1
|
Chang YH, Hsu MF, Chen WN, Wu MH, Kong WL, Lu MYJ, Huang CH, Chang FJ, Chang LY, Tsai HY, Tung CP, Yu JH, Kuo Y, Chou YC, Bai LY, Chang YC, Chen AY, Chen CC, Chen YH, Liao CC, Chang CS, Liang JJ, Lin YL, Angata T, Hsu STD, Lin KI. Functional and structural investigation of a broadly neutralizing SARS-CoV-2 antibody. JCI Insight 2024; 9:e179726. [PMID: 38775156 PMCID: PMC11141937 DOI: 10.1172/jci.insight.179726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/12/2024] [Indexed: 06/02/2024] Open
Abstract
Since its emergence, SARS-CoV-2 has been continuously evolving, hampering the effectiveness of current vaccines against COVID-19. mAbs can be used to treat patients at risk of severe COVID-19. Thus, the development of broadly protective mAbs and an understanding of the underlying protective mechanisms are of great importance. Here, we isolated mAbs from donors with breakthrough infection with Omicron subvariants using a single-B cell screening platform. We identified a mAb, O5C2, which possesses broad-spectrum neutralization and antibody-dependent cell-mediated cytotoxic activities against SARS-CoV-2 variants, including EG.5.1. Single-particle analysis by cryo-electron microscopy revealed that O5C2 targeted an unusually large epitope within the receptor-binding domain of spike protein that overlapped with the angiotensin-converting enzyme 2 binding interface. Furthermore, O5C2 effectively protected against BA.5 Omicron infection in vivo by mediating changes in transcriptomes enriched in genes involved in apoptosis and interferon responses. Our findings provide insights into the development of pan-protective mAbs against SARS-CoV-2.
Collapse
Affiliation(s)
- Yi-Hsuan Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | | | - Wei-Nan Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Wye-Lup Kong
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Heng Huang
- Institute of Preventive Medicine
- Graduate Institute of Medical Sciences, and
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Fang-Ju Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Ho-Yang Tsai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chao-Ping Tung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jou-Hui Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yali Kuo
- Biomedical Translation Research Center (BioTReC)
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC)
| | - Li-Yang Bai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yuan-Chih Chang
- Institute of Biological Chemistry and
- Academia Sinica Cryo-EM Center, and
| | - An-Yu Chen
- Institute of Preventive Medicine
- Graduate Institute of Medical Sciences, and
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine
- Graduate Institute of Medical Sciences, and
| | - Yi-Hua Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Biomedical Translation Research Center (BioTReC)
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Takashi Angata
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry and
| | - Shang-Te Danny Hsu
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry and
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKC M2, ) Hiroshima University, Hiroshima, Japan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Biomedical Translation Research Center (BioTReC)
| |
Collapse
|
2
|
Zambalde ÉP, Dias TL, Maktura GC, Amorim MR, Brenha B, Santos LN, Buscaratti L, Elston JGDA, Mancini MCS, Pavan ICB, Toledo-Teixeira DA, Bispo-dos-Santos K, Parise PL, Morelli AP, da Silva LGS, de Castro ÍMS, Saccon TD, Mori MA, Granja F, Nakaya HI, Proenca-Modena JL, Marques-Souza H, Simabuco FM. Increased mTOR Signaling and Impaired Autophagic Flux Are Hallmarks of SARS-CoV-2 Infection. Curr Issues Mol Biol 2022; 45:327-336. [PMID: 36661509 PMCID: PMC9858158 DOI: 10.3390/cimb45010023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 01/03/2023] Open
Abstract
The COVID-19 (Coronavirus Disease 2019), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), severely affects mainly individuals with pre-existing comorbidities. Here our aim was to correlate the mTOR (mammalian/mechanistic Target of Rapamycin) and autophagy pathways with the disease severity. Through western blotting and RNA analysis, we found increased mTOR signaling and suppression of genes related to autophagy, lysosome, and vesicle fusion in Vero E6 cells infected with SARS-CoV-2 as well as in transcriptomic data mining of bronchoalveolar epithelial cells from severe COVID-19 patients. Immunofluorescence co-localization assays also indicated that SARS-CoV-2 colocalizes within autophagosomes but not with a lysosomal marker. Our findings indicate that SARS-CoV-2 can benefit from compromised autophagic flux and inhibited exocytosis in individuals with chronic hyperactivation of mTOR signaling.
Collapse
Affiliation(s)
- Érika Pereira Zambalde
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil
| | - Thomaz Luscher Dias
- Computational Systems Biology Lab (CSBL), Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Grazielle Celeste Maktura
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-872, SP, Brazil
| | - Mariene R. Amorim
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-872, SP, Brazil
| | - Bianca Brenha
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-872, SP, Brazil
| | - Luana Nunes Santos
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-872, SP, Brazil
| | - Lucas Buscaratti
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-872, SP, Brazil
| | - João Gabriel de Angeli Elston
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-872, SP, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil
- Laboratory of Signaling Mechanisms (LMS), School of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
| | - Daniel A. Toledo-Teixeira
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
| | - Karina Bispo-dos-Santos
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
| | - Pierina L. Parise
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil
| | - Ícaro Maia Santos de Castro
- Computational Systems Biology Lab (CSBL), Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | - Tatiana D. Saccon
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
| | - Marcelo A. Mori
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
| | - Fabiana Granja
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
- Biodiversity Research Centre, Federal University of Roraima, Boa Vista 69310-000, RR, Brazil
| | - Helder I. Nakaya
- Computational Systems Biology Lab (CSBL), Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| | - Jose Luiz Proenca-Modena
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
| | - Henrique Marques-Souza
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-872, SP, Brazil
- Correspondence: (H.M.-S.); (F.M.S.)
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil
- Department of Biochemistry, Federal University of São Paulo, São Paulo 04044-020, SP, Brazil
- Correspondence: (H.M.-S.); (F.M.S.)
| |
Collapse
|
3
|
Välikangas T, Junttila S, Rytkönen KT, Kukkonen-Macchi A, Suomi T, Elo LL. COVID-19-specific transcriptomic signature detectable in blood across multiple cohorts. Front Genet 2022; 13:929887. [PMID: 35991542 PMCID: PMC9388772 DOI: 10.3389/fgene.2022.929887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/27/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading across the world despite vast global vaccination efforts. Consequently, many studies have looked for potential human host factors and immune mechanisms associated with the disease. However, most studies have focused on comparing COVID-19 patients to healthy controls, while fewer have elucidated the specific host factors distinguishing COVID-19 from other infections. To discover genes specifically related to COVID-19, we reanalyzed transcriptome data from nine independent cohort studies, covering multiple infections, including COVID-19, influenza, seasonal coronaviruses, and bacterial pneumonia. The identified COVID-19-specific signature consisted of 149 genes, involving many signals previously associated with the disease, such as induction of a strong immunoglobulin response and hemostasis, as well as dysregulation of cell cycle-related processes. Additionally, potential new gene candidates related to COVID-19 were discovered. To facilitate exploration of the signature with respect to disease severity, disease progression, and different cell types, we also offer an online tool for easy visualization of the selected genes across multiple datasets at both bulk and single-cell levels.
Collapse
Affiliation(s)
- Tommi Välikangas
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kalle T. Rytkönen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anu Kukkonen-Macchi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Wang LG, Wang L. Current Strategies in Treating Cytokine Release Syndrome Triggered by Coronavirus SARS-CoV-2. Immunotargets Ther 2022; 11:23-35. [PMID: 35611161 PMCID: PMC9124488 DOI: 10.2147/itt.s360151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/07/2022] [Indexed: 12/15/2022] Open
Abstract
Since the beginning of the SARS-CoV-2 pandemic, the treatments and management of the deadly COVID-19 disease have made great progress. The strategies for developing novel treatments against COVID-19 include antiviral small molecule drugs, cell and gene therapies, immunomodulators, neutralizing antibodies, and combination therapies. Among them, immunomodulators are the most studied treatments. The small molecule antiviral drugs and immunoregulators are expected to be effective against viral variants of SARS-CoV-2 as these drugs target either conservative parts of the virus or common pathways of inflammation. Although the immunoregulators have shown benefits in reducing mortality of cytokine release syndrome (CRS) triggered by SARS-CoV-2 infections, extensive investigations on this class of treatment to launch novel therapies that substantially improve efficacy and reduce side effects are still warranted. Moreover, great challenges have emerged as the SARS-CoV-2 virus quickly, frequently, and continuously evolved. This review provides an update and summarizes the recent advances in the treatment of COVID-19 and in particular emphasized the strategies in managing CRS triggered by SARS-CoV-2. A brief perspective in the battle against the deadly disease was also provided.
Collapse
Affiliation(s)
- Long G Wang
- Department of Research and Development, Natrogen Therapeutics International, Inc., Valhalla, NY, USA
| | - Luxi Wang
- Department of Clinical Research, Clinipace Clinical Research, Morrisville, NC, USA
| |
Collapse
|
5
|
Zapata-Cardona MI, Flórez-Álvarez L, Zapata-Builes W, Guerra-Sandoval AL, Guerra-Almonacid CM, Hincapié-García J, Rugeles MT, Hernandez JC. Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro. Front Microbiol 2022; 13:721103. [PMID: 35369500 PMCID: PMC8972052 DOI: 10.3389/fmicb.2022.721103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
This article evaluated the in vitro antiviral effect of atorvastatin (ATV) against SARS-CoV-2 and identified the interaction affinity between this compound and two SARS-CoV-2 proteins. The antiviral activity of atorvastatin against this virus was evaluated by three different treatment strategies [(i) pre-post treatment, (ii) pre-infection treatment, and (iii) post-infection treatment] using Vero E6 and Caco-2 cells. The interaction of atorvastatin with RdRp (RNA-dependent RNA polymerase) and 3CL protease (3-chymotrypsin-like protease) was evaluated by molecular docking. The CC50s (half-maximal cytotoxic concentrations) obtained for ATV were 50.3 and 64.5 μM in Vero E6 and Caco-2, respectively. This compound showed antiviral activity against SARS-CoV-2 D614G strain in Vero E6 with median effective concentrations (EC50s) of 15.4, 12.1, and 11.1 μM by pre-post, pre-infection, and post-infection treatments, respectively. ATV also inhibited Delta and Mu variants by pre-post treatment (EC50s of 16.8 and 21.1 μM, respectively). In addition, ATV showed an antiviral effect against the D614G strain independent of the cell line (EC50 of 7.4 μM in Caco-2). The interaction of atorvastatin with SARS-CoV-2 RdRp and 3CL protease yielded a binding affinity of -6.7 kcal/mol and -7.5 kcal/mol, respectively. Our study demonstrated the in vitro antiviral activity of atorvastatin against the ancestral SARS-CoV-2 D614G strain and two emerging variants (Delta and Mu), with an independent effect of the cell line. A favorable binding affinity between ATV and viral proteins by bioinformatics methods was found. Due to the extensive clinical experience of atorvastatin use, it could prove valuable in the treatment of COVID-19.
Collapse
Affiliation(s)
- María I. Zapata-Cardona
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Lizdany Flórez-Álvarez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wildeman Zapata-Builes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | | | | | - Jaime Hincapié-García
- Grupo de investigación, Promoción y prevención farmacéutica, Facultad de ciencias farmacéuticas y alimentarias, Universidad de Antioquia UdeA, Medellín, Colombia
| | - María T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Juan C. Hernandez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| |
Collapse
|
6
|
Abusalah MAH, Khalifa M, Al-Hatamleh MAI, Jarrar M, Mohamud R, Chan YY. Nucleic Acid-Based COVID-19 Therapy Targeting Cytokine Storms: Strategies to Quell the Storm. J Pers Med 2022; 12:386. [PMID: 35330388 PMCID: PMC8948998 DOI: 10.3390/jpm12030386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has shaken the world and triggered drastic changes in our lifestyle to control it. Despite the non-typical efforts, COVID-19 still thrives and plagues humanity worldwide. The unparalleled degree of infection has been met with an exceptional degree of research to counteract it. Many drugs and therapeutic technologies have been repurposed and discovered, but no groundbreaking antiviral agent has been introduced yet to eradicate COVID-19 and restore normalcy. As lethality is directly correlated with the severity of disease, hospitalized severe cases are of the greatest importance to reduce, especially the cytokine storm phenomenon. This severe inflammatory phenomenon characterized by elevated levels of inflammatory mediators can be targeted to relieve symptoms and save the infected patients. One of the promising therapeutic strategies to combat COVID-19 is nucleic acid-based therapeutic approaches, including microRNAs (miRNAs). This work is an up-to-date review aimed to comprehensively discuss the current nucleic acid-based therapeutics against COVID-19 and their mechanisms of action, taking into consideration the emerging SARS-CoV-2 variants of concern, as well as providing potential future directions. miRNAs can be used to run interference with the expression of viral proteins, while endogenous miRNAs can be targeted as well, offering a versatile platform to control SARS-CoV-2 infection. By targeting these miRNAs, the COVID-19-induced cytokine storm can be suppressed. Therefore, nucleic acid-based therapeutics (miRNAs included) have a latent ability to break the COVID-19 infection in general and quell the cytokine storm in particular.
Collapse
Affiliation(s)
- Mai Abdel Haleem Abusalah
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| | - Moad Khalifa
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Mu’taman Jarrar
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
- Medical Education Department, King Fahd Hospital of the University, Al-Khobar 34445, Saudi Arabia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Yean Yean Chan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| |
Collapse
|
7
|
Bahadori M, Azizi MH, Dabiri S, Bahadori N. Effects of Human Nucleolus Upon Guest Viral-Life, Focusing in COVID-19 Infection: A Mini- Review. IRANIAN JOURNAL OF PATHOLOGY 2021; 17:1-7. [PMID: 35096082 PMCID: PMC8794558 DOI: 10.30699/ijp.2021.540305.2744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/25/2021] [Indexed: 11/06/2022]
Abstract
The nucleolus is a subcellular membrane-less structure of eukaryotic cells. In 1965, in a world's southern summer summit in Uruguay, the role of the nucleolus as the site of ribosome synthesis, biogenesis, and processing of tRNA was conclusively established. Today, accumulating evidence confirm the multiple functions of the nucleolus, including tRNA precursor processing, cell stress sensing, as well as being influential in gene silencing, senescence, lifespan, DNA damage response (DDR), and cell cycle regulation. Therefore, nucleolopathy is observed in various human diseases. Modern advances have provided fundamental insights concerning how and why the nucleolus is targeted by different pathogenic organisms. Viruses are major organisms that disrupt the normal function of the nucleus and produce nucleoli proteins for facilitating the replication of viruses causing viral infections. In this review, we focus on the possible role of nucleoli upon coronavirus infections, particularly in coronavirus disease 2019.
Collapse
Affiliation(s)
- Moslem Bahadori
- Department of Pathology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shahriar Dabiri
- Department of Pathology, Pathology and Stem Cells Research Center, Afzalipour Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
8
|
Antisense Oligonucleotide-Based Therapy of Viral Infections. Pharmaceutics 2021; 13:pharmaceutics13122015. [PMID: 34959297 PMCID: PMC8707165 DOI: 10.3390/pharmaceutics13122015] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid-based therapeutics have demonstrated their efficacy in the treatment of various diseases and vaccine development. Antisense oligonucleotide (ASO) technology exploits a single-strand short oligonucleotide to either cause target RNA degradation or sterically block the binding of cellular factors or machineries to the target RNA. Chemical modification or bioconjugation of ASOs can enhance both its pharmacokinetic and pharmacodynamic performance, and it enables customization for a specific clinical purpose. ASO-based therapies have been used for treatment of genetic disorders, cancer and viral infections. In particular, ASOs can be rapidly developed for newly emerging virus and their reemerging variants. This review discusses ASO modifications and delivery options as well as the design of antiviral ASOs. A better understanding of the viral life cycle and virus-host interactions as well as advances in oligonucleotide technology will benefit the development of ASO-based antiviral therapies.
Collapse
|
9
|
Sanie-Jahromi F, NejatyJahromy Y, Jahromi RR. A Review on the Role of Stem Cells against SARS-CoV-2 in Children and Pregnant Women. Int J Mol Sci 2021; 22:11787. [PMID: 34769218 PMCID: PMC8584228 DOI: 10.3390/ijms222111787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/10/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Since the COVID-19 outbreak was acknowledged by the WHO on 30 January 2020, much research has been conducted to unveil various features of the responsible SARS-CoV-2 virus. Different rates of contagion in adults, children, and pregnant women may guide us to understand the underlying infection conditions of COVID-19. In this study, we first provide a review of recent reports of COVID-19 clinical outcomes in children and pregnant women. We then suggest a mechanism that explains the curious case of COVID-19 in children/pregnant women. The unique stem cell molecular signature, as well as the very low expression of angiotensin-converting enzyme 2 and the lower ACE/ACE2 ratio in stem cells of children/pregnant women compared to adults might be the cause of milder symptoms of COVID-19 in them. This study provides the main molecular keys on how stem cells can function properly and exert their immunomodulatory and regenerative effects in COVID-19-infected children/pregnant women, while failing to replicate their role in adults. This can lay the groundwork for both predicting the pattern of spread and severity of the symptoms in a population and designing novel stem cell-based treatment and prevention strategies for COVID-19.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Shiraz University of Medical Sciences, Shiraz 7134997446, Iran;
| | - Yaser NejatyJahromy
- Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53012 Bonn, Germany
| | - Rahim Raoofi Jahromi
- Department of Infectious Disease, Peymanieh Hospital, Jahrom University of Medical Science, Jahrom 7414846199, Iran
| |
Collapse
|
10
|
Tamura RE, Said SM, de Freitas LM, Rubio IGS. Outcome and death risk of diabetes patients with Covid-19 receiving pre-hospital and in-hospital metformin therapies. Diabetol Metab Syndr 2021; 13:76. [PMID: 34256824 PMCID: PMC8275913 DOI: 10.1186/s13098-021-00695-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND COVID-19 has stroke Brazil harshly, deaths by COVID-19 in Brazil represent almost 13% of the total deaths by COVID-19 in the world, even though Brazilian population represents only 2.6% of the world population. Our aim in this study was to evaluate death and intubation outcomes and risk factors associated with COVID-19, and treatment options focusing on diabetes patients and the use of metformin pre-admission and during hospitalization. METHODS In this Brazilian single-center study we evaluated 1170 patients hospitalized due to COVID-19. Diabetes patients (n = 188) were divided based on their use of pre-hospital and in-hospital metformin (non-met-group and met-group). RESULTS In the total cohort most comorbidities were risk factors for orotracheal intubation and death. The use of chloroquine/hydroxychloroquine was significantly associated with increased death and intubation risk in uni- and multivariate analysis. Diabetes patients showed worst clinical feature compared with non-diabetes patients. In-hospital non-met-group had increased mortality (20.5%) compared to met-group (3.5%) (p = 0.0002) and univariable cox proportion hazard regression indicated in-hospital metformin reduced mortality (HR = 0.325, p = 0.035). Patients that used pre-hospital metformin showed lower severity parameters at hospital admission. (met-group: 2.45 ± 2.5; non-met-group: 4.25 ± 3.4). In all the groups older patients showed more severe clinical conditions and high risk of death and intubation. CONCLUSION Even though this is a single-center study, results from other reports have shown a similar trend, indicating that patients that used metformin during hospitalization have a better prognosis and reduced risk of death.
Collapse
Affiliation(s)
- Rodrigo Esaki Tamura
- Department of Biological Sciences, Federal University of São Paulo, Rua Pedro de Toledo 669, 11º Andar, Diadema, SP, Brazil
- Laboratory of Cancer Molecular Biology, Federal University of Sao Paulo, São Paulo, SP, Brazil
| | - Said Muhammad Said
- Thyroid Molecular Sciences Laboratory, Federal University of Sao Paulo, São Paulo, SP, Brazil
- Santa Catarina Hospital, São Paulo, Brazil
| | - Leticia Mussin de Freitas
- Department of Biological Sciences, Federal University of São Paulo, Rua Pedro de Toledo 669, 11º Andar, Diadema, SP, Brazil
| | - Ileana Gabriela Sanchez Rubio
- Department of Biological Sciences, Federal University of São Paulo, Rua Pedro de Toledo 669, 11º Andar, Diadema, SP, Brazil.
- Thyroid Molecular Sciences Laboratory, Federal University of Sao Paulo, São Paulo, SP, Brazil.
- Laboratory of Cancer Molecular Biology, Federal University of Sao Paulo, São Paulo, SP, Brazil.
| |
Collapse
|