
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - O V Eliseeva
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - S A Cherepushkin
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - O A Verkhovsky
- Diagnostic and Prevention Research Institute for human and animal diseases
| | - T V Grebennikova
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| |
Collapse
|
8
|
Lee A, Liang L, Connerton PL, Connerton IF, Mellits KH. Galacto-oligosaccharides fed during gestation increase Rotavirus A specific antibodies in sow colostrum, modulate the microbiome, and reduce infectivity in neonatal piglets in a commercial farm setting. Front Vet Sci 2023; 10:1118302. [PMID: 36825236 PMCID: PMC9941646 DOI: 10.3389/fvets.2023.1118302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Rotavirus A is a major cause of acute dehydrating diarrhea in neonatal pigs resulting in significant mortality, morbidity, reduced performance and economic loss. Commercially available prebiotic galacto-oligosaccharides are similar to those of mammalian milk and stimulate the development of the microbiota and immune system in neonates. Little is known about the effects of supplementing sows' diets with galacto-oligosaccharides during gestation. This study aimed to determine if dietary galacto-oligosaccharide supplementation during gestation could improve immunity, reduce rotavirus infection and modulate the microbiota in sows and neonates in a commercial farm setting with confirmed natural endemic rotavirus challenge. Methods In a randomized controlled trial, control sows received lactation diet with no galacto-oligosaccharide supplementation and test sows received lactation diet with 30 g/day galacto-oligosaccharide top-dressed into feed daily, seven days before farrowing. Colostrum was collected from sows 24 hours post-partum and tested for rotavirus specific antibodies. Fecal samples were collected from sows and piglets three days post-partum, tested for rotavirus A by qPCR and the microbiome composition assessed by 16s rRNA gene sequencing. Results Supplementation with galacto-oligosaccharides during gestation significantly increased rotavirus-specific IgG and IgA in sow colostrum and reduced the number of rotavirus positive piglet fecal samples. Abundance of potential pathogens Treponema and Clostridiales were higher in fecal samples from non-galacto-oligosaccharide fed sows, their piglets and rotavirus positive samples. Discussion This study demonstrates that galacto-oligosaccharide supplementation during gestation significantly increases rotavirus specific IgG and IgA in sow colostrum thereby reducing neonatal rotavirus infection and suppresses potential pathogenic bacteria in nursing sows and neonatal piglets.
Collapse
Affiliation(s)
| | - Lu Liang
- Division of Microbiology, Brewing, and Biotechnology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Phillippa L. Connerton
- Division of Microbiology, Brewing, and Biotechnology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Ian F. Connerton
- Division of Microbiology, Brewing, and Biotechnology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Kenneth H. Mellits
- Division of Microbiology, Brewing, and Biotechnology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
9
|
Luo G, Zeng Y, Yang H, Li Y, Yang L, Li C, Song F, Zhang S, Li T, Ge S, Zhang J, Xia N. Bivalent rotavirus VP4∗ stimulates protective antibodies against common genotypes of human rotaviruses. iScience 2022; 25:105099. [PMID: 36185383 PMCID: PMC9519587 DOI: 10.1016/j.isci.2022.105099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/18/2022] [Accepted: 09/04/2022] [Indexed: 12/01/2022] Open
Abstract
Non-replicating rotavirus vaccines are an alternative strategy to improve the efficacy and safety of rotavirus vaccines. The spike protein VP4, which could be enzymatically cleaved into VP8∗ and VP5∗, is an ideal target for the development of recombinant rotavirus vaccine. In our previous studies, we demonstrated that the truncated VP4 (aa26-476, VP4∗) could be a more viable vaccine candidate compared to VP8∗ and VP5∗. Here, to develop a human rotavirus vaccine, the VP4∗ proteins of P[4], P[6], and P[8] genotype rotaviruses were expressed. All VP4∗ proteins can stimulate high levels of neutralizing antibodies in both guinea pigs and rabbits when formulated in aluminum adjuvant. Furthermore, bivalent VP4∗-based vaccine (P[8] + P[6]-VP4∗) can stimulate high levels of neutralizing antibodies against various genotypes of rotavirus with no significant difference as compared to the trivalent vaccines. Therefore, bivalent VP4∗ has the potential to be a viable rotavirus vaccine candidate for further development. Purified rotavirus VP4∗ proteins form homogenic and stable trimers VP4∗ stimulated high levels of homotypic and heterotypic neutralizing antibodies The immunogenicity of different genotype VP4∗ is not influenced by each other Bivalent VP4∗ (P[8]+P[6]) stimulated protective immunity against most prevalent rotaviruses
Collapse
|
10
|
Xia M, Huang P, Tan M. A Pseudovirus Nanoparticle-Based Trivalent Rotavirus Vaccine Candidate Elicits High and Cross P Type Immune Response. Pharmaceutics 2022; 14:1597. [PMID: 36015223 PMCID: PMC9413348 DOI: 10.3390/pharmaceutics14081597] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/27/2022] Open
Abstract
Rotavirus infection continues to cause significant morbidity and mortality globally. In this study, we further developed the S60-VP8* pseudovirus nanoparticles (PVNPs) displaying the glycan receptor binding VP8* domains of rotavirus spike proteins as a parenteral vaccine candidate. First, we established a scalable method for the large production of tag-free S60-VP8* PVNPs representing four rotavirus P types, P[8], P[4], P[6], and P[11]. The approach consists of two major steps: selective precipitation of the S-VP8* proteins from bacterial lysates using ammonium sulfate, followed by anion exchange chromatography to further purify the target proteins to a high purity. The purified soluble proteins self-assembled into S60-VP8* PVNPs. Importantly, after intramuscular injections, the trivalent vaccine consisting of three PVNPs covering VP8* antigens of P[8], P[4], and P[6] rotaviruses elicited high and broad immunogenicity in mice toward the three predominant P-type rotaviruses. Specifically, the trivalent vaccine-immunized mouse sera showed (1) high and balanced IgG and IgA antibody titers toward all three VP8* types, (2) high blocking titer against the VP8*-glycan receptor interaction, and (3) high and broad neutralizing titers against replications of all P[8], P[4], and P[6] rotaviruses. Therefore, trivalent S60-VP8* PVNPs are a promising non-replicating, parenteral vaccine candidate against the most prevalent rotaviruses worldwide.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.X.); (P.H.)
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.X.); (P.H.)
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.X.); (P.H.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
11
|
Schaaf CR, Gonzalez LM. Use of Translational, Genetically Modified Porcine Models to Ultimately Improve Intestinal Disease Treatment. Front Vet Sci 2022; 9:878952. [PMID: 35669174 PMCID: PMC9164269 DOI: 10.3389/fvets.2022.878952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
For both human and veterinary patients, non-infectious intestinal disease is a major cause of morbidity and mortality. To improve treatment of intestinal disease, large animal models are increasingly recognized as critical tools to translate the basic science discoveries made in rodent models into clinical application. Large animal intestinal models, particularly porcine, more closely resemble human anatomy, physiology, and disease pathogenesis; these features make them critical to the pre-clinical study of intestinal disease treatments. Previously, large animal model use has been somewhat precluded by the lack of genetically altered large animals to mechanistically investigate non-infectious intestinal diseases such as colorectal cancer, cystic fibrosis, and ischemia-reperfusion injury. However, recent advances and increased availability of gene editing technologies has led to both novel use of large animal models in clinically relevant intestinal disease research and improved testing of potential therapeutics for these diseases.
Collapse
|
12
|
Aggarwal S, Hassan E, Baldridge MT. Experimental Methods to Study the Pathogenesis of Human Enteric RNA Viruses. Viruses 2021; 13:975. [PMID: 34070283 PMCID: PMC8225081 DOI: 10.3390/v13060975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Every year, millions of children are infected with viruses that target the gastrointestinal tract, causing acute gastroenteritis and diarrheal illness. Indeed, approximately 700 million episodes of diarrhea occur in children under five annually, with RNA viruses norovirus, rotavirus, and astrovirus serving as major causative pathogens. Numerous methodological advancements in recent years, including the establishment of novel cultivation systems using enteroids as well as the development of murine and other animal models of infection, have helped provide insight into many features of viral pathogenesis. However, many aspects of enteric viral infections remain elusive, demanding further study. Here, we describe the different in vitro and in vivo tools available to explore different pathophysiological attributes of human enteric RNA viruses, highlighting their advantages and limitations depending upon the question being explored. In addition, we discuss key areas and opportunities that would benefit from further methodological progress.
Collapse
Affiliation(s)
- Somya Aggarwal
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.A.); (E.H.)
| | - Ebrahim Hassan
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.A.); (E.H.)
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.A.); (E.H.)
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
13
|
Latyshev OE, Eliseeva OV, Kostina LV, Alekseev KP, Khametova KM, Altaeva EG, Verkhovsky OA, Aliper TI, Grebennikova TV. [Assessment of immunogenic activity of the cloned human rotavirus A WA strain.]. Vopr Virusol 2021; 64:156-164. [PMID: 32163681 DOI: 10.36233/0507-4088-2019-64-4-156-164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/10/2019] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Rotovirus infection (RVI) caused by the dsRNA-containing virus from genus Rotavirus, Reoviridae family, belonging to group A (RVA), is the cause of severe diarrhea in human and other mammalian species. Vaccination is the most effective way to reduce the incidence of RVI. At present, the effectiveness of using gnotobiotic piglets as a universal model for reproducing human rotavirus infection and assessing the quality of RVI vaccine preparations has been experimentally proven. OBJECTIVES Evaluation of immunogenic activity of the cloned RVA Wa strain in the new-born Vietnamese potbellied piglets trial. MATERIAL AND METHODS Development of viral preparations of the cloned human Wa strain PBA, development of human RVA rVP6, ELISA, polymerase chain reaction with reverse transcription, immunization and experimental infection of newborn piglets. RESULTS The article presents the results of the experiment on double immunization of newborn piglets with native virus preparations with the infection activity 5.5 lg TCID50/ml, 3 cm3 per dose, HRV with adjuvant 500 µg per dose and mock preparation (control group) followed with experimental inoculation of all animals with virulent virus strain Wa G1P[8] human RVA with infectious activity of 5.5 lg TCID50/ml in 5 cm3 dose. Development of clinical signs of disease and animal death were observed only in control group. RT-PCR system to detect RVA RNA in rectal swabs, samples of small intestine and peripheral lymph nodes was developed. ELISA based on obtained human RVA rVP6 was developed and results on RVA-specific IgG-antibodies in serum samples of experimental piglets are presented. CONCLUSION In the course of the research, a high immunogenic activity of the native and purified virus of the cloned Wa RVA strain Wa was established and the possibility of its use as the main component of the RVI vaccine was confirmed. The possibility of using conventional newborn pigs instead of gnotobiotic piglets as an experimental model was demonstrated.
Collapse
Affiliation(s)
- O E Latyshev
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| | - O V Eliseeva
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| | - L V Kostina
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| | - K P Alekseev
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| | - K M Khametova
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| | - E G Altaeva
- Diagnostics and Prevention Research Institute for Human and Animal Diseases, Moscow, 123098, Russian Federation
| | - O A Verkhovsky
- Diagnostics and Prevention Research Institute for Human and Animal Diseases, Moscow, 123098, Russian Federation
| | - T I Aliper
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| | - T V Grebennikova
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation.,Peoples Frendship University of Russia, Moscow, 117198, Russian Federation
| |
Collapse
|
14
|
Cherepushkin SA, Tsibezov VV, Yuzhakov AG, Latyshev OE, Alekseev KP, Altayeva EG, Khametova KM, Vorkunova GK, Yuzhakova KA, Grebennikova TV. [Synthesis and characterization of human rotavirus A ( Reoviridae: Sedoreovirinae: Rotavirus: Rotavirus A) virus-like particles]. Vopr Virusol 2021; 66:55-64. [PMID: 33683066 DOI: 10.36233/0507-4088-27] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Rotavirus infection is the leading cause of acute gastroenteritis among infants. The development of new vaccines against rotavirus A is urgent because the virus has many genotypes, some of which have regional prevalence. Virus-like particles (VLP) is a promising way to create effective and safe vaccine preparations.The purpose of the study is to develop the technology for the production of VLP, containing VP2, VP4, VP6 and VP7 of viral genotypes prevalent on the territory of the Russian Federation, and to give its molecular genetic and virological characteristics. MATERIAL AND METHODS The virulent strain Wa G1P[8] of human RV A adapted to MARC-145 cell culture has been used. It was cultured and purified according to the method described by the authors earlier. Standard molecular genetic and cytological methods were used: gene synthesis; cloning into transfer plasmids; recombinant baculoviruses production in Bac-to-Bac expression system; VLP production in the insect cells; centrifugation in sucrose solution; enzyme-linked immunosorbent assay (ELISA); electron microscopy (EM); polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis. RESULTS VP4 and VP7 of the six most represented in Russia genotypes: G1, G2, G4, G9, P4, P8, as well as VP2 and VP6 were selected for VLP production. Recombinant baculoviruses were obtained with codon frequencies optimized for insect cells. Cabbage loopper (Trichoplusia ni) cell culture was coinfected with different combinations of baculoviruses, and VLP consisting of 2-4 proteins were produced. VLP were purified by centrifugation. The size and morphology of the particles matched the rotavirus A virion (by EM). The presence of rotavirus A proteins in VLP was confirmed by the ELISA, SDS-PAGE and western blot analysis. CONCLUSION The technology for the synthesis of three-layer VLP consisting of VP2, VP4, VP6 and VP7 has been developed and optimized. The resulting VLP composition represents 6 serotypes of VP4 and VP7, which are most represented on the territory of Russia, and can be used for vaccine development.
Collapse
Affiliation(s)
- S A Cherepushkin
- FSBI National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | - V V Tsibezov
- FSBI National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | - A G Yuzhakov
- FSBI National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | - O E Latyshev
- FSBI National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | - K P Alekseev
- FSBI National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | | | - K M Khametova
- FSBI National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | - G K Vorkunova
- FSBI National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | - K A Yuzhakova
- FSBI National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | - T V Grebennikova
- FSBI National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| |
Collapse
|
15
|
Xia M, Huang P, Jiang X, Tan M. A Nanoparticle-Based Trivalent Vaccine Targeting the Glycan Binding VP8* Domains of Rotaviruses. Viruses 2021; 13:72. [PMID: 33419150 PMCID: PMC7825513 DOI: 10.3390/v13010072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
Rotavirus causes severe gastroenteritis in children. Although vaccines are implemented, rotavirus-related diarrhea still claims ~200,000 lives annually worldwide, mainly in low-income settings, pointing to a need for improved vaccine tactics. To meet such a public health need, a P24-VP8* nanoparticle displaying the glycan-binding VP8* domains, the major neutralizing antigens of rotavirus, was generated as a new type of rotavirus vaccine. We reported here our development of a P24-VP8* nanoparticle-based trivalent vaccine. First, we established a method to produce tag-free P24-VP8* nanoparticles presenting the VP8*s of P[8], P[4], and P[6] rotaviruses, respectively, which are the three predominantly circulating rotavirus P types globally. This approach consists of a chemical-based protein precipitation and an ion exchange purification, which may be scaled up for large vaccine production. All three P24-VP8* nanoparticle types self-assembled efficiently with authentic VP8*-glycan receptor binding function. After they were mixed as a trivalent vaccine, we showed that intramuscular immunization of the vaccine elicited high IgG titers specific to the three homologous VP8* types in mice. The resulted mouse sera strongly neutralized replication of all three rotavirus P types in cell culture. Thus, the trivalent P24-VP8* nanoparticles are a promising vaccine candidate for parenteral use against multiple P types of predominant rotaviruses.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.X.); (P.H.)
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.X.); (P.H.)
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.X.); (P.H.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.X.); (P.H.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
16
|
Chepngeno J, Takanashi S, Diaz A, Michael H, Paim FC, Rahe MC, Hayes JR, Baker C, Marthaler D, Saif LJ, Vlasova AN. Comparative Sequence Analysis of Historic and Current Porcine Rotavirus C Strains and Their Pathogenesis in 3-Day-Old and 3-Week-Old Piglets. Front Microbiol 2020; 11:780. [PMID: 32395116 PMCID: PMC7197332 DOI: 10.3389/fmicb.2020.00780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
The increased prevalence of porcine group C rotavirus (PRVC) in suckling piglets and the emergence of new genetically distinct PRVC strains are concerning due to the associated significant economic losses they cause to the swine industry. We sequenced and analyzed two new PRVC strains, RV0104 (G3), and RV0143 (G6) and compared their pathogenesis with that of the historic strain Cowden (G1) in gnotobiotic (Gn) pigs. Near complete genome sequence analysis confirmed that these two strains were distinct from one another and the Cowden strain. VP1, VP2, VP6, NSP1-NSP3, and NSP5 genes were more similar between Cowden and RV0143, whereas VP3, VP7, and NSP4 shared higher nucleotide identity between Cowden and RV0104. Three-day-old and 3-week-old Gn piglets were inoculated with 105 FFU/piglet of Cowden, RV0104 or RV0143, or mock. All 3-day-old piglets developed severe diarrhea, anorexia, and lethargy, with mean PRVC fecal shedding titers peaking and numerically higher in RV0104 and RV0143 piglets on post infection day (PID) 2. Histopathological examination of the small intestine revealed that the 3-day-old Cowden and RV0104 inoculated piglets were mildly affected, while significant destruction of small intestinal villi was observed in the RV0143 inoculated piglets. Consistent with the highest degree of pathological changes in the small intestines, the RV0143 inoculated piglets had numerically higher levels of serum IL-17 and IFN-α cytokines and numerically lower PRVC IgA geometric mean antibody titers. Milder pathological changes and overall higher titers of PRVC IgA antibodies were observed in 3-week-old vs. 3-day-old piglets. Additionally, diarrhea was only observed in RV0104 and RV0143 (but not Cowden) inoculated 3-week-old piglets, while levels of serum IL-10 and PRVC IgA antibodies were higher in Cowden inoculated pigs, consistent with the lack of diarrhea. Thus, we confirmed that these current, genetically heterogeneous PRVC strains possess distinct pathobiological characteristics that may contribute to the increased prevalence of PRVC diarrhea in neonatal suckling piglets.
Collapse
Affiliation(s)
- Juliet Chepngeno
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Sayaka Takanashi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States.,Department of Developmental Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Annika Diaz
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States.,Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Husheem Michael
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Francine C Paim
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Michael C Rahe
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Jeffrey R Hayes
- Animal Disease Diagnostic Laboratory, The Ohio Department of Agriculture, Reynoldsburg, OH, United States
| | - Courtney Baker
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States.,Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Douglas Marthaler
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
17
|
Hou Y, Ke H, Kim J, Yoo D, Su Y, Boley P, Chepngeno J, Vlasova AN, Saif LJ, Wang Q. Engineering a Live Attenuated Porcine Epidemic Diarrhea Virus Vaccine Candidate via Inactivation of the Viral 2'- O-Methyltransferase and the Endocytosis Signal of the Spike Protein. J Virol 2019; 93:e00406-19. [PMID: 31118255 PMCID: PMC6639265 DOI: 10.1128/jvi.00406-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/13/2019] [Indexed: 01/18/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets; however, effective and safe vaccines are still not available. We hypothesized that inactivation of the 2'-O-methyltransferase (2'-O-MTase) activity of nsp16 and the endocytosis signal of the spike protein attenuates PEDV yet retains its immunogenicity in pigs. We generated a recombinant PEDV, KDKE4A, with quadruple alanine substitutions in the catalytic tetrad of the 2'-O-MTase using a virulent infectious cDNA clone, icPC22A, as the backbone. Next, we constructed another mutant, KDKE4A-SYA, by abolishing the endocytosis signal of the spike protein of KDKE4A Compared with icPC22A, the KDKE4A and KDKE4A-SYA mutants replicated less efficiently in vitro but induced stronger type I and type III interferon responses. The pathogenesis and immunogenicities of the mutants were evaluated in gnotobiotic piglets. The virulence of KDKE4A-SYA and KDKE4A was significantly reduced compared with that of icPC22A. Mortality rates were 100%, 17%, and 0% in the icPC22A-, KDKE4A-, and KDKE4A-SYA-inoculated groups, respectively. At 21 days postinoculation (dpi), all surviving pigs were challenged orally with a high dose of icPC22A. The KDKE4A-SYA- and KDKE4A-inoculated pigs were protected from the challenge, because no KDKE4A-SYA- and one KDKE4A-inoculated pig developed diarrhea whereas all the pigs in the mock-inoculated group had severe diarrhea, and 33% of them died. Furthermore, we serially passaged the KDKE4A-SYA mutant in pigs three times and did not find any reversion of the introduced mutations. The data suggest that KDKE4A-SYA may be a PEDV vaccine candidate.IMPORTANCE PEDV is the most economically important porcine enteric viral pathogen and has caused immense economic losses in the pork industries in many countries. Effective and safe vaccines are desperately required but still not available. 2'-O-MTase (nsp16) is highly conserved among coronaviruses (CoVs), and the inactivation of nsp16 in live attenuated vaccines has been attempted for several betacoronaviruses. We show that inactivation of both 2'-O-MTase and the endocytosis signal of the spike protein is an approach to designing a promising live attenuated vaccine for PEDV. The in vivo passaging data also validated the stability of the KDKE4A-SYA mutant. KDKE4A-SYA warrants further evaluation in sows and their piglets and may be used as a platform for further optimization. Our findings further confirmed that nsp16 can be a universal target for CoV vaccine development and will aid in the development of vaccines against other emerging CoVs.
Collapse
Affiliation(s)
- Yixuan Hou
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Hanzhong Ke
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jineui Kim
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yunfang Su
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Patricia Boley
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Juliet Chepngeno
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| |
Collapse
|
18
|
Khametova KM, Alekseev KP, Yuzhakov AG, Kostina LV, Raev SA, Musienko MI, Mukhin AN, Aliper TI, Vorkunova GK, Grebennikova TV. EVALUATION OF THE MOLECULAR-BIOLOGICAL PROPERTIES OF HUMAN ROTAVIRUS A STRAIN WA. ACTA ACUST UNITED AC 2019; 64:16-22. [DOI: 10.18821/0507-4088-2019-64-1-16-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/31/2018] [Indexed: 01/19/2023]
Abstract
Introduction. Rоtaviruses are amоng the leading causes of severe diarrhea in children all over the Wоrld. Vaccination is considered to be the mоst effective way to cоntrоl the disease. Currently available vaccines for prevention of rоtavirus infection are based on live attenuated rotavirus strains human оr animal origin. Objectives and purposes. The aim of this investigation was to study the biological and genetic properties of an actual epidemic human rotavirus A (RVA) strain Wa G1P[8] genotype. Material and methods. RVA Wa reproduction in a monolayer continuous cell lines, purification and concentration of RVA antigen, PAAG electrophoresis and Western-Blot, electrophoresis of viral genomic RNA segments, sequencing. Results. Human RVA G1P[8] Wa strain biological and molecular genetic properties were assessed in the process of the adaptation to MARC145 continuous cell line. Cell cultured RVA antigen was purified, concentrated and then characterized by the method of PAAG electrophoresis and immunoblot. To verify RVA Wa genome identity, electrophoresis of viral genomic RNA segments was performed. The lack of accumulation of changes in the RVA Wa genome during adaptation to various cell cultures and during serial passages was demonstrated by sequencing fragments of the viral genome. Conclusion. RVA Wa strain is stable, it possesses high biological activity: it has been successfully adapted to the MARC145 cell line and RVA Wa virus titer after the adaptation reached 7,5-7,7 lg TCID50/ml. The identity of the cultivated RVA to the original strain Wa G1P[8] was confirmed.
Collapse
Affiliation(s)
- K. M. Khametova
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - K. P. Alekseev
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - A. G. Yuzhakov
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - L. V. Kostina
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - S. A. Raev
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - M. I. Musienko
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - A. N. Mukhin
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - T. I. Aliper
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - G. K. Vorkunova
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - T. V. Grebennikova
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»; Peoples Frendship University of Russia (RUDN)
| |
Collapse
|
19
|
Sun J, Zhong H, Du L, Li X, Ding Y, Cao H, Liu Z, Ge L. Gene expression profiles of germ-free and conventional piglets from the same litter. Sci Rep 2018; 8:10745. [PMID: 30013139 PMCID: PMC6048018 DOI: 10.1038/s41598-018-29093-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/02/2018] [Indexed: 11/24/2022] Open
Abstract
Germ-free (GF) pigs have clear microbiological backgrounds, and are extensively used as large animal models in the biomedical sciences. However, investigations of the transcriptomic differences between GF and cesarean-derived conventional (CV) piglets are limited. To improve our understanding of GF pigs, and to increase the utility of pigs as an alternative non-rodent model, we used RNA sequencing to profile gene expression in five tissues (the oral mucosae, jejunum, colon, liver, and spleen) of four male GF piglets and four male CV piglets from the same litter. We identified 14 genes that were differentially expressed in all five tissues. Seven of these common differentially expressed genes (DEGs) were interferon-inducible genes, and all 14 were consistently downregulated in the GF piglets as compared to the CV piglets. Compared to the other tissues tested, the expression of transcription factors (TFs) in the colon was most affected by the absence of a microbiota. The expression patterns of immune-related genes were downregulated in the GF piglets as compared to the CV piglets, indicating that the intestinal microbiota influenced gene expression in other tissues besides the gut. Gene Ontology (GO) analysis indicated that, in pigs, the intestinal microbiota affected the expression of genes related to immune system function and development.
Collapse
Affiliation(s)
- Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China
| | - Hang Zhong
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Lei Du
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Xiaolei Li
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuchun Ding
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China
| | - Haoran Cao
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.
| |
Collapse
|
20
|
Oristo S, Lee HJ, Maunula L. Performance of pre-RT-qPCR treatments to discriminate infectious human rotaviruses and noroviruses from heat-inactivated viruses: applications of PMA/PMAxx, benzonase and RNase. J Appl Microbiol 2018; 124:1008-1016. [DOI: 10.1111/jam.13737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 01/19/2023]
Affiliation(s)
- S. Oristo
- Department of Food Hygiene and Environmental Health; Faculty of Veterinary Medicine; University of Helsinki; Helsinki Finland
| | - H.-J. Lee
- Department of Food Hygiene and Environmental Health; Faculty of Veterinary Medicine; University of Helsinki; Helsinki Finland
| | - L. Maunula
- Department of Food Hygiene and Environmental Health; Faculty of Veterinary Medicine; University of Helsinki; Helsinki Finland
| |
Collapse
|
21
|
Kondakova OA, Nikitin NA, Trifonova EA, Atabekov JG, Karpova OV. Rotavirus Vaccines: New Strategies and Approaches. ACTA ACUST UNITED AC 2018. [DOI: 10.3103/s0096392517040071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Jiang X, Liu Y, Tan M. Histo-blood group antigens as receptors for rotavirus, new understanding on rotavirus epidemiology and vaccine strategy. Emerg Microbes Infect 2017; 6:e22. [PMID: 28400594 PMCID: PMC5457676 DOI: 10.1038/emi.2017.30] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022]
Abstract
The success of the two rotavirus (RV) vaccines (Rotarix and RotaTeq) in many countries endorses a live attenuated vaccine approach against RVs. However, the lower efficacies of both vaccines in many low- and middle-income countries indicate a need to improve the current RV vaccines. The recent discovery that RVs recognize histo-blood group antigens (HBGAs) as potential receptors has significantly advanced our understanding of RV diversity, evolution and epidemiology, providing important new insights into the performances of current RV vaccines in different populations and emphasizing a P-type-based vaccine approach. New understanding of RV diversity and evolution also raises a fundamental question about the ‘Jennerian' approach, which needs to be addressed for future development of live attenuated RV vaccines. Alternative approaches to develop safer and more cost-effective subunit vaccines against RVs are also discussed.
Collapse
Affiliation(s)
- Xi Jiang
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Yang Liu
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ming Tan
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
23
|
Vlasova AN, Amimo JO, Saif LJ. Porcine Rotaviruses: Epidemiology, Immune Responses and Control Strategies. Viruses 2017; 9:v9030048. [PMID: 28335454 PMCID: PMC5371803 DOI: 10.3390/v9030048] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Rotaviruses (RVs) are a major cause of acute viral gastroenteritis in young animals and children worldwide. Immunocompetent adults of different species become resistant to clinical disease due to post-infection immunity, immune system maturation and gut physiological changes. Of the 9 RV genogroups (A–I), RV A, B, and C (RVA, RVB, and RVC, respectively) are associated with diarrhea in piglets. Although discovered decades ago, porcine genogroup E RVs (RVE) are uncommon and their pathogenesis is not studied well. The presence of porcine RV H (RVH), a newly defined distinct genogroup, was recently confirmed in diarrheic pigs in Japan, Brazil, and the US. The complex epidemiology, pathogenicity and high genetic diversity of porcine RVAs are widely recognized and well-studied. More recent data show a significant genetic diversity based on the VP7 gene analysis of RVB and C strains in pigs. In this review, we will summarize previous and recent research to provide insights on historic and current prevalence and genetic diversity of porcine RVs in different geographic regions and production systems. We will also provide a brief overview of immune responses to porcine RVs, available control strategies and zoonotic potential of different RV genotypes. An improved understanding of the above parameters may lead to the development of more optimal strategies to manage RV diarrheal disease in swine and humans.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Joshua O Amimo
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi 30197, Kenya.
- Bioscience of Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi 30709, Kenya.
| | - Linda J Saif
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
24
|
Langel SN, Paim FC, Lager KM, Vlasova AN, Saif LJ. Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts. Virus Res 2016; 226:93-107. [PMID: 27212686 PMCID: PMC7111331 DOI: 10.1016/j.virusres.2016.05.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023]
Abstract
Morbidity, mortality, and loss of productivity from enteric diseases in neonatal piglets cost swine producers millions of dollars annually. In 2013-2014, the porcine epidemic diarrhea virus (PEDV) outbreak led to $900 million to $1.8 billion in annual losses to US swine producers. Passive lactogenic immunity remains the most promising and effective way to protect neonatal suckling piglets from enteric diseases like PEDV. Protecting suckling piglets through lactogenic immunity is dependent on trafficking of pathogen-specific IgA plasmablasts to the mammary gland and accumulation of secretory IgA (sIgA) antibodies in milk, defined as the gut-mammary-sIgA axis. Due to an impermeable placenta, piglets are born agammaglobulinic, and are highly susceptible to a plethora of infectious agents. They rely solely on colostrum and milk antibodies for maternal lactogenic immunity. Previous advances in the development of live and attenuated vaccines for another devastating diarrheal virus of pigs, transmissible gastroenteritis virus (TGEV), provide insights into the mechanisms of maternal immunity and piglet protection. In this chapter, we will review previous research on TGEV-induced lactogenic immunity to provide a historical perspective on current efforts for PEDV control and vaccines in the swine industry. Identifying factors that influence lactogenic immunity and the gut-mammary-sIgA axis may lead to improved vaccine regimens for PEDV and other enteric pathogens in gestating swine and improved overall herd immunity, swine health and industry productivity.
Collapse
Affiliation(s)
- Stephanie N Langel
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Francine Chimelo Paim
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Kelly M Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, USA
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
25
|
Tekewe A, Fan Y, Tan E, Middelberg APJ, Lua LHL. Integrated molecular and bioprocess engineering for bacterially produced immunogenic modular virus-like particle vaccine displaying 18 kDa rotavirus antigen. Biotechnol Bioeng 2016; 114:397-406. [PMID: 27497268 DOI: 10.1002/bit.26068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/04/2016] [Accepted: 08/02/2016] [Indexed: 01/04/2023]
Abstract
A high global burden of rotavirus disease and the unresolved challenges with the marketed rotavirus vaccines, particularly in the developing world, have ignited efforts to develop virus-like particle (VLP) vaccines for rotavirus. While rotavirus-like particles comprising multiple viral proteins can be difficult to process, modular VLPs presenting rotavirus antigenic modules are promising alternatives in reducing process complexity and cost. In this study, integrated molecular and bioprocess engineering approaches were used to simplify the production of modular murine polyomavirus capsomeres and VLPs presenting a rotavirus 18 kDa VP8* antigen. A single construct was generated for dual expression of non-tagged murine polyomavirus capsid protein VP1 and modular VP1 inserted with VP8*, for co-expression in Escherichia coli. Co-expressed proteins assembled into pentameric capsomeres in E. coli. A selective salting-out precipitation and a polishing size exclusion chromatography step allowed the recovery of stable modular capsomeres from cell lysates at high purity, and modular capsomeres were successfully translated into modular VLPs when assembled in vitro. Immunogenicity study in mice showed that modular capsomeres and VLPs induced high levels of VP8*-specific antibodies. Our results demonstrate that a multipronged synthetic biology approach combining molecular and bioprocess engineering enabled simple and low-cost production of highly immunogenic modular capsomeres and VLPs presenting conformational VP8* antigenic modules. This strategy potentially provides a cost-effective production route for modular capsomere and VLP vaccines against rotavirus, highly suitable to manufacturing economics for the developing world. Biotechnol. Bioeng. 2017;114: 397-406. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alemu Tekewe
- Australian Institute for Bioengineering and Nanotechnoloy, The University of Queensland, St Lucia, Queensland, Australia
| | - Yuanyuan Fan
- Protein Expression Facility, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Emilyn Tan
- Protein Expression Facility, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Anton P J Middelberg
- Australian Institute for Bioengineering and Nanotechnoloy, The University of Queensland, St Lucia, Queensland, Australia
| | - Linda H L Lua
- Protein Expression Facility, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
26
|
López-Sagaseta J, Malito E, Rappuoli R, Bottomley MJ. Self-assembling protein nanoparticles in the design of vaccines. Comput Struct Biotechnol J 2015; 14:58-68. [PMID: 26862374 PMCID: PMC4706605 DOI: 10.1016/j.csbj.2015.11.001] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/10/2015] [Indexed: 01/09/2023] Open
Abstract
For over 100 years, vaccines have been one of the most effective medical interventions for reducing infectious disease, and are estimated to save millions of lives globally each year. Nevertheless, many diseases are not yet preventable by vaccination. This large unmet medical need demands further research and the development of novel vaccines with high efficacy and safety. Compared to the 19th and early 20th century vaccines that were made of killed, inactivated, or live-attenuated pathogens, modern vaccines containing isolated, highly purified antigenic protein subunits are safer but tend to induce lower levels of protective immunity. One strategy to overcome the latter is to design antigen nanoparticles: assemblies of polypeptides that present multiple copies of subunit antigens in well-ordered arrays with defined orientations that can potentially mimic the repetitiveness, geometry, size, and shape of the natural host-pathogen surface interactions. Such nanoparticles offer a collective strength of multiple binding sites (avidity) and can provide improved antigen stability and immunogenicity. Several exciting advances have emerged lately, including preclinical evidence that this strategy may be applicable for the development of innovative new vaccines, for example, protecting against influenza, human immunodeficiency virus, and respiratory syncytial virus. Here, we provide a concise review of a critical selection of data that demonstrate the potential of this field. In addition, we highlight how the use of self-assembling protein nanoparticles can be effectively combined with the emerging discipline of structural vaccinology for maximum impact in the rational design of vaccine antigens.
Collapse
Affiliation(s)
| | - Enrico Malito
- GlaxoSmithKline Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | - Rino Rappuoli
- GlaxoSmithKline Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | | |
Collapse
|
27
|
Yang X, Twitchell E, Li G, Wen K, Weiss M, Kocher J, Lei S, Ramesh A, Ryan EP, Yuan L. High protective efficacy of rice bran against human rotavirus diarrhea via enhancing probiotic growth, gut barrier function, and innate immunity. Sci Rep 2015; 5:15004. [PMID: 26459937 PMCID: PMC4602212 DOI: 10.1038/srep15004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/11/2015] [Indexed: 12/16/2022] Open
Abstract
Previously, we showed that rice bran (RB) was able to reduce human rotavirus (HRV) diarrhea in gnotobiotic pigs. Here, we investigated its effect on the growth of diarrhea-reducing probiotic Lactobacillus rhamnosus GG (LGG) and Escherichia coli Nissle (EcN), and the resulting effects on HRV diarrhea, gut epithelial health, permeability and innate immune responses during virulent HRV challenge. On 3, 5, and 7 days of age pigs were inoculated with 2 × 104 colony-forming-units LGG+EcN to initiate colonization. Daily RB supplementation (replacing 10% calorie intake) was started at 5 days of age and continued until euthanasia. A subset of pigs in each group was challenged orally with 105 focus-forming-units of virulent HRV at 33 days of age. RB completely prevented HRV diarrhea in LGG+EcN colonized pigs. RB significantly promoted the growth of both probiotic strains in the gut (~5 logs) and increased the body-weight-gain at 4–5 weeks of age compared to non-RB group. After HRV challenge, RB-fed pigs had significantly lower ileal mitotic index and villus width, and significantly increased intestinal IFN-γ and total IgA levels compared to non-RB group. Therefore, RB plus LGG+EcN colonization may represent a highly effective therapeutic approach against HRV and potentially a variety of other diarrhea-inducing enteric pathogens.
Collapse
Affiliation(s)
- Xingdong Yang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Erica Twitchell
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Guohua Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Ke Wen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Mariah Weiss
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Jacob Kocher
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Shaohua Lei
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Ashwin Ramesh
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
28
|
Jalilvand S, Marashi SM, Shoja Z. Rotavirus VP6 preparations as a non-replicating vaccine candidates. Vaccine 2015; 33:3281-7. [PMID: 26021725 DOI: 10.1016/j.vaccine.2015.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 01/03/2023]
Abstract
Rotavirus (RV) structural proteins VP4 and VP7, located on the surface of viral particles, elicit neutralizing antibodies (Abs) and are therefore considered to be important components of RV vaccines. However, despite inducing neutralizing Abs, limits of cross-neutralizing activity and lack of full correlation with protection limit the usefulness of these proteins as protective agents against RV disease. VP6 protein, which forms the middle layer of RV particles, is discussed as an alternative vaccine candidate since it can induce cross-protective immune responses against different RV strains although the Ab raised is not neutralizing. This report reviews different functions of VP6 that can lead to considering it as an alternative vaccine against RV disease.
Collapse
Affiliation(s)
- Somayeh Jalilvand
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
29
|
Gerdts V, Wilson HL, Meurens F, van Drunen Littel - van den Hurk S, Wilson D, Walker S, Wheler C, Townsend H, Potter AA. Large Animal Models for Vaccine Development and Testing. ILAR J 2015; 56:53-62. [DOI: 10.1093/ilar/ilv009] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
30
|
Dhama K, Saminathan M, Karthik K, Tiwari R, Shabbir MZ, Kumar N, Malik YS, Singh RK. Avian rotavirus enteritis - an updated review. Vet Q 2015; 35:142-58. [PMID: 25917772 DOI: 10.1080/01652176.2015.1046014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rotaviruses (RVs) are among the leading causes of enteritis and diarrhea in a number of mammalian and avian species, and impose colossal loss to livestock and poultry industry globally. Subsequent to detection of rotavirus in mammalian hosts in 1973, avian rotavirus (AvRV) was first reported in turkey poults in USA during 1977 and since then RVs of group A (RVA), D (RVD), F (RVF) and G (RVG) have been identified around the globe. Besides RVA, other AvRV groups (RVD, RVF and RVG) may also contribute to disease. However, their significance has yet to be unraveled. Under field conditions, co-infection of AvRVs occurs with other infectious agents such as astroviruses, enteroviruses, reoviruses, paramyxovirus, adenovirus, Salmonella, Escherichia coli, cryptosporidium and Eimeria species prospering severity of disease outcome. Birds surviving to RV disease predominantly succumb to secondary bacterial infections, mostly E. coli and Salmonella spp. Recent developments in molecular tools including state-of-the-art diagnostics and vaccine development have led to advances in our understanding towards AvRVs. Development of new generation vaccines using immunogenic antigens of AvRV has to be explored and given due importance. Till now, no effective vaccines are available. Although specific as well as sensitive approaches are available to identify and characterize AvRVs, there is still need to have point-of-care detection assays to review disease burden, contemplate new directions for adopting vaccination and follow improvements in public health measures. This review discusses AvRVs, their epidemiology, pathology and pathogenesis, immunity, recent trends in diagnostics, vaccines, therapeutics as well as appropriate prevention and control strategies.
Collapse
Affiliation(s)
- Kuldeep Dhama
- a Division of Pathology , Indian Veterinary Research Institute , Izatnagar , Bareilly 243122 , India
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Enteric viral infections in domestic animals cause significant economic losses. The recent emergence of virulent enteric coronaviruses [porcine epidemic diarrhea virus (PEDV)] in North America and Asia, for which no vaccines are available, remains a challenge for the global swine industry. Vaccination strategies against rotavirus and coronavirus (transmissible gastroenteritis virus) infections are reviewed. These vaccination principles are applicable against emerging enteric infections such as PEDV. Maternal vaccines to induce lactogenic immunity, and their transmission to suckling neonates via colostrum and milk, are critical for early passive protection. Subsequently, in weaned animals, oral vaccines incorporating novel mucosal adjuvants (e.g., vitamin A, probiotics) may provide active protection when maternal immunity wanes. Understanding intestinal and systemic immune responses to experimental rotavirus and transmissible gastroenteritis virus vaccines and infection in pigs provides a basis and model for the development of safe and effective vaccines for young animals and children against established and emerging enteric infections.
Collapse
Affiliation(s)
- Kuldeep S Chattha
- Canadian Food Inspection Agency, Lethbridge, Alberta T1H 6P7, Canada;
| | | | | |
Collapse
|
32
|
Desselberger U. Rotaviruses. Virus Res 2014; 190:75-96. [DOI: 10.1016/j.virusres.2014.06.016] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 01/12/2023]
|
33
|
Tan M, Jiang X. Subviral particle as vaccine and vaccine platform. Curr Opin Virol 2014; 6:24-33. [PMID: 24662314 PMCID: PMC4072748 DOI: 10.1016/j.coviro.2014.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 01/01/2023]
Abstract
Recombinant subvirual particles retain similar antigenic features of their authentic viral capsids and thus have been applied as nonreplicating subunit vaccines against viral infection and illness. Additionally, the self-assembled, polyvalent subviral particles are excellent platforms to display foreign antigens for immune enhancement for vaccine development. These subviral particle-based vaccines are noninfectious and thus safer than the conventional live attenuated and inactivated vaccines. While several VLP vaccines are available in the markets, numerous others, including dual vaccines against more than one pathogen, are under clinical or preclinical development. This article provides an update of these efforts.
Collapse
Affiliation(s)
- Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
34
|
Teng Y, Zhao B, Pan X, Wen Y, Chen Y. A new rotavirus VP6-based foreign epitope presenting vector and immunoreactivity of VP4 epitope chimeric proteins. Viral Immunol 2014; 27:96-104. [PMID: 24702286 PMCID: PMC3994975 DOI: 10.1089/vim.2013.0110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The VP6, the group antigenic rotavirus (RV), is highly conserved and the most abundant, constituting about 39% of the viral structure proteins by weight. The high degree of identity (>87%-99%) in the primary amino acid sequences suggests VP6-based vaccines could potentially provide heterotypic protection. Although some efforts have been made toward producing recombinant rotavirus VP6 vaccines, the native VP6 is still unsatisfactory as an optimal vaccine. The major neutralizing antigenic epitopes that exist on VP4 or VP7 are not on the native VP6, and as a vector the native VP6 lacks insertion sites that can be used for insertion of foreign epitopes. In this study, a new foreign epitope presenting system using VP6 as a vector (VP6F) was constructed on the outer surface of the vector six sites that could be used for insertion of the foreign epitopes created. Using this system, three VP6-based VP4 epitope chimeric proteins were constructed. Results showed that these chimeric proteins reacted with anti-VP6 and -VP4 antibodies, and elicited antibodies against VP6 and VP4 in guinea pigs. Antibodies against VP6F or antibodies against the chimeric proteins neutralized RV Wa and SA11 infection in vitro. It is optimistic that the limitation for using the native VP6 as a vaccine candidate or vector will be solved with our proposed approach. It is expected that this VP6-based epitope presenting system and the VP6-based VP4 epitope chimeric proteins will be valuable for and contribute to the development of novel RV vaccines and vaccine vectors.
Collapse
Affiliation(s)
- Yumei Teng
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Bingxin Zhao
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xiaoxia Pan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan University of Nationalities, Kunming, China
| | - Yuling Wen
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yuanding Chen
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|