1
|
Morando N, Rosenzvit MC, Pando MA, Allmer J. The Role of MicroRNAs in HIV Infection. Genes (Basel) 2024; 15:574. [PMID: 38790203 PMCID: PMC11120859 DOI: 10.3390/genes15050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
MicroRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in regulating gene expression at the post-transcriptional level. These regulatory molecules are integral to many biological processes and have been implicated in the pathogenesis of various diseases, including Human Immunodeficiency Virus (HIV) infection. This review aims to cover the current understanding of the multifaceted roles miRNAs assume in the context of HIV infection and pathogenesis. The discourse is structured around three primary focal points: (i) elucidation of the mechanisms through which miRNAs regulate HIV replication, encompassing both direct targeting of viral transcripts and indirect modulation of host factors critical for viral replication; (ii) examination of the modulation of miRNA expression by HIV, mediated through either viral proteins or the activation of cellular pathways consequent to viral infection; and (iii) assessment of the impact of miRNAs on the immune response and the progression of disease in HIV-infected individuals. Further, this review delves into the potential utility of miRNAs as biomarkers and therapeutic agents in HIV infection, underscoring the challenges and prospects inherent to this line of inquiry. The synthesis of current evidence positions miRNAs as significant modulators of the host-virus interplay, offering promising avenues for enhancing the diagnosis, treatment, and prevention of HIV infection.
Collapse
Affiliation(s)
- Nicolas Morando
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (N.M.); (M.A.P.)
| | - Mara Cecilia Rosenzvit
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina;
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Maria A. Pando
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (N.M.); (M.A.P.)
| | - Jens Allmer
- Medical Informatics and Bioinformatics, Institute for Measurement Engineering and Sensor Technology, Hochschule Ruhr West, University of Applied Sciences, 45479 Mülheim an der Ruhr, Germany
| |
Collapse
|
2
|
Lazzari E, Rozera G, Gagliardini R, Esvan R, Mondi A, Mazzotta V, Camici M, Girardi E, Antinori A, Maggi F, Abbate I. Human and Viral microRNA Expression in Acute and Chronic HIV Infections. Viruses 2024; 16:496. [PMID: 38675839 PMCID: PMC11054094 DOI: 10.3390/v16040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Human and viral microRNAs (miRNAs) are involved in the regulation of gene transcription, and the establishment of their profiles in acute (AHI) and chronic (CHI) HIV infections may shed light on the pathogenetic events related to different phases of HIV disease. Next-generation sequencing (NGS) of miRNA libraries was performed, and the reads were used to analyze miRNA differential expression in the plasma with AHI and CHI. Functional analysis was then undertaken to investigate the biological processes characterizing the two phases of HIV infection. Except for hsa-miR-122-5p, which was found in 3.39% AHI vs. 0.18% CHI, the most represented human miRNAs were similarly represented in AHI and CHI. However, when considering the overall detected miRNAs in AHI and CHI, 15 displayed differential expression (FDR p < 0.05). Functional analysis identified 163 target mRNAs involved in promoting angiogenesis activation in AHI versus CHI through the action of hsa-miR10b-5p, hsa-miR1290, hsa-miR1-3p, and hsa-miR296-5p. The viral miRNAs detected, all belonging to herpesviruses, accounted for only 0.014% of total reads. The present data suggest that AHI patients exhibit strong innate immune activation through the upregulation of hsa-miR-122-5p and early activation of angiogenesis. More specific investigations are needed to study the role of viral miRNAs in HIV pathogenesis.
Collapse
Affiliation(s)
- Elisabetta Lazzari
- Laboratory of Virology, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00149 Rome, Italy; (E.L.); (F.M.); (I.A.)
| | - Gabriella Rozera
- Laboratory of Virology, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00149 Rome, Italy; (E.L.); (F.M.); (I.A.)
| | - Roberta Gagliardini
- Clinical Department, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00149 Rome, Italy; (R.G.); (A.M.); (V.M.); (M.C.); (A.A.)
| | - Rozenn Esvan
- AIDS Referral Center, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00149 Rome, Italy;
| | - Annalisa Mondi
- Clinical Department, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00149 Rome, Italy; (R.G.); (A.M.); (V.M.); (M.C.); (A.A.)
| | - Valentina Mazzotta
- Clinical Department, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00149 Rome, Italy; (R.G.); (A.M.); (V.M.); (M.C.); (A.A.)
| | - Marta Camici
- Clinical Department, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00149 Rome, Italy; (R.G.); (A.M.); (V.M.); (M.C.); (A.A.)
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00149 Rome, Italy;
| | - Andrea Antinori
- Clinical Department, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00149 Rome, Italy; (R.G.); (A.M.); (V.M.); (M.C.); (A.A.)
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00149 Rome, Italy; (E.L.); (F.M.); (I.A.)
| | - Isabella Abbate
- Laboratory of Virology, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00149 Rome, Italy; (E.L.); (F.M.); (I.A.)
| |
Collapse
|
3
|
Hicks SD, Zhu D, Sullivan R, Kannikeswaran N, Meert K, Chen W, Suresh S, Sethuraman U. Saliva microRNA Profile in Children with and without Severe SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:8175. [PMID: 37175883 PMCID: PMC10179619 DOI: 10.3390/ijms24098175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) may impair immune modulating host microRNAs, causing severe disease. Our objectives were to determine the salivary miRNA profile in children with SARS-CoV-2 infection at presentation and compare the expression in those with and without severe outcomes. Children <18 years with SARS-CoV-2 infection evaluated at two hospitals between March 2021 and February 2022 were prospectively enrolled. Severe outcomes included respiratory failure, shock or death. Saliva microRNAs were quantified with RNA sequencing. Data on 197 infected children (severe = 45) were analyzed. Of the known human miRNAs, 1606 (60%) were measured and compared across saliva samples. There were 43 miRNAs with ≥2-fold difference between severe and non-severe cases (adjusted p-value < 0.05). The majority (31/43) were downregulated in severe cases. The largest between-group differences involved miR-4495, miR-296-5p, miR-548ao-3p and miR-1273c. These microRNAs displayed enrichment for 32 gene ontology pathways including viral processing and transforming growth factor beta and Fc-gamma receptor signaling. In conclusion, salivary miRNA levels are perturbed in children with severe COVID-19, with the majority of miRNAs being down regulated. Further studies are required to validate and determine the utility of salivary miRNAs as biomarkers of severe COVID-19.
Collapse
Affiliation(s)
- Steven D. Hicks
- Department of Pediatrics, Pennsylvania State University Medical Center, Hershey, PA 17033, USA; (S.D.H.)
| | - Dongxiao Zhu
- Department of Computer Science, Wayne State University, Detroit, MI 48201, USA;
| | - Rhea Sullivan
- Department of Pediatrics, Pennsylvania State University Medical Center, Hershey, PA 17033, USA; (S.D.H.)
| | - Nirupama Kannikeswaran
- Division of Emergency Medicine, Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| | - Kathleen Meert
- Division of Critical Care, Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| | - Wei Chen
- Population Science, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Srinivasan Suresh
- Department of Pediatrics, University of Pittsburgh, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Usha Sethuraman
- Division of Emergency Medicine, Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| |
Collapse
|
4
|
Huang Y, Liao Z, Dang P, Queen S, Abreu CM, Gololobova O, Zheng L, Witwer KW. Longitudinal characterization of circulating extracellular vesicles and small RNA during simian immunodeficiency virus infection and antiretroviral therapy. AIDS 2023; 37:733-744. [PMID: 36779477 PMCID: PMC9994802 DOI: 10.1097/qad.0000000000003487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/11/2023] [Indexed: 02/14/2023]
Abstract
OBJECTIVES Latent infection by HIV hinders viral eradication despite effective antiretroviral treatment (ART). Among proposed contributors to viral latency are cellular small RNAs that have also been proposed to shuttle between cells in extracellular vesicles. Thus, we profiled extracellular vesicle small RNAs during different infection phases to understand the potential relationship between these extracellular vesicle associated small RNAs and viral infection. DESIGN A well characterized simian immunodeficiency virus (SIV)/macaque model of HIV was used to profile extracellular vesicle enriched blood plasma fractions harvested during preinfection, acute infection, latent infection/ART treatment, and rebound after ART interruption. METHODS Measurement of extracellular vesicle concentration, size distribution, and morphology was complemented with qPCR array for small RNA expression, followed by individual qPCR validations. Iodixanol density gradients were used to separate extracellular vesicle subtypes and virions. RESULTS Plasma extracellular vesicle particle counts correlated with viral load and peaked during acute infection. However, SIV gag RNA detection showed that virions did not fully explain this peak. Extracellular vesicle microRNAs miR-181a, miR-342-3p, and miR-29a decreased with SIV infection and remained downregulated in latency. Interestingly, small nuclear RNA U6 had a tight association with viral load peak. CONCLUSION This study is the first to monitor how extracellular vesicle concentration and extracellular vesicle small RNA expression change dynamically in acute viral infection, latency, and rebound in a carefully controlled animal model. These changes may also reveal regulatory roles in retroviral infection and latency.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhaohao Liao
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Phuong Dang
- College of Pharmacy, University of Texas, Houston, Texas, USA
| | - Suzanne Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Celina Monteiro Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Tarancon-Diez L, Consuegra I, Vazquez-Alejo E, Ramos-Ruiz R, Ramos JT, Navarro ML, Muñoz-Fernández MÁ. miRNA Profile Based on ART Delay in Vertically Infected HIV-1 Youths Is Associated With Inflammatory Biomarkers and Activation and Maturation Immune Levels. Front Immunol 2022; 13:878630. [PMID: 35529880 PMCID: PMC9074828 DOI: 10.3389/fimmu.2022.878630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Early antiretroviral treatment (ART) in vertically acquired HIV-1-infection is associated with a rapid viral suppression, small HIV-1 reservoir, reduced morbimortality and preserved immune functions. We investigated the miRNA profile from vertically acquired HIV-1-infected young adults based on ART initiation delay and its association with the immune system activation. Using a microRNA panel and multiparametric flow cytometry, miRNome profile obtained from peripheral blood mononuclear cells and its association with adaptive and innate immune components were studied on vertically HIV-1-infected young adults who started ART early (EARLY, 0-53 weeks after birth) and later (LATE, 120-300 weeks). miR-1248 and miR-155-5p, were significantly upregulated in EARLY group compared with LATE group, while miR-501-3p, miR-548d-5p, miR-18a-3p and miR-296-5p were significantly downregulated in EARLY treated group of patients. Strong correlations were obtained between miRNAs levels and soluble biochemical biomarkers and immunological parameters including CD4 T-cell count and maturation by CD69 expression on CD4 T-cells and activation by HLA-DR on CD16high NK cell subsets for miR-1248 and miR-155-5p. In this preliminary study, a distinct miRNA signature discriminates early treated HIV-1-infected young adults. The role of those miRNAs target genes in the modulation of HIV-1 replication and latency may reveal new host signaling pathways that could be manipulated in antiviral strategies. Correlations between miRNAs levels and inflammatory and immunological markers highlight those miRNAs as potential biomarkers for immune inflammation and activation in HIV-1-infected young adults who initiated a late ART.
Collapse
Affiliation(s)
- Laura Tarancon-Diez
- Immunology Section, Laboratorio InmunoBiología Molecular (LIBM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Area of Immune System Pathology, Madrid, Spain
| | - Irene Consuegra
- Immunology Section, Laboratorio InmunoBiología Molecular (LIBM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Area of Immune System Pathology, Madrid, Spain
| | - Elena Vazquez-Alejo
- Immunology Section, Laboratorio InmunoBiología Molecular (LIBM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Area of Immune System Pathology, Madrid, Spain
| | | | - José Tomás Ramos
- Department of Paediatrics, Clínico San Carlos University Hospital, Madrid, Spain
| | - María Luisa Navarro
- Pediatric Infectious Disease Unit, Hospital Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid and CIBERINFEC, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - Mª Ángeles Muñoz-Fernández
- Immunology Section, Laboratorio InmunoBiología Molecular (LIBM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Area of Immune System Pathology, Madrid, Spain
- *Correspondence: Mª Ángeles Muñoz-Fernández,
| |
Collapse
|
6
|
Baptista B, Riscado M, Queiroz J, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol 2021. [DOI: 10.1016/j.bcp.2021.114469 order by 22025--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
7
|
Baptista B, Riscado M, Queiroz JA, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol 2021; 189:114469. [PMID: 33577888 DOI: 10.1016/j.bcp.2021.114469] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
The knowledge about non-coding RNAs (ncRNAs) is rapidly increasing with new data continuously emerging, regarding their diverse types, applications, and roles. Particular attention has been given to ncRNA with regulatory functions, which may have a critical role both in biological and pathological conditions. As a result of the diversity of ncRNAs and their ubiquitous involvement in several biologic processes, ncRNA started to be considered in the biomedical field, with immense potential to be exploited either as biomarkers or as therapeutic agents in certain pathologies. Indeed, ncRNA-based therapeutics have been proposed in many disorders and some even reached clinical trials. However, to prepare an RNA product suitable for pharmacological applications, certain criteria must be fulfilled, and it has to be guaranteed RNA purity, stability, and bioactivity. So, in this review, the different types of ncRNAs are identified and characterized, by describing their biogenesis, functions, and applications. A perspective on the main challenges and innovative approaches for the future and broad therapeutic application of RNA is also presented.
Collapse
Affiliation(s)
- B Baptista
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - M Riscado
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - J A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - C Pichon
- Centre de Biophysique Moléculaire (CBM), UPR 4301 CNRS & University of Orléans Orléans, France
| | - F Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|