1
|
Amaro-Leal Â, Afonso AI, Machado F, Shvachiy L, Rocha I, Outeiro TF, Geraldes V. Dose-Dependent Cognitive Decline, Anxiety, and Locomotor Impairments Induced by Doxorubicin: Evidence from an Animal Model. BIOLOGY 2024; 13:939. [PMID: 39596894 PMCID: PMC11592173 DOI: 10.3390/biology13110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Cognitive impairment and anxiety are common side effects of chemotherapy, particularly with the use of doxorubicin (DOX), known as "chemobrain". This study aimed to examine the dose-dependent effects of DOX on cognitive decline, anxiety, and locomotor activity in healthy female Wistar rats. The rats were divided into groups receiving low (2 mg/kg), intermediate (4 mg/kg), and high (5 mg/kg) doses of DOX for four weeks, alongside a control group. Behavioral tests, including open field, elevated plus maze, and Y-maze tests, assessed anxiety, locomotion, and cognitive performance, while brain tissue analysis evaluated neuroinflammation using markers such as GFAP and Iba-1. The results showed that all doses of DOX induced anxiety-like behavior, reduced locomotion, and caused neuroinflammation in the hippocampus, with more severe effects at higher doses. Notably, high-dose DOX also caused short-term memory deficits. These findings highlight the dose-dependent nature of DOX's impact on behavior and cognition, suggesting that DOX plays a key role in the development of cognitive symptoms during chemotherapy. Further research is needed to understand the mechanisms behind these effects and to explore potential interventions.
Collapse
Affiliation(s)
- Ângela Amaro-Leal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Ana I. Afonso
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| | - Filipa Machado
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| | - Liana Shvachiy
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Isabel Rocha
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Vera Geraldes
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
2
|
Bardaghi Z, Rajabian A, Beheshti F, Hashemi-Arabi M, Hosseini M, Salmani H. Memantine, an NMDA receptor antagonist, protected the brain against the long-term consequences of sepsis in mice. Life Sci 2023; 323:121695. [PMID: 37062446 DOI: 10.1016/j.lfs.2023.121695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
AIMS Long-term neuroinflammation and brain dysfunction have frequently been reported in sepsis survivors. In this study, the protective effect of memantine (an NMDA receptor antagonist) on the long-term consequences of sepsis on the brain was investigated in mice. MATERIALS AND METHODS Eighty-five male C57 mice were included. Memantine was administrated through gavage at 5, 10, and 20 mg/kg three days before sepsis and continued for three days after sepsis induction. Sepsis was induced by intraperitoneal injection of 5 mg/kg LPS. A cohort of mice was sacrificed on the 4th day post sepsis to measure NF-κB, TNF-α, and IL-1β mRNA expression and oxidative stress markers in the brain. The second cohort was used for behavioral tests one month after sepsis induction and then sacrificed for oxidative stress markers and acetylcholinesterase (AChE) activity measurement. KEY FINDINGS MDA levels and mRNA expression of NF-κB, TNF-α, and IL-1β ameliorated by memantine at the early days of sepsis induction, and total thiol content and SOD activity were increased. Post-septic mice showed significant disruption of recognition memory in novel object recognition (NOR) and depressive and anxiety-like behaviors in tail suspension test, elevated plus maze (EPM), and open field tests one month after sepsis. Memantine at 10 and 20 mg/kg dose-dependently ameliorated behavioral abnormalities, reduced AChE activity and MDA levels, and enhanced SOD activity and thiol content one month after sepsis. SIGNIFICANCE These findings suggest that early treatment of septic mice with memantine could ameliorate brain inflammation and oxidative damage and prevent long-term behavioral consequences of sepsis.
Collapse
Affiliation(s)
- Zahra Bardaghi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Masoud Hashemi-Arabi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Salmani
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
3
|
Valdivieso-Jiménez G, Valencia-Mesias G, Paucar-Alfaro J. [Factors Associated With Delirium In Patients Hospitalized During The COVID-19 Pandemic]. REVISTA COLOMBIANA DE PSIQUIATRIA 2022:S0034-7450(22)00117-2. [PMID: 36311344 PMCID: PMC9595373 DOI: 10.1016/j.rcp.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To determine the risk factors associated with delirium in patients admitted to a COVID-19 Hospitalization of a general hospital during the first year of the COVID-19 pandemic. METHODS An observational, analytical, case-control study was conducted. We analyzed 50 medical records of patients who presented delirium and 50 who did not present delirium in a COVID Hospitalization area during the period from March 2020 to March 2021. The Odd Ratio of sociodemographic and clinical factors for presenting delirium was evaluated. The logistic regression statistical test was performed using STATA 17.0 software. The protocol was approved by the Research Ethics Committee of the Villa El Salvador Emergency Hospital. RESULTS Ventilatory support (p=0.04), especially the use of a reservoir mask (OR=0.34, CI 0.12-0.88) and the presence of systemic complications (p=0.03) such as metabolic acidosis (OR=12.9, CI 1.45-115.58) were statistically significant variables associated with a higher risk of presenting delirium. CONCLUSIONS The type of ventilatory support and the presence of systemic complications were significant risk factors for delirium in patients hospitalized in a COVID area. Further studies are required in this field to obtain more evidence in this regard.
Collapse
|
4
|
Zhang LT, Xu X, Han H, Cao SM, Li LL, Lv J, Zhang LR, Li JG. The value of NSE to predict ICU mortality in patients with septic shock: A prospective observational study. Medicine (Baltimore) 2022; 101:e30941. [PMID: 36221401 PMCID: PMC9542734 DOI: 10.1097/md.0000000000030941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To investigate the predictive value of neuron-specific enolase (NSE) on intensive care unit (ICU) mortality in patients with septic shock. Seventy-five patients with septic shock hospitalized in the emergency intensive care unit (EICU) of Hebei General Hospital from March 2020 to September 2021 were included, and the patients' baseline characteristics and laboratory findings were collected. NSE levels on the first and fourth days after admission were retrieved. NSE% [(NSEday1 - NSEday4)/NSEday1 × 100%] and δNSE (NSEday1 - NSEday4) were calculated. The outcome indicator was ICU mortality. The patients were divided into the survivors group (n = 57) and the nonsurvivors group (n = 18). Multivariate analysis was performed to assess the relationship between NSE and ICU mortality. The predictive value of NSE was evaluated using receiver operating characteristic (ROC) curve. There were no significant differences in age, gender, systolic blood pressure (SBP), heart rate (HR), acute physiology and chronic health evaluation II score (APACHE II score), source of infection, and comorbidities between the 2 groups (all P > .05). Interleukin-6 (IL-6), NSE (day1), and NSE (day4) were significantly higher in patients in the nonsurvivors group (all P < .05), and there were no statistical differences in other laboratory tests between the 2 groups (all P > .05). APACHE II score, IL-6, lactate (Lac), total bilirubin (TBil), NSE (day1), and NSE (day4) showed a weak positive correlation with ICU mortality in patients with septic shock (all P < .05). Multivariate logistic regression analysis demonstrated that APACHE II score (odds ratio [OR] = 1.166, 95% confidence interval [95% confidence interval [CI]] 1.005-1.352, P = .042), IL-6 (OR = 1.001, 95% CI 1.000-1.001, P = .003) and NSE (day4) (OR = 1.099, 95% CI 1.027-1.176, P = .006) were independently associated with the ICU mortality of sepsis shock patients. The area under the curve (AUCs) of APACHE II score, IL-6, NSE (day1), and NSE (day4) for predicting prognosis were 0.650, 0.694, 0.758 and 0.770, respectively (all P < .05). NSE(day4) displayed good sensitivity and specificity (Sn = 61.11%, Sp = 91.23%) for predicting ICU mortality with a cutoff value of 25.94 ug/L. High-level NSE (day4) is an independent predictor of ICU mortality in sepsis shock patients, which may become a good alternate option for evaluating sepsis severity. More extensive studies are needed in the future to demonstrate the prognosis value of NSE.
Collapse
Affiliation(s)
- Li-Tao Zhang
- Department of Emergency, Hebei General Hospital, Shijiazhuang Hebei, China
- *Correspondence: Li-Tao Zhang, Department of Emergency, Hebei General Hospital, Shijiazhuang Hebei, China, 050000 (e-mail: )
| | - Xin Xu
- Department of Emergency, Hebei General Hospital, Shijiazhuang Hebei, China
| | - Hu Han
- Department of Emergency, Hebei General Hospital, Shijiazhuang Hebei, China
| | - Shu-Min Cao
- Graduate School of Hebei Medical University, Shijiazhuang Hebei, China
- Department of Oncology, Hebei General Hospital, Shijiazhuang Hebei, China
| | - Ling-Ling Li
- Department of Emergency, Hebei General Hospital, Shijiazhuang Hebei, China
| | - Jian Lv
- Department of Emergency, Hebei General Hospital, Shijiazhuang Hebei, China
| | - Li-Ru Zhang
- Department of Emergency, Hebei General Hospital, Shijiazhuang Hebei, China
| | - Jian-Guo Li
- Department of Emergency, Hebei General Hospital, Shijiazhuang Hebei, China
| |
Collapse
|
5
|
Browne CA, Clarke G, Fitzgerald P, O'Sullivan J, Dinan TG, Cryan JF. Distinct post-sepsis induced neurochemical alterations in two mouse strains. Brain Behav Immun 2022; 104:39-53. [PMID: 35569797 DOI: 10.1016/j.bbi.2022.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 11/20/2022] Open
Abstract
Sepsis associated encephalopathy, occurs in 70% of severe septic cases, following which survivors exhibit long-term cognitive impairment or global loss of cognitive function. Currently there is no clearly defined neurochemical basis of septic encephalopathy. Moreover, the lingering neurological complications associated with the severe acute respiratory syndrome CoV 2 (SARS-CoV-2) and the significant worsening in outcomes for those individuals with SARS-Cov-2 following sepsis underscore the need to define factors underlying the susceptibility to acute toxic encephalitis. In this study, differential neurochemical sequelae in response to sepsis (lipopolysaccharide (LPS)-induced endotoxemia and caecal ligation and puncture (CLP)), were evaluated in two inbred mouse strains, known to differ in behaviour, immune profile, and neurotransmitter levels, namely BALB/c and C57BL/6J. It was hypothesized that these strains would differ in sepsis severity, cytokine profile, peripheral tryptophan metabolism and central monoamine turnover. BALB/c mice exhibited more pronounced sickness behavioural scores, hypothermia, and significant upregulation of cytokines in the LPS model relative to C57BL/6J mice. Increased plasma kynurenine/tryptophan ratio, hippocampal serotonin and brainstem dopamine turnover were evident in both strains, but the magnitude was greater in BALB/c mice. In addition, CLP significantly enhanced kynurenine levels and hippocampal serotonergic and dopaminergic neurotransmission in C57BL/6J mice. Overall, these studies depict consistent changes in kynurenine, serotonin, and dopamine post sepsis. Further evaluation of these monoamines in the context of septic encephalopathy and cognitive decline is warranted. Moreover, these data suggest the continued evaluation of altered peripheral kynurenine metabolism as a potential blood-based biomarker of sepsis.
Collapse
Affiliation(s)
- Caroline A Browne
- APC Microbiome Ireland, University College Cork, Ireland; Neuropharmacology Research Group, Department of Pharmacology & Therapeutics, University College Cork, Ireland; Department of Psychiatry & Neurobehavioural Science, University College Cork, Ireland.
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | | | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Ireland; Neuropharmacology Research Group, Department of Pharmacology & Therapeutics, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Neuropharmacology Research Group, Department of Pharmacology & Therapeutics, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| |
Collapse
|
6
|
Chen Y, Hu Y, Li X, Chen P, Wang C, Wang J, Wu J, Sun Y, Zheng G, Lu Y, Guo Y. Clinical Features and Factors Associated With Sepsis-Associated Encephalopathy in Children: Retrospective Single-Center Clinical Study. Front Neurol 2022; 13:838746. [PMID: 35711261 PMCID: PMC9196026 DOI: 10.3389/fneur.2022.838746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background Sepsis-associated encephalopathy (SAE) is a common complication in septic patients with a higher ICU and hospital mortality in adults and poorer long-term outcomes. Clinical presentation may range from mild confusion to convulsions and deep coma; however, little is known about SAE in children. We aimed to retrospectively analyze the data for children with sepsis, to illustrate the epidemiology, performance, and adverse outcome, and to evaluate the association between risk factors and SAE in children. Methods All children with sepsis who were admitted to the Department of Pediatrics, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China from January 2010 to December 2020 were retrospectively analyzed. Results A total of 210 patients with sepsis were retrospectively assigned to the SAE and non-SAE groups, of which 91 (43.33%) were diagnosed with SAE with a mortality of 6.70% (14/210). Significant differences were observed in the level of white blood platelet, platelets, international normalized ratio, prothrombin time, activated partial thromboplastin time, total protein, Ccr, UREA, blood urea nitrogen, alanine transaminase, aspartate transaminase, creatine kinase, creatine kinase isoenzymes, lactate dehydrogenase, procalcitonin, and lactic acid (p < 0.05). In the risk assessment scales, significant differences were observed in the modified Glasgow Coma score, PCIS, Pediatric Logistic Organ Dysfunction Score 2 (PELOD-2), Pediatric Sequential Organ Failure Assessment Score, and Pediatric Risk of Mortality III (p < 0.05). The incidence of septic shock, acute kidney disease, liver dysfunction, and coagulation disorder were higher in the SAE group (p < 0.05). The mechanical ventilation time ([6.57 d ± 16.86 d] vs. [2.05 d ± 5.79 d]; p < 0.001), CRRT time ([1.74 d ± 6.77 d] vs. [0.11 d ± 0.63 d]; p < 0.001), ICU stay time ([299.90 h ± 449.50 h] vs. [177.67 h ± 245.36 h]); p < 0.001 was longer than that of non-SAE. Both the PCT, Ca2+, septic shock, PELOD-2, and midazolam were identified as independent risk factors, and fentanyl was a protective factor for SAE in pediatric patients (p < 0.05). The main clinical neurological symptoms consisted of agitation, hypnosia, hypnosis alternates agitated, anterior fontanelle full/bulging/high tension, coma, muscle hypertonia, muscle hypotonia, hyperreflexia, focal seizure, and generalized seizure. Conclusions The incidence of SAE in children was found high and the prognosis poor. In this retrospective study, the identified patients were more susceptible to SAE, with an inflammatory storm with hypocalcemia or septic shock. The use of midazolam will increase the occurrence of SAE, whereas fentanyl will reduce the incidence of SAE, and PELOD-2 may predict the occurrence of SAE.
Collapse
Affiliation(s)
- Yihao Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Hu
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xufeng Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Peiling Chen
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chun Wang
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing Wang
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiaxing Wu
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yueyu Sun
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guilang Zheng
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yiyun Lu
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuxiong Guo
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
7
|
Diabetes Exacerbates Sepsis-Induced Neuroinflammation and Brain Mitochondrial Dysfunction. Inflammation 2022; 45:2352-2367. [PMID: 35689164 DOI: 10.1007/s10753-022-01697-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/06/2022] [Accepted: 06/01/2022] [Indexed: 11/05/2022]
Abstract
Sepsis is a life-threatening organ dysfunction, which demands notable attention for its treatment, especially in view of the involvement of immunodepressed patients, as the case of patients with diabetes mellitus (DM), who constitute a population susceptible to develop infections. Thus, considering this endocrine pathology as an implicatory role on the immune system, the aim of this study was to show the relationship between this disease and sepsis on neuroinflammatory and neurochemical parameters. Levels of IL-6, IL-10, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and mitochondrial respiratory chain complexes were evaluated in the hippocampus and prefrontal cortex 24 h after sepsis by cecal ligation and perforation (CLP) in Wistar rats induced to type 1 diabetes by alloxan (150 mg/kg). It was verified that diabetes implied immune function after 24 h of sepsis, since it contributed to the increase of the inflammatory process with higher production of IL-6 and decreased levels of IL-10 only in the hippocampus. In the same brain area, a several decrease in NGF level and activity of complexes I and II of the mitochondrial respiratory chain were observed. Thus, diabetes exacerbates neuroinflammation and results in mitochondrial impairment and downregulation of NGF level in the hippocampus after sepsis.
Collapse
|
8
|
Zhao H, Lyu Y, Zhai R, Sun G, Ding X. Metformin Mitigates Sepsis-Related Neuroinflammation via Modulating Gut Microbiota and Metabolites. Front Immunol 2022; 13:797312. [PMID: 35572534 PMCID: PMC9102391 DOI: 10.3389/fimmu.2022.797312] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
Gut microbiota affects the functions of brains. However, its mechanism in sepsis remains unclear. This study evaluated the effect of metformin on ameliorating sepsis-related neurodamage by regulating gut microbiota and metabolites in septic rats. Cecal ligation and puncture (CLP) was used to establish the sepsis-related neurodamage animal models. Metformin therapy by gavage at 1 h after CLP administration was followed by fecal microbiota transplantation (FMT) to ensure the efficacy and safety of metformin on the sepsis-related neurodamage by regulating gut microbiota. The gut microbiota and metabolites were conducted by 16S rRNA sequencing and liquid chromatography-tandem mass spectrometry metabolomic analysis. The brain tissue inflammation response was analyzed by histopathology and reverse transcription-polymerase chain reaction (RT-PCR). This study reported brain inflammatory response, hemorrhage in sepsis-related neurodamage rats compared with the control group (C group). Surprisingly, the abundance of gut microbiota slightly increased in sepsis-related neurodamage rats than C group. The ratio of Firmicutes/Bacteroidetes was significantly increased in the CLP group than the C group. However, no difference was observed between the CLP and the metformin-treated rats (MET group). Interestingly, the abundance of Escherichia_Shigella increased in the MET group than the C and CLP groups, while Lactobacillaceae abundance decreased. Furthermore, Prevotella_9, Muribaculaceae, and Alloprevotella related to short-chain fatty acids production increased in the sepsis-related neurodamage of metformin-treated rats. Additionally, Prevotella_9 and Muribaculaceae correlated positively to 29 metabolites that might affect the inflammatory factors in the brain. The FMT assay showed that metformin improved sepsis-related neurodamage by regulating the gut microbiota and metabolites in septic rats. The findings suggest that metformin improves the sepsis-related neurodamage through modulating the gut microbiota and metabolites in septic rats, which may be an effective therapy for patients with sepsis-related neurodamage.
Collapse
Affiliation(s)
- Huayan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanjun Lyu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiqing Zhai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Guiying Sun
- Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xianfei Ding
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xianfei Ding,
| |
Collapse
|
9
|
Wang Y, Tian M, Tan J, Pei X, Lu C, Xin Y, Deng S, Zhao F, Gao Y, Gong Y. Irisin ameliorates neuroinflammation and neuronal apoptosis through integrin αVβ5/AMPK signaling pathway after intracerebral hemorrhage in mice. J Neuroinflammation 2022; 19:82. [PMID: 35392928 PMCID: PMC8988353 DOI: 10.1186/s12974-022-02438-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Background Neuroinflammation is a crucial factor in the development of secondary brain injury after intracerebral hemorrhage (ICH). Irisin is a newly identified myokine that confers strong neuroprotective effects in experimental ischemic stroke. However, whether this myokine can exert neuroprotection effects after ICH remains unknown. This study aimed to investigate the impact of irisin treatment on neuroinflammation and neuronal apoptosis and the underlying mechanism involving integrin αVβ5/AMPK pathway after ICH.
Methods Two hundred and eighty-five adult (8-week-old) male C57BL/6 mice were randomly assigned to sham and ICH surgery groups. ICH was induced via intrastriatal injection of autologous blood. Irisin was administered intranasally at 30 min after ICH. To elucidate the underlying mechanism, cilengitide (a selective integrin αVβ5 inhibitor) and dorsomorphin (a selective phosphorylated AMPK inhibitor) were administered before irisin treatment. The short- and long-term neurobehavior tests, brain edema, quantitative-PCR, western blotting, Fluoro-Jade C, TUNEL, and immunofluorescence staining were performed to assess the neurofunctional outcome at the level of molecular, cell, histology, and function.
Results Endogenous irisin and its receptor, integrin αVβ5, were increased, peaked at 24 h after ICH. irisin post-treatment improved both short- and long-term neurological functions, reduced brain edema after ICH. Interestingly, integrin αVβ5 was mainly located in the microglia after ICH, and irisin post-treatment inhibited microglia/macrophage pro-inflammatory polarization and promoted anti-inflammatory polarization. Moreover, irisin treatment inhibited neutrophil infiltration and suppressed neuronal apoptotic cell death in perihematomal areas after ICH. Mechanistically, irisin post-treatment significantly increased the expression of integrin αVβ5, p-AMPK and Bcl-2, and decreased the expression of IL-1β, TNF-α, MPO, and Bax following ICH. The neuroprotective effects of irisin were abolished by both integrin αVβ5 inhibitor cilengitide and AMPK inhibitor dorsomorphin. Conclusions This study demonstrated that irisin post-treatment ameliorated neurological deficits, reduced brain edema, and ameliorated neuroinflammation and neuronal apoptosis, at least in part, through the integrin αVβ5/AMPK signaling pathway after ICH. Thus, irisin post-treatment may provide a promising therapeutic approach for the early management of ICH. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02438-6.
Collapse
Affiliation(s)
- Yao Wang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Tan
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xu Pei
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chaocheng Lu
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuewen Xin
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuixiang Deng
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Feng Zhao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanqin Gao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Nociceptor-derived Reg3γ prevents endotoxic death by targeting kynurenine pathway in microglia. Cell Rep 2022; 38:110462. [PMID: 35263589 DOI: 10.1016/j.celrep.2022.110462] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 11/21/2022] Open
Abstract
Nociceptors can fine-tune local or systemic immunity, but the mechanisms of nociceptive modulation in endotoxic death remain largely unknown. Here, we identified C-type lectin Reg3γ as a nociceptor-enriched hormone that protects the host from endotoxic death. During endotoxemia, nociceptor-derived Reg3γ penetrates the brain and suppresses the expression of microglial indoleamine dioxygenase 1, a critical enzyme of the kynurenine pathway, via the Extl3-Bcl10 axis. Endotoxin-administered nociceptor-null mice and nociceptor-specific Reg3γ-deficient mice exhibit a high mortality rate accompanied by decreased brain HK1 phosphorylation and ATP production despite normal peripheral inflammation. Such metabolic arrest is only observed in the brain, and aberrant production of brain quinolinic acid, a neurotoxic metabolite of the kynurenine pathway, causes HK1 suppression. Strikingly, the central administration of Reg3γ protects mice from endotoxic death by enhancing brain ATP production. By identifying nociceptor-derived Reg3γ as a microglia-targeted hormone, this study provides insights into the understanding of tolerance to endotoxic death.
Collapse
|
11
|
Zhang Y, Chen S, Tian W, Zhu H, Li W, Dai W, Zhang X, Gu X, Su D. Emerging Trends and Hot Spots in Sepsis-Associated Encephalopathy Research From 2001 to 2021: A Bibliometric Analysis. Front Med (Lausanne) 2022; 9:817351. [PMID: 35295600 PMCID: PMC8918530 DOI: 10.3389/fmed.2022.817351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
Study Objectives To evaluate sepsis-associated encephalopathy (SAE) research and to quantitatively and qualitatively predict research hot spots using bibliometric analysis. Methods We extracted relevant publications from the Web of Science Core Collection on July 28, 2021. We investigated the retrieved data by bibliometric analysis (e.g. co-cited and cluster analysis, keyword co-occurrence) using the software CiteSpace and VOSviewer, the Online Analysis Platform of Literature Metrology (http://bibliometric.com/) and Bibliometrix to analyse and predict the trends and hot spots in this field. Main Results We identified 1,582 published articles and reviews on SAE from 2001 to 2021. During this period, the number of manuscripts on SAE increased steadily and peaked in 2021. The USA and China were the leading countries that had a critical impact on SAE research. Among all institutions, Vanderbilt University and Pittsburgh University held leading positions and became central in the collaboration network. Among all the journals, Critical Care Medicine published the maximum number of manuscripts in the field of SAE within 20 years. Dal-Pizzol Felipe was the most productive author (61 papers) and received the largest number of citations (930 citations). Co-citation cluster analysis revealed that the most popular terms on SAE in the manner of cluster labels were critical illness, sepsis-associated encephalopathy, polymicrobial sepsis, posterior reversible encephalopathy syndrome, rat brain, intensive care unit, prior sepsis, molecular hydrogen, inflammation drive, metabolic encephalopathies, delirium pathophysiology, and clinical neuroscience. Keyword burst detection indicated that neuroinflammation, blood-brain barrier (BBB) and mitochondria dysfunction were the current research hot spots. Conclusions Our study revealed that neuroinflammation, blood-brain barrier, and mitochondria dysfunction had been the research foci of SAE over the past 20 years. These have emerged as the basis for transformation from basic research to clinical application in finding effective methods for the prevention and treatment of SAE.
Collapse
|
12
|
Wang H, Wang H, Song Y, Liu C, Qian X, Zhang D, Jiang X, Zhang S. Overexpression of Foxc1 ameliorates sepsis‑associated encephalopathy by inhibiting microglial migration and neuroinflammation through the IκBα/NF‑κB pathway. Mol Med Rep 2022; 25:107. [PMID: 35103290 PMCID: PMC8822881 DOI: 10.3892/mmr.2022.12623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a common and severe complication of sepsis. The cognitive dysfunction that ensues during SAE has been reported to be caused by impairments of the hippocampus. Microglia serves a key role in neuroinflammation during SAE through migration. Forkhead box C1 (Foxc1) is a member of the forkhead transcription factor family that has been found to regulate in cell migration. However, the role of Foxc1 in neuroinflammation during SAE remains unknown. In the present study, the mechanistic role of Foxc1 on microglial migration, neuroinflammation and neuronal apoptosis during the occurrence of cognitive dysfunction in SAE was investigated. A microglia-mediated inflammation model was induced by LPS in BV-2 microglial cells in vitro, whilst a SAE-related cognitive impairment model was established in mice using cecal ligation and perforation (CLP) surgery. Cognitive function in mice was evaluated using the Morris Water Maze (MWM) trial. Lipopolysaccharide (LPS) treatment was found to trigger BV-2 cell migration, inflammation and neuronal apoptosis. In addition, CLP surgery induced cognitive injury, which was indicated by longer latencies and shorter dwell times in the goal quadrant compared with those in the Sham group in the MWM trial. LPS treatment or CLP induction decreased the expression of Foxc1 and inhibitor of NF-κB (IκΒα) whilst increasing that of p65, IL-1β and TNF-α. After Foxc1 was overexpressed, the cognitive dysfunction of mice that underwent CLP surgery was improved, with the expression of IκBα also increased, microglial cell migration, the expression of p65, IL-1β and TNF-α and neuronal apoptosis were all decreased in vivo and in vitro, which were in turn reversed by the inhibition of IκBα in vitro. Overall, these results suggest that the overexpression of Foxc1 inhibited microglial migration whilst suppressing the inflammatory response and neuronal apoptosis by regulating the IκBα/NF-κB pathway, thereby improving cognitive dysfunction during SAE.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of Critical Care Medicine, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Hongwei Wang
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Yinsen Song
- Department of Emergency Medicine, People's Hospital of Henan University of Chinese Medicine/Zhengzhou People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Congyan Liu
- Department of Critical Care Medicine, The Fifth Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan 450003, P.R. China
| | - Xinling Qian
- Department of Emergency Medicine, People's Hospital of Henan University of Chinese Medicine/Zhengzhou People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Dalong Zhang
- Department of Emergency Medicine, People's Hospital of Henan University of Chinese Medicine/Zhengzhou People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xin Jiang
- Department of Emergency Medicine, People's Hospital of Henan University of Chinese Medicine/Zhengzhou People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Sisen Zhang
- Department of Critical Care Medicine, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
13
|
Kobayashi T, Uchino H, Elmér E, Ogihara Y, Fujita H, Sekine S, Ishida Y, Saiki I, Shibata S, Kawachi A. Disease Outcome and Brain Metabolomics of Cyclophilin-D Knockout Mice in Sepsis. Int J Mol Sci 2022; 23:961. [PMID: 35055146 PMCID: PMC8779771 DOI: 10.3390/ijms23020961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction resulting from a systemic inflammatory response to infection, but the mechanism remains unclear. The mitochondrial permeability transition pore (MPTP) could play a central role in the neuronal dysfunction, induction of apoptosis, and cell death in SAE. The mitochondrial isomerase cyclophilin D (CypD) is known to control the sensitivity of MPTP induction. We, therefore, established a cecal ligation and puncture (CLP) model, which is the gold standard in sepsis research, using CypD knockout (CypD KO) mice, and analyzed the disease phenotype and the possible molecular mechanism of SAE through metabolomic analyses of brain tissue. A comparison of adult, male wild-type, and CypD KO mice demonstrated statistically significant differences in body temperature, mortality, and histological changes. In the metabolomic analysis, the main finding was the maintenance of reduced glutathione (GSH) levels and the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio in the KO animals following CLP. In conclusion, we demonstrate that CypD is implicated in the pathogenesis of SAE, possibly related to the inhibition of MPTP induction and, as a consequence, the decreased production of ROS and other free radicals, thereby protecting mitochondrial and cellular function.
Collapse
Affiliation(s)
- Takayuki Kobayashi
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.U.); (Y.O.); (S.S.); (Y.I.); (I.S.); (S.S.); (A.K.)
| | - Hiroyuki Uchino
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.U.); (Y.O.); (S.S.); (Y.I.); (I.S.); (S.S.); (A.K.)
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden;
| | - Yukihiko Ogihara
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.U.); (Y.O.); (S.S.); (Y.I.); (I.S.); (S.S.); (A.K.)
| | - Hidetoshi Fujita
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan;
| | - Shusuke Sekine
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.U.); (Y.O.); (S.S.); (Y.I.); (I.S.); (S.S.); (A.K.)
| | - Yusuke Ishida
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.U.); (Y.O.); (S.S.); (Y.I.); (I.S.); (S.S.); (A.K.)
| | - Iwao Saiki
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.U.); (Y.O.); (S.S.); (Y.I.); (I.S.); (S.S.); (A.K.)
| | - Shoichiro Shibata
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.U.); (Y.O.); (S.S.); (Y.I.); (I.S.); (S.S.); (A.K.)
| | - Aya Kawachi
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.U.); (Y.O.); (S.S.); (Y.I.); (I.S.); (S.S.); (A.K.)
| |
Collapse
|
14
|
Burov AI, Abramov TA, Kostritca NS, Korotkov DS, Danilov GV, Strunina YV, Savin IA. Observational case series: six neurosurgical patients with septic shock demonstrating clinical improvement after a combination of standard care and blood purification. Eur J Med Res 2021; 26:151. [PMID: 34930484 PMCID: PMC8691076 DOI: 10.1186/s40001-021-00614-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 11/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background For patients with primary brain injury, septic shock is especially dangerous due to the possibility of secondary cerebral damage. The key factor of sepsis-associated brain injury is inflammatory mediators, pathogen and damage-associated molecular patterns (PAMPs, DAMPs) release. Theoretically, blood purification may be beneficial for patients with primary brain injury due to its possibility for fast removal of inflammatory mediators. Case presentation We report on six post-neurosurgery septic shock patients treated with combined blood purification (CBP), which included CRRT with high adsorption capacity membrane in combination with CytoSorb adsorber. Clinical improvement in the course of CBP was registered in all patients. Three patients had a stable clinical improvement; the other three patients had only a transient improvement due to underlying neurological and cardiac deficits aggravation. We observed septic shock reversal in four patients. The key observations of the case series are a significant decrease in MOF severity (measured by SOFA score) and in catecholamine need (not statistically significant). By the end of CBP we observed a significant decrease in blood lactate, PCT and IL-6 levels. Two patients demonstrated level of consciousness increase in the setting of CBP therapy measured by GCS and FOUR score. Conclusion This case series demonstrates that CBP therapy may have a role for septic shock patients with primary brain injury.
Collapse
Affiliation(s)
- A I Burov
- Federal State Autonomous Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation.
| | - T A Abramov
- Federal State Autonomous Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - N S Kostritca
- Federal State Budget Educational Institution of Higher Education M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - D S Korotkov
- Federal State Autonomous Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - G V Danilov
- Federal State Autonomous Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Y V Strunina
- Federal State Autonomous Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - I A Savin
- Federal State Autonomous Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| |
Collapse
|
15
|
You L, Jiang H. Cabergoline possesses a beneficial effect on blood-brain barrier (BBB) integrity against lipopolysaccharide (LPS). Bioengineered 2021; 12:8358-8369. [PMID: 34592907 PMCID: PMC8806944 DOI: 10.1080/21655979.2021.1987066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Sepsis is a disease induced by severe systemic inflammation and contributes to multiple acute organic dysfunctions. It is reported that disrupted blood-brain barrier (BBB) integrity is involved in sepsis-associated encephalopathy (SAE), which can be alleviated by repairing the damaged tight junction structure. Cabergoline is a specific dopamine D2 receptor agonist developed to treat Parkinson’s disease and hyperprolactinemia and is reported to exert promising anti-inflammatory properties. The present study aimed to explore the beneficial effect of Cabergoline for the treatment of sepsis. In the animal experiments, mice were separated into 4 groups: sham, LPS (5 mg/kg), Cabergoline (0.1 mg/kg/day), and Cabergoline+LPS. We found that the increased neurological deficits, disrupted BBB integrity, elevated production of inflammatory factors, and declined expression level of zonula occludens-1 (ZO-1) were observed in lipopolysaccharide (LPS)-treated mice, all of which were significantly reversed by the administration of Cabergoline. In the in vitro model, human brain microvascular endothelial cells (HBMECs) were challenged with 1 µg/mL LPS in the presence or absence of Cabergoline (10, 20 μM) for 24 hours. The elevated cell permeability Papp value of fluorescein disodium across the HBMECs monolayer and declined trans-endothelial electrical resistance (TEER) in the LPS-treated HBMECs were significantly alleviated by Cabergoline, accompanied by the upregulation of ZO-1. In addition, wnt1 and β-catenin were found downregulated, which was reversed by Cabergoline. Importantly, the protective benefits of Cabergoline were all abolished by the overexpression of Dickkopf 3 (DKK3). Taken together, our data reveal that Cabergoline possessed a protective effect on BBB integrity against LPS.
Collapse
Affiliation(s)
- Lina You
- Department of Gerontology, Traditional Chinese medicine hospital of Jiulongpo District in Chongqing, Chongqing, 400080, China
| | - Haidong Jiang
- Chongqing Infectious Disease Medical Center, Chongqing, 400080, China
| |
Collapse
|
16
|
de Oliveira J, Kucharska E, Garcez ML, Rodrigues MS, Quevedo J, Moreno-Gonzalez I, Budni J. Inflammatory Cascade in Alzheimer's Disease Pathogenesis: A Review of Experimental Findings. Cells 2021; 10:cells10102581. [PMID: 34685563 PMCID: PMC8533897 DOI: 10.3390/cells10102581] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia worldwide. Most AD patients develop the disease in late life, named late onset AD (LOAD). Currently, the most recognized explanation for AD pathology is the amyloid cascade hypothesis. It is assumed that amyloid beta (Aβ) aggregation and deposition are critical pathogenic processes in AD, leading to the formation of amyloid plaques, as well as neurofibrillary tangles, neuronal cell death, synaptic degeneration, and dementia. In LOAD, the causes of Aβ accumulation and neuronal loss are not completely clear. Importantly, the blood–brain barrier (BBB) disruption seems to present an essential role in the induction of neuroinflammation and consequent AD development. In addition, we propose that the systemic inflammation triggered by conditions like metabolic diseases or infections are causative factors of BBB disruption, coexistent inflammatory cascade and, ultimately, the neurodegeneration observed in AD. In this regard, the use of anti-inflammatory molecules could be an interesting strategy to treat, delay or even halt AD onset and progression. Herein, we review the inflammatory cascade and underlying mechanisms involved in AD pathogenesis and revise the anti-inflammatory effects of compounds as emerging therapeutic drugs against AD.
Collapse
Affiliation(s)
- Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-000, Brazil; (J.d.O.); (M.S.R.)
| | - Ewa Kucharska
- Faculty of Education, Institute of Educational Sciences, Jesuit University Ignatianum in Krakow, 31-501 Krakow, Poland;
| | - Michelle Lima Garcez
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil;
| | - Matheus Scarpatto Rodrigues
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-000, Brazil; (J.d.O.); (M.S.R.)
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA;
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, MD Anderson Cancer Center, UTHealth, The University of Texas Houston, Houston, TX 77030, USA
- Graduate Program in Health Sciences, Translational Psychiatry Laboratory, University of Southern Santa Catarina (UNESC), Criciuma 88806-000, Brazil
| | - Ines Moreno-Gonzalez
- Department of Cell Biology, Faculty of Sciences, University of Malaga, IBIMA, 29010 Malaga, Spain;
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 29010 Malaga, Spain
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Josiane Budni
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Neurologia Experimental, Universidade do Extremo Sul Catarinense, Criciuma 88806-000, Brazil
- Correspondence: ; Tel.: +55-48431-2539
| |
Collapse
|
17
|
Nyberg A, Gremo E, Blixt J, Sperber J, Larsson A, Lipcsey M, Pikwer A, Castegren M. Lung-protective ventilation increases cerebral metabolism and non-inflammatory brain injury in porcine experimental sepsis. BMC Neurosci 2021; 22:31. [PMID: 33926378 PMCID: PMC8082058 DOI: 10.1186/s12868-021-00629-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/23/2021] [Indexed: 12/03/2022] Open
Abstract
Background Protective ventilation with lower tidal volumes reduces systemic and organ-specific inflammation. In sepsis-induced encephalopathy or acute brain injury the use of protective ventilation has not been widely investigated (experimentally or clinically). We hypothesized that protective ventilation would attenuate cerebral inflammation in a porcine endotoxemic sepsis model. The aim of the study was to study the effect of tidal volume on cerebral inflammatory response, cerebral metabolism and brain injury. Nine animals received protective mechanical ventilation with a tidal volume of 6 mL × kg−1 and nine animals were ventilated with a tidal volume of 10 mL × kg−1. During a 6-h experiment, the pigs received an endotoxin intravenous infusion of 0.25 µg × kg−1 × h−1. Systemic, superior sagittal sinus and jugular vein blood samples were analysed for inflammatory cytokines and S100B. Intracranial pressure, brain tissue oxygenation and brain microdialysis were sampled every hour. Results No differences in systemic or sagittal sinus levels of TNF-α or IL-6 were seen between the groups. The low tidal volume group had increased cerebral blood flow (p < 0.001) and cerebral oxygen delivery (p < 0.001), lower cerebral vascular resistance (p < 0.05), higher cerebral metabolic rate (p < 0.05) along with higher cerebral glucose consumption (p < 0.05) and lactate production (p < 0.05). Moreover, low tidal volume ventilation increased the levels of glutamate (p < 0.01), glycerol (p < 0.05) and showed a trend towards higher lactate to pyruvate ratio (p = 0.08) in cerebral microdialysate as well as higher levels of S-100B (p < 0.05) in jugular venous plasma compared with medium–high tidal volume ventilation. Conclusions Contrary to the hypothesis, protective ventilation did not affect inflammatory cytokines. The low tidal volume group had increased cerebral blood flow, cerebral oxygen delivery and cerebral metabolism together with increased levels of markers of brain injury compared with medium–high tidal volume ventilation. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-021-00629-0.
Collapse
Affiliation(s)
- Axel Nyberg
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Erik Gremo
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden
| | - Jonas Blixt
- Perioperative Medicine and Intensive Care (PMI), Karolinska University Hospital, Stockholm, Sweden.,The Department of Physiology and Pharmacology (FyFa), Karolinska Institute, Stockholm, Sweden
| | - Jesper Sperber
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Miklós Lipcsey
- Hedenstierna Laboratory, CIRRUS, Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Andreas Pikwer
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Markus Castegren
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden. .,Department of Medical Sciences, Uppsala University, Uppsala, Sweden. .,Perioperative Medicine and Intensive Care (PMI), Karolinska University Hospital, Stockholm, Sweden. .,The Department of Physiology and Pharmacology (FyFa), Karolinska Institute, Stockholm, Sweden. .,Department of Anaesthesiology & Intensive Care, Centre for Clinical Research, Sörmland, Mälarsjukhuset, 631 88, Eskilstuna, Sweden.
| |
Collapse
|
18
|
Guden DS, Temiz-Resitoglu M, Senol SP, Kibar D, Yilmaz SN, Tunctan B, Malik KU, Sahan-Firat S. mTOR inhibition as a possible pharmacological target in the management of systemic inflammatory response and associated neuroinflammation by lipopolysaccharide challenge in rats. Can J Physiol Pharmacol 2021; 99:921-934. [PMID: 33641344 DOI: 10.1139/cjpp-2020-0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuroinflammation plays a critical role during sepsis triggered by microglial activation. Mammalian target of rapamycin (mTOR) has gained attraction in neuroinflammation, however, the mechanism remains unclear. Our goal was to assess the effects of mTOR inhibition by rapamycin on inflammation, microglial activation, oxidative stress, and apoptosis associated with the changes in the inhibitor-κB (IκB)-α/nuclear factor-κB (NF-κB)/hypoxia-inducible factor-1α (HIF-1α) pathway activity following a systemic challenge with lipopolysaccharide (LPS). Rats received saline (10 mL/kg), LPS (10 mg/kg), and (or) rapamycin (1 mg/kg) intraperitoneally. Inhibition of mTOR by rapamycin blocked phosphorylated form of ribosomal protein S6, NF-κB p65 activity by increasing degradation of IκB-α in parallel with HIF-1α expression increased by LPS in the kidney, heart, lung, and brain tissues. Rapamycin attenuated the increment in the expression of tumor necrosis factor-α and interleukin-1β, the inducible nitric oxide synthase, gp91phox, and p47phox in addition to nitrite levels elicited by LPS in tissues or sera. Concomitantly, rapamycin treatment reduced microglial activation, brain expression of caspase-3, and Bcl-2-associated X protein while it increased expression of B cell lymphoma 2 induced by LPS. Overall, this study supports the hypothesis that mTOR contributes to the detrimental effect of LPS-induced systemic inflammatory response associated with neuroinflammation via IκB-α/NF-κB/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Demet Sinem Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | | | - Sefika Pinar Senol
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Deniz Kibar
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Sakir Necat Yilmaz
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee, Department of Pharmacology, College of Medicine, Memphis, TN, USA
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|
19
|
Sousa MSB, Alves DVDS, Monteiro HMC, Gomes DA, Lira EC, Amancio-Dos-Santos A. Sepsis impairs the propagation of cortical spreading depression in rats and this effect is prevented by antioxidant extract. Nutr Neurosci 2021; 24:130-139. [PMID: 31030633 DOI: 10.1080/1028415x.2019.1602987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sepsis is a clinical syndrome with high morbidity and mortality. It is characterized by acute inflammatory response and oxidative stress, which is implicated in cerebral dysfunction. Murici (Byrsonimacrassifolia (L.) Kunth) is a fruit rich in antioxidant compounds, which could be an alternative to prevent damage to tissues induced by sepsis . Here, we evaluated the effects of sepsis on the propagation of cortical spreading depression (CSD) and oxidative stress, and tested the action of murici antioxidant extract in prevention against the effect of sepsis. Male Wistar rats (90-210 days, n = 40) were previously supplemented, orogastrically, with murici extract (150 mg/kg/day or 300 mg/kg/day), or an equivalent volume of the vehicle solution, for fifteen days. Then the animals were subjected to experimental sepsis through cecal ligation and perforation (CLP). Subsequently, CSD recordings were obtained and brain oxidative stress was evaluated. Sepsis decelerated CSD and increased the malondialdehyde (MDA) levels in the brain cortex of the animals. In contrast, septic rats that had been previously supplemented with murici antioxidant extract in doses of 150 and 300 mg/kg/day showed an increase in CSD propagation velocity, low levels of MDA and GSH/GSSG ratio and an increase of superoxide dismutase (SOD) activity, regardless of the dose tested. Our results demonstrate that sepsis affects brain excitability and that this effect can be prevented by murici antioxidant extract. The effects of sepsis and/or murici extract on CSD may be due to the oxidative state of the brain.
Collapse
Affiliation(s)
| | | | | | | | - Eduardo Carvalho Lira
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, UFPE, Recife, Brazil
| | | |
Collapse
|
20
|
Jin P, Deng S, Tian M, Lenahan C, Wei P, Wang Y, Tan J, Wen H, Zhao F, Gao Y, Gong Y. INT-777 prevents cognitive impairment by activating Takeda G protein-coupled receptor 5 (TGR5) and attenuating neuroinflammation via cAMP/ PKA/ CREB signaling axis in a rat model of sepsis. Exp Neurol 2021; 335:113504. [PMID: 33058889 DOI: 10.1016/j.expneurol.2020.113504] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Survivors of sepsis must often endure significant cognitive and behavioral impairments after discharge, but research on the relevant mechanisms and interventions remains lacking. TGR5, a member of the class A GPCR family, plays an important role in many physiological processes, and recent studies have shown that agonists of TGR5 show neuroprotective effects in a variety of neurological disorders. To date, no studies have assessed the effects of TGR5 on neuroinflammatory, cognitive, or behavioral changes in sepsis models. METHODS A total of 267 eight-week-old male Sprague-Dawley rats were used in this study. Sepsis was induced via cecal ligation and puncture (CLP). All animals received volume resuscitation. The rats were given TGR5 CRISPR oligonucleotide intracerebroventricularly 48 h before CLP surgery. INT-777 was administered intranasally 1 h after CLP, and the cAMP inhibitor, SQ22536, was administered intracerebroventricularly 1 h after CLP. Survival rate, bodyweight change, and clinical scores were assessed, and neurobehavioral tests, western blot, and immunofluorescence staining were performed. The cognitive function of rats was measured using the Morris water maze during 15-20 days after CLP. RESULTS The expression of TGR5 in the rat hippocampus was upregulated, and peaked at 3 days after CLP. The survival rate of rats after CLP was less than 50%, and the growth rate, in terms of weight, was significantly decreased. While INT-777 treatment did not improve these changes, the treatment did reduce the clinical scores of rats at 24 h after CLP. On day 15 and later, the surviving mice completed a series of behavioral tests. CLP rats showed spatial and memory deficits and anxiety-like behaviors, but INT-777 treatment significantly improved these effects. Mechanistically, immunofluorescence analysis showed that INT-777 treatment reduced the number of microglia in the hippocampus, neutrophilic infiltration, and the expression of inflammatory factors after CLP in rats. Moreover, INT-777 treatment significantly increased the expression of TGR5, cAMP, p-PKA, and p-CREB, but downregulated the expression of IL-1β, IL-6, and TNF-α. CRISPR-mediated TGR5 knockdown and SQ22536 treatment abolished the neuroprotective effects of TGR5 activation after CLP. CONCLUSION This study demonstrates that INT-777 treatment reduced neuroinflammation and microglial cell activation, but improved cognitive impairment in the experimental sepsis rats. TGR5 has translational potential as a therapeutic target to improve neurological outcomes in sepsis survivors.
Collapse
Affiliation(s)
- Peng Jin
- Department of Intensive Care Unit, HuaShan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Shuixiang Deng
- Department of Intensive Care Unit, HuaShan Hospital, Fudan University, Shanghai 200040, China
| | - Mi Tian
- Department of Intensive Care Unit, HuaShan Hospital, Fudan University, Shanghai 200040, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM 88003, USA; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Pengju Wei
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yao Wang
- Department of Intensive Care Unit, HuaShan Hospital, Fudan University, Shanghai 200040, China
| | - Jiaying Tan
- Department of Intensive Care Unit, HuaShan Hospital, Fudan University, Shanghai 200040, China
| | - Huimei Wen
- Department of Intensive Care Unit, HuaShan Hospital, Fudan University, Shanghai 200040, China
| | - Feng Zhao
- Department of Intensive Care Unit, HuaShan Hospital, Fudan University, Shanghai 200040, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Ye Gong
- Department of Intensive Care Unit, HuaShan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
21
|
Wanderlind ML, Gonçalves R, Tomasi CD, Dal-Pizzol F, Ritter C. Association of neurogranin with delirium among critically ill patients. Biomark Med 2020; 14:1613-1617. [PMID: 33336596 DOI: 10.2217/bmm-2020-0328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Neurogranin (Ng) concentrates at dendritic spines. In patients with Alzheimer disease Ng levels are elevated. The role of Ng in delirium development has not been assessed, therefore we hypothesized that Ng levels are associated with delirium in critically ill patients. Materials & methods: From 94 critically ill patients, 47 developed delirium and 47 controls were included. Blood was collected during the first 24 h of intensive care unit (ICU) admission, and on the day of delirium diagnoses. Ng and IL-1β were determined. Results: Ng and IL-1β levels were higher in the delirium group at ICU admission and on the day of delirium diagnoses. IL-1β and Ng were independently associated with delirium occurrence. Conclusion: Ng levels are associated with delirium development in ICU patients.
Collapse
Affiliation(s)
- Márcia Lz Wanderlind
- Laboratório de Fisiopatologia Experimental Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Renata Gonçalves
- Laboratório de Fisiopatologia Experimental Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Cristiane D Tomasi
- Laboratório de Fisiopatologia Experimental Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.,Intensive Care Unit, Hospital São José, Criciúma, SC, Brazil
| | - Cristiane Ritter
- Laboratório de Fisiopatologia Experimental Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.,Intensive Care Unit, Hospital São José, Criciúma, SC, Brazil
| |
Collapse
|
22
|
Liu J, Jin Y, Li H, Yu J, Gong T, Gao X, Sun J. Probiotics Exert Protective Effect against Sepsis-Induced Cognitive Impairment by Reversing Gut Microbiota Abnormalities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14874-14883. [PMID: 33284020 DOI: 10.1021/acs.jafc.0c06332] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent evidence has revealed that probiotics could affect neurodevelopment and cognitive function via regulating gut microbiota. However, the role of probiotics in sepsis-associated encephalopathy (SAE) remained unclear. This study was conducted to assess the effects and therapeutic mechanisms of probiotic Clostridium butyricum (Cb) against SAE in mice. The SAE model mouse was induced by cecal ligation and puncture (CLP) and was given by intragastric administration with Cb for 1 month. A series of behavioral tests, including neurological severity score, tail suspension test, and elevated maze test, were used to assess cognitive impairment. Nissl staining and Fluoro-Jade C (FJC) staining were used to assess neuronal injury. Microglia activation, the release of neuroinflammatory cytokines, and the levels of ionized calcium-binding adapter molecule 1 (Iba-1) and brain-derived neurotrophic factor (BDNF) in the brain were determined. The compositions of the gut microbiota were detected by 16S rRNA sequencing. Our results revealed that Cb significantly attenuated cognitive impairment and neuronal damage. Moreover, Cb significantly inhibited excessive activation of microglia, decreased Iba-1 level, and increased BDNF level in the SAE mice. In addition, Cb improved gut microbiota dysbiosis of SAE mice. These findings revealed that Cb exerted anti-inflammatory effects and improved cognitive impairment in SAE mice, and their neuroprotective mechanisms might be mediated by regulating gut microbiota.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yangjie Jin
- Department of Emergency Medicine, Zhejiang Hospital, Hangzhou, Zhejiang 310013, China
| | - Haijun Li
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, Zhejiang 317000, China
| | - Jiaheng Yu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tianyu Gong
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xinxin Gao
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Sun
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
23
|
Li Y, Yin L, Fan Z, Su B, Chen Y, Ma Y, Zhong Y, Hou W, Fang Z, Zhang X. Microglia: A Potential Therapeutic Target for Sepsis-Associated Encephalopathy and Sepsis-Associated Chronic Pain. Front Pharmacol 2020; 11:600421. [PMID: 33329005 PMCID: PMC7729164 DOI: 10.3389/fphar.2020.600421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Neurological dysfunction, one of the severe manifestations of sepsis in patients, is closely related to increased mortality and long-term complications in intensive care units, including sepsis-associated encephalopathy (SAE) and chronic pain. The underlying mechanisms of these sepsis-induced neurological dysfunctions are elusive. However, it has been well established that microglia, the dominant resident immune cell in the central nervous system, play essential roles in the initiation and development of SAE and chronic pain. Microglia can be activated by inflammatory mediators, adjacent cells and neurotransmitters in the acute phase of sepsis and then induce neuronal dysfunction in the brain. With the spotlight focused on the relationship between microglia and sepsis, a deeper understanding of microglia in SAE and chronic pain can be achieved. More importantly, clarifying the mechanisms of sepsis-associated signaling pathways in microglia would shed new light on treatment strategies for SAE and chronic pain.
Collapse
Affiliation(s)
- Yi Li
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lu Yin
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhongmin Fan
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Binxiao Su
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu Chen
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Ma
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ya Zhong
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wugang Hou
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zongping Fang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xijing Zhang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
24
|
Huang ZS, Xie DQ, Xu LJ, Huang CS, Zheng M, Chen YJ, Cao Y. Tetramethylpyrazine Ameliorates Lipopolysaccharide-Induced Sepsis in Rats via Protecting Blood-Brain Barrier, Impairing Inflammation and Nitrous Oxide Systems. Front Pharmacol 2020; 11:562084. [PMID: 33123008 PMCID: PMC7566283 DOI: 10.3389/fphar.2020.562084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/31/2020] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to assess the underlying impact of Tetramethylpyrazine (TMP), which is the main activity compound of Ligusticum chuanxiong Hort, on the blood–brain barrier, inflammatory and nitrous oxide systems in a rat model of lipopolysaccharide (LPS)-induced sepsis. The SD rats were divided into control group, LPS treatment group, and LPS + TMP treatment group. TMP administered by tail vein injection. The mortality of experimental rats was recorded during the experiment. Rats were sacrificed after 14 days. Peripheral blood was collected and the expression levels of inflammatory factors TNF-α, IL-1β, and IL-6 were detected by ELISA. The integrity of blood-brain barrier was detected by sodium fluorescein staining. Lung and brain tissues were taken to detect the infiltration of immune cells. Immunohistochemistry was performed to detect the expression of tight junctions related proteins and oxidative stress-related proteins. The results showed that TMP treatment for 14 days significantly decreased the weight loss and increased the survival rate of the septic rats significantly. TMP decreased the infiltration of inflammatory cells and alleviated the sepsis-induced damage in both the lung and brain tissues. The inflammatory cytokines TNF-α, IL-1β, and IL-6, were significantly decreased post-TMP treatment. Histopathological analysis with sodium fluorescein staining density showed that TMP had a protective effect on the basal lamina and cerebral cortex. Also, TMP significantly increased expression of the tight junction-related proteins claudin-5 and occludin in the brain tissue and increased the expression of the ZO-1, Occludin, and Claudin-5 genes, indicating alleviated the degree of blood–brain barrier destruction. Furthermore, immunohistochemistry (IHC) and immunoblotting confirmed that TMP could inhibit the indicators of the nitrous oxide system, iNOS and eNOS; in addition, TMP significantly decreased the levels of MDA and NO. The findings showed that TMP treatment during sepsis was associated with the protection of the blood–brain barrier and the suppression of inflammatory reactions and the nitrous oxide system. This study reveals a promising protective role of TMP in septic encephalopathy and may suggest a therapeutic approach for fighting the deadly disease of sepsis in the clinic.
Collapse
Affiliation(s)
- Zi-Sheng Huang
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Da-Qi Xie
- Department of Cardiology, Ningbo Ninth Hospital, Ningbo, China
| | - Li-Jun Xu
- Ophthalmology Operating Room, Ningbo First Hospital, Ningbo, China
| | - Chang-Shun Huang
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Min Zheng
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Yi-Jun Chen
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Yin Cao
- Department of Anesthesiology, Ningbo Ninth Hospital, Ningbo, China
| |
Collapse
|
25
|
Cazuza RA, Santos-Júnior NN, da Costa LHA, Catalão CHR, Mendes-Gomes J, da Rocha MJA, Leite-Panissi CRA. Sepsis-induced encephalopathy impairs descending nociceptive pathways in rats. J Neuroimmunol 2020; 342:577198. [PMID: 32120082 DOI: 10.1016/j.jneuroim.2020.577198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is a significant problem in patients with sepsis, and it is associated with a decrease in cognitive and sensitivity capability induced by systemic inflammation. SAE is implicated in reversible brain damage of several regions related to cognition, emotion, and sensation; however, it is not well established if it could affect brain regions associated with nociceptive modulation. Here were evaluated the nociceptive thresholds in rats with systemic inflammation induced by cecal ligation puncture (CLP). After 24 h of CLP, it was observed an increase in nociceptive threshold in all tests. Periaqueductal gray, rostroventral medulla, critical regions for descending nociceptive modulation, were evaluated and showed enhanced pro-inflammatory cytokines as well as glial activation. These results suggest that systemic inflammation could compromise descending facilitatory pathways, impairing nociceptive sensory functioning.
Collapse
Affiliation(s)
- Rafael Alves Cazuza
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-901, SP, Brazil
| | - Nilton Nascimento Santos-Júnior
- Department of Basic and Oral Biology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Luís Henrique Angenendt da Costa
- Department of Basic and Oral Biology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil; Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Carlos Henrique Rocha Catalão
- Department of Basic and Oral Biology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil; Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Joyce Mendes-Gomes
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-901, SP, Brazil; UNIFADRA-FUNDEC Medical School, Dracena 17900-000, SP, Brazil
| | - Maria José Alves da Rocha
- Department of Basic and Oral Biology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Christie Ramos Andrade Leite-Panissi
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-901, SP, Brazil.
| |
Collapse
|
26
|
Ren C, Yao RQ, Zhang H, Feng YW, Yao YM. Sepsis-associated encephalopathy: a vicious cycle of immunosuppression. J Neuroinflammation 2020; 17:14. [PMID: 31924221 PMCID: PMC6953314 DOI: 10.1186/s12974-020-1701-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is commonly complicated by septic conditions, and is responsible for increased mortality and poor outcomes in septic patients. Uncontrolled neuroinflammation and ischemic injury are major contributors to brain dysfunction, which arises from intractable immune malfunction and the collapse of neuroendocrine immune networks, such as the cholinergic anti-inflammatory pathway, hypothalamic-pituitary-adrenal axis, and sympathetic nervous system. Dysfunction in these neuromodulatory mechanisms compromised by SAE jeopardizes systemic immune responses, including those of neutrophils, macrophages/monocytes, dendritic cells, and T lymphocytes, which ultimately results in a vicious cycle between brain injury and a progressively aberrant immune response. Deep insight into the crosstalk between SAE and peripheral immunity is of great importance in extending the knowledge of the pathogenesis and development of sepsis-induced immunosuppression, as well as in exploring its effective remedies.
Collapse
Affiliation(s)
- Chao Ren
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Ren-Qi Yao
- Department of Burn Surgery, Changhai Hospital, The Navy Medical University, Shanghai, 200433, People's Republic of China
| | - Hui Zhang
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Yong-Wen Feng
- Department of Critical Care Medicine, The Second People's Hospital of Shenzhen, Shenzhen, 518035, People's Republic of China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China.
| |
Collapse
|
27
|
Zhou R, Sun X, Li Y, Huang Q, Qu Y, Mu D, Li X. Low-dose Dexamethasone Increases Autophagy in Cerebral Cortical Neurons of Juvenile Rats with Sepsis Associated Encephalopathy. Neuroscience 2019; 419:83-99. [PMID: 31682824 DOI: 10.1016/j.neuroscience.2019.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
Studies have shown that a certain dose of dexamethasone can improve the survival rate of patients with sepsis, and in sepsis associated encephalopathy (SAE), autophagy plays a regulatory role in brain function. Here, we proved for the first time that small-dose dexamethasone (SdDex) can regulate the autophagy of cerebral cortex neurons in SAE rats and plays a protective role. Cortical neurons were cultured in vitro in a septic microenvironment and a sepsis rat model was established. The small-dose dexamethasone (SdDex) or high-dose dexamethasone (HdDex) was used to intervene in neurons or SAE rats. Through fluorescence microscopy and western blot analysis, the expressions of microtubule-associated protein 1 light chain 3 (LC3), p62/sequestosome1 (p62/SQSTM1), mammalian target of rapamycin (mTOR) signaling pathway related proteins, and apoptosis-related proteins were detected. Theresultsshowthat compared with those in SAE rats, the cortical pathological changes in SAE rats treated with SdDex were improved, and damaged substances were encapsulated and degraded by autophagosomes in neurons. Additionally, similar to neurons in vitro, cortical autophagy was further activated and the mTOR signaling pathway was inhibited. After HdDex treatment, the mTOR signaling pathway in cortex is inhibited, but further activation of autophagy is not obvious, the cortical pathological changes were further worsened and the ultrastructure of neurons was disturbed. Furthermore, the HdDex group exhibited the most obvious apoptosis. SdDex can regulate autophagy of cortical neurons by inhibiting the mTOR signaling pathway and plays a protective role. Brain damage induced by HdDex may be related to the activation of apoptosis.
Collapse
Affiliation(s)
- Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xuemei Sun
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Yuyao Li
- Medical College, Xiamen University, Xiamen 361102, China
| | - Qun Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xihong Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China; Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
28
|
Huang L, Zhang L, Liu Z, Zhao S, Xu D, Li L, Peng Q, Ai Y. Pentamidine protects mice from cecal ligation and puncture-induced brain damage via inhibiting S100B/RAGE/NF-κB. Biochem Biophys Res Commun 2019; 517:221-226. [DOI: 10.1016/j.bbrc.2019.07.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/17/2019] [Indexed: 02/08/2023]
|
29
|
Chang JC. Sepsis and septic shock: endothelial molecular pathogenesis associated with vascular microthrombotic disease. Thromb J 2019; 17:10. [PMID: 31160889 PMCID: PMC6542012 DOI: 10.1186/s12959-019-0198-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
In addition to protective “immune response”, sepsis is characterized by destructive “endothelial response” of the host, leading to endotheliopathy and its molecular dysfunction. Complement activation generates membrane attack complex (MAC). MAC causes channel formation to the cell membrane of pathogen, leading to death of microorganisms. In the host, MAC also may induce channel formation to innocent bystander endothelial cells (ECs) and ECs cannot be protected. This provokes endotheliopathy, which activates two independent molecular pathways: inflammatory and microthrombotic. Activated inflammatory pathway promotes the release of inflammatory cytokines and triggers inflammation. Activated microthrombotic pathway mediates platelet activation and exocytosis of unusually large von Willebrand factor multimers (ULVWF) from ECs and initiates microthrombogenesis. Excessively released ULVWF become anchored to ECs as long elongated strings and recruit activated platelets to assemble platelet-ULVWF complexes and form “microthrombi”. These microthrombi strings trigger disseminated intravascular microthrombosis (DIT), which is the underlying pathology of endotheliopathy-associated vascular microthrombotic disease (EA-VMTD). Sepsis-induced endotheliopathy promotes inflammation and DIT. Inflammation produces inflammatory response and DIT orchestrates consumptive thrombocytopenia, microangiopathic hemolytic anemia, and multiorgan dysfunction syndrome (MODS). Systemic inflammatory response syndrome (SIRS) is a combined phenotype of inflammation and endotheliopathy-associated (EA)-VMTD. Successful therapeutic design for sepsis can be achieved by counteracting the pathologic microthrombogenesis.
Collapse
Affiliation(s)
- Jae C Chang
- Department of Medicine, University of California Irvine School of Medicine, Irvine, CA USA
| |
Collapse
|
30
|
Tian M, Qingzhen L, Zhiyang Y, Chunlong C, Jiao D, Zhang L, Li W. Attractylone attenuates sepsis-associated encephalopathy and cognitive dysfunction by inhibiting microglial activation and neuroinflammation. J Cell Biochem 2019; 120:7101-7108. [PMID: 30672013 DOI: 10.1002/jcb.27983] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023]
Abstract
Multiple studies demonstrated that sepsis is a life-threatening state of organ dysfunction caused by infection and can induce neuroinflammation and cognitive impairment. The aim of this study was to evaluate the protective effects of attractylone (Atr) on sepsis-associated encephalopathy (SAE) and cognitive dysfunction. Moreover, we studied the underlying molecular mechanisms. We used an LPS-induced sepsis mouse model and evaluated the cognitive function with the Morris water maze and open field test. Neuronal damage in the hippocampus was assessed by immunohistochemical analysis. BV2 cells were used to identify the protective mechanism of Atr. The result showed that Atr attenuated LPS-induced cognitive impairment, neural apoptosis, inflammatory factors, and microglial activation. The in vitro experiment showed that Atr promoted silent information regulator 1 (SIRT1) expression and suppressed NFκB expression. Downregulation of SIRT1 reversed the protective effect of Atr in the LPS condition. Moreover, Atr-induced SIRT1 expression promoted BV2 from LPS-induced M1 to M2 phenotype. Taken together, these results indicated that Atr was a potential therapeutic agent for SAE and cognitive dysfunction.
Collapse
Affiliation(s)
- Mi Tian
- Department of Anesthesiology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liu Qingzhen
- Department of Anesthesiology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Zhiyang
- Department of Anesthesiology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Chunlong
- Department of Anesthesiology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Duan Jiao
- Department of Anesthesiology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lidong Zhang
- Department of Anesthesiology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiyan Li
- Department of Anesthesiology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Michels M, Michelon C, Damásio D, Vitali AM, Ritter C, Dal-Pizzol F. Biomarker Predictors of Delirium in Acutely Ill Patients: A Systematic Review. J Geriatr Psychiatry Neurol 2019; 32:119-136. [PMID: 30852930 DOI: 10.1177/0891988719834346] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Delirium is a serious and common disorder that affects up to 80% of acutely ill patients, mainly the aged. In recent years, several studies pointed out possible biomarkers that could be used alone or in combination with other resources in the diagnosis and follow-up of critically ill patients who develop delirium. In this context, a systematic review was conducted to determine the predictive value of several biomarkers in acutely (critically and noncritically) ill adult patients with delirium. Studies that used the confusion assessment method (CAM) and CAM-intensive care unit as the diagnostic method were considered. The most recent search was performed in November 2017. There was no language restriction. Initially, 626 articles were screened and 39 were included in the study. A comprehensive evaluation of the abstracts resulted in the exclusion of 202 studies, leaving 39 articles as potentially relevant. Inflammatory markers, S100β and cortisol, could predict delirium occurrence in a specific subgroup population of critically ill patients.
Collapse
Affiliation(s)
- Monique Michels
- 1 Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Cleonice Michelon
- 1 Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Danusa Damásio
- 2 São José Hospital Research Centre, Criciúma, Santa Catarina, Brazil
| | | | - Cristiane Ritter
- 1 Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil.,2 São José Hospital Research Centre, Criciúma, Santa Catarina, Brazil
| | - Felipe Dal-Pizzol
- 1 Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil.,2 São José Hospital Research Centre, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
32
|
Liu YH, Wu PH, Kang CC, Tsai YS, Chou CK, Liang CT, Wu JJ, Tsai PJ. Group A Streptococcus Subcutaneous Infection-Induced Central Nervous System Inflammation Is Attenuated by Blocking Peripheral TNF. Front Microbiol 2019; 10:265. [PMID: 30837977 PMCID: PMC6389723 DOI: 10.3389/fmicb.2019.00265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/01/2019] [Indexed: 11/13/2022] Open
Abstract
Group A streptococcus (GAS) infection causes a strong inflammatory response associated with cytokine storms, leading to multiorgan failure, which is characterized as streptococcal toxic shock syndrome. However, little is known about GAS subcutaneous infection-mediated brain inflammation. Therefore, we used a bioluminescent GAS strain and reporter mice carrying firefly luciferase under transcriptional control of the nuclear factor-kappa B (NF-κB) promoter to concurrently monitor the host immune response and bacterial burden in a single mouse. Notably, in addition to the subcutaneous inoculation locus at the back of mice, we detected strong luminescence signals from NF-κB activation and increased inflammatory cytokine production in the brain, implying the existence of central nervous system inflammation after GAS subcutaneous infection. The inflamed brain exhibited an increased expression of glial fibrillary acidic protein and nicotinamide adenine dinucleotide phosphate oxidase components and greater microglial activation and blood–brain barrier (BBB) disruption. Furthermore, Fluoro-Jade C positive cells increased in the brain, indicating that neurons underwent degeneration. Peripheral tumor necrosis factor (TNF), which contributes to pathology in brain injury, was elevated in the circulation, and the expression of its receptor was also increased in the inflamed brain. Blockage of peripheral TNF effectively reduced brain inflammation and injury, thereby preventing BBB disruption and improving survival. Our study provides new insights into GAS-induced central nervous system inflammation, such as encephalopathy, which can be attenuated by circulating TNF blockage.
Collapse
Affiliation(s)
- Ya-Hui Liu
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Hua Wu
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Cheng Kang
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan.,Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chuan-Kai Chou
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Chung-Tiang Liang
- Novo Nordisk Research Centre China, Beijing, China.,Department of Animal Facility, Discovery Biology China, Beijing, China
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Jane Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan.,Research Center of Infectious Disease and Signaling, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
33
|
Astroglia in Sepsis Associated Encephalopathy. Neurochem Res 2019; 45:83-99. [PMID: 30778837 PMCID: PMC7089215 DOI: 10.1007/s11064-019-02743-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/07/2023]
Abstract
Cellular pathophysiology of sepsis associated encephalopathy (SAE) remains poorly characterised. Brain pathology in SAE, which is manifested by impaired perception, consciousness and cognition, results from multifactorial events, including high levels of systemic cytokines, microbial components and endotoxins, which all damage the brain barriers, instigate neuroinflammation and cause homeostatic failure. Astrocytes, being the principal homeostatic cells of the central nervous system contribute to the brain defence against infection. Forming multifunctional anatomical barriers, astroglial cells maintain brain-systemic interfaces and restrict the damage to the nervous tissue. Astrocytes detect, produce and integrate inflammatory signals between immune cells and cells of brain parenchyma, thus regulating brain immune response. In SAE astrocytes are present in both reactive and astrogliopathic states; balance between these states define evolution of pathology and neurological outcomes. In humans pathophysiology of SAE is complicated by frequent presence of comorbidities, as well as age-related remodelling of the brain tissue with senescence of astroglia; these confounding factors further impact upon SAE progression and neurological deficits.
Collapse
|
34
|
Pandur E, Varga E, Tamási K, Pap R, Nagy J, Sipos K. Effect of Inflammatory Mediators Lipopolysaccharide and Lipoteichoic Acid on Iron Metabolism of Differentiated SH-SY5Y Cells Alters in the Presence of BV-2 Microglia. Int J Mol Sci 2018; 20:ijms20010017. [PMID: 30577543 PMCID: PMC6337407 DOI: 10.3390/ijms20010017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Lipopolysaccharide (LPS) and lipoteichoic acid (LTA), the Gram-negative and the Gram-positive bacterial cell wall components are important mediators of neuroinflammation in sepsis. LPS and LTA are potent activators of microglial cells which induce the production of various pro-inflammatory cytokines. It has been demonstrated that disturbance of iron homeostasis of the brain is one of the underlying causes of neuronal cell death but the mechanisms contributing to this process are still questionable. In the present study, we established monocultures of differentiated SH-SY5Y cells and co-cultures of differentiated SH-SY5Y cells and BV-2 microglia as neuronal model systems to selectively examine the effect of inflammatory mediators LPS and LTA on iron homeostasis of SH-SY5Y cells both in mono- and co-cultures. We monitored the IL-6 and TNFα secretions of the treated cells and determined the mRNA and protein levels of iron importers (transferrin receptor-1 and divalent metal transporter-1), and iron storing genes (ferritin heavy chain and mitochondrial ferritin). Moreover, we examined the relation between hepcidin secretion and intracellular iron content. Our data revealed that LPS and LTA triggered distinct responses in SH-SY5Y cells by differently changing the expressions of iron uptake, as well as cytosolic and mitochondrial iron storage proteins. Moreover, they increased the total iron contents of the cells but at different rates. The presence of BV-2 microglial cells influenced the reactions of SH-SY5Y cells on both LPS and LTA treatments: iron uptake and iron storage, as well as the neuronal cytokine production have been modulated. Our results demonstrate that BV-2 cells alter the iron metabolism of SH-SY5Y cells, they contribute to the iron accumulation of SH-SY5Y cells by manipulating the effects of LTA and LPS proving that microglia are important regulators of neuronal iron metabolism at neuroinflammation.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary.
| | - Edit Varga
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary.
| | - Kitti Tamási
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary.
| | - Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary.
| | - Judit Nagy
- Department of Anaesthesiology and Intensive Therapy, Medical School, University of Pécs, Ifjúság út 13., H-7624 Pécs, Hungary.
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary.
| |
Collapse
|
35
|
Della Giustina A, Goldim MP, Danielski LG, Florentino D, Garbossa L, Joaquim L, Oliveira Junior AN, Mathias K, Fileti ME, Zarbato GF, da Rosa N, Laurentino AOM, Fortunato JJ, Palandi J, de Oliveira BH, Martins DF, Bonbinski F, Bellettini-Santos T, Garcez M, Budni J, Barichello T, Petronilho F. Fish oil-rich lipid emulsion modulates neuroinflammation and prevents long-term cognitive dysfunction after sepsis. Nutrition 2018; 70:110417. [PMID: 30867119 DOI: 10.1016/j.nut.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/07/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Sepsis is a severe organic dysfunction caused by an infection that affects the normal regulation of several organ systems, including the central nervous system. Inflammation and oxidative stress play crucial roles in the development of brain dysfunction in sepsis. The aim of this study was to determine the effect of a fish oil (FO)-55-enriched lipid emulsion as an important anti-inflammatory compound on brain dysfunction in septic rats. METHODS Wistar rats were subjected to sepsis by cecal ligation and perforation (CLP) or sham (control) and treated orally with FO (600 µL/kg after CLP) or vehicle (saline; sal). Animals were divided into sham+sal, sham+FO, CLP+sal and CLP+FO groups. At 24 h and 10 d after surgery, the hippocampus, prefrontal cortex, and total cortex were obtained and assayed for levels of interleukin (IL)-1β and IL-10, blood-brain barrier permeability, nitrite/nitrate concentration, myeloperoxidase activity, thiobarbituric acid reactive species formation, protein carbonyls, superoxide dismutase and catalase activity, and brain-derived neurotrophic factor levels. Behavioral tasks were performed 10 d after surgery. RESULTS FO reduced BBB permeability in the prefrontal cortex and total cortex of septic rats, decreased IL-1β levels and protein carbonylation in all brain structures, and diminished myeloperoxidase activity in the hippocampus and prefrontal cortex. FO enhanced brain-derived neurotrophic factor levels in the hippocampus and prefrontal cortex and prevented cognitive impairment. CONCLUSIONS FO diminishes the negative effect of polymicrobial sepsis in the rat brain by reducing inflammatory and oxidative stress markers.
Collapse
Affiliation(s)
- Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Mariana Pereira Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Drielly Florentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Leandro Garbossa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Aloir Neri Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Maria Eduarda Fileti
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Graciela Freitas Zarbato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Ana Olívia Martins Laurentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Jucélia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Juliete Palandi
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Bruna Hoffmann de Oliveira
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Daniel Fernandes Martins
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Franciane Bonbinski
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Tatiani Bellettini-Santos
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Michele Garcez
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Josiane Budni
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Tatiana Barichello
- Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil; Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil.
| |
Collapse
|
36
|
Pan S, Wu Y, Pei L, Li S, Song L, Xia H, Wang Y, Yu Y, Yang X, Shu H, Zhang J, Yuan S, Shang Y. BML-111 Reduces Neuroinflammation and Cognitive Impairment in Mice With Sepsis via the SIRT1/NF-κB Signaling Pathway. Front Cell Neurosci 2018; 12:267. [PMID: 30186119 PMCID: PMC6110933 DOI: 10.3389/fncel.2018.00267] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/02/2018] [Indexed: 01/31/2023] Open
Abstract
Sepsis is a life-threatening state of organ dysfunction caused by infection and which can induce severe neurological disorders that lead to neuroinflammation and cognitive impairment. Inflammation has been reported to cause neuronal apoptosis in sepsis, which can finally lead to cognitive impairment. Previous studies have suggested that BML-111 can exhibit anti-inflammatory and proresolution activities. Additionally, silent information regulator 1 (SIRT1) can inhibit the NF-κB signaling pathway in an inflammation state. However, the role of the SIRT1/NF-κB signaling pathway in the protective effects of BML-111 against sepsis-induced neuroinflammation and cognitive impairment remains unclear. This study aimed to determine the effects of BML-111 on neuroinflammation and cognitive impairment induced by sepsis. Male C57BL/6J mice were subjected to cecal ligation and puncture (CLP) or a sham operation. BML-111 was administered via intracerebroventricular injection (0.1 mg/kg) immediately after CLP. Boc-2 (50 μg/kg) was administered intracerebroventricularly 30 min before CLP, and EX527 (10 μg) was administered every 2 days for a total of three times before CLP, also intracerebroventricularly. Some of the surviving mice underwent open-field, novel-object-recognition, and fear-conditioning behavioral tests at 7 days after surgery. Some of the other surviving mice were killed at 24 h after surgery to assess synaptic damage (PSD95 and Synapsin1), markers of inflammation [tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1β], cytoplasmic p65, nuclear p65, Ac- NF-κB and SIRT1. At 48 h after CLP, TUNEL and glia-activation by immunofluorescence investigations were performed on a separate cohort of surviving animals. The results suggested that sepsis resulted in cognitive impairment, which was accompanied by the decreased the expression of PSD95 and Synapsin1, increased amount of TUNEL-positive cells and the activation of glias, increased production of TNF-α and IL-1β, increased expression of nuclear p65, Ac- NF-κB, and decreased expression of SIRT1 and cytoplasmic p65. It is especially notable that these abnormalities could be reduced by BML-111 treatment. EX527, an SIRT1 inhibitor, abolished the effects of BML-111. These results demonstrate that BML-111 can reduce the neuroinflammation and cognitive impairment induced by sepsis via SIRT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Pei
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengnan Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Song
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Zarbato GF, de Souza Goldim MP, Giustina AD, Danielski LG, Mathias K, Florentino D, de Oliveira Junior AN, da Rosa N, Laurentino AO, Trombetta T, Gomes ML, Steckert AV, Moreira AP, Schuck PF, Fortunato JJ, Barichello T, Petronilho F. Dimethyl Fumarate Limits Neuroinflammation and Oxidative Stress and Improves Cognitive Impairment After Polymicrobial Sepsis. Neurotox Res 2018; 34:418-430. [PMID: 29713994 DOI: 10.1007/s12640-018-9900-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 12/18/2022]
Abstract
Sepsis is caused by a dysregulated host response to infection, often associated with acute central nervous system (CNS) dysfunction, which results in long-term cognitive impairment. Dimethyl fumarate (DMF) is an important agent against inflammatory response and reactive species in CNS disorders. Evaluate the effect of DMF on acute and long-term brain dysfunction after experimental sepsis in rats. Male Wistar rats were submitted to the cecal ligation and puncture (CLP) model. The groups were divided into sham (control) + vehicle, sham + NAC, sham + DMF, CLP + vehicle, CLP + NAC, and CLP + DMF. The animals were treated with DMF (15 mg/kg at 0 and 12 h after CLP, per gavage) and the administration of n-acetylcysteine (NAC) (20 mg/kg; 3, 6, and 12 h after CLP, subcutaneously) was used as positive control. Twenty-four hours after CLP, cytokines, myeloperoxidase (MPO), nitrite/nitrate (N/N), oxidative damage to lipids and proteins, and antioxidant enzymes were evaluated in the hippocampus, total cortex, and prefrontal cortex. At 10 days after sepsis induction, behavioral tests were performed to assess cognitive damage. We observed an increase in cytokine levels, MPO activity, N/N concentration, and oxidative damage, a reduction in SOD and GPx activity in the brain structures, and cognitive damage in CLP rats. DMF treatment was effective in reversing these parameters. DMF reduces sepsis-induced neuroinflammation, oxidative stress, and cognitive impairment in rats subjected to the CLP model.
Collapse
Affiliation(s)
- Graciela Freitas Zarbato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Drielly Florentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Aloir Neri de Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Ana Olivia Laurentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Taina Trombetta
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Maria Luiza Gomes
- Laboratory Inborn Errors of Metabolism, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Amanda Valnier Steckert
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Ana Paula Moreira
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Patricia Fernanda Schuck
- Laboratory Inborn Errors of Metabolism, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Jucelia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil.,Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil.
| |
Collapse
|
38
|
Ehler J, Barrett LK, Taylor V, Groves M, Scaravilli F, Wittstock M, Kolbaske S, Grossmann A, Henschel J, Gloger M, Sharshar T, Chretien F, Gray F, Nöldge-Schomburg G, Singer M, Sauer M, Petzold A. Translational evidence for two distinct patterns of neuroaxonal injury in sepsis: a longitudinal, prospective translational study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:262. [PMID: 29058589 PMCID: PMC5653470 DOI: 10.1186/s13054-017-1850-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Background Brain homeostasis deteriorates in sepsis, giving rise to a mostly reversible sepsis-associated encephalopathy (SAE). Some survivors experience chronic cognitive dysfunction thought to be caused by permanent brain injury. In this study, we investigated neuroaxonal pathology in sepsis. Methods We conducted a longitudinal, prospective translational study involving (1) experimental sepsis in an animal model; (2) postmortem studies of brain from patients with sepsis; and (3) a prospective, longitudinal human sepsis cohort study at university laboratory and intensive care units (ICUs). Thirteen ICU patients with septic shock, five ICU patients who died as a result of sepsis, fourteen fluid-resuscitated Wistar rats with fecal peritonitis, eleven sham-operated rats, and three human and four rat control subjects were included. Immunohistologic and protein biomarker analysis were performed on rat brain tissue at baseline and 24, 48, and 72 h after sepsis induction and in sham-treated rats. Immunohistochemistry was performed on human brain tissue from sepsis nonsurvivors and in control patients without sepsis. The clinical diagnostics of SAE comprised longitudinal clinical data collection and magnetic resonance imaging (MRI) and electroencephalographic assessments. Statistical analyses were performed using SAS software (version 9.4; SAS Institute, Inc., Cary, NC, USA). Because of non-Gaussian distribution, the nonparametric Wilcoxon test general linear models and the Spearman correlation coefficient were used. Results In postmortem rat and human brain samples, neurofilament phosphoform, β-amyloid precursor protein, β-tubulin, and H&E stains distinguished scattered ischemic lesions from diffuse neuroaxonal injury in septic animals, which were absent in controls. These two patterns of neuroaxonal damage were consistently found in septic but not control human postmortem brains. In experimental sepsis, the time from sepsis onset correlated with tissue neurofilament levels (R = 0.53, p = 0.045) but not glial fibrillary acidic protein. Of 13 patients with sepsis who had clinical features of SAE, MRI detected diffuse axonal injury in 9 and ischemia in 3 patients. Conclusions Ischemic and diffuse neuroaxonal injury to the brain in experimental sepsis, human postmortem brains, and in vivo MRI suggest these two distinct lesion types to be relevant. Future studies should be focused on body fluid biomarkers to detect and monitor brain injury in sepsis. The relationship of neurofilament levels with time from sepsis onset may be of prognostic value. Trial registration ClinicalTrials.gov, NCT02442986. Registered on May 13, 2015. Electronic supplementary material The online version of this article (doi:10.1186/s13054-017-1850-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
| | - Lucinda K Barrett
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, UK
| | - Valerie Taylor
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, UK
| | - Michael Groves
- Department of Pathology, UCL Institute of Neurology, University College London, London, UK
| | - Francesco Scaravilli
- Department of Pathology, UCL Institute of Neurology, University College London, London, UK
| | - Matthias Wittstock
- Department of Neurology, University Medical Center Rostock, Rostock, Germany
| | - Stephan Kolbaske
- Department of Neurology, University Medical Center Rostock, Rostock, Germany
| | - Annette Grossmann
- Institute for Diagnostic and Interventional Radiology, University Medical Center Rostock, Rostock, Germany
| | - Jörg Henschel
- Department of Internal Medicine, Intensive Care Unit, University Medical Center Rostock, Rostock, Germany
| | - Martin Gloger
- Department of Internal Medicine, Intensive Care Unit, University Medical Center Rostock, Rostock, Germany
| | - Tarek Sharshar
- General Intensive Care Medicine, Assistance Publique - Hôpitaux de Paris, Raymond Poincaré Hospital, University of Versailles Saint-Quentin en Yvelines, Paris, France
| | - Fabrice Chretien
- General Intensive Care Medicine, Assistance Publique - Hôpitaux de Paris, Raymond Poincaré Hospital, University of Versailles Saint-Quentin en Yvelines, Paris, France
| | - Francoise Gray
- General Intensive Care Medicine, Assistance Publique - Hôpitaux de Paris, Raymond Poincaré Hospital, University of Versailles Saint-Quentin en Yvelines, Paris, France
| | - Gabriele Nöldge-Schomburg
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, UK
| | - Martin Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
| | - Axel Petzold
- Department of Neuroimmunology, UCL Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
39
|
Alpha-lipoic acid attenuates acute neuroinflammation and long-term cognitive impairment after polymicrobial sepsis. Neurochem Int 2017; 108:436-447. [DOI: 10.1016/j.neuint.2017.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 12/17/2022]
|
40
|
Tang G, Yang H, Chen J, Shi M, Ge L, Ge X, Zhu G. Metformin ameliorates sepsis-induced brain injury by inhibiting apoptosis, oxidative stress and neuroinflammation via the PI3K/Akt signaling pathway. Oncotarget 2017; 8:97977-97989. [PMID: 29228667 PMCID: PMC5716707 DOI: 10.18632/oncotarget.20105] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/25/2017] [Indexed: 01/30/2023] Open
Abstract
Sepsis-induced brain injuries increase mortality, morbidity, cognitive impairment and lack of effective therapeutic treatment. Previous studies have suggested that metformin provides neuroprotective effects against ischemia, brain trauma and other brain damage, but whether metformin protects a septic brain remains unknown. Thus, the aim of this study is to investigate the possible effects and the mechanism of metformin against septic brain damage using the cecal ligation and puncture (CLP) model. Mice were randomly divided into five groups: the Sham group, CLP group, CLP+ Met group, CLP+ vehicle group and CLP+ Met+ LY group. The survival percentage and brain water content were examined, and the Morris water maze was conducted to determine the protective effect of metformin. Neuronal apoptosis in the cerebral cortex, striatum and hippocampus was examined using TUNEL assay and immunohistochemistry, and western blot was applied to measure the expression of p-Akt. The results indicate that metformin can increase survival percentage, decrease brain edema, preserve the blood-brain barrier (BBB) and improve cognitive function. Metformin also reduced the neuronal apoptosis induced by sepsis and increased the phosphorylation of Akt. However, the protective effect of metformin can be reversed by LY294002, a PI3K inhibitor. In summary, our results demonstrate that metformin can exert a neuroprotective effect by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Guangming Tang
- Department of Internal Medicine, Soochow University Affiliated Children's Hospital, Suzhou, Jiangsu, P.R. China
| | - Huiyun Yang
- Neonate Department, Soochow University Affiliated Children's Hospital, Suzhou, Jiangsu, P.R. China
| | - Jing Chen
- Neonate Department, Soochow University Affiliated Children's Hospital, Suzhou, Jiangsu, P.R. China
| | - Mengrao Shi
- Neonate Department, Soochow University Affiliated Children's Hospital, Suzhou, Jiangsu, P.R. China
| | - Lingqing Ge
- Neonate Department, Soochow University Affiliated Children's Hospital, Suzhou, Jiangsu, P.R. China
| | - Xuhua Ge
- Department of General Medicine, Yangpu Hospital Tongji University School of Medicine, Shanghai, P.R. C
| | - Guoji Zhu
- Department of Internal Medicine, Soochow University Affiliated Children's Hospital, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
41
|
Michels M, Sonai B, Dal-Pizzol F. Polarization of microglia and its role in bacterial sepsis. J Neuroimmunol 2017; 303:90-98. [PMID: 28087076 DOI: 10.1016/j.jneuroim.2016.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/04/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
Microglial polarization in response to brain inflammatory conditions is a crescent field in neuroscience. However, the effect of systemic inflammation, and specifically sepsis, is a relatively unexplored field that has great interest and relevance. Sepsis has been associated with both early and late harmful events of the central nervous system, suggesting that there is a close link between sepsis and neuroinflammation. During sepsis evolution it is supposed that microglial could exert both neurotoxic and repairing effects depending on the specific microglial phenotype assumed. In this context, here it was reviewed the role of microglial polarization during sepsis-associated brain dysfunction.
Collapse
Affiliation(s)
- Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av Universitária, 1105, Criciúma 88806000, SC, Brazil.
| | - Beatriz Sonai
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av Universitária, 1105, Criciúma 88806000, SC, Brazil.
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av Universitária, 1105, Criciúma 88806000, SC, Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Medical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
42
|
Inhibition of indoleamine 2,3-dioxygenase 1/2 prevented cognitive impairment and energetic metabolism changes in the hippocampus of adult rats subjected to polymicrobial sepsis. J Neuroimmunol 2017; 305:167-171. [PMID: 28284339 DOI: 10.1016/j.jneuroim.2017.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 01/06/2023]
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection that may affect the brain. We investigated the role of indoleamine 2,3-dioxygenase (IDO-1/2) inhibition on long-term memory and energetic metabolism after experimental sepsis by caecal ligation and perforation (CLP). Experimental sepsis increased the activity of complexes I, II-III and IV at 24h after CLP, and IDO-1/2 inhibition normalized the activity of these complexes in the hippocampus. Wistar rats presented impairment of habituation and aversive memories 10days after CLP. Adjuvant treatment with the IDO inhibitor prevented long-term cognitive impairment triggered by sepsis.
Collapse
|
43
|
Zhu SZ, Huang WP, Huang LQ, Han YL, Han QP, Zhu GF, Wen MY, Deng YY, Zeng HK. Huperzine A protects sepsis associated encephalopathy by promoting the deficient cholinergic nervous function. Neurosci Lett 2016; 631:70-78. [DOI: 10.1016/j.neulet.2016.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 01/14/2023]
|
44
|
Characterization of Brain-Heart Interactions in a Rodent Model of Sepsis. Mol Neurobiol 2016; 54:3745-3752. [PMID: 27229490 PMCID: PMC5443875 DOI: 10.1007/s12035-016-9941-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/03/2016] [Indexed: 11/23/2022]
Abstract
Loss of heart rate variability (HRV) and autonomic dysfunction are associated with poor outcomes in critically ill patients. Neuronal networks comprising brainstem and hypothalamus are involved in the “flight-or-fight” response via control over the autonomic nervous system and circulation. We hypothesized that sepsis-induced inflammation in brain regions responsible for autonomic control is associated with sympathovagal imbalance and depressed contractility. Sepsis was induced by fecal slurry injection in fluid-resuscitated rats. Sham-operated animals served as controls. Echocardiography-derived peak velocity (PV) was used to separate septic animals into good (PV ≥0.93 m/s, low 72-h mortality) and bad (PV <0.93, high 72-h mortality) prognosis. Cytokine protein levels were assessed by ELISA. All experiments were performed at 24 h post-insult. Increased levels of inflammation and oxidative injury were observed in the hypothalamus (TNF-α, IL-10, nitrite and nitrate and carbonyl groups) and brainstem (IL-1, IL-6, IL-10, nitrite and nitrate and carbonyl groups) of the septic animals (p < 0.05 vs. sham), but not in the pre-frontal cortex, an area not directly implicated in control of the autonomic nervous system. Good prognosis septic animals had increased sympathetic output and increased left ventricular contractility (p < 0.05 vs. sham). There was a significant inverse correlation between high frequency power (a marker of parasympathetic outflow) and contractility (r = −0.73, p < 0.05). We found no correlation between the degree of inflammation or injury to autonomic centers and cardiovascular function. In conclusion, control of autonomic centers and cardiac function in our long-term rodent model of sepsis was related to clinical severity but not directly to the degree of inflammation.
Collapse
|
45
|
Yamaguchi H, Tanaka T, Maruyama A, Nagase H. Septic Encephalopathy Characterized by Acute Encephalopathy with Biphasic Seizures and Late Reduced Diffusion and Early Nonconvulsive Status Epilepticus. Case Rep Neurol Med 2016; 2016:7528238. [PMID: 27051542 PMCID: PMC4804049 DOI: 10.1155/2016/7528238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/17/2016] [Indexed: 11/17/2022] Open
Abstract
Infection, whether viral or bacterial, can result in various forms of brain dysfunction (encephalopathy). Septic encephalopathy (SE) is caused by an excessive immune reaction to infection, with clinical features including disturbed consciousness and seizures. Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) is usually accompanied by viral infection in children and is characterized by biphasic seizures and impaired consciousness. The initial neurologic symptom of AESD is typically a febrile seizure that frequently lasts longer than 30 minutes. However, the possible forms this seizure takes are unclear. For example, it is unknown if nonconvulsive status epilepticus (NCSE) could be an early seizure symptomatic of AESD. In addition, thus far no cases of combined SE and AESD have been reported. Here, we describe the first reported case of SE with AESD that notably demonstrated NCSE as an early seizure.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- Department of Emergency and Critical Care Medicine, Hyogo Prefectural Kobe Children's Hospital, 1-1-1 Takakuradai, Suma-Ku, Kobe, Hyogo 654-0081, Japan
| | - Tsukasa Tanaka
- Department of Neurology, Hyogo Prefectural Kobe Children's Hospital, 1-1-1 Takakuradai, Suma-Ku, Kobe, Hyogo 654-0081, Japan
| | - Azusa Maruyama
- Department of Neurology, Hyogo Prefectural Kobe Children's Hospital, 1-1-1 Takakuradai, Suma-Ku, Kobe, Hyogo 654-0081, Japan
| | - Hiroaki Nagase
- Department of Neurology, Hyogo Prefectural Kobe Children's Hospital, 1-1-1 Takakuradai, Suma-Ku, Kobe, Hyogo 654-0081, Japan
| |
Collapse
|
46
|
Lu CX, Qiu T, Tong HS, Liu ZF, Su L, Cheng B. Peripheral T-lymphocyte and natural killer cell population imbalance is associated with septic encephalopathy in patients with severe sepsis. Exp Ther Med 2016; 11:1077-1084. [PMID: 26998040 DOI: 10.3892/etm.2016.3000] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/21/2015] [Indexed: 12/20/2022] Open
Abstract
Septic encephalopathy (SE) is a diffuse cerebral dysfunction resulting from a systemic inflammatory response, and is associated with an increased risk of mortality. The pathogenesis of SE is complex and multifactorial, but unregulated immune imbalance may be an important factor. The current retrospective study examined the clinical data of 86 patients with severe sepsis who were admitted to the Intensive Care Unit at Zhongshan Hospital, Xiamen University (Xiamen, China) from January, 2014 to January, 2015. The patients were assigned to SE and non-SE patient groups according to the presence or absence of SE. The proportion of T-lymphocyte subsets and natural killer (NK) cells in the immune cell population, representing the function of the immune system, were analyzed for their association with SE and compared with other clinical predictors and biomarkers. The incidence of SE in the patients was 39.5%, and this group demonstrated higher mortality rates (38 vs. 10% in non-SE patients; P=0.001). Univariate analysis revealed that the SE patients reported a lower percentage of cluster of differentiation 4+(CD4+) T-lymphocytes (51.67±7.12 vs. 60.72±3.70% in non-SE patients; P<0.01), a lower CD4+/cluster of differentiation 8+(CD8+) ratio (1.59±0.32 vs. 1.85±0.26% in non-SE patients; P<0.01) and a higher percentage of NK cells (11.80±1.44 vs. 9.19±2.36% in non-SE patients; P<0.01). Using a binary logistic regression model, the Acute Physiology and Chronic Health Evaluation II score and the percentage of CD4+ T-lymphocytes were demonstrated to be independently associated with SE (respectively, P=0.012 and OR, 4.763; P=0.005 and OR, 0.810). An area under the curve analysis of a receiver operating characteristic curve of the two indicators revealed that these were equally powerful measures in prediction of SE (Z=1.247, P>0.05). The present results confirm that SE leads to higher mortality in patients with severe sepsis, and demonstrate that immune imbalance is important in the development of SE. The proportion of CD4+ T-lymphocytes present were revealed in the current study to be a powerful predictor of SE in patients with severe sepsis.
Collapse
Affiliation(s)
- Cheng-Xiang Lu
- Department of Intensive Care Unit, Affiliated General Hospital of Guangzhou Military Command of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Department of Intensive Care Unit, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Ting Qiu
- Department of Neurology, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Hua-Sheng Tong
- Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Zhi-Feng Liu
- Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Lei Su
- Department of Intensive Care Unit, Affiliated General Hospital of Guangzhou Military Command of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Biao Cheng
- Department of Plastic Surgery, Affiliated General Hospital of Guangzhou Military Command of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
47
|
Michels M, Danieslki LG, Vieira A, Florentino D, Dall'Igna D, Galant L, Sonai B, Vuolo F, Mina F, Pescador B, Dominguini D, Barichello T, Quevedo J, Dal-Pizzol F, Petronilho F. CD40-CD40 Ligand Pathway is a Major Component of Acute Neuroinflammation and Contributes to Long-term Cognitive Dysfunction after Sepsis. Mol Med 2015; 21:219-26. [PMID: 25822797 DOI: 10.2119/molmed.2015.00070] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is associated with an increased rate of morbidity and mortality. It is not understood what the exact mechanism is for the brain dysfunction that occurs in septic patients, but brain inflammation and oxidative stress are a possible theory. Such events can occur through the alteration of molecules that perpetuate the inflammatory response. Thus, it is possible to postulate that CD40 may be involved in this process. The aim of this work is to evaluate the role of CD40-CD40L pathway activation in brain dysfunction associated with sepsis in an animal model. Microglia activation induces the upregulation of CD40-CD40L, both in vitro and in vivo. The inhibition of microglia activation decreases levels of CD40-CD40L in the brain and decreases brain inflammation, oxidative damage and blood brain barrier dysfunction. Despite this, anti-CD40 treatment does not improve mortality in this model. However, it is able to improve long-term cognitive impairment in sepsis survivors. In conclusion, there is a major involvement of the CD40-CD40L signaling pathway in long-term brain dysfunction in an animal model of sepsis.
Collapse
Affiliation(s)
- Monique Michels
- Laboratory of Clinical and Experimental Pathophysiology, Graduate Program in Health Sciences, University of South of Santa Catarina, Tubarão, SC, Brazil
| | - Lucinéia Gainski Danieslki
- Laboratory of Clinical and Experimental Pathophysiology, Graduate Program in Health Sciences, University of South of Santa Catarina, Tubarão, SC, Brazil
| | - Andriele Vieira
- Laboratory of Clinical and Experimental Pathophysiology, Graduate Program in Health Sciences, University of South of Santa Catarina, Tubarão, SC, Brazil
| | - Drielly Florentino
- Laboratory of Clinical and Experimental Pathophysiology, Graduate Program in Health Sciences, University of South of Santa Catarina, Tubarão, SC, Brazil
| | - Dhébora Dall'Igna
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Letícia Galant
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Beatriz Sonai
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Francieli Vuolo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Franciele Mina
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Bruna Pescador
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Diogo Dominguini
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil.,Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil.,Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Fabrícia Petronilho
- Laboratory of Clinical and Experimental Pathophysiology, Graduate Program in Health Sciences, University of South of Santa Catarina, Tubarão, SC, Brazil
| |
Collapse
|
48
|
Li L, Sun Q, Li Y, Yang Y, Yang Y, Chang T, Man M, Zheng L. Overexpression of SIRT1 Induced by Resveratrol and Inhibitor of miR-204 Suppresses Activation and Proliferation of Microglia. J Mol Neurosci 2015; 56:858-867. [DOI: 10.1007/s12031-015-0526-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/13/2015] [Indexed: 10/23/2022]
|
49
|
Michels M, Vieira AS, Vuolo F, Zapelini HG, Mendonça B, Mina F, Dominguini D, Steckert A, Schuck PF, Quevedo J, Petronilho F, Dal-Pizzol F. The role of microglia activation in the development of sepsis-induced long-term cognitive impairment. Brain Behav Immun 2015; 43:54-9. [PMID: 25019583 DOI: 10.1016/j.bbi.2014.07.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress and inflammation is likely to be a major step in the development of sepsis-associated encephalopathy (SAE) and long-term cognitive impairment. To date, it is not known whether brain inflammation and oxidative damage are a direct consequence of systemic inflammation or whether these events are driven by brain resident cells, such as microglia. Therefore, the aim of this study is to evaluate the effect of minocycline on behavioral and neuroinflammatory parameters in rats submitted to sepsis. Male Wistar rats were subjected to sepsis by cecal ligation and puncture (CLP). The animals were divided into sham-operated (Sham+control), sham-operated plus minocycline (sham+MIN), CLP (CLP+control) and CLP plus minocycline (CLP+MIN) (100 μg/kg, administered as a single intracerebroventricular (ICV) injection). Some animals were killed 24h after surgery to assess the breakdown of the blood brain barrier, cytokine levels, oxidative damage to lipids (TBARS) and proteins in the hippocampus. Some animals were allowed to recover for 10 days when step-down inhibitory avoidance and open-field tasks were performed. Treatment with minocycline prevented an increase in markers of oxidative damage and inflammation in the hippocampus after sepsis. This was associated with an improvement in long-term cognitive performance. In conclusion, we demonstrated that the inhibition of the microglia by an ICV injection of minocycline was able to decrease acute brain oxidative damage and inflammation as well as long-term cognitive impairment in sepsis survivors.
Collapse
Affiliation(s)
- Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Andriele S Vieira
- Laboratory of Clinical and Experimental Pathophysiology, Graduate Program in Health Sciences, University of South of Santa Catarina, Tubarão, SC, Brazil
| | - Francieli Vuolo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Hugo Galvane Zapelini
- Laboratory of Inborn Errors of Metabolism, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Bruna Mendonça
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Francielle Mina
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Diogo Dominguini
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Amanda Steckert
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Patrícia Fernanda Schuck
- Laboratory of Inborn Errors of Metabolism, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fabrícia Petronilho
- Laboratory of Clinical and Experimental Pathophysiology, Graduate Program in Health Sciences, University of South of Santa Catarina, Tubarão, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|