1
|
Li X, Deng J, Long Y, Ma Y, Wu Y, Hu Y, He X, Yu S, Li D, Li N, He F. Focus on brain-lung crosstalk: Preventing or treating the pathological vicious circle between the brain and the lung. Neurochem Int 2024; 178:105768. [PMID: 38768685 DOI: 10.1016/j.neuint.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Recently, there has been increasing attention to bidirectional information exchange between the brain and lungs. Typical physiological data is communicated by channels like the circulation and sympathetic nervous system. However, communication between the brain and lungs can also occur in pathological conditions. Studies have shown that severe traumatic brain injury (TBI), cerebral hemorrhage, subarachnoid hemorrhage (SAH), and other brain diseases can lead to lung damage. Conversely, severe lung diseases such as acute respiratory distress syndrome (ARDS), pneumonia, and respiratory failure can exacerbate neuroinflammatory responses, aggravate brain damage, deteriorate neurological function, and result in poor prognosis. A brain or lung injury can have adverse effects on another organ through various pathways, including inflammation, immunity, oxidative stress, neurosecretory factors, microbiome and oxygen. Researchers have increasingly concentrated on possible links between the brain and lungs. However, there has been little attention given to how the interaction between the brain and lungs affects the development of brain or lung disorders, which can lead to clinical states that are susceptible to alterations and can directly affect treatment results. This review described the relationships between the brain and lung in both physiological and pathological conditions, detailing the various pathways of communication such as neurological, inflammatory, immunological, endocrine, and microbiological pathways. Meanwhile, this review provides a comprehensive summary of both pharmacological and non-pharmacological interventions for diseases related to the brain and lungs. It aims to support clinical endeavors in preventing and treating such ailments and serve as a reference for the development of relevant medications.
Collapse
Affiliation(s)
- Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yuanyuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yue Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaofang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei He
- Department of Geratology, Yongchuan Hospital of Chongqing Medical University(the Fifth Clinical College of Chongqing Medical University), Chongqing, 402160, China.
| |
Collapse
|
2
|
Qu X, Bhalla K, Horianopoulos LC, Hu G, Alcázar Magaña A, Foster LJ, Roque da Silva LB, Kretschmer M, Kronstad JW. Phosphate availability conditions caspofungin tolerance, capsule attachment and titan cell formation in Cryptococcus neoformans. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1447588. [PMID: 39206133 PMCID: PMC11349702 DOI: 10.3389/ffunb.2024.1447588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
There is an urgent need for new antifungal drugs to treat invasive fungal diseases. Unfortunately, the echinocandin drugs that are fungicidal against other important fungal pathogens are ineffective against Cryptococcus neoformans, the causative agent of life-threatening meningoencephalitis in immunocompromised people. Contributing mechanisms for echinocandin tolerance are emerging with connections to calcineurin signaling, the cell wall, and membrane composition. In this context, we discovered that a defect in phosphate uptake impairs the tolerance of C. neoformans to the echinocandin caspofungin. Our previous analysis of mutants lacking three high affinity phosphate transporters revealed reduced elaboration of the polysaccharide capsule and attenuated virulence in mice. We investigated the underlying mechanisms and found that loss of the transporters and altered phosphate availability influences the cell wall and membrane composition. These changes contribute to the shedding of capsule polysaccharide thus explaining the reduced size of capsules on mutants lacking the phosphate transporters. We also found an influence of the calcineurin pathway including calcium sensitivity and an involvement of the endoplasmic reticulum in the response to phosphate limitation. Furthermore, we identified membrane and lipid composition changes consistent with the role of phosphate in phospholipid biosynthesis and with previous studies implicating membrane integrity in caspofungin tolerance. Finally, we discovered a contribution of phosphate to titan cell formation, a cell type that displays modified cell wall and capsule composition. Overall, our analysis reinforces the importance of phosphate as a regulator of cell wall and membrane composition with implications for capsule attachment and antifungal drug susceptibility.
Collapse
Affiliation(s)
- Xianya Qu
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Kabir Bhalla
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Linda C. Horianopoulos
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Guanggan Hu
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Armando Alcázar Magaña
- Department of Biochemistry and Molecular Biology, Metabolomics Core Facility, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J. Foster
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, Metabolomics Core Facility, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | | | - Matthias Kretschmer
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - James W. Kronstad
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Gupta C, Dogra P, Jain V, Kaur R, Sharma JB. HIV-associated disseminated cryptococcosis-An unusual clinical and diagnostic picture with successful cure by single dose liposomal amphotericin B treatment. Diagn Microbiol Infect Dis 2024; 109:116217. [PMID: 38513558 DOI: 10.1016/j.diagmicrobio.2024.116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Cryptococcosis is an invasive, opportunistic fungal infection seen especially in human immunodeficiency virus (HIV) infected patients. Cryptococcal meningitis (CM) is the second leading cause of mortality in HIV patients. We report a case of disseminated cryptococcosis presenting with altered mental status in a newly diagnosed HIV infection. METHODS AND RESULTS A 50-year-old with a short history of altered mental sensorium and a history of low-grade fever and weight loss for few months presented at a tertiary care hospital in North India. He was detected positive for HIV-1. Cryptococcal antigen (CRAG) was positive in Cerebrospinal fluid (CSF), and negative in serum. The fungal culture in CSF was sterile while the fungal blood culture grew Cryptococcus neoformans. The patient was treated with single high-dose Liposomal Amphotericin B (LAmB) therapy followed by Fluconazole and Flucytosine for the next two weeks followed by fluconazole daily for consolidation and maintenance therapy. Antiretroviral therapy (ART) was started 4 weeks after induction therapy. After 6 months, the patient is doing fine. CONCLUSION Single dose LAmB along with the backbone of fluconazole and flucytosine appears promising in disseminated cryptococcal infection in HIV-infected individuals.
Collapse
Affiliation(s)
- Chhavi Gupta
- Infectious disease, Yashoda Superpseciality Hospital, Kaushambi, India.
| | | | - Varun Jain
- Neuroanaesthesia and Critical Care, Fortis Hospital, Noida, India
| | | | | |
Collapse
|
4
|
Loza L, Doering TL. A fungal protein organizes both glycogen and cell wall glucans. Proc Natl Acad Sci U S A 2024; 121:e2319707121. [PMID: 38743622 PMCID: PMC11126952 DOI: 10.1073/pnas.2319707121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Glycogen is a glucose storage molecule composed of branched α-1,4-glucan chains, best known as an energy reserve that can be broken down to fuel central metabolism. Because fungal cells have a specialized need for glucose in building cell wall glucans, we investigated whether glycogen is used for this process. For these studies, we focused on the pathogenic yeast Cryptococcus neoformans, which causes ~150,000 deaths per year worldwide. We identified two proteins that influence formation of both glycogen and the cell wall: glycogenin (Glg1), which initiates glycogen synthesis, and a protein that we call Glucan organizing enzyme 1 (Goe1). We found that cells missing Glg1 lack α-1,4-glucan in their walls, indicating that this material is derived from glycogen. Without Goe1, glycogen rosettes are mislocalized and β-1,3-glucan in the cell wall is reduced. Altogether, our results provide mechanisms for a close association between glycogen and cell wall.
Collapse
Affiliation(s)
- Liza Loza
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO63110
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO63110
| |
Collapse
|
5
|
Tang S, Hao R, Liu X, He H, Tian Y, Jing T, Liu Z, Xu Y, Li X. Global trends in Cryptococcus and its interactions with the host immune system: a bibliometric analysis. Front Immunol 2024; 15:1397338. [PMID: 38774865 PMCID: PMC11106374 DOI: 10.3389/fimmu.2024.1397338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Objectives This manuscript undertakes a systematic examination of the research landscape concerning global Cryptococcus species and their dynamism with the host immune system spanning the past decade. It furnishes a detailed survey of leading knowledge institutions and critical focal points in this area, utilizing bibliometric analysis. Methods VOSviewer and CiteSpace software platforms were employed to systematically analyze and graphically depict the relevant literature indexed in the WoSCC database over the preceding ten years. Results In the interval between October 1, 2013, and October 1, 2023, a corpus of 795 publications was amassed. The primary research institutions involved in this study include Duke University, the University of Minnesota, and the University of Sydney. The leading trio of nations, in terms of publication volume, comprises the United States, China, and Brazil. Among the most prolific authors are Casadevall, Arturo; Wormley, Floyd L., Jr.; and Olszewski, Michal A., with the most highly cited author being Perfect, Jr. The most esteemed journal is Mbio, while Infection and Immunity commands the highest citation frequency, and the Journal of Clinical Microbiology boasts the most significant impact factor. Present research foci encompass the intricate interactions between Cryptococcus pathogenesis and host immunity, alongside immune mechanisms, complications, and immunotherapies. Conclusion This represents the first exhaustive scholarly review and bibliometric scrutiny of the evolving landscapes in Cryptococcus research and its interactions with the host immune system. The analyses delineated herein provide insights into prevailing research foci and trajectories, thus furnishing critical directions for subsequent inquiries in this domain.
Collapse
Affiliation(s)
- Shiqin Tang
- School of Clinical Medicine, The Hebei University of Engineering, Handan, Hebei, China
| | - Ruiying Hao
- School of Clinical Medicine, The Hebei University of Engineering, Handan, Hebei, China
| | - Xin Liu
- Handan Stomatological Hospital, Endodontics, Handan, Hebei, China
| | - Huina He
- School of Clinical Medicine, The Hebei University of Engineering, Handan, Hebei, China
| | - Yanan Tian
- School of Clinical Medicine, The Hebei University of Engineering, Handan, Hebei, China
| | - Tingting Jing
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Zhao Liu
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Yanyan Xu
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Xiaojing Li
- School of Clinical Medicine, The Hebei University of Engineering, Hebei Key Laboratory of Immunological Dermatology, Handan, Hebei, China
| |
Collapse
|
6
|
Castelli RF, Pereira A, Honorato L, Valdez A, de Oliveira HC, Bazioli JM, Garcia AWA, Klimeck TDF, Reis FCG, Camillo-Andrade AC, Santos MDM, Carvalho PC, Zaragoza O, Staats CC, Nimrichter L, Fill TP, Rodrigues ML. Corrected and republished from: "Extracellular Vesicle Formation in Cryptococcus deuterogattii Impacts Fungal Virulence". Infect Immun 2024; 92:e0003724. [PMID: 38470135 PMCID: PMC11003230 DOI: 10.1128/iai.00037-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024] Open
Abstract
Small molecules are components of fungal extracellular vesicles (EVs), but their biological roles are only superficially known. NOP16 is a eukaryotic gene that is required for the activity of benzimidazoles against Cryptococcus deuterogattii. In this study, during the phenotypic characterization of C. deuterogattii mutants expected to lack NOP16 expression, we observed a reduced EV production. Whole-genome sequencing, RNA-Seq, and cellular proteomics revealed that, contrary to our initial findings, these mutants expressed Nop16 but exhibited altered expression of 14 genes potentially involved in sugar transport. Based on this observation, we designated these mutant strains as Past1 and Past2, representing potentially altered sugar transport. Analysis of the small molecule composition of EVs produced by wild-type cells and the Past1 and Past2 mutant strains revealed not only a reduced number of EVs but also an altered small molecule composition. In a Galleria mellonella model of infection, the Past1 and Past2 mutant strains were hypovirulent. The hypovirulent phenotype was reverted when EVs produced by wild-type cells, but not mutant EVs, were co-injected with the mutant cells in G. mellonella. These results connect EV biogenesis, cargo, and cryptococcal virulence.
Collapse
Affiliation(s)
- Rafael F. Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Alana Pereira
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
| | - Leandro Honorato
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Valdez
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jaqueline M. Bazioli
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Ane W. A. Garcia
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Flavia C. G. Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Marlon D. M. Santos
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Analytical Biochemistry and Proteomics Unit. IIBCE/Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Paulo C. Carvalho
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Oscar Zaragoza
- Mycology Reference Laboratory. National Centre for Microbiology. Instituto de Salud Carlos III, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases, CB21/13/00105, Instituto de Salud Carlos III, Madrid, Spain
| | - Charley C. Staats
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taícia P. Fill
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Tan X, Zhang Y, Zhou J, Chen W, Zhou H. Construction and validation of a nomogram model to predict the poor prognosis in patients with pulmonary cryptococcosis. PeerJ 2024; 12:e17030. [PMID: 38487258 PMCID: PMC10939030 DOI: 10.7717/peerj.17030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
Background Patients with poor prognosis of pulmonary cryptococcosis (PC) are prone to other complications such as meningeal infection, recurrence or even death. Therefore, this study aims to analyze the influencing factors in the poor prognosis of patients with PC, so as to build a predictive nomograph model of poor prognosis of PC, and verify the predictive performance of the model. Methods This retrospective study included 410 patients (78.1%) with improved prognosis of PC and 115 patients (21.9%) with poor prognosis of PC. The 525 patients with PC were randomly divided into the training set and validation set according to the ratio of 7:3. The Least Absolute Shrinkage and Selection Operator (LASSO) algorithm was used to screen the demographic information, including clinical characteristics, laboratory test indicators, comorbidity and treatment methods of patients, and other independent factors that affect the prognosis of PC. These factors were included in the multivariable logistic regression model to build a predictive nomograph. The receiver operating characteristic curve (ROC), calibration curve and decision curve analysis (DCA) were used to verify the accuracy and application value of the model. Results It was finally confirmed that psychological symptoms, cytotoxic drugs, white blood cell count, hematocrit, platelet count, CRP, PCT, albumin, and CD4/CD8 were independent predictors of poor prognosis of PC patients. The area under the curve (AUC) of the predictive model for poor prognosis in the training set and validation set were 0.851 (95% CI: 0.818-0.881) and 0.949, respectively. At the same time, calibration curve and DCA results confirmed the excellent performance of the nomogram in predicting poor prognosis of PC. Conclusion The nomograph model for predicting the poor prognosis of PC constructed in this study has good prediction ability, which is helpful for improving the prognosis of PC and further optimizing the clinical management strategy.
Collapse
Affiliation(s)
- Xiaoli Tan
- Department of Respiratory, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yingqing Zhang
- Department of Respiratory, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jianying Zhou
- Department of Respiratory, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyu Chen
- Department of Respiratory, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hua Zhou
- Department of Respiratory, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Cornejo-Venegas G, Carreras X, Salcedo AS, Soriano-Moreno DR, Salinas JL, Alave J. Cerebrospinal fluid shunting for the management of cryptococcal meningitis: a scoping review. Ther Adv Infect Dis 2024; 11:20499361241228666. [PMID: 38333229 PMCID: PMC10851763 DOI: 10.1177/20499361241228666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Objective This scoping review aimed to describe studies that evaluate the management of cryptococcal meningitis (CM) using cerebrospinal fluid (CSF) shunts, types of shunts used, and clinically relevant patient outcomes. Methods We searched in the following databases: PubMed, Web of Science/Core collection, Embase, the Cochrane Library, and clinicaltrials.gov on 1 April 2022. We included two-arm and one-arm cohort studies that evaluated clinically relevant patient outcomes. Case reports were used to describe the type of CSF shunts used and the rationale behind its selection. The selection and extraction processes were independently performed by two authors. Results This study included 20 cohort studies and 26 case reports. Only seven cohort studies compared two groups. Ventriculoperitoneal shunt was the most commonly used type of shunt (82.1%). The main indications for placing a shunt were persistently high opening pressure (57.1%) and persisting neurological symptoms or deterioration (54.3%). Cohort studies suggest that patients with shunt showed improvement in some outcomes such as neurological symptoms and hospital stay length. The most common shunt complications were post-operative fever (1-35.6%) and shunt obstruction (7-16%). Conclusion CSF shunts may improve some clinically relevant outcomes in patients with CM, but the evidence is very uncertain.
Collapse
Affiliation(s)
| | - Xosse Carreras
- Escuela de Medicina, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Andrea S. Salcedo
- Escuela de Medicina, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - David R. Soriano-Moreno
- Unidad de Investigación Clínica y Epidemiológica, Escuela de Medicina, Universidad Peruana Unión, Lima, Peru
| | - Jorge L. Salinas
- Division of Infectious Diseases & Geographic Medicine, Stanford University, CA, USA
| | - Jorge Alave
- Escuela de Medicina, Universidad Peruana Unión, Carretera Central Km 19.5 Ñaña, Chosica, Lima 15464, Peru
| |
Collapse
|
9
|
Okurut S, Boulware DR, Okafor E, Rhein J, Kajumbula H, Bagaya BS, Bwanga F, Olobo JO, Manabe YC, Meya DB, Janoff EN. Divergent neuroimmune signatures in the cerebrospinal fluid predict differential gender-specific survival among patients with HIV-associated cryptococcal meningitis. Front Immunol 2023; 14:1275443. [PMID: 38152404 PMCID: PMC10752005 DOI: 10.3389/fimmu.2023.1275443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction Survival among people with HIV-associated cryptococcal meningitis (CM) remains low, particularly among women, despite the currently optimal use of antifungal drugs. Cryptococcus dissemination into the central nervous system [brain, spinal cord, and cerebrospinal fluid (CSF)] elicits the local production of cytokines, chemokines, and other biomarkers. However, no consistent diagnostic or prognostic neuroimmune signature is reported to underpin the risk of death or to identify mechanisms to improve treatment and survival. We hypothesized that distinct neuroimmune signatures in the CSF would distinguish survivors from people who died on antifungal treatment and who may benefit from tailored therapy. Methods We considered baseline clinical features, CSF cryptococcal fungal burden, and CSF neuroimmune signatures with survival at 18 weeks among 419 consenting adults by "gender" (168 women and 251 men by biological sex defined at birth). Results Survival at 18 weeks was significantly lower among women than among men {47% vs. 59%, respectively; hazard ratio (HR) = 1.4 [95% confidence interval (CI), 1.0 to 1.9; p = 0.023]}. Unsupervised principal component analysis (PCA) demonstrated divergent neuroimmune signatures by gender, survival, and intragender-specific survival. Overall, women had lower levels of programmed death ligand 1, Interleukin (IL) (IL-11RA/IL-1F30, and IL-15 (IL-15) than men (all p < 0.028). Female survivors compared with those who died expressed significant elevations in levels of CCL11 and CXCL10 chemokines (both p = 0.001), as well as increased T helper 1, regulatory, and T helper 17 cytokines (all p < 0.041). In contrast, male survivors expressed lower levels of IL-15 and IL-8 compared with men who died (p < 0.044). Conclusions Survivors of both genders demonstrated a significant increase in the levels of immune regulatory IL-10. In conclusion, the lower survival among women with CM was accompanied by distinct differential gender-specific neuroimmune signatures. These female and male intragender-specific survival-associated neuroimmune signatures provide potential targets for interventions to advance therapy to improve the low survival among people with HIV-associated CM.
Collapse
Affiliation(s)
- Samuel Okurut
- Translation Sciences Laboratory, Research Department, Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David R. Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Elizabeth Okafor
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Henry Kajumbula
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bernard S. Bagaya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Freddie Bwanga
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Joseph O. Olobo
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Yukari C. Manabe
- Translation Sciences Laboratory, Research Department, Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Division of Infectious Diseases, Department of Medicine, John Hopkins University School of Medicine, Baltimore, MD, United States
| | - David B. Meya
- Translation Sciences Laboratory, Research Department, Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Edward N. Janoff
- Mucosal and Vaccine Research Program Colorado, Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO, United States
- Department of Medicine and Infectious Disease, Denver Veterans Affairs Medical Center, Denver, CO, United States
| |
Collapse
|
10
|
Ullah A, Huang Y, Zhao K, Hua Y, Ullah S, Rahman MU, Wang J, Wang Q, Hu X, Zheng L. Characteristics and potential clinical applications of the extracellular vesicles of human pathogenic Fungi. BMC Microbiol 2023; 23:227. [PMID: 37598156 PMCID: PMC10439556 DOI: 10.1186/s12866-023-02945-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/14/2023] [Indexed: 08/21/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of lipid membrane-enclosed compartments that contain different biomolecules and are released by almost all living cells, including fungal genera. Fungal EVs contain multiple bioactive components that perform various biological functions, such as stimulation of the host immune system, transport of virulence factors, induction of biofilm formation, and mediation of host-pathogen interactions. In this review, we summarize the current knowledge on EVs of human pathogenic fungi, mainly focusing on their biogenesis, composition, and biological effects. We also discuss the potential markers and therapeutic applications of fungal EVs.
Collapse
Affiliation(s)
- Amir Ullah
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yiyi Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Kening Zhao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Yuneng Hua
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shafi Ullah
- Department of pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qian Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
11
|
Neves-da-Rocha J, Santos-Saboya MJ, Lopes MER, Rossi A, Martinez-Rossi NM. Insights and Perspectives on the Role of Proteostasis and Heat Shock Proteins in Fungal Infections. Microorganisms 2023; 11:1878. [PMID: 37630438 PMCID: PMC10456932 DOI: 10.3390/microorganisms11081878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are a diverse group of eukaryotic organisms that infect humans, animals, and plants. To successfully colonize their hosts, pathogenic fungi must continuously adapt to the host's unique environment, e.g., changes in temperature, pH, and nutrient availability. Appropriate protein folding, assembly, and degradation are essential for maintaining cellular homeostasis and survival under stressful conditions. Therefore, the regulation of proteostasis is crucial for fungal pathogenesis. The heat shock response (HSR) is one of the most important cellular mechanisms for maintaining proteostasis. It is activated by various stresses and regulates the activity of heat shock proteins (HSPs). As molecular chaperones, HSPs participate in the proteostatic network to control cellular protein levels by affecting their conformation, location, and degradation. In recent years, a growing body of evidence has highlighted the crucial yet understudied role of stress response circuits in fungal infections. This review explores the role of protein homeostasis and HSPs in fungal pathogenicity, including their contributions to virulence and host-pathogen interactions, as well as the concerted effects between HSPs and the main proteostasis circuits in the cell. Furthermore, we discuss perspectives in the field and the potential for targeting the components of these circuits to develop novel antifungal therapies.
Collapse
Affiliation(s)
- João Neves-da-Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| | | | | | | | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| |
Collapse
|
12
|
Motta H, Catarina Vieira Reuwsaat J, Daidrê Squizani E, da Silva Camargo M, Wichine Acosta Garcia A, Schrank A, Henning Vainstein M, Christian Staats C, Kmetzsch L. The small heat shock protein Hsp12.1 has a major role in the stress response and virulence of Cryptococcus gattii. Fungal Genet Biol 2023; 165:103780. [PMID: 36780981 DOI: 10.1016/j.fgb.2023.103780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/09/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Cryptococcus gattii is one of the etiological agents of cryptococcosis. To achieve a successful infection, C. gattii cells must overcome the inhospitable host environment and deal with the highly specialized immune system and poor nutrients availability. Inside the host, C. gattii uses a diversified set of tools to maintain homeostasis and establish infection, such as the expression of remarkable and diverse heat shock proteins (Hsps). Grouped by molecular weight, little is known about the Hsp12 subset in pathogenic fungi. In this study, the function of the C. gattii HSP12.1 and HSP12.2 genes was characterized. Both genes were upregulated during murine infection and heat shock. The hsp12.1 Δ null mutant cells were sensitive to plasma membrane and oxidative stressors. Moreover, HSP12 deletion induced C. gattii reactive oxygen species (ROS) accumulation associated with a differential expression pattern of oxidative stress-responsive genes compared to the wild type strain. Apart from these findings, the deletion of the paralog gene HSP12.2 did not lead to any detectable phenotype. Additionally, the double-deletion mutant strain hsp12.1 Δ /hsp12.2 Δ presented a similar phenotype to the single-deletion mutant hsp12.1 Δ, suggesting a minor participation of Hsp12.2 in these processes. Furthermore, HSP12.1 disruption remarkably affected C. gattii virulence and phagocytosis by macrophages in an invertebrate model of infection, demonstrating its importance for C. gattii pathogenicity.
Collapse
Affiliation(s)
- Heryk Motta
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Eamim Daidrê Squizani
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Augusto Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilene Henning Vainstein
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Charley Christian Staats
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lívia Kmetzsch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
13
|
Wen J, Yin R, Chang J, Chen Y, Dong X, Cao W, Ma X, Li T, Wei J. Short-term and long-term outcomes in patients with cryptococcal meningitis after ventriculoperitoneal shunt placement. Front Neurol 2022; 13:773334. [PMID: 36468057 PMCID: PMC9712185 DOI: 10.3389/fneur.2022.773334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/24/2022] [Indexed: 11/01/2023] Open
Abstract
OBJECTIVE The purpose of this study was to assess the short-term and long-term outcomes of ventriculoperitoneal shunt (VPS) placement in patients with cryptococcal meningitis (CM). METHODS We performed a retrospective analysis of all patients with CM admitted to the Peking Union Medical College Hospital from September 1990 to January 2021. We collected related clinical features to analyze the short- and long-term outcomes of VPS at 1 month and 1 year at least the following therapy, respectively. Overall survival (OS) was compared with all patients and a subgroup of critically ill cases by the Kaplan-Meier method with the log-rank test. Univariable and multivariable analyses were also performed using the Cox proportional hazard model to identify statistically significant prognostic factors. RESULTS We enrolled 98 patients, fifteen of whom underwent VPS. Those who received VPS had a lower cerebrospinal fluid (CSF) Cryptococcus burden (1:1 vs. 1:16; p = 0.046), lower opening pressures (173.3 mmH2 O vs. 224 mmH2O; p = 0.009) at lumbar punctures, and a lower incidence of critical cases (6.7 vs. 31.3%; p = 0.049). According to our long-term follow-up, no significant difference was shown in the Barthel Index (BI) between the two groups. Two patients in the VPS group suffered postoperative complications and had to go through another revision surgery. According to survival analysis, overall survival (OS) between the VPS and non-VPS groups was not significantly different. However, the Kaplan-Meier plots showed that critical patients with VPS had better survival in OS (p < 0.009). Multivariable analyses for critical patients showed VPS was an independent prognostic factor. CONCLUSION A VPS could reduce the intracranial pressure (ICP), decrease the counts of Cryptococcus neoformans by a faster rate and reduce the number of critical cases. The VPS used in critical patients with CM has a significant impact on survival, but it showed no improvement in the long-term Barthel Index (BI) vs. the conservative treatment and could lead to postoperative complications.
Collapse
Affiliation(s)
- Junxian Wen
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Yin
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianbo Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yihao Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiying Dong
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Cao
- Department of Infectious Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaojun Ma
- Department of Infectious Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Taisheng Li
- Department of Infectious Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Junji Wei
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Weiss ZF, DiCarlo JE, Basta DW, Kent S, Liakos A, Baden L, Brigl M, Kanjilal S, Cañete-Gibas C, Wiederhold NP, Basu SS. Hidden in plain sight: urinary Cryptococcus neoformans missed by routine diagnostics in a patient with acute leukemia. Ann Clin Microbiol Antimicrob 2022; 21:49. [PMID: 36371203 PMCID: PMC9655867 DOI: 10.1186/s12941-022-00540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022] Open
Abstract
Cryptococcuria is a rare manifestation of localized cryptococcal disease. We present a case of Cryptococcus neoformans urinary tract infection in an immunocompromised host missed by routine laboratory workup. The patient had negative blood cultures, a negative serum cryptococcal antigen (CrAg), and “non-Candida yeast” growing in urine culture that was initially dismissed as non-pathogenic. The diagnosis was ultimately made by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) from a repeat urine culture after transfer to a tertiary care center. Cryptococcus should be considered in the differential of refractory urinary tract infections growing non-Candida yeast.
Collapse
|
15
|
Kitisin T, Muangkaew W, Sukphopetch P. Infections of Cryptococcus species induce degeneration of dopaminergic neurons and accumulation of α-Synuclein in Caenorhabditis elegans. Front Cell Infect Microbiol 2022; 12:1039336. [PMID: 36389163 PMCID: PMC9643722 DOI: 10.3389/fcimb.2022.1039336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Cryptococcosis in the central nervous system (CNS) can present with motor declines described as Parkinsonism. Although several lines of evidence indicate that dopaminergic (DA) neuron degeneration and α-synuclein accumulation contribute to the hallmark of Parkinsonism and Parkinson’s disease (PD), little is known about cryptococcal infections associated with neuronal degeneration. In this study, the effects of Cryptococcus neoformans and C. gattii infections on dopaminergic neuron degeneration, α-synuclein accumulation, and lifespan in Caenorhabditis elegans were investigated. The results showed that cryptococcal infections significantly (P<0.05) induced DA neuron degeneration similar to a selective cathecholamine neurotoxin 6-hydroxydopamine (6-OHDA) in C. elegans (BZ555 strain) when compared to mock infected controls. Cryptococcal infections also significantly (P< 0.05) induced α-synuclein aggregation in C. elegans (NL5901 strain). Moreover, lifespan of the infected worms was significantly decreased (P<0.0001). In conclusion, DA neurodegeneration and α-synuclein accumulation are associated with lifespan reduction during cryptococcal infection in C elegans.
Collapse
|
16
|
Stempinski PR, Goughenour KD, du Plooy LM, Alspaugh JA, Olszewski MA, Kozubowski L. The Cryptococcus neoformans Flc1 Homologue Controls Calcium Homeostasis and Confers Fungal Pathogenicity in the Infected Hosts. mBio 2022; 13:e0225322. [PMID: 36169198 PMCID: PMC9600462 DOI: 10.1128/mbio.02253-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 01/30/2023] Open
Abstract
Cryptococcus neoformans, an opportunistic yeast pathogen, relies on a complex network of stress response pathways that allow for proliferation in the host. In Saccharomyces cerevisiae, stress responses are regulated by integral membrane proteins containing a transient receptor potential (TRP) domain, including the flavin carrier protein 1 (Flc1), which regulates calcium homeostasis and flavin transport. Here, we report that deletion of C. neoformans FLC1 results in cytosolic calcium elevation and increased nuclear content of calcineurin-dependent transcription factor Crz1, which is associated with an aberrant cell wall chitin overaccumulation observed in the flc1Δ mutant. Absence of Flc1 or inhibition of calcineurin with cyclosporine A prevents vacuolar fusion under conditions of combined osmotic and temperature stress, which is reversed in the flc1Δ mutant by the inhibition of TORC1 kinase with rapamycin. Flc1-deficient yeasts exhibit compromised vacuolar fusion under starvation conditions, including conditions that stimulate formation of carbohydrate capsule. Consequently, the flc1Δ mutant fails to proliferate under low nutrient conditions and displays a defect in capsule formation. Consistent with the previously uncharacterized role of Flc1 in vacuolar biogenesis, we find that Flc1 localizes to the vacuole. The flc1Δ mutant presents a survival defect in J774A.1 macrophage cell-line and profound virulence attenuation in both the Galleria mellonella and mouse pulmonary infection models, demonstrating that Flc1 is essential for pathogenicity. Thus, cryptococcal Flc1 functions in calcium homeostasis and links calcineurin and TOR signaling with vacuolar biogenesis to promote survival under conditions associated with vacuolar fusion required for this pathogen's fitness and virulence. IMPORTANCE Cryptococcosis is a highly lethal infection with limited drug choices, most of which are highly toxic or complicated by emerging antifungal resistance. There is a great need for new drug targets that are unique to the fungus. Here, we identify such a potential target, the Flc1 protein, which we show is crucial for C. neoformans stress response and virulence. Importantly, homologues of Flc1 exist in other fungal pathogens, such as Candida albicans and Aspergillus fumigatus, and are poorly conserved in humans, which could translate into wider spectrum therapy associated with minimal toxicity. Thus, Flc1 could be an "Achille's heel" of C. neoformans to be leveraged therapeutically in cryptococcosis and possibly other fungal infections.
Collapse
Affiliation(s)
- Piotr R. Stempinski
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Kristie D. Goughenour
- LTC Charles S. Kettles VA Medical Center, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School
| | - Lukas M. du Plooy
- Departments of Medicine and Molecular Genetics/Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - J. Andrew Alspaugh
- Departments of Medicine and Molecular Genetics/Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michal A. Olszewski
- LTC Charles S. Kettles VA Medical Center, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School
| | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
17
|
de Castro RJA, Rêgo MTAM, Brandão FS, Pérez ALA, De Marco JL, Poças-Fonseca MJ, Nichols C, Alspaugh JA, Felipe MSS, Alanio A, Bocca AL, Fernandes L. Engineered Fluorescent Strains of Cryptococcus neoformans: a Versatile Toolbox for Studies of Host-Pathogen Interactions and Fungal Biology, Including the Viable but Nonculturable State. Microbiol Spectr 2022; 10:e0150422. [PMID: 36005449 PMCID: PMC9603711 DOI: 10.1128/spectrum.01504-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/05/2022] [Indexed: 12/31/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen known for its remarkable ability to infect and subvert phagocytes. This ability provides survival and persistence within the host and relies on phenotypic plasticity. The viable but nonculturable (VBNC) phenotype was recently described in C. neoformans, whose study is promising in understanding the pathophysiology of cryptococcosis. The use of fluorescent strains is improving host interaction research, but it is still underexploited. Here, we fused histone H3 or the poly(A) binding protein (Pab) to enhanced green fluorescent protein (eGFP) or mCherry, obtaining a set of C. neoformans transformants with different colors, patterns of fluorescence, and selective markers (hygromycin B resistance [Hygr] or neomycin resistance [Neor]). We validated their similarity to the parental strain in the stress response, the expression of virulence-related phenotypes, mating, virulence in Galleria mellonella, and survival within murine macrophages. PAB-GFP, the brightest transformant, was successfully applied for the analysis of phagocytosis by flow cytometry and fluorescence microscopy. Moreover, we demonstrated that an engineered fluorescent strain of C. neoformans was able to generate VBNC cells. GFP-tagged Pab1, a key regulator of the stress response, evidenced nuclear retention of Pab1 and the assembly of cytoplasmic stress granules, unveiling posttranscriptional mechanisms associated with dormant C. neoformans cells. Our results support that the PAB-GFP strain is a useful tool for research on C. neoformans. IMPORTANCE Cryptococcus neoformans is a human-pathogenic yeast that can undergo a dormant state and is responsible for over 180,000 deaths annually worldwide. We engineered a set of fluorescent transformants to aid in research on C. neoformans. A mutant with GFP-tagged Pab1 improved fluorescence-based techniques used in host interaction studies. Moreover, this mutant induced a viable but nonculturable phenotype and uncovered posttranscriptional mechanisms associated with dormant C. neoformans. The experimental use of fluorescent mutants may shed light on C. neoformans-host interactions and fungal biology, including dormant phenotypes.
Collapse
Affiliation(s)
- Raffael Júnio Araújo de Castro
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
- CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses et Antifongiques, Institut Pasteur, Paris, France
| | - Marco Túlio Aidar Mariano Rêgo
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Fabiana S. Brandão
- Faculty of Health Science, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Ana Laura Alfonso Pérez
- Department of Cell Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasilia, Federal District, Brazil
| | - Janice Lisboa De Marco
- Department of Cell Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasilia, Federal District, Brazil
| | - Marcio José Poças-Fonseca
- Department of Genetics and Morphology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Connie Nichols
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - J. Andrew Alspaugh
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - Maria Sueli S. Felipe
- Catholic University of Brasilia, Campus Asa Norte, Asa Norte, Brasília, Federal District, Brazil
| | - Alexandre Alanio
- CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses et Antifongiques, Institut Pasteur, Paris, France
- Laboratoire de Mycologie et Parasitologie, AP-HP, Hôpital Saint Louis, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Larissa Fernandes
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
- Faculty of Ceilândia, Campus UnB Ceilândia, University of Brasília, Ceilândia Sul, Brasília, Federal District, Brazil
| |
Collapse
|
18
|
Tharappel AM, Li Z, Zhu YC, Wu X, Chaturvedi S, Zhang QY, Li H. Calcimycin Inhibits Cryptococcus neoformans In Vitro and In Vivo by Targeting the Prp8 Intein Splicing. ACS Infect Dis 2022; 8:1851-1868. [PMID: 35948057 PMCID: PMC9464717 DOI: 10.1021/acsinfecdis.2c00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Drug resistance is a significant concern in the treatment of diseases, including cryptococcosis caused by Cryptococcus neoformans (Cne) and Cryptococcus gattii (Cga). Alternative drug targets are necessary to overcome drug resistance before it attains a critical stage. Splicing of inteins from pro-protein precursors is crucial for activities of essential proteins hosting intein elements in many organisms, including human pathogens such as Cne and Cga. Through a high-throughput screening, we identified calcimycin (CMN) as a potent Prp8 intein splicing inhibitor with a minimum inhibitory concentration (MIC) of 1.5 μg/mL against the wild-type Cne-H99 (Cne-WT or Cne). In contrast, CMN inhibited the intein-less mutant strain (Cne-Mut) with a 16-fold higher MIC. Interestingly, Aspergillus fumigatus and a few Candida species were resistant to CMN. Further studies indicated that CMN reduced virulence factors such as urease activity, melanin production, and biofilm formation in Cne. CMN also inhibited Cne intracellular infection in macrophages. In a target-specific split nanoluciferase assay, the IC50 of CMN was 4.6 μg/mL. Binding of CMN to recombinant Prp8 intein was demonstrated by thermal shift assay and microscale thermophoresis. Treating Cne cells with CMN reduced intein splicing. CMN was fungistatic and showed a synergistic effect with the known antifungal drug amphotericin B. Finally, CMN treatment at 20 mg/kg body weight led to 60% reduction in lung fungal load in a cryptococcal pulmonary infection mouse model. Overall, CMN represents a potent antifungal with a novel mechanism of action to treat Cne and possibly Cga infections.
Collapse
Affiliation(s)
- Anil Mathew Tharappel
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Zhong Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Yan Chun Zhu
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Xiangmeng Wu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
| | - Sudha Chaturvedi
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
- The BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
19
|
Castelli RF, Pereira A, Honorato L, Valdez A, de Oliveira HC, Bazioli JM, Garcia AWA, Klimeck TDF, Reis FCG, Staats CC, Nimrichter L, Fill TP, Rodrigues ML. Extracellular Vesicle Formation in Cryptococcus deuterogattii Impacts Fungal Virulence and Requires the NOP16 Gene. Infect Immun 2022; 90:e0023222. [PMID: 35862719 PMCID: PMC9387281 DOI: 10.1128/iai.00232-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 01/14/2023] Open
Abstract
Small molecules are components of fungal extracellular vesicles (EVs), but their biological roles are only superficially known. NOP16 is a eukaryotic gene that is required for the activity of benzimidazoles against Cryptococcus deuterogattii. In this study, during the phenotypic characterization of C. deuterogattii mutants lacking NOP16 expression, we observed that this gene was required for EV production. Analysis of the small molecule composition of EVs produced by wild-type cells and two independent nop16Δ mutants revealed that the deletion of NOP16 resulted not only in a reduced number of EVs but also an altered small molecule composition. In a Galleria mellonella model of infection, the nop16Δ mutants were hypovirulent. The hypovirulent phenotype was reverted when EVs produced by wild-type cells, but not mutant EVs, were coinjected with the nop16Δ cells in G. mellonella. These results reveal a role for NOP16 in EV biogenesis and cargo, and also indicate that the composition of EVs is determinant for cryptococcal virulence.
Collapse
Affiliation(s)
- Rafael F. Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Alana Pereira
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
| | - Leandro Honorato
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Valdez
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jaqueline M. Bazioli
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Ane W. A. Garcia
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Flavia C. G. Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Charley C. Staats
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taícia P. Fill
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
A Fun-Guide to Innate Immune Responses to Fungal Infections. J Fungi (Basel) 2022; 8:jof8080805. [PMID: 36012793 PMCID: PMC9409918 DOI: 10.3390/jof8080805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Immunocompromised individuals are at high risk of developing severe fungal infections with high mortality rates, while fungal pathogens pose little risk to most healthy people. Poor therapeutic outcomes and growing antifungal resistance pose further challenges for treatments. Identifying specific immunomodulatory mechanisms exploited by fungal pathogens is critical for our understanding of fungal diseases and development of new therapies. A gap currently exists between the large body of literature concerning the innate immune response to fungal infections and the potential manipulation of host immune responses to aid clearance of infection. This review considers the innate immune mechanisms the host deploys to prevent fungal infection and how these mechanisms fail in immunocompromised hosts. Three clinically relevant fungal pathogens (Candida albicans, Cryptococcus spp. and Aspergillus spp.) will be explored. This review will also examine potential mechanisms of targeting the host therapeutically to improve outcomes of fungal infection.
Collapse
|
21
|
Important Mycoses of Wildlife: Emphasis on Etiology, Epidemiology, Diagnosis, and Pathology—A Review: PART 1. Animals (Basel) 2022; 12:ani12151874. [PMID: 35892524 PMCID: PMC9331704 DOI: 10.3390/ani12151874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The number of wild animals is steadily declining globally, so the early diagnosis and proper treatment of emerging diseases are vital. Fungal diseases are commonly encountered in practice and have a high zoonotic potential. This article describes aspergillosis, candidiasis, histoplasmosis, cryptococcosis, and penicilliosis, and is only the first part of a detailed review. The laboratory methods (fungal isolation, gross pathology, histopathology, histochemistry, cytology, immunohistochemistry, radiography, CT, PCR, or ELISA) used in the diagnosis and the clinical details that provide a complete view of the mycoses are presented. Abstract In the past few years, there has been a spurred tripling in the figures of fungal diseases leading to one of the most alarming rates of extinction ever reported in wild species. Some of these fungal diseases are capable of virulent infections and are now considered emerging diseases due to the extremely high number of cases diagnosed with fungal infections in the last few decades. Most of these mycotic diseases in wildlife are zoonotic, and with the emergence and re-emergence of viral and bacterial zoonotic diseases originating from wildlife, which are causing devastating effects on the human population, it is important to pay attention to these wildlife-borne mycotic diseases with zoonotic capabilities. Several diagnostic techniques such as fungal isolation, gross pathology, histopathology, histochemistry, cytology, immunohistochemistry, radiography, CT, and molecular methods such as PCR or ELISA have been invaluable in the diagnosis of wildlife mycoses. The most important data used in the diagnosis of these wildlife mycoses with a zoonotic potential have been re-emphasized. This will have implications for forestalling future epidemics of these potential zoonotic mycotic diseases originating from wildlife. In conclusion, this review will highlight the etiology, epidemiology, diagnosis, pathogenesis, pathogenicity, pathology, and hematological/serum biochemical findings of five important mycoses found in wild animals.
Collapse
|
22
|
Kassaza K, Wasswa F, Nielsen K, Bazira J. Cryptococcus neoformans Genotypic Diversity and Disease Outcome among HIV Patients in Africa. J Fungi (Basel) 2022; 8:734. [PMID: 35887489 PMCID: PMC9325144 DOI: 10.3390/jof8070734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cryptococcal meningoencephalitis, a disease with poor patient outcomes, remains the most prevalent invasive fungal infection worldwide, accounting for approximately 180,000 deaths each year. In several areas of sub-Saharan Africa with the highest HIV prevalence, cryptococcal meningitis is the leading cause of community-acquired meningitis, with a high mortality among HIV-infected individuals. Recent studies show that patient disease outcomes are impacted by the genetics of the infecting isolate. Yet, there is still limited knowledge of how these genotypic variations contribute to clinical disease outcome. Further, it is unclear how the genetic heterogeneity of C. neoformans and the extensive phenotypic variation observed between and within isolates affects infection and disease. In this review, we discuss current knowledge of how various genotypes impact disease progression and patient outcome in HIV-positive populations in sub-Saharan African, a setting with a high burden of cryptococcosis.
Collapse
Affiliation(s)
- Kennedy Kassaza
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| | - Fredrickson Wasswa
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joel Bazira
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| |
Collapse
|
23
|
Peres-Emidio EC, Freitas GJC, Costa MC, Gouveia-Eufrasio L, Silva LMV, Santos APN, Carmo PHF, Brito CB, Arifa RDN, Bastos RW, Ribeiro NQ, Oliveira LVN, Silva MF, Paixão TA, Saliba AM, Fagundes CT, Souza DG, Santos DA. Pseudomonas aeruginosa Infection Modulates the Immune Response and Increases Mice Resistance to Cryptococcus gattii. Front Cell Infect Microbiol 2022; 12:811474. [PMID: 35548467 PMCID: PMC9083911 DOI: 10.3389/fcimb.2022.811474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cryptococcosis is an invasive mycosis caused by Cryptococcus spp. that affects the lungs and the central nervous system (CNS). Due to the severity of the disease, it may occur concomitantly with other pathogens, as a coinfection. Pseudomonas aeruginosa (Pa), an opportunistic pathogen, can also cause pneumonia. In this work, we studied the interaction of C. gattii (Cg) and Pa, both in vitro and in vivo. Pa reduced growth of Cg by the secretion of inhibitory molecules in vitro. Macrophages previously stimulated with Pa presented increased fungicidal activity. In vivo, previous Pa infection reduced morbidity and delayed the lethality due to cryptococcosis. This phenotype was correlated with the decreased fungal burden in the lungs and brain, showing a delay of Cg translocation to the CNS. Also, there was increased production of IL-1β, CXCL-1, and IL-10, together with the influx of iNOS-positive macrophages and neutrophils to the lungs. Altogether, Pa turned the lung into a hostile environment to the growth of a secondary pathogen, making it difficult for the fungus to translocate to the CNS. Further, iNOS inhibition reverted the Pa protective phenotype, suggesting its
important role in the coinfection. Altogether, the primary Pa infection leads to balanced pro-inflammatory and anti-inflammatory responses during Cg infection. This response provided better control of cryptococcosis and was decisive for the mild evolution of the disease and prolonged survival of coinfected mice in a mechanism dependent on iNOS.
Collapse
Affiliation(s)
- Eluzia C. Peres-Emidio
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo J. C. Freitas
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marliete C. Costa
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ludmila Gouveia-Eufrasio
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lívia M. V. Silva
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anderson P. N. Santos
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paulo H. F. Carmo
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila B. Brito
- Departamento de Microbiologia/Laboratorio de Interação Microorganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raquel D. N. Arifa
- Departamento de Microbiologia/Laboratorio de Interação Microorganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafael W. Bastos
- Faculdade de Ciencias Farmaceuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Centro de Biociencias, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Noelly Q. Ribeiro
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lorena V. N. Oliveira
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Monique F. Silva
- Departamento de Patologia/Laboratorio de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiane A. Paixão
- Departamento de Patologia/Laboratorio de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alessandra M. Saliba
- Departamento de Microbiologia e Imunologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio T. Fagundes
- Departamento de Microbiologia/Laboratorio de Interação Microorganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniele G. Souza
- Departamento de Microbiologia/Laboratorio de Interação Microorganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel A. Santos
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Daniel A. Santos, ;
| |
Collapse
|
24
|
Oliveira-Brito PKM, de Campos GY, Guimarães JG, Serafim da Costa L, Silva de Moura E, Lazo-Chica JE, Roque-Barreira MC, da Silva TA. Adjuvant Curdlan Contributes to Immunization against Cryptococcus gattii Infection in a Mouse Strain-Specific Manner. Vaccines (Basel) 2022; 10:vaccines10040620. [PMID: 35455369 PMCID: PMC9030172 DOI: 10.3390/vaccines10040620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
The low efficacy and side effects associated with antifungal agents have highlighted the importance of developing immunotherapeutic approaches to treat Cryptococcus gattii infection. We developed an immunization strategy that uses selective Dectin-1 agonist as an adjuvant. BALB/c or C57BL/6 mice received curdlan or β-glucan peptide (BGP) before immunization with heat-killed C. gattii, and the mice were infected with viable C. gattii on day 14 post immunization and euthanized 14 days after infection. Adjuvant curdlan restored pulmonary tumor necrosis factor- α (TNF-α) levels, as induced by immunization with heat-killed C. gattii. The average area and relative frequency of C. gattii titan cells in the lungs of curdlan-treated BALB/c mice were reduced. However, this did not reduce the pulmonary fungal burden or decrease the i0,nflammatory infiltrate in the pulmonary parenchyma of BALB/c mice. Conversely, adjuvant curdlan induced high levels of interferon-γ (IFN-γ) and interleukin (IL)-10 and decreased the C. gattii burden in the lungs of C57BL/6 mice, which was not replicated in β-glucan peptide-treated mice. The adjuvant curdlan favors the control of C. gattii infection depending on the immune response profile of the mouse strain. This study will have implications for developing new immunotherapeutic approaches to treat C. gattii infection.
Collapse
Affiliation(s)
- Patrícia Kellen Martins Oliveira-Brito
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.K.M.O.-B.); (G.Y.d.C.); (J.G.G.); (E.S.d.M.); (M.C.R.-B.)
| | - Gabriela Yamazaki de Campos
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.K.M.O.-B.); (G.Y.d.C.); (J.G.G.); (E.S.d.M.); (M.C.R.-B.)
| | - Júlia Garcia Guimarães
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.K.M.O.-B.); (G.Y.d.C.); (J.G.G.); (E.S.d.M.); (M.C.R.-B.)
| | - Letícia Serafim da Costa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 14049-900, SP, Brazil;
| | - Edanielle Silva de Moura
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.K.M.O.-B.); (G.Y.d.C.); (J.G.G.); (E.S.d.M.); (M.C.R.-B.)
| | - Javier Emílio Lazo-Chica
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-189, MG, Brazil;
| | - Maria Cristina Roque-Barreira
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.K.M.O.-B.); (G.Y.d.C.); (J.G.G.); (E.S.d.M.); (M.C.R.-B.)
| | - Thiago Aparecido da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.K.M.O.-B.); (G.Y.d.C.); (J.G.G.); (E.S.d.M.); (M.C.R.-B.)
- Thiago Aparecido da Silva, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto 14049-900, SP, Brazil
- Correspondence: or ; Tel.: +55-16-3315-3049
| |
Collapse
|
25
|
Role of the anillin-like protein in growth of Cryptococcus neoformans at human host temperature. Fungal Genet Biol 2022; 160:103697. [DOI: 10.1016/j.fgb.2022.103697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022]
|
26
|
Ke W, Xie Y, Hu Y, Ding H, Fan X, Huang J, Tian X, Zhang B, Xu Y, Liu X, Yang Y, Wang L. A forkhead transcription factor contributes to the regulatory differences of pathogenicity in closely related fungal pathogens. MLIFE 2022; 1:79-91. [PMID: 38818325 PMCID: PMC10989923 DOI: 10.1002/mlf2.12011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 06/01/2024]
Abstract
Cryptococcus neoformans and its sister species Cryptococcus deuterogattii are important human fungal pathogens. Despite their phylogenetically close relationship, these two Cryptococcus pathogens are greatly different in their clinical characteristics. However, the determinants underlying the regulatory differences of their pathogenicity remain largely unknown. Here, we show that the forkhead transcription factor Hcm1 promotes infection in C. neoformans but not in C. deuterogattii. Monitoring in vitro and in vivo fitness outcomes of multiple clinical isolates from the two pathogens indicates that Hcm1 mediates pathogenicity in C. neoformans through its key involvement in oxidative stress defense. By comparison, Hcm1 is not critical for antioxidation in C. deuterogattii. Furthermore, we identified SRX1, which encodes the antioxidant sulfiredoxin, as a conserved target of Hcm1 in two Cryptococcus pathogens. Like HCM1, SRX1 had a greater role in antioxidation in C. neoformans than in C. deuterogattii. Significantly, overexpression of SRX1 can largely rescue the defective pathogenicity caused by the absence of Hcm1 in C. neoformans. Conversely, Srx1 is dispensable for virulence in C. deuterogattii. Overall, our findings demonstrate that the difference in the contribution of the antioxidant sulfiredoxin to oxidative stress defense underlies the Hcm1-mediated regulatory differences of pathogenicity in two closely related pathogens.
Collapse
Affiliation(s)
- Weixin Ke
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yuyan Xie
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yue Hu
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jingjing Huang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
- Graduate School, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xiuyun Tian
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Baokun Zhang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease, Department of BiotechnologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Ying Yang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease, Department of BiotechnologyBeijing Institute of Radiation MedicineBeijingChina
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
27
|
Mohammed R, Nader SM, Hamza DA, Sabry MA. Horse: a potential source of Cryptococcus neoformans and Cryptococcus gattii in Egypt. BMC Vet Res 2022; 18:17. [PMID: 34983525 PMCID: PMC8725405 DOI: 10.1186/s12917-021-03127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/23/2021] [Indexed: 11/12/2022] Open
Abstract
Background Cryptococcosis is an opportunistic mycozoonosis of global significance in a wide variety of host species. In equines, cryptococcosis is uncommon, and sporadic cases have been reported with rhinitis, sinusitis, pneumonia, and meningitis. Cryptococcus spp. represents a potential risk for immunosuppressed and healthy persons. In Egypt, epidemiological data on cryptococcal infection in horses are limited. The current study was carried out to investigate the occurrence of Cryptococcus spp. in horses and its possible role in the epidemiology of such disease in Egypt. A total of 223 samples was collected from different localities in Egypt included 183 nasal swabs from horses, 28 nasal swabs from humans, and 12 soil samples. Bacteriological examination and the identification of Cryptococcus spp. were performed. Molecular serotyping of Cryptococcus spp. was determined by multiplex PCR using CNa-70S/A-CNb-49S/A. The virulence genes (LAC1, CAP59, and PLB1) of the identified isolates were detected by PCR. Moreover, sequencing and phylogenetic analysis of the C. gattii gene from horses, humans, and soil isolates found nearby were performed. Result The overall occurrence of Cryptococcus spp. in horses were 9.3, 25, and 10.7% in horses, the soil, and humans, respectively. Molecular serotyping of the Cryptococcus spp. isolates recovered from the nasal passages of horses proved that C. gattii (B), C. neoformans, and two hybrids between C. neoformans (A) and C. gattii (B) were identified. Meanwhile, in case of soil samples, the isolates were identified as C. gattii (B). The human isolates were serotyped as C. gattii in two isolates and C. neoformans in only one isolate. Molecular detection of some virulence genes (LAC1), (CAP59), and (PLB1) were identified in both C. gattii and C. neoformans isolates. The C. gattii gene amplicons of the isolates from horses, humans, and the soil were closely related. Conclusion This study provides the first insights into the Egyptian horse ecology of Cryptococcus species and highlights the role of horses as asymptomatic carriers in disseminating the potentially pathogenic Cryptococcus spp. It also presents the possible risk of cryptococcosis infection in humans.
Collapse
Affiliation(s)
- Rahma Mohammed
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Sara M Nader
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Dalia A Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt.
| | - Maha A Sabry
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| |
Collapse
|
28
|
Kankam G, Christians B, Maliehe M, Mjokane N, Ogundeji AO, Folorunso OS, Pohl CH, Sebolai OM. The first survey of cryptococcal cells in bird droppings across Bloemfontein, South Africa. Vet World 2021; 14:2739-2744. [PMID: 34903934 PMCID: PMC8654755 DOI: 10.14202/vetworld.2021.2739-2744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Cryptococcal yeast cells are spread across different ecosystems through bird movement and are deposited in bird guano. These cells may be inhaled by humans and lead to cryptococcal pneumonia. In individuals with reduced immune T-cell populations, cells may disseminate to the brain and cause the often-deadly cryptococcal meningitis. In this study, we surveyed cryptococcal cells in bird droppings across the city of Bloemfontein, South Africa. Materials and Methods: We aseptically collected 120 bird dropping samples from 15 representative city sites. In the laboratory, samples were assessed with regards to location, weighed, and standardized to a mass of 1 g before suspension in 10 mL phosphate buffer saline. Samples were first screened usingCalcofluor-white stain as it is a rapid technique for the detection of fungi via binding to cell wall components such as chitin. After this, positive Calcofluor samples were serologically assayed for the cryptococcal antigen (CrAg). To confirm assay data, CrAg positive samples were then cultured on bird seed agar and resulting colonies were assessed using Indian ink. Results: We determined that 10/15 locations were positive for the CrAg. Pathogenic cells were identified on bird seed agar as brown colonies. When examined using microscopy, brown colony cells exhibited characteristic thick capsules representative of cryptococcal cells. Conclusion: This is the first proximate analysis showing the ecological distribution of cryptococcal cells in Bloemfontein. This is important as associated infections are acquired from the environment. Similarly, given the threat posed by cryptococcal cells to immunocompromised individuals, local authorities must initiate measures curbing the spread of these cells.
Collapse
Affiliation(s)
- Gloria Kankam
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Byron Christians
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Maphori Maliehe
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Nozethu Mjokane
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Adepemi O Ogundeji
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Olufemi S Folorunso
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Olihile M Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| |
Collapse
|
29
|
Onyishi CU, May RC. Human immune polymorphisms associated with the risk of cryptococcal disease. Immunology 2021; 165:143-157. [PMID: 34716931 PMCID: PMC9426616 DOI: 10.1111/imm.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/07/2021] [Accepted: 10/16/2021] [Indexed: 11/29/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that can cause lethal cryptococcal meningitis in immunocompromised individuals such as those with HIV/AIDS. In addition, cryptococcal infections occasionally arise in immunocompetent individuals or those with previously undiagnosed immunodeficiencies. The course of cryptococcosis is highly variable in both patient groups, and there is rapidly growing evidence that genetic polymorphisms may have a significant impact on the trajectory of disease. Here, we review what is currently known about the nature of these polymorphisms and their impact on host response to C. neoformans infection. Thus far, polymorphisms in Fc gamma receptors, mannose‐binding lectin, Dectin‐2, Toll‐like receptors and macrophage colony‐stimulating factor have been associated with susceptibility to cryptococcal disease. Notably, however, in some cases the impact of these polymorphisms depends on the genetic background of the population; for example, the FCGR3A 158 F/V polymorphism was associated with an increased risk of cryptococcal disease in both HIV‐positive and HIV‐negative white populations, but not in Han Chinese patients. In most cases, the precise mechanism by which the identified polymorphisms influence disease progression remains unclear, although impaired fungal recognition and phagocytosis by innate immune cells appears to play a major role. Finally, we highlight outstanding questions in the field and emphasize the need for future research to include more diverse populations in their genetic association studies.
Collapse
Affiliation(s)
- Chinaemerem U Onyishi
- Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Robin C May
- Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
30
|
Yan Z, Deng W, Wang Y, Liu Y, Sun H, Xia R, Zeng W, Geng J, Chen G, He X, Xu J, Wu CL, Miao Y. Case Report: Malacoplakia Due to E. coli With Cryptococcus albidus Infection of a Transplanted Kidney in a Patient With Recurrent Urinary Tract Infection. Front Med (Lausanne) 2021; 8:721145. [PMID: 34595189 PMCID: PMC8476786 DOI: 10.3389/fmed.2021.721145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Colonization of Cryptococcus rarely occurs in a graft. This study reports a case of malacoplakia and cryptococcoma caused by E. coli and Cryptococcus albidus in a transplanted kidney, with detailed pathology and metagenome sequencing analysis. Case Presentation: We presented a case of cryptococcoma and malacoplakia in the genitourinary system including the transplant kidney, bladder, prostate, and seminal vesicles caused by Cryptococcus albidus and Escherichia coli in a renal-transplant recipient. Metagenome sequencing was conducted on a series of samples obtained from the patient at three different time points, which we termed Phase I (at the diagnosis of cryptococcoma), Phase II (during perioperative period of graftectomy, 3 months after the diagnosis), and Phase III (2 months after graftectomy). Sequencing study in the Phase I detected two and four sequences of C. albidus respectively in cerebrospinal fluid (CSF) and feces, with resistant Escherichia coli 09-02E presented in urine and renal mass. A 3-month antibiotic treatment yielded a smaller bladder lesion but an enlarged allograft lesion, leading to a nephrectomy. In the Phase II, two sequences of C. albidus were detected in CSF, while the E. coli 09-02E continued as before. In the Phase III, the lesions were generally reduced, with one C. albidus sequence in feces only. Conclusions: The existence and clearance of Cryptococcus sequences in CSF without central nervous system symptoms may be related to the distribution of infection foci in vivo, the microbial load, and the body's immunity. Overall, this study highlights the need for enhanced vigilance against uncommon types of Cryptococcus infections in immunocompromised populations and increased concern about the potential correlation between E. coli and Cryptococcus infections.
Collapse
Affiliation(s)
- Ziyan Yan
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenfeng Deng
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuchen Wang
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanna Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hengbiao Sun
- Department of Laboratory, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Renfei Xia
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenli Zeng
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Geng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Gui Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaolong He
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jian Xu
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chin-Lee Wu
- Departments of Urology and Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Yun Miao
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Wang Y, Yang M, Xia Y, Yan J, Zou J, Zhang D. Application and evaluation of nucleic acid sequence-based amplification, PCR and cryptococcal antigen test for diagnosis of cryptococcosis. BMC Infect Dis 2021; 21:1020. [PMID: 34587908 PMCID: PMC8482667 DOI: 10.1186/s12879-021-06678-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/10/2021] [Indexed: 12/26/2022] Open
Abstract
Background Cryptococcosis is a major opportunistic invasive mycosis in immunocompromised patients, but it is also increasingly seen in immunocompetent patients. In the early stages of cryptococcosis, limitations of the detection method may hinder the diagnosis. A molecular diagnostic technique based on nucleic acid sequence-based amplification (NASBA) method was developed to fulfil the need for efficient diagnosis of cryptococcosis. Methods We compared the diagnostic performance of NASBA, PCR and cryptococcal antigen (CrAg) test (colloidal gold method) in clinical samples from 25 cryptococcosis patients (including 8 cryptococcal meningoencephalitis and 17 pulmonary cryptococcosis) who were categorized as proven cases (n = 10) and probable cases (n = 15) according to the revised EORTC/MSG definitions. 10 patients with non-Cryptococcus infection and 30 healthy individuals were categorized as control group. Results The lowest detection limit of NASBA was 10 CFU/mL, and RNA of non-target bacteria or fungi was not amplified. The sensitivity of NASBA, PCR and colloidal gold method was 92.00% (95% CI 72.50–98.60%), 64.00% (95% CI 42.62–81.29%), 100.00% (95% CI 83.42–100.00%), and the specificity was 95.00% (95% CI 81.79–99.13%), 80.00% (95% CI 63.86–90.39%) and 82.50% (95% CI 66.64–92.11%) respectively. The highest specificity (97.50%), accuracy (95.38%) and k value (0.90) were achieved when both NASBA and colloidal gold results were positive. Conclusions NASBA is a new alternative detection method for cryptococcosis which is both accurate and rapid without expensive equipment and specialised personnel. It may be used as a tool for confirming current infection as well as monitoring the effectiveness of antifungal treatment. The use of NASBA to detect Cryptococcus RNA in blood samples is of great significance for the diagnosis of pulmonary cryptococcosis. The combination of NASBA and colloidal gold can improve the diagnostic accuracy of cryptococcosis.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Yuzhong District, Chongqing, 400016, China
| | - Mi Yang
- Department of Clinical Laboratory, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yun Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Yuzhong District, Chongqing, 400016, China.
| | - Jia Yan
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiaqi Zou
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Yuzhong District, Chongqing, 400016, China
| | - Dawei Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
32
|
The Possible Role of Microbial Proteases in Facilitating SARS-CoV-2 Brain Invasion. BIOLOGY 2021; 10:biology10100966. [PMID: 34681064 PMCID: PMC8533249 DOI: 10.3390/biology10100966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/15/2023]
Abstract
SARS-CoV-2 has been shown to display proclivity towards organs bearing angiotensin-converting enzyme (ACE2) expression cells. Of interest herein is the ability of the virus to exhibit neurotropism. However, there is limited information on how this virus invades the brain. With this contribution, we explore how, in the context of a microbial co-infection using a cryptococcal co-infection as a model, SARS-CoV-2 could reach the brain. We theorise that the secretion of proteases by disseminated fungal cells might also activate the S2 domain of the viral spike glycoprotein for membrane fusion with brain endothelial cells leading to endocytosis. Understanding this potential invasion mechanism could lead to better SARS-CoV-2 intervention measures, which may also be applicable in instances of co-infection, especially with protease-secreting pathogens.
Collapse
|
33
|
Silva VKA, May RC, Rodrigues ML. Pyrifenox, an ergosterol inhibitor, differentially affects Cryptococcus neoformans and Cryptococcus gattii. Med Mycol 2021; 58:928-937. [PMID: 31915833 DOI: 10.1093/mmy/myz132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022] Open
Abstract
Cryptococcosis is a life-threatening fungal infection. New therapeutic approaches are necessary to combat cryptococcosis, as the currently available therapeutic protocols are expensive and generally result in deleterious side effects. Pyrifenox is an antifungal compound that affects phytopathogens by inhibiting the biosynthesis of ergosterol. In this study, we investigated the effects of pyrifenox on Cryptococcus neoformans and Cryptococcus gattii growth, capsule architecture and export of the major capsule component, glucuroxylomannan (GXM). Pyrifenox inhibited the growth of C. neoformans, but was significantly less effective against C. gattii. The resistance of C. gattii to pyrifenox was associated with the expression of efflux pump genes, particularly AFR1 and AFR2, since mutant cells lacking expression of these genes became sensitive to pyrifenox. Analysis of the cryptococcal capsule by India ink counterstaining, immunofluorescence, and scanning electron microscopy showed that pyrifenox affected capsular dimensions in both species. However, GXM fibers were shorter and uniformly distributed in C. neoformans, whereas in C. gattii the number of fibers was reduced. Pyrifenox-treated C. gattii developed unusually long chains of undivided cells. The secretion of GXM was markedly reduced in both species after treatment with pyrifenox. Altogether, the results indicated that pyrifenox differently affects C. neoformans and C. gattii. In addition, it highlights a potential role for pyrifenox as an inhibitor of GXM export in experimental models involving pathogenic cryptococci.
Collapse
Affiliation(s)
- Vanessa K A Silva
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Robin C May
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Marcio L Rodrigues
- Instituto Carlos Chagas (ICC), Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil.,Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Associations between Cryptococcus Genotypes, Phenotypes, and Clinical Parameters of Human Disease: A Review. J Fungi (Basel) 2021; 7:jof7040260. [PMID: 33808500 PMCID: PMC8067209 DOI: 10.3390/jof7040260] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
The genus Cryptococcus contains two primary species complexes that are significant opportunistic human fungal pathogens: C. neoformans and C. gattii. In humans, cryptococcosis can manifest in many ways, but most often results in either pulmonary or central nervous system disease. Patients with cryptococcosis can display a variety of symptoms on a spectrum of severity because of the interaction between yeast and host. The bulk of our knowledge regarding Cryptococcus and the mechanisms of disease stem from in vitro experiments and in vivo animal models that make a fair attempt, but do not recapitulate the conditions inside the human host. To better understand the dynamics of initiation and progression in cryptococcal disease, it is important to study the genetic and phenotypic differences in the context of human infection to identify the human and fungal risk factors that contribute to pathogenesis and poor clinical outcomes. In this review, we summarize the current understanding of the different clinical presentations and health outcomes that are associated with pathogenicity and virulence of cryptococcal strains with respect to specific genotypes and phenotypes.
Collapse
|
35
|
Stovall AK, Knowles CM, Kalem MC, Panepinto JC. A Conserved Gcn2-Gcn4 Axis Links Methionine Utilization and the Oxidative Stress Response in Cryptococcus neoformans. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:640678. [PMID: 34622246 PMCID: PMC8494424 DOI: 10.3389/ffunb.2021.640678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022]
Abstract
The fungal pathogen Cryptococcus neoformans relies on post-transcriptional mechanisms of gene regulation to adapt to stressors it encounters in the human host, such as oxidative stress and nutrient limitation. The kinase Gcn2 regulates translation in response to stress by phosphorylating the initiation factor eIF2, and it is a crucial factor in withstanding oxidative stress in C. neoformans, and amino acid limitation in many fungal species. However, little is known about the role of Gcn2 in nitrogen limitation in C. neoformans. In this study, we demonstrate that Gcn2 is required for C. neoformans to utilize methionine as a source of nitrogen, and that the presence of methionine as a sole nitrogen source induces eIF2 phosphorylation. The stress imposed by methionine leads to an oxidative stress response at both the levels of transcription and translation, as seen through polysome profiling as well as increased abundance of select oxidative stress response transcripts. The transcription factor Gcn4 is also required for methionine utilization and oxidative stress resistance, and RT-qPCR data suggests that it regulates expression of certain transcripts in response to oxidative stress. The results of this study suggest a connection between nitrogen metabolism and oxidative stress in C. neoformans that is mediated by Gcn4, possibly indicating the presence of a compound stress response in this clinically important fungal pathogen.
Collapse
Affiliation(s)
| | | | | | - John C. Panepinto
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY, United States
| |
Collapse
|
36
|
Oliveira RKDM, Hurtado FA, Gomes PH, Puglia LL, Ferreira FF, Ranjan K, Albuquerque P, Poças-Fonseca MJ, Silva-Pereira I, Fernandes L. Base Excision Repair AP-Endonucleases-Like Genes Modulate DNA Damage Response and Virulence of the Human Pathogen Cryptococcus neoformans. J Fungi (Basel) 2021; 7:jof7020133. [PMID: 33673204 PMCID: PMC7917787 DOI: 10.3390/jof7020133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Pathogenic microbes are exposed to a number of potential DNA-damaging stimuli during interaction with the host immune system. Microbial survival in this situation depends on a fine balance between the maintenance of DNA integrity and the adaptability provided by mutations. In this study, we investigated the association of the DNA repair response with the virulence of Cryptococcus neoformans, a basidiomycete that causes life-threatening meningoencephalitis in immunocompromised individuals. We focused on the characterization of C. neoformansAPN1 and APN2 putative genes, aiming to evaluate a possible role of the predicted Apurinic/apyrimidinic (AP) endonucleases 1 and 2 of the base excision repair (BER) pathway on C. neoformans response to stress conditions and virulence. Our results demonstrated the involvement of the putative AP-endonucleases Apn1 and Apn2 in the cellular response to DNA damage induced by alkylation and by UV radiation, in melanin production, in tolerance to drugs and in virulence of C. neoformans in vivo. We also pointed out the potential use of DNA repair inhibitor methoxy-amine in combination with conventional antifungal drugs, for the development of new therapeutic approaches against this human fungal pathogen. This work provides new information about the DNA damage response of the highly important pathogenic fungus C. neoformans.
Collapse
Affiliation(s)
- Rayssa Karla de Medeiros Oliveira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70.910-900, Brazil; (R.K.d.M.O.); (F.A.H.); (P.H.G.); (L.L.P.)
| | - Fabián Andrés Hurtado
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70.910-900, Brazil; (R.K.d.M.O.); (F.A.H.); (P.H.G.); (L.L.P.)
| | - Pedro Henrique Gomes
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70.910-900, Brazil; (R.K.d.M.O.); (F.A.H.); (P.H.G.); (L.L.P.)
| | - Luiza Lassi Puglia
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70.910-900, Brazil; (R.K.d.M.O.); (F.A.H.); (P.H.G.); (L.L.P.)
| | - Fernanda Fonsêca Ferreira
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70.910-900, Brazil; (F.F.F.); (K.R.)
| | - Kunal Ranjan
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70.910-900, Brazil; (F.F.F.); (K.R.)
| | | | - Márcio José Poças-Fonseca
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70.910-900, Brazil; (F.F.F.); (K.R.)
- Correspondence: (M.J.P.-F.); (I.S.-P.); (L.F.)
| | - Ildinete Silva-Pereira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70.910-900, Brazil; (R.K.d.M.O.); (F.A.H.); (P.H.G.); (L.L.P.)
- Correspondence: (M.J.P.-F.); (I.S.-P.); (L.F.)
| | - Larissa Fernandes
- Faculty of Ceilândia, University of Brasília, Brasília 72.220-275, Brazil;
- Correspondence: (M.J.P.-F.); (I.S.-P.); (L.F.)
| |
Collapse
|
37
|
“Feast-Fit-Fist-Feat”: Overview of Free-living Amoeba Interactions with Fungi and Virulence as a Foundation for Success in Battle. CURRENT TROPICAL MEDICINE REPORTS 2021. [DOI: 10.1007/s40475-020-00220-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Freitas MS, Pessoni AM, Coelho C, Bonato VLD, Rodrigues ML, Casadevall A, Almeida F. Interactions of Extracellular Vesicles from Pathogenic Fungi with Innate Leukocytes. Curr Top Microbiol Immunol 2021; 432:89-120. [DOI: 10.1007/978-3-030-83391-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Marina CL, Bürgel PH, Agostinho DP, Zamith-Miranda D, Las-Casas LDO, Tavares AH, Nosanchuk JD, Bocca AL. Nutritional Conditions Modulate C. neoformans Extracellular Vesicles' Capacity to Elicit Host Immune Response. Microorganisms 2020; 8:E1815. [PMID: 33217920 PMCID: PMC7698703 DOI: 10.3390/microorganisms8111815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Cryptococcus neoformans is a human pathogenic fungus that mainly afflicts immunocompromised patients. One of its virulence strategies is the production of extracellular vesicles (EVs), containing cargo with immunomodulatory properties. We evaluated EV's characteristics produced by capsular and acapsular strains of C. neoformans (B3501 and ΔCap67, respectively) growing in nutritionally poor or rich media and co-cultures with bone marrow-derived macrophages or dendritic cells from C57BL/6 mice. EVs produced under a poor nutritional condition displayed a larger hydrodynamic size, contained more virulence compounds, and induced a more robust inflammatory pattern than those produced in a rich nutritional medium, independently of strain. We treated infected mice with EVs produced in the rich medium, and the EVs inhibited more genes related to the inflammasome than untreated infected mice. These findings suggest that the EVs participate in the pathogenic processes that result in the dissemination of C. neoformans. Thus, these results highlight the versatility of EVs' properties during infection by C. neoformans in different tissues and support ongoing efforts to harness EVs to prevent and treat cryptococcosis.
Collapse
Affiliation(s)
- Clara Luna Marina
- Laboratory of Applied Immunity, Institute of Biology Sciences, University of Brasília, Brasília, Distrito Federal 70910-900, Brazil; (C.L.M.); (P.H.B.); (L.d.O.L.-C.)
| | - Pedro Henrique Bürgel
- Laboratory of Applied Immunity, Institute of Biology Sciences, University of Brasília, Brasília, Distrito Federal 70910-900, Brazil; (C.L.M.); (P.H.B.); (L.d.O.L.-C.)
| | - Daniel Paiva Agostinho
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA; (D.P.A.); (D.Z.-M.); (J.D.N.)
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Daniel Zamith-Miranda
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA; (D.P.A.); (D.Z.-M.); (J.D.N.)
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Lucas de Oliveira Las-Casas
- Laboratory of Applied Immunity, Institute of Biology Sciences, University of Brasília, Brasília, Distrito Federal 70910-900, Brazil; (C.L.M.); (P.H.B.); (L.d.O.L.-C.)
| | | | - Joshua Daniel Nosanchuk
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA; (D.P.A.); (D.Z.-M.); (J.D.N.)
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Anamelia Lorenzetti Bocca
- Laboratory of Applied Immunity, Institute of Biology Sciences, University of Brasília, Brasília, Distrito Federal 70910-900, Brazil; (C.L.M.); (P.H.B.); (L.d.O.L.-C.)
| |
Collapse
|
40
|
Fu Y, Huang X, Zhou Z. Insight into the Assembling Mechanism of Cryptococcus Capsular Glucuronoxylomannan Based on Molecular Dynamics Simulations. ACS OMEGA 2020; 5:29351-29356. [PMID: 33225166 PMCID: PMC7676341 DOI: 10.1021/acsomega.0c04164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Cryptococcus spp. is an invasive fungal pathogen and causes life-threatening cryptococcosis. Opportunistic cryptococcal infections among the immunocompromised population are mostly caused by Cryptococcus neoformans, whereas the geographical dissemination of Cryptococcus gattii in recent years has threatened lives of even immunocompetent people. The capsule, mainly composed of glucuronoxylomannan (GXM) polysaccharides, plays important roles in the virulence of Cryptococcus spp. The assembling mechanism of GXM polysaccharides into the capsule is little understood because of insufficient experimental data. Molecular modeling and molecular dynamics simulation provide insight into the assembling process. We first built GXM oligosaccharide models of serotypes D, A, B, and C and extracted their secondary structure information from simulation trajectories. All the four mainchains tend to take the nearly twofold helical conformation, whereas peripheral sidechains prefer to form left-handed helices, which are further stabilized by intramolecular hydrogen bonds. Based on the obtained secondary structure information, GXM polysaccharide arrays were built to simulate capsule-assembling processes of C. neoformans and C. gattii using serotypes A and C as representatives, respectively. Trajectory analysis illustrates that electrostatic neutralization of acidic sidechain residues of GXM is a prerequisite for capsule assembling, followed by formation of intermolecular hydrogen bond networks. Further insight into the assembling mechanism of GXM polysaccharides provides the possibility to develop novel treatment and prevention solutions for cryptococcosis.
Collapse
Affiliation(s)
- Yankai Fu
- Key
Laboratory of Bioactive Materials, Ministry of Education, College
of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Beijing
Key Laboratory for Mechanism Study and Precision Diagnosis of Invasive
Fungal Diseases, Dynamiker Biotechnology
Sub-Center, Tianjin 300467, China
| | - Xinglu Huang
- Key
Laboratory of Bioactive Materials, Ministry of Education, College
of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Zeqi Zhou
- Beijing
Key Laboratory for Mechanism Study and Precision Diagnosis of Invasive
Fungal Diseases, Dynamiker Biotechnology
Sub-Center, Tianjin 300467, China
| |
Collapse
|
41
|
Squizani ED, Reuwsaat JCV, Lev S, Motta H, Sperotto J, Kaufman-Francis K, Desmarini D, Vainstein MH, Staats CC, Djordjevic JT, Kmetzsch L. Calcium Binding Protein Ncs1 Is Calcineurin Regulated in Cryptococcus neoformans and Essential for Cell Division and Virulence. mSphere 2020; 5:e00761-20. [PMID: 32907953 PMCID: PMC7485688 DOI: 10.1128/msphere.00761-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022] Open
Abstract
Intracellular calcium (Ca2+) is crucial for signal transduction in Cryptococcus neoformans, the major cause of fatal fungal meningitis. The calcineurin pathway is the only Ca2+-requiring signaling cascade implicated in cryptococcal stress adaptation and virulence, with Ca2+ binding mediated by the EF-hand domains of the Ca2+ sensor protein calmodulin. In this study, we identified the cryptococcal ortholog of neuronal calcium sensor 1 (Ncs1) as a member of the EF-hand superfamily. We demonstrated that Ncs1 has a role in Ca2+ homeostasis under stress and nonstress conditions, as the ncs1Δ mutant is sensitive to a high Ca2+ concentration and has an elevated basal Ca2+ level. Furthermore, NCS1 expression is induced by Ca2+, with the Ncs1 protein adopting a punctate subcellular distribution. We also demonstrate that, in contrast to the case with Saccharomyces cerevisiae, NCS1 expression in C. neoformans is regulated by the calcineurin pathway via the transcription factor Crz1, as NCS1 expression is reduced by FK506 treatment and CRZ1 deletion. Moreover, the ncs1Δ mutant shares a high temperature and high Ca2+ sensitivity phenotype with the calcineurin and calmodulin mutants (cna1Δ and cam1Δ), and the NCS1 promoter contains two calcineurin/Crz1-dependent response elements (CDRE1). Ncs1 deficiency coincided with reduced growth, characterized by delayed bud emergence and aberrant cell division, and hypovirulence in a mouse infection model. In summary, our data show that Ncs1 has a significant role as a Ca2+ sensor in C. neoformans, working with calcineurin to regulate Ca2+ homeostasis and, consequently, promote fungal growth and virulence.IMPORTANCECryptococcus neoformans is the major cause of fungal meningitis in HIV-infected patients. Several studies have highlighted the important contributions of Ca2+ signaling and homeostasis to the virulence of C. neoformans Here, we identify the cryptococcal ortholog of neuronal calcium sensor 1 (Ncs1) and demonstrate its role in Ca2+ homeostasis, bud emergence, cell cycle progression, and virulence. We also show that Ncs1 function is regulated by the calcineurin/Crz1 signaling cascade. Our work provides evidence of a link between Ca2+ homeostasis and cell cycle progression in C. neoformans.
Collapse
Affiliation(s)
- Eamim Daidrê Squizani
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Heryk Motta
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Julia Sperotto
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Keren Kaufman-Francis
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Marilene Henning Vainstein
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Charley Christian Staats
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Julianne T Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Lívia Kmetzsch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
42
|
Song J, Liu X, Li R. Sphingolipids: Regulators of azole drug resistance and fungal pathogenicity. Mol Microbiol 2020; 114:891-905. [PMID: 32767804 DOI: 10.1111/mmi.14586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022]
Abstract
In recent years, the role of sphingolipids in pathogenic fungi, in terms of pathogenicity and resistance to azole drugs, has been a rapidly growing field. This review describes evidence about the roles of sphingolipids in azole resistance and fungal virulence. Sphingolipids can serve as signaling molecules that contribute to azole resistance through modulation of the expression of drug efflux pumps. They also contribute to azole resistance by participating in various microbial pathways such as the unfolded protein response (UPR), pH-responsive Rim pathway, and pleiotropic drug resistance (PDR) pathway. In addition, sphingolipid signaling and eisosomes also coordinately regulate sphingolipid biosynthesis in response to azole-induced membrane stress. Sphingolipids are important for fungal virulence, playing roles during growth in hosts under stressful conditions, maintenance of cell wall integrity, biofilm formation, and production of various virulence factors. Finally, we discuss the possibility of exploiting fungal sphingolipids for the development of new therapeutic strategies to treat infections caused by pathogenic fungi.
Collapse
Affiliation(s)
- Jinxing Song
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| | - Xiao Liu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| |
Collapse
|
43
|
Abstract
AbstractChaetothyriales is an ascomycetous order within Eurotiomycetes. The order is particularly known through the black yeasts and filamentous relatives that cause opportunistic infections in humans. All species in the order are consistently melanized. Ecology and habitats of species are highly diverse, and often rather extreme in terms of exposition and toxicity. Families are defined on the basis of evolutionary history, which is reconstructed by time of divergence and concepts of comparative biology using stochastical character mapping and a multi-rate Brownian motion model to reconstruct ecological ancestral character states. Ancestry is hypothesized to be with a rock-inhabiting life style. Ecological disparity increased significantly in late Jurassic, probably due to expansion of cytochromes followed by colonization of vacant ecospaces. Dramatic diversification took place subsequently, but at a low level of innovation resulting in strong niche conservatism for extant taxa. Families are ecologically different in degrees of specialization. One of the clades has adapted ant domatia, which are rich in hydrocarbons. In derived families, similar processes have enabled survival in domesticated environments rich in creosote and toxic hydrocarbons, and this ability might also explain the pronounced infectious ability of vertebrate hosts observed in these families. Conventional systems of morphological classification poorly correspond with recent phylogenetic data. Species are hypothesized to have low competitive ability against neighboring microbes, which interferes with their laboratory isolation on routine media. The dataset is unbalanced in that a large part of the extant biodiversity has not been analyzed by molecular methods, novel taxonomic entities being introduced at a regular pace. Our study comprises all available species sequenced to date for LSU and ITS, and a nomenclatural overview is provided. A limited number of species could not be assigned to any extant family.
Collapse
|
44
|
Okurut S, Boulware DR, Olobo J, Meya DB. Landmark clinical observations and immunopathogenesis pathways linked to HIV and Cryptococcus fatal central nervous system co-infection. Mycoses 2020; 63:840-853. [PMID: 32472727 PMCID: PMC7416908 DOI: 10.1111/myc.13122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
Cryptococcal meningitis remains one of the leading causes of death among HIV-infected adults in the fourth decade of HIV era in sub-Saharan Africa, contributing to 10%-20% of global HIV-related deaths. Despite widespread use and early induction of ART among HIV-infected adults, incidence of cryptococcosis remains significant in those with advanced HIV disease. Cryptococcus species that causes fatal infection follows systemic spread from initial environmental acquired infection in lungs to antigenaemia and fungaemia in circulation prior to establishment of often fatal disease, cryptococcal meningitis in the CNS. Cryptococcus person-to-person transmission is uncommon, and deaths related to blood infection without CNS involvement are rare. Keen to the persistent high mortality associated with HIV-cryptococcal meningitis, seizures are common among a third of the patients, altered mental status is frequent, anaemia is prevalent with ensuing brain hypoxia and at autopsy, brain fibrosis and infarction are evident. In addition, fungal burden is 3-to-4-fold higher in those with seizures. And high immune activation together with exacerbated inflammation and elevated PD-1/PD-L immune checkpoint expression is immunomodulated phenotypes elevated in CSF relative to blood. Lastly, though multiple Cryptococcus species cause disease in this setting, observations are mostly generalised to cryptococcal infection/meningitis or regional dominant species (C neoformans or gattii complex) that may limit our understanding of interspecies differences in infection, progression, treatment or recovery outcome. Together, these factors and underlying mechanisms are hypotheses generating for research to find targets to prevent infection or adequate therapy to prevent persistent high mortality with current optimal therapy.
Collapse
Affiliation(s)
- Samuel Okurut
- Research DepartmentInfectious Diseases InstituteMakerere UniversityKampalaUganda
- Department of MicrobiologySchool of Biomedical SciencesCollege of Health SciencesMakerere UniversityKampalaUganda
| | - David R. Boulware
- Division of Infectious Diseases and International MedicineDepartment of MedicineUniversity of MinnesotaMinneapolisMinnesota
| | - Joseph Olobo
- Department of Immunology and Molecular BiologySchool of Biomedical SciencesCollege of Health SciencesMakerere UniversityKampalaUganda
| | - David B. Meya
- Research DepartmentInfectious Diseases InstituteMakerere UniversityKampalaUganda
- Division of Infectious Diseases and International MedicineDepartment of MedicineUniversity of MinnesotaMinneapolisMinnesota
- Department of MedicineSchool of MedicineCollege of Health SciencesMakerere UniversityKampalaUganda
| |
Collapse
|
45
|
Fungal kinases and transcription factors regulating brain infection in Cryptococcus neoformans. Nat Commun 2020; 11:1521. [PMID: 32251295 PMCID: PMC7090016 DOI: 10.1038/s41467-020-15329-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus neoformans causes fatal fungal meningoencephalitis. Here, we study the roles played by fungal kinases and transcription factors (TFs) in blood-brain barrier (BBB) crossing and brain infection in mice. We use a brain infectivity assay to screen signature-tagged mutagenesis (STM)-based libraries of mutants defective in kinases and TFs, generated in the C. neoformans H99 strain. We also monitor in vivo transcription profiles of kinases and TFs during host infection using NanoString technology. These analyses identify signalling components involved in BBB adhesion and crossing, or survival in the brain parenchyma. The TFs Pdr802, Hob1, and Sre1 are required for infection under all the conditions tested here. Hob1 controls the expression of several factors involved in brain infection, including inositol transporters, a metalloprotease, PDR802, and SRE1. However, Hob1 is dispensable for most cellular functions in Cryptococcus deuterogattii R265, a strain that does not target the brain during infection. Our results indicate that Hob1 is a master regulator of brain infectivity in C. neoformans. Cryptococcus neoformans causes fatal fungal meningoencephalitis. Here, the authors identify fungal kinases and transcription factors involved in blood-brain barrier crossing and brain infection in mice.
Collapse
|
46
|
Cryptococcus neoformans/Cryptococcus gattii species complex melanized by epinephrine: Increased yeast survival after amphotericin B exposure. Microb Pathog 2020; 143:104123. [PMID: 32169493 DOI: 10.1016/j.micpath.2020.104123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 11/20/2022]
Abstract
Cryptococcus neoformans/Cryptococcus gattii complex species are etiological agents of cryptococcosis, a systemic mycosis that cause respiratory infection and meningoencephalitis. To establish the infection, these yeasts produce virulence factors, such as melanin, which contribute to pathogenicity and antifungal tolerance. The aim of this study was to investigate melanin production by the C. neoformans/C. gattii complex in the presence of different precursors of melanogenesis and evaluate the effect of melanization on the antifungal susceptibility of these species to fluconazole, flucytosine and amphotericin B. Epinephrine, norepinephrine, dopamine and caffeic acid were used as substrates for melanin production, and l-dopa was used as positive control. The susceptibility of melanized strains (n = 6), after exposure to epinephrine or l-dopa, was evaluated by broth microdilution assay, and non-melanized strains were used as control. The antifungal activity of amphotericin B against melanized strains was also investigated by time kill assay. All Cryptococcus spp. strains produced melanin after exposure to the tested substrates. After exposure to epinephrine, minimum inhibitory concentration (MIC) ranges were 1-8 μg/mL for fluconazole, 2-8 μg/mL for flucytosine and 0.125-1 μg/mL for amphotericin B, while, after exposure to l-dopa, MIC ranges were 2-8 μg/mL for fluconazole, 4-8 μg/mL for flucytosine, and 0.125-0.5 μg/mL for amphotericin B. Similar results were observed for non-melanized strains. The production of melanin after exposure to epinephrine was higher than that induced by l-dopa. Melanized cells of both species were more tolerant to amphotericin B than the non-melanized control, emphasizing the importance of melanin production for fungal virulence.
Collapse
|
47
|
Abstract
Among fungal pathogens, Cryptococcus neoformans has gained great importance among the scientific community of several reasons. This fungus is the causative agent of cryptococcosis, a disease mainly associated to HIV immunosuppression and characterized by the appearance of meningoencephalitis. Cryptococcal meningitis is responsible for hundreds of thousands of deaths every year. Research of the pathogenesis and virulence mechanisms of this pathogen has focused on three main different areas: Adaptation to the host environment (nutrients, pH, and free radicals), mechanism of immune evasion (which include phenotypic variations and the ability to behave as a facultative intracellular pathogen), and production of virulence factors. Cryptococcus neoformans has two phenotypic characteristics, the capsule and synthesis of melanin that have a profound effect in the virulence of the yeast because they both have protective effects and induce host damage as virulence factors. Finally, the mechanisms that result in dissemination and brain invasion are also of key importance to understand cryptococcal disease. In this review, I will provide a brief overview of the main mechanisms that makes C. neoformans a pathogen in susceptible patients. Abbreviations: RNS: reactive nitrogen species; BBB: brain blood barrier; GXM: glucuronoxylomannan; GXMGal: glucuronoxylomannogalactan
Collapse
Affiliation(s)
- Oscar Zaragoza
- a Mycology Reference Laboratory National Centre for Microbiology , Instituto de Salud Carlos III Carretera Majadahonda-Pozuelo , Madrid , Spain
| |
Collapse
|
48
|
Maliehe M, Ntoi MA, Lahiri S, Folorunso OS, Ogundeji AO, Pohl CH, Sebolai OM. Environmental Factors That Contribute to the Maintenance of Cryptococcus neoformans Pathogenesis. Microorganisms 2020; 8:microorganisms8020180. [PMID: 32012843 PMCID: PMC7074686 DOI: 10.3390/microorganisms8020180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
The ability of microorganisms to colonise and display an intracellular lifestyle within a host body increases their fitness to survive and avoid extinction. This host–pathogen association drives microbial evolution, as such organisms are under selective pressure and can become more pathogenic. Some of these microorganisms can quickly spread through the environment via transmission. The non-transmittable fungal pathogens, such as Cryptococcus, probably return into the environment upon decomposition of the infected host. This review analyses whether re-entry of the pathogen into the environment causes restoration of its non-pathogenic state or whether environmental factors and parameters assist them in maintaining pathogenesis. Cryptococcus (C.) neoformans is therefore used as a model organism to evaluate the impact of environmental stress factors that aid the survival and pathogenesis of C. neoformans intracellularly and extracellularly.
Collapse
|
49
|
ABULREESH HUSSEINH, ORGANJI SAMEERR, ELBANNA KHALED, OSMAN GAMALE, ALMALKI MESHALH, ABDEL-MALEK AHMEDY, GHYATHUDDIN ABDULLAHA, AHMAD IQBAL. Diversity, Virulence Factors, and Antifungal Susceptibility Patterns of Pathogenic and Opportunistic Yeast Species in Rock Pigeon ( Columba livia) Fecal Droppings in Western Saudi Arabia. Pol J Microbiol 2019; 68:493-504. [PMID: 31880893 PMCID: PMC7260702 DOI: 10.33073/pjm-2019-049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022] Open
Abstract
Bird fecal matter is considered a potential source of pathogenic microbes such as yeast species that contaminate the environment. Therefore, it needs to be scrutinized to assess potential environmental health risks. The aim of this study was to investigate the diversity of the yeasts in pigeon fecal droppings, their antifungal susceptibility patterns, and virulence factors. We used culturing techniques to detect the yeasts in pigeon fecal droppings. The isolates were then characterized based on colony morphologies, microscopic examinations, and biochemical reactions. The molecular identification of all yeast isolates was performed by sequencing of the amplified ITS gene. Genes encoding virulence factors CAP1, CAP59, and PLB were also detected. Antifungal susceptibility patterns were examined by the disk diffusion method. A total of 46 yeast-like isolates were recovered, and they belonged to nine different genera, namely, Cryptococcus, Saccharomyces, Rhodotorula, Candida, Meyerozyma, Cyberlindnera, Rhodosporidium, Millerozyma, and Lodderomyces. The prevalence of two genera Cryptococcus and Rhodotorula was high. None of the yeast isolates exhibited any resistance to the antifungal drugs tested; however, all pathogenic Cryptococcus species were positive for virulence determinants like urease activity, growth at 37°C, melanin production, the PLB and CAP genes. This is the first report on the molecular diversity of yeast species, particularly, Cryptococcus species and their virulence attributes in pigeon fecal droppings in Saudi Arabia. Bird fecal matter is considered a potential source of pathogenic microbes such as yeast species that contaminate the environment. Therefore, it needs to be scrutinized to assess potential environmental health risks. The aim of this study was to investigate the diversity of the yeasts in pigeon fecal droppings, their antifungal susceptibility patterns, and virulence factors. We used culturing techniques to detect the yeasts in pigeon fecal droppings. The isolates were then characterized based on colony morphologies, microscopic examinations, and biochemical reactions. The molecular identification of all yeast isolates was performed by sequencing of the amplified ITS gene. Genes encoding virulence factors CAP1, CAP59, and PLB were also detected. Antifungal susceptibility patterns were examined by the disk diffusion method. A total of 46 yeast-like isolates were recovered, and they belonged to nine different genera, namely, Cryptococcus, Saccharomyces, Rhodotorula, Candida, Meyerozyma, Cyberlindnera, Rhodosporidium, Millerozyma, and Lodderomyces. The prevalence of two genera Cryptococcus and Rhodotorula was high. None of the yeast isolates exhibited any resistance to the antifungal drugs tested; however, all pathogenic Cryptococcus species were positive for virulence determinants like urease activity, growth at 37°C, melanin production, the PLB and CAP genes. This is the first report on the molecular diversity of yeast species, particularly, Cryptococcus species and their virulence attributes in pigeon fecal droppings in Saudi Arabia.
Collapse
Affiliation(s)
- HUSSEIN H. ABULREESH
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Center, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - SAMEER R. ORGANJI
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Center, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - KHALED ELBANNA
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Center, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - GAMAL E.H. OSMAN
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Center, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Microbial Genetics Department, Agricultural Genetic Engineering Research Institute (AGERI), Giza, Egypt
| | - MESHAL H.K. ALMALKI
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Center, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - AHMED Y. ABDEL-MALEK
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - ABDULLAH A.K. GHYATHUDDIN
- Fakieh Poultry Farms, Makkah, Saudi Arabia
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - IQBAL AHMAD
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
50
|
Martho KF, Brustolini OJB, Vasconcelos AT, Vallim MA, Pascon RC. The Glycerol Phosphatase Gpp2: A Link to Osmotic Stress, Sulfur Assimilation and Virulence in Cryptococcus neoformans. Front Microbiol 2019; 10:2728. [PMID: 31849880 PMCID: PMC6901960 DOI: 10.3389/fmicb.2019.02728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus neoformans is an opportunist fungal pathogen that causes meningoencephalitis in immunocompromised patients. During infection, this basidiomycete yeast has to adapt to several adverse conditions, especially nutrient availability. The interruption on various amino acid biosynthetic pathways and on amino acid uptake causes reduced viability, inability to cope with various stresses, failure in virulence factors expression and avirulence in animal model of infection. The sulfur amino acid biosynthesis and uptake is an important feature for pathogen survival in vivo and in vitro. Our previous work demonstrates that C. neoformans Cys3 BZip transcription factor controls the gene expression in several steps of the sulfur assimilation and sulfur amino acid biosynthesis. Also, we have shown that Gpp2 phosphatase modulates Cys3 activity. In Saccharomyces cerevisiae Gpp2 is induced in response to hyper osmotic or oxidative stress and during diauxic shift. In this work, we will show that, in C. neoformans, Gpp2 is required to respond to stresses, mainly osmotic stress; also its transcription is induced during exposure to NaCl. Global transcriptional profile of gpp2Δ by RNAseq shows that CYS3 and other genes in the sulfur assimilation pathway are up regulated, which is consistent with our previous report, in which Gpp2 acts by avoiding Cys3 accumulation and nuclear localization. In addition, several transporters genes, especially amino acid permeases and oxidative stress genes are induced in the gpp2Δ strain; on the contrary, genes involved in glucose and tricarboxylic acid metabolism are down regulated. gpp2Δ strain fails to express virulence factors, as melanin, phospholipase, urease and has virulence attenuation in Galleria mellonella. Our data suggest that Gpp2 is an important factor for general pathogen adaptation to various stresses and also to the host, and perhaps it could be an interesting target for therapeutic use.
Collapse
Affiliation(s)
- Kevin Felipe Martho
- Department of Biological Sciences, Campus Diadema, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Otávio J B Brustolini
- Laboratório Nacional de Computação Científica - LNCC, Labinfo - Laboratório de Bioinformática, Petrópolis, Brazil
| | - Ana Tereza Vasconcelos
- Laboratório Nacional de Computação Científica - LNCC, Labinfo - Laboratório de Bioinformática, Petrópolis, Brazil
| | - Marcelo A Vallim
- Department of Biological Sciences, Campus Diadema, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renata C Pascon
- Department of Biological Sciences, Campus Diadema, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|