1
|
Beheshti F, Vakilian A, Navari M, Zare Moghaddam M, Dinpanah H, Ahmadi-Soleimani SM. Effects of Ocimum basilicum L. Extract on Hippocampal Oxidative Stress, Inflammation, and BDNF Expression in Amnesic Aged Rats. Exp Aging Res 2024; 50:443-458. [PMID: 37154241 DOI: 10.1080/0361073x.2023.2210240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
The present study was conducted to investigate the effects of Ocimum basilicum L. (OB) extract on learning and memory impairment in aged rats. Male rats were divided into the following experimental groups: Group 1 (control): including 2 months old rats, Group 2 (aged) including 2 years old rats, Groups 3-5 (aged-OB): including 2 years old rats received 50, 100, and 150 mg/kg OB for 8 weeks by oral gavage. Aging increased the delay to find the platform but, however, decreased the time spent in the target quadrant when tested by Morris water maze (MWM). Aging also reduced the latency to enter the dark chamber in the passive avoidance (PA) test compared to the control group. Moreover, interleukin-6 (IL-6) and malondialdehyde (MDA) levels were raised in the hippocampus and cortex of aged rats. In contrast, thiol levels and enzymatic activity of superoxide dismutase (SOD) and catalase (CAT) significantly reduced. In addition, aging significantly reduced BDNF expression. Finally, OB administration reversed the mentioned effects. The current research showed that OB administration improves learning/memory impairment induced by aging. It also found that this plant extract protects the brain tissues from oxidative damage and neuroinflammation.
Collapse
Affiliation(s)
- Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Arefeh Vakilian
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohsen Navari
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mostafa Zare Moghaddam
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hossein Dinpanah
- Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Dey Educational Hospital, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - S Mohammad Ahmadi-Soleimani
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
2
|
González LPF, Rodrigues FDS, Jantsch J, Fraga GDF, Squizani S, Castro LFDS, Correia LL, Neto JP, Giovenardi M, Porawski M, Guedes RP. Effects of omega-3 supplementation on anxiety-like behaviors and neuroinflammation in Wistar rats following cafeteria diet-induced obesity. Nutr Neurosci 2024; 27:172-183. [PMID: 36657165 DOI: 10.1080/1028415x.2023.2168229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
ABSTRACTObjetives: Omega-3 (n3) fatty acids have been studied as an option to alleviate the harmful effects of obesity. However, its role in obesity-related behavioral changes is still controversial. This study aimed to evaluate the effects of n3 on behavior and neuroinflammation in obese animals. Methods: Male Wistar rats were divided into four groups: control diet (CT), CT+n3, cafeteria diet (CAF), and CAF+n3. Diet was administered for 13 weeks, and n3 was supplemented during the last 5 weeks. Metabolic and biochemical parameters were evaluated, as well as anxiety-like behaviors. Immunoblots were conducted in the animals' cerebral cortex and hippocampus to assess changes in neuroinflammatory markers.Results: CAF-fed animals showed higher weight gain, visceral adiposity, fasting glucose, total cholesterol, triglycerides, and insulin levels, and n3 improved the lipid profile and restored insulin sensitivity. CAF-fed rats showed anxiety-like behaviors in the open field and light-dark box tasks but not in the contextual aversive conditioning. Omega-3 did not exert any effect on these behaviors. Regarding neuroinflammation, diet and supplementation acted in a region-specific manner. In the hippocampus, CAF reduced claudin-5 expression with no effect of n3, indicating a brain-blood barrier disruption following CAF. Furthermore, in the hippocampus, the glial fibrillary acidic protein (GFAP) and toll-like receptor 4 (TLR-4) were reduced in treated obese animals. However, n3 could not reverse the TLR-4 expression increase in the cerebral cortex.Discussion: Although n3 may protect against some neuroinflammatory manifestations in the hippocampus, it does not seem sufficient to reverse the increase in anxiolytic manifestations caused by CAF.
Collapse
Affiliation(s)
- Lucía Paola Facciola González
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Gabriel de Farias Fraga
- Biomedical Science Undergraduate Program, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Samia Squizani
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Luis Felipe Dos Santos Castro
- Biomedical Science Undergraduate Program, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Lídia Luz Correia
- Biomedical Science Undergraduate Program, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - João Pereira Neto
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Márcia Giovenardi
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Marilene Porawski
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Graduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| |
Collapse
|
3
|
Ramezani M, Fernando M, Eslick S, Asih PR, Shadfar S, Bandara EMS, Hillebrandt H, Meghwar S, Shahriari M, Chatterjee P, Thota R, Dias CB, Garg ML, Martins RN. Ketone bodies mediate alterations in brain energy metabolism and biomarkers of Alzheimer's disease. Front Neurosci 2023; 17:1297984. [PMID: 38033541 PMCID: PMC10687427 DOI: 10.3389/fnins.2023.1297984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD is a progressive neurodegenerative disorder characterized by cognitive dysfunction, including learning and memory deficits, and behavioral changes. Neuropathology hallmarks of AD such as amyloid beta (Aβ) plaques and neurofibrillary tangles containing the neuron-specific protein tau is associated with changes in fluid biomarkers including Aβ, phosphorylated tau (p-tau)-181, p-tau 231, p-tau 217, glial fibrillary acidic protein (GFAP), and neurofilament light (NFL). Another pathological feature of AD is neural damage and hyperactivation of astrocytes, that can cause increased pro-inflammatory mediators and oxidative stress. In addition, reduced brain glucose metabolism and mitochondrial dysfunction appears up to 15 years before the onset of clinical AD symptoms. As glucose utilization is compromised in the brain of patients with AD, ketone bodies (KBs) may serve as an alternative source of energy. KBs are generated from the β-oxidation of fatty acids, which are enhanced following consumption of ketogenic diets with high fat, moderate protein, and low carbohydrate. KBs have been shown to cross the blood brain barrier to improve brain energy metabolism. This review comprehensively summarizes the current literature on how increasing KBs support brain energy metabolism. In addition, for the first time, this review discusses the effects of ketogenic diet on the putative AD biomarkers such as Aβ, tau (mainly p-tau 181), GFAP, and NFL, and discusses the role of KBs on neuroinflammation, oxidative stress, and mitochondrial metabolism.
Collapse
Affiliation(s)
- Matin Ramezani
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Malika Fernando
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Shaun Eslick
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Prita R. Asih
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sina Shadfar
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Heidi Hillebrandt
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Silochna Meghwar
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Maryam Shahriari
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Pratishtha Chatterjee
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Rohith Thota
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Cintia B. Dias
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Manohar L. Garg
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Ralph N. Martins
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
4
|
Lippi SLP, Barkey RE, Rodriguez MN. High-fat diet negatively affects brain markers, cognitive behaviors, and noncognitive behaviors in the rTg4510 tau mouse model. Physiol Behav 2023; 271:114316. [PMID: 37543107 DOI: 10.1016/j.physbeh.2023.114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Alzheimer's disease (AD) drastically impacts cognitive and noncognitive behaviors in both humans and animal models. Two hallmark proteins in AD, amyloid-β plaques and tau neurofibrillary tangles, accumulate in regions of the brain critical for learning and memory, including the hippocampus. Poor dietary choices have been shown to exacerbate cognitive deficits seen in AD. In this study, we assessed the effects of a high-fat diet (HFD - 60 kcal% fat) on cognitive & noncognitive behaviors as well as on brain markers in the rTg4510 tau mouse model. While all mice learned the Morris Water Maze (MWM) task, it was noted that on the last day of acquisition female tau mice had a significantly higher latency to find the platform than male tau mice (p < 0.01). Mice given the HFD spent significantly less time in the target quadrant than those given a control diet (CD) (p < 0.05). Tau mice showed impaired burrowing (p < 0.05) and nesting behaviors (p < 0.001) compared to WT mice and HFD administration worsened burrowing in tau mice. Tau mice exhibited greater levels of glial fibrillary acidic protein (GFAP) (p < 0.05) and significantly less hippocampal cell density than WT mice (p < 0.001). We observed trends of HFD mice having greater levels of GFAP and greater average tangle size than CD mice. These results highlight the importance of dietary choices, especially in older populations more susceptible to AD and its effects.
Collapse
Affiliation(s)
- Stephen L P Lippi
- University of Texas at San Antonio, Dept. Psychology, San Antonio, TX 78249, United States.
| | - Rachel E Barkey
- Pennsylvania State University College of Medicine, Dept. Neural and Behavioral Sciences, 700 HMC Crescent Road, Hershey, PA 17033, United States
| | - Mya N Rodriguez
- MD Anderson UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, United States
| |
Collapse
|
5
|
Chaaya R, Steele JR, Oliver BG, Chen H, Machaalani R. Effects of e-vapour and high-fat diet on the immunohistochemical staining of nicotinic acetylcholine receptors, apoptosis, microglia and astrocytes in the adult male mouse hippocampus. J Chem Neuroanat 2023; 132:102303. [PMID: 37343645 DOI: 10.1016/j.jchemneu.2023.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/27/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
The use of e-cigarettes/e-vapour, and the consumption of a high-fat diet (HFD), are two popular lifestyle choices associated with alterations in the hippocampus. This study, using a mouse model, investigated the effects of exposure to e-vapour (± nicotine) and HFD (43% fat) consumption, on the expression of nicotinic acetylcholine receptor (nAChR) subunits α3, α4, α7 and β2, apoptosis markers caspase-3 and TUNEL, microglial marker Iba-1, and astrocyte marker GFAP, in hippocampal subregions of dentate gyrus (DG) and cornu ammonis (CA) 1-3. The major findings included: (1) HFD alone had minimal effect with no consistent pattern or interaction between the markers, (2) E-vapour (± nicotine) predominantly affected the CA2 subregion, decreasing α7 and β2 nAChR subunits and Iba-1, (3) Nicotine e-vapour increased TUNEL across all subregions, and (4) HFD, in the presence of nicotine-free e-vapour, decreased caspase-3 and increased TUNEL across all regions, and decreased Iba-1 in the CA subregions, while HFD and nicotine-containing e-vapour, subregion specifically affected the α3, α4 and α7 nAChR subunits, with a protective effect against change in GFAP in the DG and Iba-1 in the CA1 and CA3. These findings highlight that e-vapour itself alters nAChRs, particularly in the CA2 subregion, associated with a decrease in neuroinflammatory response (Iba-1) across the whole hippocampus, and the addition of nicotine increases cell apoptosis across the whole hippocampus. HFD alone was not detrimental in our model, but in the presence of nicotine-free e-vapour, it differentially affected apoptosis, while the addition of nicotine increased nAChR subunits.
Collapse
Affiliation(s)
- Rita Chaaya
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; SIDS and Sleep Apnea Laboratory, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Joel R Steele
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; SIDS and Sleep Apnea Laboratory, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; Woolcock Institute of Medical Research, The University of Sydney, NSW 2006, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Rita Machaalani
- SIDS and Sleep Apnea Laboratory, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
6
|
Seidel F, Fluiter K, Kleemann R, Worms N, van Nieuwkoop A, Caspers MPM, Grigoriadis N, Kiliaan AJ, Baas F, Michailidou I, Morrison MC. Ldlr-/-.Leiden mice develop neurodegeneration, age-dependent astrogliosis and obesity-induced changes in microglia immunophenotype which are partly reversed by complement component 5 neutralizing antibody. Front Cell Neurosci 2023; 17:1205261. [PMID: 37457817 PMCID: PMC10346859 DOI: 10.3389/fncel.2023.1205261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Obesity has been linked to vascular dysfunction, cognitive impairment and neurodegenerative diseases. However, experimental models that recapitulate brain pathology in relation to obesity and vascular dysfunction are still lacking. Methods In this study we performed the histological and histochemical characterization of brains from Ldlr-/-.Leiden mice, an established model for obesity and associated vascular disease. First, HFD-fed 18 week-old and 50 week-old Ldlr-/-.Leiden male mice were compared with age-matched C57BL/6J mice. We then assessed the effect of high-fat diet (HFD)-induced obesity on brain pathology in Ldlr-/-.Leiden mice and tested whether a treatment with an anti-complement component 5 antibody, a terminal complement pathway inhibitor recently shown to reduce vascular disease, can attenuate neurodegeneration and neuroinflammation. Histological analyses were complemented with Next Generation Sequencing (NGS) analyses of the hippocampus to unravel molecular pathways underlying brain histopathology. Results We show that chow-fed Ldlr-/-.Leiden mice have more severe neurodegeneration and show an age-dependent astrogliosis that is not observed in age-matched C57BL/6J controls. This was substantiated by pathway enrichment analysis using the NGS data which showed that oxidative phosphorylation, EIF2 signaling and mitochondrial dysfunction pathways, all associated with neurodegeneration, were significantly altered in the hippocampus of Ldlr-/-.Leiden mice compared with C57BL/6J controls. Obesity-inducing HFD-feeding did not aggravate neurodegeneration and astrogliosis in Ldlr-/-.Leiden mice. However, brains from HFD-fed Ldlr-/-.Leiden mice showed reduced IBA-1 immunoreactivity and increased CD68 immunoreactivity compared with chow-fed Ldlr-/-.Leiden mice, indicating alteration of microglial immunophenotype by HFD feeding. The systemic administration of an anti-C5 treatment partially restored the HFD effect on microglial immunophenotype. In addition, NGS data of hippocampi from Ldlr-/-.Leiden mice showed that HFD feeding affected multiple molecular pathways relative to chow-fed controls: HFD notably inactivated synaptogenesis and activated neuroinflammation pathways. The anti-C5 treatment restored the HFD-induced effect on molecular pathways to a large extent. Conclusion This study shows that the Ldlr-/-.Leiden mouse model is suitable to study brain histopathology and associated biological processes in a context of obesity and provides evidence of the potential therapeutic value of anti-complement therapy against obesity-induced neuroinflammation.
Collapse
Affiliation(s)
- Florine Seidel
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
- Department of Medical Imaging, Anatomy, Preclinical Imaging Center (PRIME), Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Nicole Worms
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Anita van Nieuwkoop
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Martien P. M. Caspers
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2 Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Preclinical Imaging Center (PRIME), Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Iliana Michailidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2 Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| |
Collapse
|
7
|
Azbazdar Y, Poyraz YK, Ozalp O, Nazli D, Ipekgil D, Cucun G, Ozhan G. High-fat diet feeding triggers a regenerative response in the adult zebrafish brain. Mol Neurobiol 2023; 60:2486-2506. [PMID: 36670270 DOI: 10.1007/s12035-023-03210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) includes a range of liver conditions ranging from excess fat accumulation to liver failure. NAFLD is strongly associated with high-fat diet (HFD) consumption that constitutes a metabolic risk factor. While HFD has been elucidated concerning its several systemic effects, there is little information about its influence on the brain at the molecular level. Here, by using a high-fat diet (HFD)-feeding of adult zebrafish, we first reveal that excess fat uptake results in weight gain and fatty liver. Prolonged exposure to HFD induces a significant increase in the expression of pro-inflammation, apoptosis, and proliferation markers in the liver and brain tissues. Immunofluorescence analyses of the brain tissues disclose stimulation of apoptosis and widespread activation of glial cell response. Moreover, glial activation is accompanied by an initial decrease in the number of neurons and their subsequent replacement in the olfactory bulb and the telencephalon. Long-term consumption of HFD causes activation of Wnt/β-catenin signaling in the brain tissues. Finally, fish fed an HFD induces anxiety, and aggressiveness and increases locomotor activity. Thus, HFD feeding leads to a non-traumatic brain injury and stimulates a regenerative response. The activation mechanisms of a regeneration response in the brain can be exploited to fight obesity and recover from non-traumatic injuries.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095-1662, USA
| | - Yusuf Kaan Poyraz
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey
| | - Ozgun Ozalp
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey
- Department of Molecular Life Sciences, University of Zurich, CH-8057, Zurich, Switzerland
| | - Dilek Nazli
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey
| | - Dogac Ipekgil
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey
| | - Gokhan Cucun
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), 3640 76021, Karlsruhe, Postfach, Germany
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey.
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey.
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, 35430, Izmir, Turkey.
| |
Collapse
|
8
|
Hua H, Huang L, Yang B, Jiang S, Zhang Y, Liu J, Yan C, Xu J. The mediating role of gut microbiota in the associations of prenatal maternal combined exposure to lead and stress with neurodevelopmental deficits in young rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114798. [PMID: 36948003 DOI: 10.1016/j.ecoenv.2023.114798] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Prenatal single and combined exposure to lead (Pb) and stress (Ps) impairs neurodevelopment. Prenatal single exposure to Pb or Ps affects the composition of intestinal microbiota, and bidirectional communication between gut microbiota and central nervous system has been well recognized. However, whether gut microbiota mediated the effects of prenatal Pb+Ps co-exposure on neurodevelopmental deficits remains unclear. This study established rat models with prenatal single and combined exposure to Ps and Pb. We investigated the effects of such prenatal single and combined exposure on hippocampal structures using morphological analyses, on learning/memory using the Morris-water-maze test, and on fecal microbiota using 16S rRNA sequencing. The mediating roles of gut microbiota were analyzed using the bootstrap method. The study found both single and combined exposure affected hippocampal ultra-structures and spatial learning/memory, and the most significant impairments were observed in the Pb+Ps group. Prenatal Pb+Ps co-exposure decreased fecal microbial alpha/beta-diversity. Significantly lower levels of B/F-ratio, class-Bacteroidia, order-Bacteroidales, and family-S24-7, and significantly higher levels of class-Bacilli, order-Lactobacillales, family-Lactobacillaceae, and genus-Lactobacillus were observed in the co-exposure group, compared with the controls. Increased relative abundances of genus-Helicobacter mediated the detrimental effect of prenatal Ps+Pb co-exposure on learning/memory [β (95%CI) for the total and indirect effects: - 10.70 (-19.19, -2.21) and - 4.65(-11.07, -1.85)], accounting for 43.47% of the total effect. As a result, increased relative abundances of genus-Lactobacillus alleviated the adverse effects of the co-exposure on learning/memory, and the alleviation effect accounted for 44.55% of the direct effect [β (95%CI) for the direct and indirect effects: - 0.28(-0.48, -0.08) and 0.13(0.01, 0.41)]. This study suggested that prenatal combined exposure to Pb and Ps induced more impairments in offspring gut microbiota and neurodevelopment than single exposure, and alterations in fecal microbiome may mediate the developmental neurotoxicity induced by such prenatal co-exposure.
Collapse
Affiliation(s)
- Hui Hua
- The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Lihua Huang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Child and Adolescent Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20092, China
| | - Bo Yang
- Neurosurgery Department, Shanghai Children's Medical Center Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai 200127, China
| | - Shiwei Jiang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Child and Adolescent Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20092, China
| | - Yijing Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Child and Adolescent Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20092, China
| | - Junxia Liu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Child and Adolescent Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20092, China
| | - Chonghuai Yan
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Child and Adolescent Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20092, China
| | - Jian Xu
- The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Child and Adolescent Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20092, China.
| |
Collapse
|
9
|
Rodrigues FDS, Jantsch J, Fraga GDF, Dias VS, Eller S, De Oliveira TF, Giovenardi M, Guedes RP. Cannabidiol treatment improves metabolic profile and decreases hypothalamic inflammation caused by maternal obesity. Front Nutr 2023; 10:1150189. [PMID: 36969815 PMCID: PMC10033544 DOI: 10.3389/fnut.2023.1150189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionThe implications of maternal overnutrition on offspring metabolic and neuroimmune development are well-known. Increasing evidence now suggests that maternal obesity and poor dietary habits during pregnancy and lactation can increase the risk of central and peripheral metabolic dysregulation in the offspring, but the mechanisms are not sufficiently established. Furthermore, despite many studies addressing preventive measures targeted at the mother, very few propose practical approaches to treat the damages when they are already installed.MethodsHere we investigated the potential of cannabidiol (CBD) treatment to attenuate the effects of maternal obesity induced by a cafeteria diet on hypothalamic inflammation and the peripheral metabolic profile of the offspring in Wistar rats.ResultsWe have observed that maternal obesity induced a range of metabolic imbalances in the offspring in a sex-dependant manner, with higher deposition of visceral white adipose tissue, increased plasma fasting glucose and lipopolysaccharides (LPS) levels in both sexes, but the increase in serum cholesterol and triglycerides only occurred in females, while the increase in plasma insulin and the homeostatic model assessment index (HOMA-IR) was only observed in male offspring. We also found an overexpression of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNFα), interleukin (IL) 6, and interleukin (IL) 1β in the hypothalamus, a trademark of neuroinflammation. Interestingly, the expression of GFAP, a marker for astrogliosis, was reduced in the offspring of obese mothers, indicating an adaptive mechanism to in utero neuroinflammation. Treatment with 50 mg/kg CBD oil by oral gavage was able to reduce white adipose tissue and revert insulin resistance in males, reduce plasma triglycerides in females, and attenuate plasma LPS levels and overexpression of TNFα and IL6 in the hypothalamus of both sexes.DiscussionTogether, these results indicate an intricate interplay between peripheral and central counterparts in both the pathogenicity of maternal obesity and the therapeutic effects of CBD. In this context, the impairment of internal hypothalamic circuitry caused by neuroinflammation runs in tandem with the disruptions of important metabolic processes, which can be attenuated by CBD treatment in both ends.
Collapse
Affiliation(s)
- Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel de Farias Fraga
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Victor Silva Dias
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Sarah Eller
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago Franco De Oliveira
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Márcia Giovenardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- *Correspondence: Renata Padilha Guedes,
| |
Collapse
|
10
|
Akbari E, Hossaini D, Amiry GY, Ansari M, Haidary M, Beheshti F, Ahmadi-Soleimani SM. Vitamin B12 administration prevents ethanol-induced learning and memory impairment through re-establishment of the brain oxidant/antioxidant balance, enhancement of BDNF and suppression of GFAP. Behav Brain Res 2023; 438:114156. [PMID: 36243244 DOI: 10.1016/j.bbr.2022.114156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/26/2022] [Accepted: 10/08/2022] [Indexed: 12/03/2022]
Abstract
There are growing evidence indicating that the adolescent brain is persistently affected by the use of psychostimulant agents. In this regard, alcohol drinking has become rather common among the adolescents in many societies during the last decade. It is currently well known that long-term ethanol exposure deteriorates various cognitive functions such as learning and memory. Mechanistically, these adverse effects have been shown to be mediated by oxidative damage to central nervous system. On the other hand, Vit-B12 is known to improve cognitive performance by suppression of oxidative parameters. Thus, in the present study we aimed to test whether treatment by Vit-B12 could prevent ethanol-induced complications in mice using behavioral and biochemical methods. Different groups of male Syrian mice received ethanol, ethanol+Vit-B12, Vit-B12 alone, or saline during adolescence and then learning and memory functions were assessed by Morris water maze (MWM) and Passive Avoidance (PA) tests. Finally, mice were sacrificed for measurement of biochemical factors. Results indicated that, adolescent ethanol intake impairs learning and memory function through exacerbation of oxidative stress and Vit-B12 treatment improves these complications by re-establishment of oxidant/anti-oxidant balance in CNS. Moreover, we found that Vit-B12 prevents ethanol-induced reduction of BDNF and enhancement of GFAP and acetylcholinesterase (AChE) activity. In conclusion, it seems that Vit-B12 supplementation could be used as an effective therapeutic strategy to prevent learning and memory defects induced by chronic alcohol intake during adolescence.
Collapse
Affiliation(s)
- Elham Akbari
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran
| | - Dawood Hossaini
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran
| | - Ghulam Yahya Amiry
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran
| | - Mustafa Ansari
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran
| | - Murtaza Haidary
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran; Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran.
| | - S Mohammad Ahmadi-Soleimani
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran; Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran.
| |
Collapse
|
11
|
Jenkins TA. Metabolic Syndrome and Vascular-Associated Cognitive Impairment: a Focus on Preclinical Investigations. Curr Diab Rep 2022; 22:333-340. [PMID: 35737273 PMCID: PMC9314301 DOI: 10.1007/s11892-022-01475-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Metabolic syndrome is associated with an increased risk of vascular cognitive impairment or, in the more extreme, vascular dementia. Animal models are used to investigate the relationship between pathology and behaviour. This review summarizes the latest understanding of the role of the hippocampus and prefrontal cortex in vascular cognitive impairment, the influence of inflammation in this association while also commenting on some of the latest interventions proposed. RECENT FINDINGS Models of vascular cognitive impairment and vascular dementia, whether they develop from an infarct or non-infarct base, demonstrate increased neuroinflammation, reduced neuronal function and deficits in prefrontal and hippocampal-associated cognitive domains. Promising new research shows agents and environmental interventions that inhibit central oxidative stress and inflammation can reverse both pathology and cognitive dysfunction. While preclinical studies suggest that reversal of deficits in vascular cognitive impairment models is possible, replication in patients still needs to be demonstrated.
Collapse
Affiliation(s)
- Trisha A Jenkins
- Human Biosciences, School of Health and Biomedical Sciences, STEM College, RMIT University, Plenty Road, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
12
|
Hippocampus-sensitive and striatum-sensitive learning one month after morphine or cocaine exposure in male rats. Pharmacol Biochem Behav 2022; 217:173392. [PMID: 35513118 PMCID: PMC9796089 DOI: 10.1016/j.pbb.2022.173392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 12/31/2022]
Abstract
These experiments examined whether morphine and cocaine alter the balance between hippocampal and striatal memory systems measured long after drug exposure. Male rats received injections of morphine (5 mg/kg), cocaine (20 mg/kg), or saline for five consecutive days. One month later, rats were trained to find food on a hippocampus-sensitive place task or a striatum-sensitive response task. Relative to saline controls, morphine-treated rats exhibited impaired place learning but enhanced response learning; prior cocaine exposure did not significantly alter learning on either task. Another set of rats was trained on a dual-solution T-maze that can be solved with either place or response strategies. While a majority (67%) of control rats used place solutions, morphine treatment one month prior resulted in the exclusive use of response solutions (100%). Prior cocaine treatment did not significantly alter strategy selection. Molecular markers related to learning and drug abuse were measured in the hippocampus and striatum one month after drug exposure in behaviorally untested rats. Protein levels of glial-fibrillary acidic protein (GFAP), an intermediate filament specific to astrocytes, increased significantly in the hippocampus after morphine exposure, but not after cocaine exposure. Exposure to morphine or cocaine did not significantly change levels of brain-derived neurotrophic factor (BDNF) or a downstream target of BDNF signaling, glycogen synthase kinase 3β (GSK3β), in the hippocampus or striatum. Thus, exposure to morphine resulted in a long-lasting shift from hippocampal toward striatal dominance during learning, an effect that may be associated with lasting alterations in hippocampal astrocytes. Cocaine produced changes in the same direction, suggesting that use of a higher dose or longer duration of exposure might produce effects comparable to those seen with morphine.
Collapse
|
13
|
Obara-Michlewska M. The contribution of astrocytes to obesity-associated metabolic disturbances. J Biomed Res 2022; 36:299-311. [PMID: 36131679 PMCID: PMC9548436 DOI: 10.7555/jbr.36.20200020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw 02-106, Poland
- Marta Obara-Michlewska, Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Street, Warsaw 02-106, Poland. Tel/Fax: +48-22-6046416, E-mail:
| |
Collapse
|
14
|
Parent MB, Higgs S, Cheke LG, Kanoski SE. Memory and eating: A bidirectional relationship implicated in obesity. Neurosci Biobehav Rev 2022; 132:110-129. [PMID: 34813827 PMCID: PMC8816841 DOI: 10.1016/j.neubiorev.2021.10.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023]
Abstract
This paper reviews evidence demonstrating a bidirectional relationship between memory and eating in humans and rodents. In humans, amnesia is associated with impaired processing of hunger and satiety cues, disrupted memory of recent meals, and overconsumption. In healthy participants, meal-related memory limits subsequent ingestive behavior and obesity is associated with impaired memory and disturbances in the hippocampus. Evidence from rodents suggests that dorsal hippocampal neural activity contributes to the ability of meal-related memory to control future intake, that endocrine and neuropeptide systems act in the ventral hippocampus to provide cues regarding energy status and regulate learned aspects of eating, and that consumption of hypercaloric diets and obesity disrupt these processes. Collectively, this evidence indicates that diet-induced obesity may be caused and/or maintained, at least in part, by a vicious cycle wherein excess intake disrupts hippocampal functioning, which further increases intake. This perspective may advance our understanding of how the brain controls eating, the neural mechanisms that contribute to eating-related disorders, and identify how to treat diet-induced obesity.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute & Department of Psychology, Georgia State University, Box 5030, Atlanta, GA 30303-5030, United States.
| | - Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, BI5 2TT, United Kingdom.
| | - Lucy G Cheke
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, United Kingdom.
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, 90089-0371, United States.
| |
Collapse
|
15
|
Gatto RG, Weissmann C, Amin M, Angeles-López QD, García-Lara L, Castellanos LCS, Deyoung D, Segovia J, Mareci TH, Uchitel OD, Magin RL. Evaluation of early microstructural changes in the R6/1 mouse model of Huntington's disease by ultra-high field diffusion MR imaging. Neurobiol Aging 2021; 102:32-49. [PMID: 33765430 DOI: 10.1016/j.neurobiolaging.2021.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 12/21/2022]
Abstract
Diffusion MRI (dMRI) has been able to detect early structural changes related to neurological symptoms present in Huntington's disease (HD). However, there is still a knowledge gap to interpret the biological significance at early neuropathological stages. The purpose of this study is two-fold: (i) establish if the combination of Ultra-High Field Diffusion MRI (UHFD-MRI) techniques can add a more comprehensive analysis of the early microstructural changes observed in HD, and (ii) evaluate if early changes in dMRI microstructural parameters can be linked to cellular biomarkers of neuroinflammation. Ultra-high field magnet (16.7T), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) techniques were applied to fixed ex-vivo brains of a preclinical model of HD (R6/1 mice). Fractional anisotropy (FA) was decreased in deep and superficial grey matter (GM) as well as white matter (WM) brain regions with well-known early HD microstructure and connectivity pathology. NODDI parameters associated with the intracellular and extracellular compartment, such as intracellular ventricular fraction (ICVF), orientation dispersion index (ODI), and isotropic volume fractions (IsoVF) were altered in R6/1 mice GM. Further, histological studies in these areas showed that glia cell markers associated with neuroinflammation (GFAP & Iba1) were consistent with the dMRI findings. dMRI can be used to extract non-invasive information of neuropathological events present in the early stages of HD. The combination of multiple imaging techniques represents a better approach to understand the neuropathological process allowing the early diagnosis and neuromonitoring of patients affected by HD.
Collapse
Affiliation(s)
- Rodolfo G Gatto
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| | - Carina Weissmann
- Insituto de Fisiología Biología Molecular y Neurociencias-IFIBYNE-CONICET, Universidad de Buenos, Aires, Argentina
| | - Manish Amin
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Quetzalli D Angeles-López
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México City, México
| | - Lucia García-Lara
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México City, México
| | - Libia C Salinas Castellanos
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México City, México
| | - Daniel Deyoung
- Department of Biochemistry, National High Magnetic Field Laboratory, Gainesville, FL, USA
| | - Jose Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México City, México
| | - Thomas H Mareci
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Osvaldo D Uchitel
- Insituto de Fisiología Biología Molecular y Neurociencias-IFIBYNE-CONICET, Universidad de Buenos, Aires, Argentina
| | - Richard L Magin
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Dionysopoulou S, Charmandari E, Bargiota A, Vlahos NF, Mastorakos G, Valsamakis G. The Role of Hypothalamic Inflammation in Diet-Induced Obesity and Its Association with Cognitive and Mood Disorders. Nutrients 2021; 13:498. [PMID: 33546219 PMCID: PMC7913301 DOI: 10.3390/nu13020498] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is often associated with cognitive and mood disorders. Recent evidence suggests that obesity may cause hypothalamic inflammation. Our aim was to investigate the hypothesis that there is a causal link between obesity-induced hypothalamic inflammation and cognitive and mood disorders. Inflammation may influence hypothalamic inter-connections with regions important for cognition and mood, while it may cause dysregulation of the Hypothalamic-Pituitary-Adrenal (HPA) axis and influence monoaminergic systems. Exercise, healthy diet, and glucagon-like peptide receptor agonists, which can reduce hypothalamic inflammation in obese models, could improve the deleterious effects on cognition and mood.
Collapse
Affiliation(s)
- Sofia Dionysopoulou
- Division of Endocrinology, Metabolism and Diabetes, Hippocratio General Hospital, 11527 Athens, Greece;
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece;
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, University Hospital of Larisa, Medical School of Larisa, University of Thessaly, 41334 Larisa, Greece;
| | - Nikolaos F Vlahos
- 2nd Department of Obstetrics and Gynecology, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - George Mastorakos
- Endocrine Unit, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Georgios Valsamakis
- Department of Endocrinology and Metabolic Diseases, University Hospital of Larisa, Medical School of Larisa, University of Thessaly, 41334 Larisa, Greece;
- Endocrine Unit, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
17
|
Hazzaa SM, Eldaim MAA, Fouda AA, Mohamed ASED, Soliman MM, Elgizawy EI. Intermittent Fasting Ameliorated High-Fat Diet-Induced Memory Impairment in Rats via Reducing Oxidative Stress and Glial Fibrillary Acidic Protein Expression in Brain. Nutrients 2020; 13:nu13010010. [PMID: 33375195 PMCID: PMC7822208 DOI: 10.3390/nu13010010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022] Open
Abstract
Intermittent fasting (IF) plays an important role in the protection against metabolic syndrome-induced memory defects. This study aimed to assess the protective effects of both prophylactic and curative IF against high-fat diet (HFD)-induced memory defects in rats. The control group received a normal diet; the second group received a HFD; the third group was fed a HFD for 12 weeks and subjected to IF during the last four weeks (curative IF); the fourth group was fed a HFD and subjected to IF simultaneously (prophylactic IF). A high-fat diet significantly increased body weight, serum lipids levels, malondialdehyde (MDA) concentration, glial fibrillary acidic protein (GFAP) and H score in brain tissue and altered memory performance. In addition, it significantly decreased reduced glutathione (GSH) concentration in brain tissue and viability and thickness of pyramidal and hippocampus granular cell layers. However, both types of IF significantly decreased body weight, serum lipids, GFAP protein expression and H score and MDA concentration in brain tissue, and improved memory performance, while it significantly increased GSH concentration in brain tissue, viability, and thickness of pyramidal and granular cell layers of the hippocampus. This study indicated that IF ameliorated HFD-induced memory disturbance and brain tissue damage and the prophylactic IF was more potent than curative IF.
Collapse
Affiliation(s)
- Suzan M. Hazzaa
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt; (S.M.H.); (E.I.E.)
| | - Mabrouk A. Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary, Medicine, Menoufia University, Shebeen Elkom 32511, Egypt
- Correspondence:
| | - Amira A. Fouda
- Pathology Department, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt; (A.A.F.); (A.S.E.D.M.)
| | - Asmaa Shams El Dein Mohamed
- Pathology Department, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt; (A.A.F.); (A.S.E.D.M.)
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia;
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Eman I. Elgizawy
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt; (S.M.H.); (E.I.E.)
| |
Collapse
|
18
|
Wait J, Burns C, Jones T, Harper Z, Allen E, Langley‐Evans SC, Voigt J. Early postnatal exposure to a cafeteria diet interferes with recency and spatial memory, but not open field habituation in adolescent rats. Dev Psychobiol 2020; 63:572-581. [DOI: 10.1002/dev.22063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/06/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Janina Wait
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| | - Catherine Burns
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| | - Taylor Jones
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| | - Zoe Harper
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| | - Emily Allen
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| | | | - Jörg‐Peter Voigt
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| |
Collapse
|
19
|
Micioni Di Bonaventura MV, Martinelli I, Moruzzi M, Micioni Di Bonaventura E, Giusepponi ME, Polidori C, Lupidi G, Tayebati SK, Amenta F, Cifani C, Tomassoni D. Brain alterations in high fat diet induced obesity: effects of tart cherry seeds and juice. Nutrients 2020; 12:E623. [PMID: 32120798 PMCID: PMC7146216 DOI: 10.3390/nu12030623] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
Evidence suggests that obesity adversely affects brain function. High body mass index, hypertension, dyslipidemia, insulin resistance, and diabetes are risk factors for increasing cognitive decline. Tart cherries (PrunusCerasus L.) are rich in anthocyanins and components that modify lipid metabolism. This study evaluated the effects of tart cherries on the brain in diet-induced obese (DIO) rats. DIO rats were fed with a high-fat diet alone or in association with a tart cherry seeds powder (DS) and juice (DJS). DIO rats were compared to rats fed with a standard diet (CHOW). Food intake, body weight, fasting glycemia, insulin, cholesterol, and triglycerides were measured. Immunochemical and immunohistochemical techniques were performed. Results showed that body weight did not differ among the groups. Blood pressure and glycemia were decreased in both DS and DJS groups when compared to DIO rats. Immunochemical and immunohistochemical techniques demonstrated that in supplemented DIO rats, the glial fibrillary acid protein expression and microglial activation were reduced in both the hippocampus and in the frontal cortex, while the neurofilament was increased. Tart cherry intake modified aquaporin 4 and endothelial inflammatory markers. These findings indicate the potential role of this nutritional supplement in preventing obesity-related risk factors, especially neuroinflammation.
Collapse
Affiliation(s)
| | - Ilenia Martinelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Michele Moruzzi
- Department of Medicine, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| | | | - Maria Elena Giusepponi
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Carlo Polidori
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Giulio Lupidi
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Seyed Khosrow Tayebati
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Francesco Amenta
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| |
Collapse
|
20
|
Gabriel MO, Nikou M, Akinola OB, Pollak DD, Sideromenos S. Western diet-induced fear memory impairment is attenuated by 6-shogaol in C57BL/6N mice. Behav Brain Res 2019; 380:112419. [PMID: 31816337 DOI: 10.1016/j.bbr.2019.112419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 01/23/2023]
Abstract
Dementia is a progressive cognitive diminution impeding with normal daily activities that is constantly on the increase. Currently, the estimated prevalence is 50 million affected people worldwide, a figure expected to triple within the next 30 years. While the pathophysiology of the different types of dementia is complex, likely involving the interplay between multiple genetic and environmental factors, strong evidence points towards an important link between diet and cognitive health. Here we examined the consequences of high-fat, high-sugar Western diet (HFSD)-induced obesity on cognitive performance in the fear conditioning task in mice and explored a possible beneficial effect of 6-shogaol (6S), an active constituent of ginger, in this model. Chronic exposure to HFSD significantly enhanced body weight gain in C57BL/6N mice and this effect was prevented by treatment with 6S. HFSD + vehicle-treated mice presented with a selective deficit in cued fear memory, which was not observed in HFSD + 6S-treated animals. The findings of this study provide first evidence for a beneficial effect of 6S on HFSD-induced obesity and emotional memory deficit in mice.
Collapse
Affiliation(s)
- Michael O Gabriel
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Edo University Iyamho, Edo State, Nigeria; Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Maria Nikou
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Oluwole B Akinola
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Spyridon Sideromenos
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria.
| |
Collapse
|