1
|
Fitzsimmons SMDD, Oostra E, Postma TS, van der Werf YD, van den Heuvel OA. Repetitive Transcranial Magnetic Stimulation-Induced Neuroplasticity and the Treatment of Psychiatric Disorders: State of the Evidence and Future Opportunities. Biol Psychiatry 2024; 95:592-600. [PMID: 38040046 DOI: 10.1016/j.biopsych.2023.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
Neuroplasticity, or activity-dependent neuronal change, is a crucial mechanism underlying the mechanisms of effect of many therapies for neuropsychiatric disorders, one of which is repetitive transcranial magnetic stimulation (rTMS). Understanding the neuroplastic effects of rTMS at different biological scales and on different timescales and how the effects at different scales interact with each other can help us understand the effects of rTMS in clinical populations and offers the potential to improve treatment outcomes. Several decades of research in the fields of neuroimaging and blood biomarkers is increasingly showing its clinical relevance, allowing measurement of the synaptic, functional, and structural changes involved in neuroplasticity in humans. In this narrative review, we describe the evidence for rTMS-induced neuroplasticity at multiple levels of the nervous system, with a focus on the treatment of psychiatric disorders. We also describe the relationship between neuroplasticity and clinical effects, discuss methods to optimize neuroplasticity, and identify future research opportunities in this area.
Collapse
Affiliation(s)
- Sophie M D D Fitzsimmons
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands.
| | - Eva Oostra
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Tjardo S Postma
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Ni P, Fan L, Jiang Y, Zhou C, Chung S. From cells to insights: the power of human pluripotent stem cell-derived cortical interneurons in psychiatric disorder modeling. Front Psychiatry 2023; 14:1336085. [PMID: 38188058 PMCID: PMC10768008 DOI: 10.3389/fpsyt.2023.1336085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Psychiatric disorders, such as schizophrenia (SCZ) and autism spectrum disorders (ASD), represent a global health challenge with their poorly understood and complex etiologies. Cortical interneurons (cINs) are the primary inhibitory neurons in the cortex and their subtypes, especially those that are generated from the medial ganglionic emission (MGE) region, have been shown to play an important role in the pathogenesis of these psychiatric disorders. Recent advances in induced pluripotent stem cell (iPSC) technologies provide exciting opportunities to model and study these disorders using human iPSC-derived cINs. In this review, we present a comprehensive overview of various methods employed to generate MGE-type cINs from human iPSCs, which are mainly categorized into induction by signaling molecules vs. direct genetic manipulation. We discuss their advantages, limitations, and potential applications in psychiatric disorder modeling to aid researchers in choosing the appropriate methods based on their research goals. We also provide examples of how these methods have been applied to study the pathogenesis of psychiatric disorders. In addition, we discuss ongoing challenges and future directions in the field. Overall, iPSC-derived cINs provide a powerful tool to model the developmental pathogenesis of psychiatric disorders, thus aiding in uncovering disease mechanisms and potential therapeutic targets. This review article will provide valuable resources for researchers seeking to navigate the complexities of cIN generation methods and their applications in the study of psychiatric disorders.
Collapse
Affiliation(s)
- Peiyan Ni
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, State Key Laboratory of Brain-Machine Intelligence, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Lingyi Fan
- The Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Youhui Jiang
- The Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Chuqing Zhou
- The Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Sangmi Chung
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
3
|
Synaptic plasticity and mental health: methods, challenges and opportunities. Neuropsychopharmacology 2023; 48:113-120. [PMID: 35810199 PMCID: PMC9700665 DOI: 10.1038/s41386-022-01370-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
Activity-dependent synaptic plasticity is a ubiquitous property of the nervous system that allows neurons to communicate and change their connections as a function of past experiences. Through reweighting of synaptic strengths, the nervous system can remodel itself, giving rise to durable memories that create the biological basis for mental function. In healthy individuals, synaptic plasticity undergoes characteristic developmental and aging trajectories. Dysfunctional plasticity, in turn, underlies a wide spectrum of neuropsychiatric disorders including depression, schizophrenia, addiction, and posttraumatic stress disorder. From a mechanistic standpoint, synaptic plasticity spans the gamut of spatial and temporal scales, from microseconds to the lifespan, from microns to the entire nervous system. With the numbers and strengths of synapses changing on such wide scales, there is an important need to develop measurement techniques with complimentary sensitivities and a growing number of approaches are now being harnessed for this purpose. Through hemodynamic measures, structural and tracer imaging, and noninvasive neuromodulation, it is possible to image structural and functional changes that underlie synaptic plasticity and associated behavioral learning. Here we review the mechanisms of neural plasticity and the historical and future trends in techniques that allow imaging of synaptic changes that accompany psychiatric disorders, highlighting emerging therapeutics and the challenges and opportunities accompanying this burgeoning area of study.
Collapse
|
4
|
Sex Differences in Anxiety and Depression: What Can (and Cannot) Preclinical Studies Tell Us? SEXES 2022. [DOI: 10.3390/sexes3010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In recent years, the gender perspective in scientific research and sex differences in biological studies on emotional disorders have become increasingly important. However, sex bias in basic research on anxiety and depression is still far from being covered. This review addresses the study of sex differences in the field of anxiety and depression using animal models that consider this issue so far. What can preclinical studies tell us and what are their main limitations? First, we describe the behavioral tests most frequently used in preclinical research to assess depressive-like and anxiety-like behaviors in rodents. Then, we analyze the main findings, strengths, and weaknesses of rodent models of anxiety and depression, dividing them into three main categories: sex chromosome complement-biased sex differences; gonadal hormone-biased sex differences; environmental-biased sex differences. Regardless of the animal model used, none can reproduce all the characteristics of such complex and multifactorial pathologies as anxiety and depressive disorders; however, each animal model contributes to elucidating the bases that underlie these disorders. The importance is highlighted of considering sex differences in the responses that emerge from each model.
Collapse
|
5
|
Animal models of postpartum depression revisited. Psychoneuroendocrinology 2022; 136:105590. [PMID: 34839082 DOI: 10.1016/j.psyneuen.2021.105590] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022]
Abstract
Postpartum depression (PPD) is a heterogeneous mood disorder and the most frequent psychiatric complication of the postnatal period. Given its potential long-lasting repercussions on the well-being of the mother and the infants, it should be a priority in public health. In spite of efforts devoted to clinical investigation and preclinical studies, the underlying neurobiological mechanisms of this disorder remain unknown in detail. Much of the progress in the area has been made from animal models, especially rodent models. The aim of this mini-review is to update the current rodent models in PPD research and their main contributions to the field. Animal models are critical tools to advance understanding of the pathophysiological basis of this disorder and to help the development of new therapeutic strategies. Here, we group PPD models into 2 main categories (Models based on hormone manipulations, Models based on stress exposure), each of which includes different paradigms that reflect risk factors or physiological conditions associated with this disease. Finally, we provide an overview of emerging models that provide new perspectives on the study of possible pathophysiological factors related to PPD, to contribute to tackling potential therapeutic targets.
Collapse
|
6
|
Igwe O, Sone M, Matveychuk D, Baker GB, Dursun SM. A review of effects of calorie restriction and fasting with potential relevance to depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110206. [PMID: 33316333 DOI: 10.1016/j.pnpbp.2020.110206] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/21/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
In recent years, there has been a great deal of interest in the effects of calorie reduction (calorie restriction) and fasting on depression. In the current paper, we have reviewed the literature in this area, with discussion of the possible neurobiological mechanisms involved in calorie restriction and intermittent fasting. Factors which may play a role in the effects of these dietary manipulations on health include changes involving free fatty acids, ketone bodies, neurotransmitters, cyclic adenosine monophosphate response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), cytokines, orexin, ghrelin, leptin, reactive oxygen species and autophagy. Several of these factors are potential contributors to improving symptoms of depression. Challenges encountered in research on calorie restriction and intermittent fasting are also discussed. Although much is now known about the acute effects of calorie restriction and intermittent fasting, further long term clinical studies are warranted.
Collapse
Affiliation(s)
- Ogechi Igwe
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Mari Sone
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Dmitriy Matveychuk
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
de Sousa MBC, de Meiroz Grilo MLP, Galvão-Coelho NL. Natural and Experimental Evidence Drives Marmosets for Research on Psychiatric Disorders Related to Stress. Front Behav Neurosci 2021; 15:674256. [PMID: 34177478 PMCID: PMC8227430 DOI: 10.3389/fnbeh.2021.674256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/07/2021] [Indexed: 11/28/2022] Open
Abstract
Knowledge of the behavioral ecology of marmosets carried out in their natural habitat associated with the advent of a non-invasive technique for measuring steroid hormones in feces has made a significant contribution to understanding their social relationships and sexual strategies. These studies showed that they are mainly monogamous, live in relatively stable social groups according to a social hierarchy in which females compete and males cooperate, and form social bonds similar to humans, which makes this species a potential animal model to study disorders related to social stress. In addition, laboratory studies observed the expression of behaviors similar to those in nature and deepened the descriptions of their social and reproductive strategies. They also characterized their responses to the challenge using behavioral, cognitive, physiological, and genetic approaches that were sexually dimorphic and influenced by age and social context. These findings, added to some advantages which indicate good adaptation to captivity and the benefits of the birth of twins, small size, and life cycle in comparison to primates of the Old World, led to their use as animal models for validating psychiatric diseases such as major depression. Juvenile marmosets have recently been used to develop a depression model and to test a psychedelic brew called Ayahuasca from the Amazon rainforest as an alternative treatment for major depression, for which positive results have been found which encourage further studies in adolescents. Therefore, we will review the experimental evidence obtained so far and discuss the extension of the marmoset as an animal model for depression.
Collapse
Affiliation(s)
- Maria Bernardete Cordeiro de Sousa
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Postgraduation Program in Psychobiology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Postgraduation Program in Neuroscience, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Laboratory of Advanced Studies in Primates, UFRN-Brazil, and Laboratory of Hormone Measurement, Department of Physiology and Behavior, Natal, Brazil
| | - Maria Lara Porpino de Meiroz Grilo
- Postgraduation Program in Psychobiology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Laboratory of Advanced Studies in Primates, UFRN-Brazil, and Laboratory of Hormone Measurement, Department of Physiology and Behavior, Natal, Brazil
| | - Nicole Leite Galvão-Coelho
- Postgraduation Program in Psychobiology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Laboratory of Advanced Studies in Primates, UFRN-Brazil, and Laboratory of Hormone Measurement, Department of Physiology and Behavior, Natal, Brazil.,Department of Physiology and Behavior, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,National Institute of Science and Technology in Translational Medicine, Ribeirao Preto, Brazil
| |
Collapse
|
8
|
Lages YVM, Mograbi DC, Krahe TE, Landeira-Fernandez J. Theoretical, and epistemological challenges in scientific investigations of complex emotional states in animals. Conscious Cogn 2020; 84:103003. [PMID: 32810835 DOI: 10.1016/j.concog.2020.103003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
This review brings to light critical epistemological and theoretical considerations when studying complex emotional states in animals. We discuss anthropomorphic and Umwelt perspectives of nonhuman animals and the ways in which distinct theories of consciousness and neural processing may restrict the potential for the development of knowledge on the topic. Within the same line of argumentation, we consider influences of the debate between monism and dualism and psychology's behaviorism and cognitive theories. Finally, we contrast the affective consciousness, higher-order emotional consciousness, and constructed emotion theories to further our understanding of complex emotional states in animals.
Collapse
Affiliation(s)
- Yury V M Lages
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel C Mograbi
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Thomas E Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Sher LD, Geddie H, Olivier L, Cairns M, Truter N, Beselaar L, Essop MF. Chronic stress and endothelial dysfunction: mechanisms, experimental challenges, and the way ahead. Am J Physiol Heart Circ Physiol 2020; 319:H488-H506. [PMID: 32618516 DOI: 10.1152/ajpheart.00244.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although chronic stress is an important risk factor for cardiovascular diseases (CVD) onset, the underlying mechanisms driving such pathophysiological complications remain relatively unknown. Here, dysregulation of innate stress response systems and the effects of downstream mediators are strongly implicated, with the vascular endothelium emerging as a primary target of excessive glucocorticoid and catecholamine action. Therefore, this review article explores the development of stress-related endothelial dysfunction by focusing on the following: 1) assessing the phenomenon of stress and complexities surrounding this notion, 2) discussing mechanistic links between chronic stress and endothelial dysfunction, and 3) evaluating the utility of various preclinical models currently employed to study mechanisms underlying the onset of stress-mediated complications such as endothelial dysfunction. The data reveal that preclinical models play an important role in our efforts to gain an increased understanding of mechanisms underlying stress-mediated endothelial dysfunction. It is our understanding that this provides a good foundation going forward, and we propose that further efforts should be made to 1) more clearly define the concept of stress and 2) standardize protocols of animal models with specific guidelines to better indicate the mental complications that are simulated.
Collapse
Affiliation(s)
- Lucien Derek Sher
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Hannah Geddie
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Lukas Olivier
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Megan Cairns
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Nina Truter
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Leandrie Beselaar
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - M Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
10
|
Humer E, Probst T, Pieh C. Metabolomics in Psychiatric Disorders: What We Learn from Animal Models. Metabolites 2020; 10:E72. [PMID: 32079262 PMCID: PMC7074444 DOI: 10.3390/metabo10020072] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Biomarkers are a recent research target within biological factors of psychiatric disorders. There is growing evidence for deriving biomarkers within psychiatric disorders in serum or urine samples in humans, however, few studies have investigated this differentiation in brain or cerebral fluid samples in psychiatric disorders. As brain samples from humans are only available at autopsy, animal models are commonly applied to determine the pathogenesis of psychiatric diseases and to test treatment strategies. The aim of this review is to summarize studies on biomarkers in animal models for psychiatric disorders. For depression, anxiety and addiction disorders studies, biomarkers in animal brains are available. Furthermore, several studies have investigated psychiatric medication, e.g., antipsychotics, antidepressants, or mood stabilizers, in animals. The most notable changes in biomarkers in depressed animal models were related to the glutamate-γ-aminobutyric acid-glutamine-cycle. In anxiety models, alterations in amino acid and energy metabolism (i.e., mitochondrial regulation) were observed. Addicted animals showed several biomarkers according to the induced drugs. In summary, animal models provide some direct insights into the cellular metabolites that are produced during psychiatric processes. In addition, the influence on biomarkers due to short- or long-term medication is a noticeable finding. Further studies should combine representative animal models and human studies on cerebral fluid to improve insight into mental disorders and advance the development of novel treatment strategies.
Collapse
Affiliation(s)
- Elke Humer
- Department for Psychotherapy and Biopsychosocial Health, Danube University Krems, 3500 Krems, Austria; (T.P.); (C.P.)
| | | | | |
Collapse
|
11
|
Abstract
Short-chain fatty acids (SCFAs), the main metabolites produced by bacterial fermentation of dietary fibre in the gastrointestinal tract, are speculated to have a key role in microbiota-gut-brain crosstalk. However, the pathways through which SCFAs might influence psychological functioning, including affective and cognitive processes and their neural basis, have not been fully elucidated. Furthermore, research directly exploring the role of SCFAs as potential mediators of the effects of microbiota-targeted interventions on affective and cognitive functioning is sparse, especially in humans. This Review summarizes existing knowledge on the potential of SCFAs to directly or indirectly mediate microbiota-gut-brain interactions. The effects of SCFAs on cellular systems and their interaction with gut-brain signalling pathways including immune, endocrine, neural and humoral routes are described. The effects of microbiota-targeted interventions such as prebiotics, probiotics and diet on psychological functioning and the putative mediating role of SCFA signalling will also be discussed, as well as the relationship between SCFAs and psychobiological processes. Finally, future directions to facilitate direct investigation of the effect of SCFAs on psychological functioning are outlined.
Collapse
|
12
|
Bassir Nia A, Eveleth MC, Gabbay JM, Hassan YJ, Zhang B, Perez-Rodriguez MM. Past, present, and future of genetic research in borderline personality disorder. Curr Opin Psychol 2018; 21:60-68. [PMID: 29032046 PMCID: PMC5847441 DOI: 10.1016/j.copsyc.2017.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/24/2017] [Accepted: 09/05/2017] [Indexed: 01/19/2023]
Abstract
Borderline Personality Disorder (BPD) is a major mental illness with a lifetime prevalence of approximately 1-3%, characterized by a persistent pattern of instability in relationships, mood, impulse regulation, and sense of self. This results in impulsive self-damaging behavior, high suicide rates, and severe functional impairment. BPD has a complex, multifactorial etiology, resulting from an interaction among genetic and environmental substrates, and has moderate to high heritability based on twin and family studies. However, our understanding of the genetic architecture of BPD is very limited. This is a critical obstacle since genetics can pave the way for identifying new treatment targets and developing preventive and disease-modifying pharmacological treatments which are currently lacking. We review genetic studies in BPD, with a focus on limitations and challenges and future directions. Genetic research in BPD is still in its very early stages compared to other major psychiatric disorders. Most early genetic studies in BPD were non-replicated association studies in small samples, focused on single candidate genes. More recently, there has been one genome-wide linkage study and a genome-wide association study (GWAS) of subclinical BPD traits and a first GWAS in a relatively modest sample of patients fulfilling full diagnostic criteria for the disorder. Although there are adequate animal models for some of the core dimensions of BPD, there is a lack of translational research including data from animal models in BPD. Research in more pioneering fields, such as imaging genetics, deep sequencing and epigenetics, holds promise for elucidating the pathophysiology of BPD and identifying new treatment targets.
Collapse
Affiliation(s)
- Anahita Bassir Nia
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew C Eveleth
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan M Gabbay
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yonis J Hassan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bosi Zhang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - M Mercedes Perez-Rodriguez
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA; CIBERSAM, Autonoma University, Fundacion Jimenez Diaz and Ramon y Cajal Hospital, Madrid, Spain.
| |
Collapse
|
13
|
Coronel-Oliveros CM, Pacheco-Calderón R. Prenatal exposure to ketamine in rats: Implications on animal models of schizophrenia. Dev Psychobiol 2017; 60:30-42. [DOI: 10.1002/dev.21586] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/28/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Carlos M. Coronel-Oliveros
- Laboratorio de Neurociencias y Comportamiento (LabNeC); Centro de Estudios en Zoología Aplicada (CEZA); Facultad Experimental de Ciencias y Tecnología (FACyT); Universidad de Carabobo; Valencia Venezuela
| | - Renny Pacheco-Calderón
- Laboratorio de Neurociencias y Comportamiento (LabNeC); Centro de Estudios en Zoología Aplicada (CEZA); Facultad Experimental de Ciencias y Tecnología (FACyT); Universidad de Carabobo; Valencia Venezuela
| |
Collapse
|
14
|
Tagliabue E, Pouvreau T, Eybrard S, Meyer F, Louilot A. Dopaminergic responses in the core part of the nucleus accumbens to subcutaneous MK801 administration are increased following postnatal transient blockade of the prefrontal cortex. Behav Brain Res 2017; 335:191-198. [PMID: 28823626 DOI: 10.1016/j.bbr.2017.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/07/2017] [Accepted: 08/12/2017] [Indexed: 12/24/2022]
Abstract
Schizophrenia is a complex and devastating neuropsychiatric disease thought to result from impaired connectivity between several integrative regions, stemming from developmental failures. In particular, the left prefrontal cortex of schizophrenia patients seems to be targeted by such early developmental disturbances. Data obtained over the last three decades support the hypothesis of a dopaminergic dysfunction in schizophrenia. Striatal dopaminergic dysregulation in schizophrenia may result from a dysconnection between the prefrontal cortex and the striatum (dorsal and ventral) involving glutamatergic N-methyl-d-aspartate (NMDA) receptors. In the context of animal modeling of the pathophysiology of schizophrenia, the present study was designed to investigate the effects of MK 801 (dizocilpine) on locomotor activity and dopaminergic responses in the left core part of the nucleus accumbens (ventral striatum) in adult rats following neonatal tetrodotoxin inactivation of the left prefrontal cortex (infralimbic/prelimbic region) at postnatal day 8. Dopaminergic variations were recorded in the nucleus accumbens by means of in vivo voltammetry in freely moving adult animals. Following MK 801 administration, and in comparison to control (PBS) animals, animals microinjected with tetrodotoxin display locomotor hyperactivity and increased extracellular dopamine levels in the core part of the nucleus accumbens. These findings suggest neonatal functional inactivation of the prefrontal cortex may lead to a dysregulation of dopamine release in the core part of the nucleus accumbens involving NMDA receptors. The results obtained may provide new insight into the involvement of NMDA receptors in the pathophysiology of schizophrenia and suggest that future studies should look carefully at the core of the nucleus accumbens.
Collapse
Affiliation(s)
- Emmanuelle Tagliabue
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Tiphaine Pouvreau
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Séverine Eybrard
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Francisca Meyer
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Alain Louilot
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France.
| |
Collapse
|
15
|
Deng B. Mouse models and induced pluripotent stem cells in researching psychiatric disorders. Stem Cell Investig 2017; 4:62. [PMID: 28815173 DOI: 10.21037/sci.2017.06.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 05/25/2017] [Indexed: 01/15/2023]
Abstract
Psychiatric disorders are a problem for society both on a micro level involving patients and their families as well as on a macro level involving global economic costs. For years, scientists have relied on mouse models for research, but these have shortcomings that greatly hinder efforts to understand the pathophysiology and genetic factors of psychiatric disorders. Induced pluripotent stem cells (iPSCs) have shown potential to overcome obstacles that mouse models face and can provide patient-specific cells that allow for better understanding of genetic effects on psychiatric disorders. This review explores the current progress using iPSCs to model psychiatric disorders, specifically bipolar disorder and schizophrenia, while discussing remaining issues with iPSC use and how these issues can be resolved in the future.
Collapse
Affiliation(s)
- Bowei Deng
- Masters of Science in Biomedical Sciences Program, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Mahmood D, Akhtar M, Jahan K, Goswami D. Histamine H3 receptor antagonists display antischizophrenic activities in rats treated with MK-801. J Basic Clin Physiol Pharmacol 2017; 27:463-71. [PMID: 27089413 DOI: 10.1515/jbcpp-2015-0045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 03/05/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Animal models based on N-methyl-d-aspartate receptor blockade have been extensively used for schizophrenia. Ketamine and MK-801 produce behaviors related to schizophrenia and exacerbated symptoms in patients with schizophrenia, which led to the use of PCP (phencyclidine)- and MK-801 (dizocilpine)-treated animals as models for schizophrenia. METHODS The study investigated the effect of subchronic dosing (once daily, 7 days) of histamine H3 receptor (H3R) antagonists, ciproxifan (CPX) (3 mg/kg, i.p.), and clobenpropit (CBP) (15 mg/kg, i.p.) on MK-801 (0.2 mg/kg, i.p.)-induced locomotor activity and also measured dopamine and histamine levels in rat's brain homogenates. The study also included clozapine (CLZ) (3.0 mg/kg, i.p.) and chlorpromazine (CPZ) (3.0 mg/kg, i.p.), the atypical and typical antipsychotic, respectively. RESULTS Atypical and typical antipsychotic was used to serve as clinically relevant reference agents to compare the effects of the H3R antagonists. MK-801 significantly increased horizontal locomotor activity, which was reduced with CPX and CBP. MK-801-induced locomotor hyperactivity attenuated by CPX and CBP was comparable to CLZ and CPZ. MK-801 raised striatal dopamine level, which was reduced in rats pretreated with CPX and CBP. CPZ also significantly lowered striatal dopamine levels, although the decrease was less robust compared to CLZ, CPX, and CBP. MK-801 increased histamine content although to a lesser degree. Subchronic treatment with CPX and CBP exhibited further increased histamine levels in the hypothalamus compared to MK-801 treatment alone. Histamine H3 receptor agonist, R-α methylhistamine (10 mg/kg, i.p.), counteracted the effect of CPX and CBP. CONCLUSIONS The present study shows the positive effects of CPX and CBP on MK-801-induced schizophrenia-like behaviors in rodents.
Collapse
|
17
|
Hashemiyoon R, Kuhn J, Visser-Vandewalle V. Putting the Pieces Together in Gilles de la Tourette Syndrome: Exploring the Link Between Clinical Observations and the Biological Basis of Dysfunction. Brain Topogr 2017; 30:3-29. [PMID: 27783238 PMCID: PMC5219042 DOI: 10.1007/s10548-016-0525-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022]
Abstract
Gilles de la Tourette syndrome is a complex, idiopathic neuropsychiatric disorder whose pathophysiological mechanisms have yet to be elucidated. It is phenotypically heterogeneous and manifests more often than not with both motor and behavioral impairment, although tics are its clinical hallmark. Tics themselves present with a complex profile as they characteristically wax and wane and are often preceded by premonitory somatosensory sensations to which it is said a tic is the response. Highly comorbid with obsessive-compulsive disorder and attention deficit-hyperactivity disorder, it is purported to be an epigenetic, neurodevelopmental spectrum disorder with a complex genetic profile. It has a childhood onset, occurs disproportionately in males, and shows spontaneous symptomatic attenuation by adulthood in the majority of those afflicted. Although not fully understood, its neurobiological basis is linked to dysfunction in the cortico-basal ganglia-thalamo-cortical network. Treatment modalities for Tourette syndrome include behavioral, pharmacological and surgical interventions, but there is presently no cure for the disorder. For those severely affected, deep brain stimulation (DBS) has recently become a viable therapeutic option. A key factor to attaining optimal results from this surgery is target selection, a topic still under debate due to the complex clinical profile presented by GTS patients. Depending on its phenotypic expression and the most problematic aspect of the disorder for the individual, one of three brain regions is most commonly chosen for stimulation: the thalamus, globus pallidus, or nucleus accumbens. Neurophysiological analyses of intra- and post-operative human electrophysiological recordings from clinical DBS studies suggest a link between tic behavior and activity in both the thalamus and globus pallidus. In particular, chronic recordings from the thalamus have shown a correlation between symptomatology and (1) spectral activity in gamma band power and (2) theta/gamma cross frequency coherence. These results suggest gamma oscillations and theta/gamma cross correlation dynamics may serve as biomarkers for dysfunction. While acute and chronic recordings from human subjects undergoing DBS have provided better insight into tic genesis and the neuropathophysiological mechanisms underlying Tourette syndrome, these studies are still sparse and the field would greatly benefit from further investigations. This review reports data and discoveries of scientific and clinical relevance from a wide variety of methods and provides up-to-date information about our current understanding of the pathomechanisms underlying Tourette syndrome. It gives a comprehensive overview of the current state of knowledge and addresses open questions in the field.
Collapse
Affiliation(s)
- Rowshanak Hashemiyoon
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany.
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Cologne, Germany
- Johanniter Hospital, EVKLN, Oberhausen, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
| |
Collapse
|
18
|
Schubert KO, Weiland F, Baune BT, Hoffmann P. The use of MALDI-MSI in the investigation of psychiatric and neurodegenerative disorders: A review. Proteomics 2016; 16:1747-58. [DOI: 10.1002/pmic.201500460] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/08/2016] [Accepted: 02/24/2016] [Indexed: 11/11/2022]
Affiliation(s)
| | - Florian Weiland
- Adelaide Proteomics Centre; The University of Adelaide; Adelaide Australia
- Institute for Photonics and Advanced Sensing (IPAS); The University of Adelaide; Adelaide Australia
| | - Bernhard T. Baune
- Discipline of Psychiatry; The University of Adelaide; Adelaide Australia
| | - Peter Hoffmann
- Adelaide Proteomics Centre; The University of Adelaide; Adelaide Australia
- Institute for Photonics and Advanced Sensing (IPAS); The University of Adelaide; Adelaide Australia
| |
Collapse
|
19
|
Wang X, Pinto-Duarte A, Behrens MM, Zhou X, Sejnowski TJ. Characterization of spatio-temporal epidural event-related potentials for mouse models of psychiatric disorders. Sci Rep 2015; 5:14964. [PMID: 26459883 PMCID: PMC4602219 DOI: 10.1038/srep14964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/11/2015] [Indexed: 11/30/2022] Open
Abstract
Distinctive features in sensory event-related potentials (ERPs) are endophenotypic biomarkers of psychiatric disorders, widely studied using electroencephalographic (EEG) methods in humans and model animals. Despite the popularity and unique significance of the mouse as a model species in basic research, existing EEG methods applicable to mice are far less powerful than those available for humans and large animals. We developed a new method for multi-channel epidural ERP characterization in behaving mice with high precision, reliability and convenience and report an application to time-domain ERP feature characterization of the Sp4 hypomorphic mouse model for schizophrenia. Compared to previous methods, our spatio-temporal ERP measurement robustly improved the resolving power of key signatures characteristic of the disease model. The high performance and low cost of this technique makes it suitable for high-throughput behavioral and pharmacological studies.
Collapse
Affiliation(s)
- Xin Wang
- Howard Hughes Medical Institute and the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - António Pinto-Duarte
- Howard Hughes Medical Institute and the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - M Margarita Behrens
- Howard Hughes Medical Institute and the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Xianjin Zhou
- Department of Psychiatry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Terrence J Sejnowski
- Howard Hughes Medical Institute and the Salk Institute for Biological Studies, La Jolla, CA 92037, USA.,Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Mahmood D, Pillai KK, Khanam R, Jahan K, Goswami D, Akhtar M. The Effect of Subchronic Dosing of Ciproxifan and Clobenpropit on Dopamine and Histamine Levels in Rats. J Exp Neurosci 2015; 9:73-80. [PMID: 26379444 PMCID: PMC4556212 DOI: 10.4137/jen.s27244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/07/2015] [Accepted: 06/22/2015] [Indexed: 01/16/2023] Open
Abstract
The present study was designed to investigate the effect of once daily for 7-day (subchronic treatment) dosing of histamine H3 receptor antagonists, ciproxifan (CPX) (3 mg/kg, i.p.), and clobenpropit (CBP) (15 mg/kg, i.p), including clozapine (CLZ) (3.0 mg/kg, i.p.) and chlorpromazine (CPZ) (3.0 mg/kg, i.p.), the atypical and typical antipsychotic, respectively, on MK-801(0.2 mg/kg, i.p.)-induced locomotor activity, and dopamine and histamine levels in rats. Dopamine and histamine levels were measured in striatum and hypothalamus, respectively, of rat brain. Atypical and typical antipsychotics were used to serve as clinically relevant reference agents to compare the effects of the H3 receptor antagonists. MK-801-induced increase of horizontal activity was reduced with CPX and CBP. The attenuation of MK-801-induced locomotor hyperactivity produced by CPX and CBP was comparable to CLZ and CPZ. MK-801 raised dopamine levels in the striatum, which was reduced in rats pretreated with CPX and CBP. CPZ also lowered striatal dopamine levels, though the decrease was less robust compared to CLZ, CPX and CBP. MK-801 increased histamine content although to a lesser degree. Subchronic treatment with CPX and CBP exhibited further increase in histamine levels in the hypothalamus compared to the MK-801 treatment alone. Histamine H3 receptor agonist, R-α methylhistamine (10 mg/kg, i.p.) counteracted the effects of CPX and CBP. In conclusion, the subchronic dosing of CPX/CBP suggests some antipsychotic-like activities as CPX/CBP counteracts the modulatory effects of MK-801 on dopamine and histamine levels and prevents MK-801-induced hyperlocomotor behaviors.
Collapse
Affiliation(s)
- D Mahmood
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - K K Pillai
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - R Khanam
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - K Jahan
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - D Goswami
- Ranbaxy Research Laboratories Ltd., Gurgoan, Haryana, India
| | - M Akhtar
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| |
Collapse
|
21
|
Nunes EA, Hallak JEC. Modelos animais em psiquiatria: avanços e desafios. REVISTA LATINOAMERICANA DE PSICOPATOLOGIA FUNDAMENTAL 2014. [DOI: 10.1590/1415-4714.2014v17n3p528-10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objetivos: Discutir os avanços e limitações do uso dos modelos animais nos transtornos psiquiátricos. Método: Uma revisão narrativa de artigos. Resultados: Diferentes modelos animais atualmente demonstram validade adequada para características específicas de determinados transtornos mentais. Conclusão: Resguardadas as devidas limitações que impossibilitam mimetizar sintomas psicopatológicos complexos em modelos animais, estes seguem como úteis ferramentas de estudo na psiquiatria.
Collapse
|
22
|
Schmahl C, Herpertz SC, Bertsch K, Ende G, Flor H, Kirsch P, Lis S, Meyer-Lindenberg A, Rietschel M, Schneider M, Spanagel R, Treede RD, Bohus M. Mechanisms of disturbed emotion processing and social interaction in borderline personality disorder: state of knowledge and research agenda of the German Clinical Research Unit. Borderline Personal Disord Emot Dysregul 2014; 1:12. [PMID: 26401296 PMCID: PMC4579501 DOI: 10.1186/2051-6673-1-12] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/22/2014] [Indexed: 12/15/2022] Open
Abstract
The last two decades have seen a strong rise in empirical research in the mechanisms of emotion dysregulation in borderline personality disorder. Major findings comprise structural as well as functional alterations of brain regions involved in emotion processing, such as amygdala, insula, and prefrontal regions. In addition, more specific mechanisms of disturbed emotion regulation, e.g. related to pain and dissociation, have been identified. Most recently, social interaction problems and their underlying neurobiological mechanisms, e.g. disturbed trust or hypersensitivity to social rejection, have become a major focus of BPD research. This article covers the current state of knowledge and related relevant research goals. The first part presents a review of the literature. The second part delineates important open questions to be addressed in future studies. The third part describes the research agenda for a large German center grant focusing on mechanisms of emotion dysregulation in BPD.
Collapse
Affiliation(s)
- Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, J 5, 68159 Mannheim, Germany
| | - Sabine C Herpertz
- Department of General Psychiatry, Center of Psychosocial Medicine, Medical Faculty Heidelberg / Heidelberg University, Heidelberg, Germany
| | - Katja Bertsch
- Department of General Psychiatry, Center of Psychosocial Medicine, Medical Faculty Heidelberg / Heidelberg University, Heidelberg, Germany
| | - Gabriele Ende
- Department of Neuroimaging, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Herta Flor
- Institute of Neuropsychology and Clinical Psychology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Stefanie Lis
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, J 5, 68159 Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Miriam Schneider
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Martin Bohus
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, J 5, 68159 Mannheim, Germany
| |
Collapse
|
23
|
Teixeira AL, Quevedo J. Animal models in psychiatry. BRAZILIAN JOURNAL OF PSYCHIATRY 2013; 35 Suppl 2:S73-4. [PMID: 24271227 DOI: 10.1590/1516-4446-2013-1182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- Antonio L Teixeira
- Instituto de Estudos Avançados Transdisciplinares, Universidade Federal de Minas Gerais, Belo HorizonteMG, Brazil
| | | |
Collapse
|