1
|
Sen NB, Vovk I, Kırmızıbekmez H, Guzelmeric E. Phytochemical and Bioactivity Evaluation of Bee Pollen and Androecia of Castanea, Salix, and Quercus Species. Antioxidants (Basel) 2024; 14:40. [PMID: 39857374 PMCID: PMC11760459 DOI: 10.3390/antiox14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Qualitative and quantitative differences in the chemical composition between bee pollen originated from Castanea sativa (Türkiye and Slovenia), Salix spp. (Türkiye and Slovenia), and Quercus spp. (Türkiye) and androecia of Castanea sativa, Salix alba, and Quercus pubescens (apetalous trees) were evaluated for the first time by new high-performance thin-layer chromatography (HPTLC) and ultra-performance liquid chromatography (UPLC) methods using marker compounds. N1,N5,N10-tricaffeoylspermidine was isolated, and its structure was elucidated by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). It was the main and the marker compound common to bee pollen (≈3-41 mg/g) and androecia (≈3-6 mg/g) samples. To the best of our knowledge, this is the first report of the identification of N1,N5,N10-tricaffeoylspermidine in bee pollen originated from Salix spp. and androecia of C. sativa, S. alba, and Q. pubescens. The botanical origins of bee pollen were determined via phytochemical profiling using HPTLC-image analyses showing that bee pollen from the same botanical source had almost identical profiles regardless of collection location, geographical differences, and the bee race. In vitro tests and HPTLC-effect-directed analyses (EDAs) were performed to assess antioxidant and xanthine oxidase (XO) inhibitory activities of bee pollen, androecia, and N1,N5,N10-tricaffeoylspermidine. HPTLC-EDA combined with image analyses was used for comparing the activities of bee pollen, androecia, N1,N5,N10-tricaffeoylspermidine, and also other marker compounds (quercetin, myricitrin, hyperoside, quercitrin, isoquercitrin, and rutin). The remarkable bioactivity of N1,N5,N10-tricaffeoylspermidine was for the first time evaluated by HPTLC-EDA and in vitro tests. This is the first study performing HPTLC-XO inhibitory activity analyses on the HPTLC NH2 F254S plates. Further bioactivity studies on botanically and chemically well-characterized bee pollen samples are needed to aid in the use of bee pollen-containing supplements in the prevention and treatment of diseases.
Collapse
Affiliation(s)
- Nisa Beril Sen
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Kayisdagi Cad., Atasehir, 34755 Istanbul, Türkiye; (N.B.S.); (H.K.)
| | - Irena Vovk
- Laboratory for Food Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Hasan Kırmızıbekmez
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Kayisdagi Cad., Atasehir, 34755 Istanbul, Türkiye; (N.B.S.); (H.K.)
| | - Etil Guzelmeric
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Kayisdagi Cad., Atasehir, 34755 Istanbul, Türkiye; (N.B.S.); (H.K.)
| |
Collapse
|
2
|
Iorizzo M, Albanese G, Letizia F, Testa B, Di Criscio D, Petrarca S, Di Martino C, Ganassi S, Avino P, Pannella G, Aturki Z, Tedino C, De Cristofaro A. Diversity of plant pollen sources, microbial communities, and phenolic compounds present in bee pollen and bee bread. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34517-x. [PMID: 39073714 DOI: 10.1007/s11356-024-34517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The pollination of several crops, as well as wild plants, depends on honeybees. To get the nutrients required for growth and survival, honeybee colonies are dependent on pollen supply. Bee pollen (BP) is partially packed in honeycomb cells and processed into beebread (BB) by microbial metabolism. The composition of pollen is highly variable and is mainly dependent on ecological habitat, geographical origin, honey plants, climatic conditions, and seasonal variations. Although there are important differences between the BP and the BB, little comparative chemical and microbiological data on this topic exists in the literature, particularly for samples with the same origin. In this study, BP and BB pollen samples were collected from two apiaries located in the Campania and Molise regions of Southern Italy. Phenolic profiles were detected via HPLC, while antioxidant activity was determined by ABTS·+ and DPPH· assay. The next-generation sequencing (NGS) based on RNA analysis of 16S (rRNA) and internal transcribed spacer (ITS2) regions were used to investigate the microbial community (bacteria and fungi) and botanical origin of the BP and BB. Chemical analysis showed a higher content of flavonols in BP (rutin, myricetin, quercetin, and kaempferol), while in BB there was a higher content of phenolic acids. The NGS analysis revealed that the microbial communities and pollen sources are dependent on the geographical location of apiaries. In addition, diversity was highlighted between the microbial communities present in the BP and BB samples collected from each apiary.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Gianluca Albanese
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy.
| | - Francesco Letizia
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Bruno Testa
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Dalila Di Criscio
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Sonia Petrarca
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
- CONAPROA, Consorzio Nazionale Produttori Apistici, 86100, Campobasso, Italy
| | - Catello Di Martino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Sonia Ganassi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Gianfranco Pannella
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, 00159, Rome, Italy
| | - Zeineb Aturki
- Istituto Per I Sistemi Biologici, Consiglio Nazionale Delle Ricerche, Area Della Ricerca Di Roma I, Via Salaria Km 29.300, 00015, Monterotondo, Rome, Italy
| | - Cosimo Tedino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Antonio De Cristofaro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| |
Collapse
|
3
|
Kostić AŽ, Arserim-Uçar DK, Materska M, Sawicka B, Skiba D, Milinčić DD, Pešić MB, Pszczółkowski P, Moradi D, Ziarati P, Bienia B, Barbaś P, Sudagıdan M, Kaur P, Sharifi-Rad J. Unlocking Quercetin's Neuroprotective Potential: A Focus on Bee-Collected Pollen. Chem Biodivers 2024; 21:e202400114. [PMID: 38386539 DOI: 10.1002/cbdv.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
In the quest to evade side effects associated with synthetic drugs, mankind is continually exploring natural sources. In recent decades, neurodegenerative disorders (NDDs) have surged dramatically compared to other human diseases. Flavonoids, naturally occurring compounds, have emerged as potential preventers of NDD development. Notably, quercetin and its derivatives demonstrated excellent antioxidant properties in the fight against NDDs. Recognizing bee-collected pollen (BP) as a well-established excellent source of quercetin and its derivatives, this review seeks to consolidate available data on the prevalence of this flavonoid in BP, contingent upon its botanical and geographical origins. It aims to advocate for BP as a superb natural source of "drugs" that could serve as preventative measures against NDDs. Examination of numerous published articles, detailing the phenolic profile of BP, suggests that it can be a great source of quercetin, with an average range of up to 1000 mg/kg. In addition to quercetin, 24 derivatives (with rutin being the most predominant) have been identified. Theoretical calculations, based on the recommended dietary intake for quercetin, indicate that BP can fulfil from 0.1 to over 100 % of the requirement, depending on BP's origin and bioaccessibility/bioavailability during digestion.
Collapse
Affiliation(s)
- Aleksandar Ž Kostić
- Chair of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade
| | - Dılhun Keriman Arserim-Uçar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bingöl University, Bingöl, 12000, Türkiye
| | - Małgorzata Materska
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950, Lublin, Poland
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Dominika Skiba
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Danijel D Milinčić
- Chair of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade
| | - Mirjana B Pešić
- Chair of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade
| | - Piotr Pszczółkowski
- Experimental Department of Cultivar Assessment, Research Centre for Cultivar Testing, Uhnin, 21-211, Dębowa Kłoda, Poland
| | - Donya Moradi
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parisa Ziarati
- Department of Medicinal Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bernadetta Bienia
- Food Production and Safety Department, National Academy of Applied Sciences, Rynek 1 str., 38-400, Krosno, Poland
| | - Piotr Barbaś
- Department Agronomy of Potato, Plant Breeding and Acclimatization Institute - National Research Institute, Branch Jadwisin, 05-140, Serock, Poland
| | - Mert Sudagıdan
- Kit-ARGEM R&D Center, Konya Food and Agriculture University, Meram, 42080, Konya, Türkiye
| | - Preetinder Kaur
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology, Punjab Agricultural University, Ludhiana, 141004, Punjab
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, 14-008, Cuenca, Ecuador
| |
Collapse
|
4
|
Guedes AL, Casanova LM, Coelho MN, Frattani FS, Costa SS, Zingali RB. Anti-hemostatic, antithrombotic, and chemical profiles of a curly-leaf variety of Petroselinum crispum (Apiaceae), a food and medicinal aromatic herb. Fitoterapia 2024; 175:105894. [PMID: 38461867 DOI: 10.1016/j.fitote.2024.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Thrombosis is currently among the major causes of morbidity and mortality in the World. New prevention and therapy alternatives have been increasingly sought in medicinal plants. In this context, we have been investigating parsley, Petroselinum crispum (Mill.) Nym, an aromatic herb with two leaf varieties. We report here the in vitro, in vivo, and ex vivo anti-hemostatic and antithrombotic activities of a parsley curly-leaf variety. Aqueous extracts of aerial parts (PCC-AP), stems (PCC-S), and leaves (PCC-L) showed significant in vitro antiplatelet activity. PCC-AP extract exhibited the highest activity (IC50 2.92 mg/mL) when using ADP and collagen as agonists. All extracts also presented in vitro anticoagulant activity (APTT and PT) and anti-thrombogenic activity. PCC-S was the most active, with more significant interference in the factors of the intrinsic coagulation pathway. The oral administration of PCC-AP extract in rats caused a greater inhibitory activity in the deep vein thrombi (50%; 65 mg/kg) than in arterial thrombi formation (50%; 200 mg/kg), without cumulative effect after consecutive five-day administration. PCC-AP extract was safe in the induced bleeding time test. Its anti-aggregating profile was similar in ex vivo and in vitro conditions but was more effective in the extrinsic pathway when compared to in vitro results. Apiin and coumaric acid derivatives are the main compounds in PCC-AP according to the HPLC-DAD-ESI-MS/MS profile. We demonstrated for the first time that extracts from different parts of curly parsley have significant antiplatelet, anticoagulant, and antithrombotic activity without inducing hemorrhage, proving its potential as a source of antithrombotic compounds.
Collapse
Affiliation(s)
- Alessandra Lyra Guedes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Livia Marques Casanova
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Mariana Neubarth Coelho
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Flávia Serra Frattani
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Sônia Soares Costa
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
5
|
Qiao J, Zhang Y, Haubruge E, Wang K, El-Seedi HR, Dong J, Xu X, Zhang H. New insights into bee pollen: Nutrients, phytochemicals, functions and wall-disruption. Food Res Int 2024; 178:113934. [PMID: 38309905 DOI: 10.1016/j.foodres.2024.113934] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Bee pollen is hailed as a treasure trove of human nutrition and has progressively emerged as the source of functional food and medicine. This review conducts a compilation of nutrients and phytochemicals in bee pollen, with particular emphasis on some ubiquitous and unique phenolamides and flavonoid glycosides. Additionally, it provides a concise overview of the diverse health benefits and therapeutic properties of bee pollen, particularly anti-prostatitis and anti-tyrosinase effects. Furthermore, based on the distinctive structural characteristics of pollen walls, a substantial debate has persisted in the past concerning the necessity of wall-disruption. This review provides a comprehensive survey on the necessity of wall-disruption, the impact of wall-disruption on the release and digestion of nutrients, and wall-disruption techniques in industrial production. Wall-disruption appears effective in releasing and digesting nutrients and exploiting bee pollen's bioactivities. Finally, the review underscores the need for future studies to elucidate the mechanisms of beneficial effects. This paper will likely help us gain better insight into bee pollen to develop further functional foods, personalized nutraceuticals, cosmetics products, and medicine.
Collapse
Affiliation(s)
- Jiangtao Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Yu Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Eric Haubruge
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Jie Dong
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Xiang Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Hongcheng Zhang
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China.
| |
Collapse
|
6
|
Ertosun S, Aylanc V, Falcão SI, Vilas-Boas M. Thermal Stability and Antioxidant Activity of Bioactive Compounds in Bread Enriched with Bee Pollen and Bee Bread. Antioxidants (Basel) 2023; 12:1691. [PMID: 37759993 PMCID: PMC10525282 DOI: 10.3390/antiox12091691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Bee pollen (BP) and bee bread (BB) are natural food sources containing a wide variety of bioactive compounds, complementing their rich nutritional composition. These bee products are being explored to empower functional foods, with the term functionality being dependent on the bioactive compounds added to the food matrix. However, there is not enough evidence of the effect of heat on these compounds during food processing and production and how it impacts their biological activity. Here, we enriched traditional bread by adding BP and BB at different proportions of 1 to 5% and tested the thermal stability of their bioactive compounds through several spectroscopic and chromatographic analyses. Adding bee pollen and bee bread to bread resulted in a 4 and 5-fold increase in total phenolic content, respectively. While not all the 38 phenolic and phenolamide compounds identified in the raw BP and BB were detected in the processed bread, phenolamides were found to be more resilient to baking and heat treatment than flavonoids. Still, the enriched bread's antioxidant activity improved with the addition of BP and BB. Therefore, incorporating bee products into heat-treated products could enhance the functionality of staple foods and increase the accessibility to these natural products.
Collapse
Affiliation(s)
- Seymanur Ertosun
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.E.); (V.A.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, LAQV-REQUIMTE, Universidade do Porto, 4169-007 Porto, Portugal
| | - Volkan Aylanc
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.E.); (V.A.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, LAQV-REQUIMTE, Universidade do Porto, 4169-007 Porto, Portugal
| | - Soraia I. Falcão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.E.); (V.A.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.E.); (V.A.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
7
|
Kostić AŽ, Milinčić DD, Špirović Trifunović B, Nedić N, Gašić UM, Tešić ŽL, Stanojević SP, Pešić MB. Monofloral Corn Poppy Bee-Collected Pollen-A Detailed Insight into Its Phytochemical Composition and Antioxidant Properties. Antioxidants (Basel) 2023; 12:1424. [PMID: 37507962 PMCID: PMC10376007 DOI: 10.3390/antiox12071424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study was to compile a detailed phytochemical profile and assess the antioxidant properties of bee-collected pollen (PBP) obtained from corn poppy (Papaver rhoeas L.) plants. To achieve this, a lipid fraction was prepared for quantifying fatty acids using GC-FID. Extractable and alkaline-hydrolysable PBP fractions (obtained from a defatted sample) were used to determine the qualitative and quantitative profiles of phenolic compounds, phenylamides and alkaloids using UHPLC/Q-ToF-MS. Additionally, various spectrophotometric assays (TAC, FRP, CUPRAC, DPPH⦁) were conducted to evaluate the antioxidant properties. Phenolic compounds were more present in the extractable fraction than in the alkaline-hydrolysable fraction. Luteolin was the predominant compound in the extractable fraction, followed by tricetin and various derivatives of kaempferol. This study presents one of the first reports on the quantification of tricetin aglycone outside the Myrtaceae plant family. The alkaline-hydrolysable fraction exhibited a different phenolic profile, with a significantly lower amount of phenolics. Kaempferol/derivatives, specific compounds like ferulic and 5-carboxyvanillic acids, and (epi)catechin 3-O-gallate were the predominant compounds in this fraction. Regarding phenylamides, the extractable fraction demonstrated a diverse range of these bioactive compounds, with a notable abundance of different spermine derivatives. In contrast, the hydrolysable fraction contained six spermine derivatives and one spermidine derivative. The examined fractions also revealed the presence of seventeen different alkaloids, belonging to the benzylisoquinoline, berberine and isoquinoline classes. The fatty-acid profile confirmed the prevalence of unsaturated fatty acids. Furthermore, both fractions exhibited significant antioxidant activity, with the extractable fraction showing particularly high activity. Among the assays conducted, the CUPRAC assay highlighted the exceptional ability of PBP's bioactive compounds to reduce cupric ions.
Collapse
Affiliation(s)
- Aleksandar Ž Kostić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Danijel D Milinčić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Bojana Špirović Trifunović
- Department for Pesticides and Herbology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Nebojša Nedić
- Department for Breeding and Reproduction of Domestic and Bred Animals, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Uroš M Gašić
- Department of Plant Physiology, Institute for Biological Research Siniša Stanković-National Institute of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Živoslav Lj Tešić
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Sladjana P Stanojević
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Mirjana B Pešić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
8
|
Urcan AC, Criste AD, Szanto KI, Ștefan R, Zahan M, Muscă AS, Focsan M, Burtescu RF, Olah NK. Antimicrobial and Antiproliferative Activity of Green Synthesized Silver Nanoparticles Using Bee Bread Extracts. Pharmaceutics 2023; 15:1797. [PMID: 37513984 PMCID: PMC10383293 DOI: 10.3390/pharmaceutics15071797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Bee bread (BB) is a fermented mixture of bee pollen, is rich in proteins, amino acids, fatty acids, polyphenols, flavonoids, as well as other bioactive compounds, and is considered functional food for humans. In this study, we explored an innovative green synthesis of colloidal silver nanoparticles, using BB extracts as reducing and stabilizing agents. A preliminary chemical characterization of the BB extracts was conducted. The plasmonic response of the as-synthesized silver nanoparticles (BB-AgNPs) was evaluated by UV-Vis spectroscopy, while their hydrodynamic diameter and zeta potential were investigated by dynamic light spectroscopy (DLS). Transmission electron microscopy (TEM) analysis pointed out polydisperse NPs with quasi-spherical shapes. The newly synthesized nanoparticles showed good antioxidant activity against the tested free radicals, DPPH, ABTS•+, and FRAP, the best results being obtained in the case of ABTS•+. BB-AgNPs exhibited good antibacterial activity on the tested Gram-positive and Gram-negative bacterial strains: herein S. aureus, B. cereus, E. faecalis, E. coli, P. aeruginosa, S. enteritidis, and on yeast C. albicans, respectively. The inhibition diameters varied between 7.67 ± 0.59 and 22.21 ± 1.06 mm, while the values obtained for minimum inhibitory concentration varied between 0.39 and 6.25 µg/mL. In vitro antiproliferative activity was tested on colon adenocarcinoma, ATCC HTB-37 cell line, and the results have shown that the green synthetized BB-AgNPs induced a substantial decrease in tumor cell viability in a dose-dependent manner with an IC50 ranging from 24.58 to 67.91 µg/mL. Consequently, more investigation is required to comprehend the processes of the cytotoxicity of AgNPs and develop strategies to mitigate their potentially harmful effects while harnessing their antimicrobial properties.
Collapse
Affiliation(s)
- Adriana Cristina Urcan
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Adriana Dalila Criste
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Karina Ioana Szanto
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Razvan Ștefan
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Marius Zahan
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Adriana Sebastiana Muscă
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, 400271 Cluj-Napoca, Romania
| | | | - Neli Kinga Olah
- PlantExtrakt Ltd., Rădaia, 407059 Cluj-Napoca, Romania
- Faculty of Pharmacy, "Vasile Goldiş" Western University of Arad, 310414 Arad, Romania
| |
Collapse
|
9
|
Aesculus hippocastanum L.: A Simple Ornamental Plant or a Source of Compelling Molecules for Industry? SEPARATIONS 2023. [DOI: 10.3390/separations10030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Aesculus hippocastanum L., also known as horse chestnut, is an ornamental tree whose seeds are mostly discarded in landfills in the regions where they are grown. However, recent studies have shown that these seeds can be a source of interesting compounds for several industries. This work aimed to chemically characterize horse chestnut seeds at the level of compounds recognized for their wide bioactivity, i.e., organic acids, including phenolic compounds, using chromatographic methodologies (UFLC-DAD and LC-DAD-ESI/MSn). In addition, the bioactivity of these seeds was evaluated by in vitro methodologies, seeking to relate the respective (bio)activity to the compounds present in the endocarp (husk), seed coat (skin), and peeled seed (pulp). The antioxidant activity (lipid peroxidation inhibition and oxidative haemolysis inhibition), antibacterial potential (against Gram-positive and Gram-negative bacteria) and cytotoxicity (in human tumour cell lines and porcine liver primary cells) were evaluated. Kaempferol-O-pentoside-O-hexoside-O-hexoside was the main phenolic identified in the pulp. At the same time, (-)-epicatechin and β-type (epi)catechin dimer were the major phenolics present in husk and skin, respectively. In general, A. hippocastanum extracts presented antioxidant and antibacterial potential, without toxicity up to the maximal tested dose. Overall, these findings anticipate potential applications of A. hippocastanum seeds in food- or pharmaceutical-related uses.
Collapse
|
10
|
Bee Pollen and Bread as a Super-Food: A Comparative Review of Their Metabolome Composition and Quality Assessment in the Context of Best Recovery Conditions. Molecules 2023; 28:molecules28020715. [PMID: 36677772 PMCID: PMC9862147 DOI: 10.3390/molecules28020715] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Recently, functional foods have been a subject of great interest in dietetics owing not only to their nutritional value but rather their myriad of health benefits. Moreover, an increase in consumers' demands for such valuable foods warrants the development in not only production but rather tools of quality and nutrient assessment. Bee products, viz., pollen (BP) and bread, are normally harvested from the flowering plants with the aid of bees. BP is further subjected to a fermentation process in bee hives to produce the more valuable and bioavailable BB. Owing to their nutritional and medicinal properties, bee products are considered as an important food supplements rich in macro-, micro-, and phytonutrients. Bee products are rich in carbohydrates, amino acids, vitamins, fatty acids, and minerals in addition to a myriad of phytonutrients such as phenolic compounds, anthocyanins, volatiles, and carotenoids. Moreover, unsaturated fatty acids (USFAs) of improved lipid profile such as linoleic, linolenic, and oleic were identified in BP and BB. This work aims to present a holistic overview of BP and BB in the context of their composition and analysis, and to highlight optimized extraction techniques to maximize their value and future applications in nutraceuticals.
Collapse
|
11
|
Keefover-Ring K, Carlson CH, Hyden B, Azeem M, Smart LB. Genetic mapping of sexually dimorphic volatile and non-volatile floral secondary chemistry of a dioecious willow. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6352-6366. [PMID: 35710312 DOI: 10.1093/jxb/erac260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Secondary chemistry often differs between sexes in dioecious plant species, a pattern attributed to its possible role in the evolution and/or maintenance of dioecy. We used GC-MS to measure floral volatiles emitted from, and LC-MS to quantitate non-volatile secondary compounds contained in, female and male Salix purpurea willow catkins from an F2 family. Using the abundance of these chemicals, we then performed quantitative trait locus (QTL) mapping to locate them on the genome, identified biosynthetic candidate genes in the QTL intervals, and examined expression patterns of candidate genes using RNA-seq. Male flowers emitted more total terpenoids than females, but females produced more benzenoids. Male tissue contained greater amounts of phenolic glycosides, but females had more chalcones and flavonoids. A flavonoid pigment and a spermidine derivative were found only in males. Male catkins were almost twice the mass of females. Forty-two QTL were mapped for 25 chemical traits and catkin mass across 16 of the 19 S. purpurea chromosomes. Several candidate genes were identified, including a chalcone isomerase associated with seven compounds. A better understanding of the genetic basis of the sexually dimorphic chemistry of a dioecious species may shed light on how chemically mediated ecological interactions may have helped in the evolution and maintenance of dioecy.
Collapse
Affiliation(s)
- Ken Keefover-Ring
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
- Department of Geography, University of Wisconsin-Madison, Madison, WI, USA
| | - Craig H Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Brennan Hyden
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Muhammad Azeem
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| |
Collapse
|
12
|
Differential Metabolomic Fingerprinting of the Crude Extracts of Three Asteraceae Species with Assessment of Their In Vitro Antioxidant and Enzyme-Inhibitory Activities Supported by In Silico Investigations. Processes (Basel) 2022. [DOI: 10.3390/pr10101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Asteraceae is a large family, rich in ornamental, economical, and medicinally valuable plants. The current study involves the analytical and pharmacological assessment of the methanolic extracts of three less investigated Asteraceae plants, namely Echinops ritro, Centaurea deflexa, and Tripleurospermum decipiens, obtained by three different extraction methodologies viz. maceration (MAC), ultrasound-assisted extraction (UAE), and homogenizer-assisted extraction (HAE). LC-MS-MS analysis of E. ritro, C. deflexa, and T. decipiens extracts led to the identification of ca. 29, 20, and 33 metabolites, respectively, belonging to flavonoids, phenolic acids, and fatty acids/amides. Although there were significant differences in the quantitative metabolite profiles in the extracts of E. ritro and T. decipiens based on the used extraction method, no significant variation was observed in the extracts of C. deflexa in the three implemented extraction techniques. The antioxidant activities of the nine extracts were assessed in vitro using six different assays viz. DPPH, ABTS, CUPRAC, FRAP, PDA, and metal chelation assay (MCA). The HAE/UAE extracts of E. ritro and the UAE/ MAC extracts of C. deflexa displayed the highest antioxidant activity in the DPPH assay, while the UAE extract of T. decipiens showed the strongest antioxidant activity in both the CUPRAC and MCA assays. The enzyme inhibitory activities of the nine extracts were studied in vitro on five different enzymes viz. tyrosinase, α-amylase, α-glucosidase, acetylcholinesterase (AChE), and butyrylcholinestrase (BChE), affecting various pathological diseases. Concerning C. deflexa, its MAC /UAE extracts showed the strongest inhibition on α-amylase, while its UAE/HAE extracts displayed strong inhibitory power on AChE. However, no significant difference was observed on their effects on tyrosinase or BChE. For T. decipiens, its UAE/HAE showed potent inhibition to α-glucosidase, MAC/ HAE significantly inhibited AChE and BChE, while UAE could strongly inhibit tyrosinase enzyme. For E. ritro, all extracts equally inhibited α-amylase and α-glucosidase, MAC/HAE strongly affected tyrosinase, HAE/MAC best inhibited BChE, while HAE inhibited AChE to a greater extent. Chemometric analysis using PCA plot was able to discriminate between the plant samples and between the implemented extraction modes. The in vitro enzyme inhibitory activities of the extracts were supported by in silico data, where metabolites, such as the lignan arctiin and the flavonoid vicenin-2, dominating the extract of C. deflexa, displayed strong binding to AChE. Similarly, chlorogenic and dicaffeoyl quinic acids, which are some of the major metabolites in the extracts of E. ritro and T. decipiens, bound with high affinity to α-glucosidase.
Collapse
|
13
|
Hertel Pereira AC, Auer AC, Biedel L, de Almeida CM, Romão W, Endringer DC. Analysis of Gliricidia sepium Leaves by MALDI Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:573-583. [PMID: 35157449 DOI: 10.1021/jasms.1c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
When investigating the potential use of plants as a raw material for an all-natural cosmetic formulation, the main parameters are the chemical composition, antioxidant potential, antimicrobial action, and toxicity. Additionally, the production of natural cosmetics should also consider the availability of primary materials and the environmental and socioeconomic impact. Gliricidia sepium is a species that produces a large amount of plant material, being cultivated in the agroforestry system. However, studies of phytochemical composition and chemical spatial distribution are scarcely using the MALDI MS (matrix-assisted laser desorption ionization mass spectrometry) and MALDI MSI (mass spectrometry imaging) techniques. A methodology was developed to optimize ionization parameters and analysis conditions by evaluating the efficiency of three matrices: α-cyano-4-hydroxycinnamic acid, 2,5-dihydroxybenzoic acid (DHB), and 2-mercaptobenzothiazole in MALDI MS analysis. All results were compared to ESI MS (electrospray ionization mass spectrometry), and afterward, MALDI MSI analysis was performed on the leaf surface. This study showed through phytochemical analysis that G. sepium leaves are composed of polyphenols and tannins, concluding that the methanolic extract had a higher amount of flavonoid content. Four compounds were identified on the leaf surface, and their spatial distribution was analyzed by MALDI MS using DHB as a matrix. Kaempferol, isorhamnetin, and some fatty acids showed potential applicability for cosmetical use. All the extracts presented antioxidant activity or antimicrobial action and no cytotoxicity. Therefore, extracts of G. sepium could be used as raw materials in cosmetics.
Collapse
Affiliation(s)
- Ana Claudia Hertel Pereira
- Pharmaceutical Science Graduate Program, Universidade Vila Velha, Avenida Comissário José Dantas de Melo, 21 - Boa Vista II, Vila Velha - ES 29102-920, Brazil
| | - Ana Carolina Auer
- Pharmaceutical Science Graduate Program, Universidade Vila Velha, Avenida Comissário José Dantas de Melo, 21 - Boa Vista II, Vila Velha - ES 29102-920, Brazil
| | - Lauro Biedel
- Pharmaceutical Science Graduate Program, Universidade Vila Velha, Avenida Comissário José Dantas de Melo, 21 - Boa Vista II, Vila Velha - ES 29102-920, Brazil
| | - Camila Medeiros de Almeida
- Chemistry Graduate Program, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514 - Goiabeiras, Vitória - ES 29075-910, Brazil
| | - Wanderson Romão
- Chemistry Graduate Program, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514 - Goiabeiras, Vitória - ES 29075-910, Brazil
| | - Denise Coutinho Endringer
- Pharmaceutical Science Graduate Program, Universidade Vila Velha, Avenida Comissário José Dantas de Melo, 21 - Boa Vista II, Vila Velha - ES 29102-920, Brazil
| |
Collapse
|
14
|
Osman EE, Mohamed AS, Elkhateeb A, Gobouri A, Abdel-Aziz MM, Abdel-Hameed ESS. Phytochemical investigations, antioxidant, cytotoxic, antidiabetic and antibiofilm activities of Kalanchoe laxiflora flowers. Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2021.102085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
McLoone P, Zhumbayeva A, Yunussova S, Kaliyev Y, Yevstafeva L, Verrall S, Sungurtas J, Austin C, Allwood JW, McDougall GJ. Identification of components in Kazakhstan honeys that correlate with antimicrobial activity against wound and skin infecting microorganisms. BMC Complement Med Ther 2021; 21:300. [PMID: 34930218 PMCID: PMC8690519 DOI: 10.1186/s12906-021-03466-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
Background Antimicrobial drug resistance is a major public health threat that can render infections including wound and skin infections untreatable. The discovery of new antimicrobials is critical. Approaches to discover novel antimicrobial therapies have included investigating the antimicrobial activity of natural sources such as honey. In this study, the anti-microbial activity and chemical composition of 12 honeys from Kazakhstan and medical grade manuka honey were investigated. Methods Agar well diffusion and broth culture assays were used to determine anti-microbial activity against a range of skin and wound infecting micro-organisms. Folin-Ciocalteu method was used to determine the total phenol content of the honeys and non-targeted liquid chromatography analysis was performed to identify components that correlated with antimicrobial activity. Results In the well diffusion assay, the most susceptible micro-organisms were a clinical isolate of Methicillin resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis (ATCC 19433). Buckwheat & multi-floral honey from Kazakhstan demonstrated the highest antimicrobial activity against these two micro-organisms. Kazakhstan honeys with a buckwheat floral source, and manuka honey had the highest total phenol content. Non-targeted liquid chromatography analysis identified components that correlated with anti-microbial activity as hydroxyphenyl acetic acid, p-coumaric acid, (1H)–quinolinone, and abscisic acid. Conclusions The Kazakhstan honeys selected in this study demonstrated antimicrobial activity against wound and skin infecting micro-organisms. Compounds identified as correlating with antimicrobial activity could be considered as potential bioactive agents for the treatment of wound and skin infections. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03466-0.
Collapse
Affiliation(s)
- Pauline McLoone
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Kabanbay Batyr 53, Nur-Sultan, Kazakhstan, 0100000.
| | - Aizhan Zhumbayeva
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Kabanbay Batyr 53, Nur-Sultan, Kazakhstan, 0100000
| | - Sofiya Yunussova
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Kabanbay Batyr 53, Nur-Sultan, Kazakhstan, 0100000
| | - Yerkhat Kaliyev
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Kabanbay Batyr 53, Nur-Sultan, Kazakhstan, 0100000
| | - Ludmila Yevstafeva
- Medical Microbiology, Republican Diagnostic Center, University Medical Center, Nur-Sultan, Kazakhstan
| | - Susan Verrall
- Information and Computational Sciences Department, The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| | - Julie Sungurtas
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| | - Ceri Austin
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| | - J Will Allwood
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| | - Gordon J McDougall
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| |
Collapse
|
16
|
Lima ÂCDO, Conceição RS, Freitas LS, de Carvalho CAL, Conceição ALDS, Freitas HF, Pita SSDR, Ifa DR, Pinheiro AM, Branco A. Hydroxycinnamic acid-spermidine amides from Tetragonisca angustula honey as anti-Neospora caninum: In vitro and in silico studies. Chem Biol Drug Des 2021; 98:1104-1115. [PMID: 34614302 DOI: 10.1111/cbdd.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/12/2021] [Accepted: 09/26/2021] [Indexed: 11/28/2022]
Abstract
Tetragonisca angustula honey was fractioned in a SiO2 column to furnish three fractions (A-C) in which four hydroxycinnamic acid-Spermidine amides (HCAAs), known as N', N″, N‴-tris-p-coumaroyl spermidine, N', N″-dicaffeoyl, N‴-coumaroyl spermidine, N', N″, N‴-tris-caffeoyl spermidine and N', N″-dicaffeoyl and N‴-feruloyl spermidine were identified in the fractions B and C by electrospray ionization tandem mass spectrometry. A primary culture model previously infected with Neospora caninum (72 h) was used to evaluate the honey fractions (A-C) for two-time intervals: 24 and 72 h. Parasitic reduction ranged from 38% on fraction C (12.5 µg/ml), after 24 h, to 54% and 41% with fractions B and C (25 µg/ml) after 72 h of treatment, respectively. Additionally, HCAAs did not show any cell toxicity for 24 and 72 h. For infected cultures (72 h), the active fractions B (12.5 µg/ml) and C (25 µg/ml) decreased their NO content. In silico studies suggest that HCAAs may affect the parasite's redox pathway and improve the oxidative effect of NO released from infected cells. Here, we presented for the first time, that HCAAs from T. angustula honey have the potential to inhibit the growth of N. caninum protozoa.
Collapse
Affiliation(s)
- Ângela C de O Lima
- Graduate Program in Biotechnology, State University of Feira de Santana - UEFS, Feira de Santana, Brazil
- Veterinary, Biochemistry and Immunology Laboratory, Center for Agricultural, Environmental and Biological Sciences, Federal University of Reconcavo da Bahia, Cruz das Almas, Brazil
| | - Rodrigo S Conceição
- Graduate Program in Biotechnology, State University of Feira de Santana - UEFS, Feira de Santana, Brazil
| | - Luciana S Freitas
- Veterinary, Biochemistry and Immunology Laboratory, Center for Agricultural, Environmental and Biological Sciences, Federal University of Reconcavo da Bahia, Cruz das Almas, Brazil
| | - Carlos A L de Carvalho
- Center for Agricultural, Environmental and Biological Sciences, Federal University of Reconcavo da Bahia, Cruz das Almas, Brazil
| | - Antônio L da S Conceição
- Center for Agricultural, Environmental and Biological Sciences, Federal University of Reconcavo da Bahia, Cruz das Almas, Brazil
| | - Humberto F Freitas
- Laboratory of Bioinformatics and Molecular Modeling (LaBiMM), Pharmacy College, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Samuel S da R Pita
- Laboratory of Bioinformatics and Molecular Modeling (LaBiMM), Pharmacy College, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Demian R Ifa
- Department of Chemistry, Center for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada
| | - Alexandre M Pinheiro
- Veterinary, Biochemistry and Immunology Laboratory, Center for Agricultural, Environmental and Biological Sciences, Federal University of Reconcavo da Bahia, Cruz das Almas, Brazil
| | - Alexsandro Branco
- Graduate Program in Biotechnology, State University of Feira de Santana - UEFS, Feira de Santana, Brazil
- Laboratory of Phytochemistry, State University of Feira de Santana - UEFS, Feira de Santana, Brazil
| |
Collapse
|
17
|
Leska A, Nowak A, Nowak I, Górczyńska A. Effects of Insecticides and Microbiological Contaminants on Apis mellifera Health. Molecules 2021; 26:5080. [PMID: 34443668 PMCID: PMC8398688 DOI: 10.3390/molecules26165080] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Over the past two decades, there has been an alarming decline in the number of honey bee colonies. This phenomenon is called Colony Collapse Disorder (CCD). Bee products play a significant role in human life and have a huge impact on agriculture, therefore bees are an economically important species. Honey has found its healing application in various sectors of human life, as well as other bee products such as royal jelly, propolis, and bee pollen. There are many putative factors of CCD, such as air pollution, GMO, viruses, or predators (such as wasps and hornets). It is, however, believed that pesticides and microorganisms play a huge role in the mass extinction of bee colonies. Insecticides are chemicals that are dangerous to both humans and the environment. They can cause enormous damage to bees' nervous system and permanently weaken their immune system, making them vulnerable to other factors. Some of the insecticides that negatively affect bees are, for example, neonicotinoids, coumaphos, and chlorpyrifos. Microorganisms can cause various diseases in bees, weakening the health of the colony and often resulting in its extinction. Infection with microorganisms may result in the need to dispose of the entire hive to prevent the spread of pathogens to other hives. Many aspects of the impact of pesticides and microorganisms on bees are still unclear. The need to deepen knowledge in this matter is crucial, bearing in mind how important these animals are for human life.
Collapse
Affiliation(s)
- Aleksandra Leska
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Ireneusz Nowak
- Faculty of Law and Administration, University of Lodz, Kopcinskiego 8/12, 90-232 Lodz, Poland; (I.N.); (A.G.)
| | - Anna Górczyńska
- Faculty of Law and Administration, University of Lodz, Kopcinskiego 8/12, 90-232 Lodz, Poland; (I.N.); (A.G.)
| |
Collapse
|
18
|
Phytochemical Profile and Antioxidant Properties of Bee-Collected Artichoke ( Cynara scolymus) Pollen. Antioxidants (Basel) 2021; 10:antiox10071091. [PMID: 34356324 PMCID: PMC8301145 DOI: 10.3390/antiox10071091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
The current study intended to determine, for the first time, phenolic and fatty acid profile, antioxidant and certain nutritional properties of monofloral bee-collected artichoke (Cynara scolymus) pollen. Based on UHPLC-DAD MS-MS analysis the main phenolics in extractable fraction were different flavonol glycosides (in particular Isorhamnetin-3-O-glucoside, 49.2 mg/kg of dry weight) while ferulic acid was the predominant phenolic compound (39.4 mg/kg of dry weight) in the alkaline hydrolyzable fraction. Among fatty acids (FAs), results of GC-FID analysis revealed prevalence of unsaturated FAs with cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and oleic acid as the main ones- 28.4% and 24.9%, respectively. Based on the FA composition, nutritional analysis proved that artichoke bee-collected pollen had balanced ω-6 and ω-3 FAs content. To determine the antioxidant properties of pollen, five different assays were applied. It was proved that bioactive compounds in artichoke pollen possessed significant ability to quench DPPH radical as well as ABTS radical cation. In addition, in vitro phosphomolybdenum assay confirmed that artichoke pollen is an excellent source of different antioxidants. Pollen extracts exhibited moderate ferric reducing power as well as low ferrous chelating ability. Some further antioxidant studies (preferably in vivo) should be performed to confirm the observed results.
Collapse
|
19
|
Infrared Irradiation Drying Impact on Bee Pollen: Case Study on the Phenolic Composition of Eucalyptus globulus Labill and Salix atrocinerea Brot. Pollens. Processes (Basel) 2021. [DOI: 10.3390/pr9050890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bee pollen is commonly reputed as a rich source of nutrients, both for bees and humans. Its composition is well balanced and can be taken as a stand-alone food or as supplement, including for the elderly owing its low caloric value. However, storage conditions frequently lead to product degradation, namely due to the high moisture content that enable the proliferation of molds and bacteria. Herein, an infrared (IR)-based technology is proposed as a mean to determine moisture content, setting also a new scalable approach for the development of a drying technology to be used for bee pollen processing, which can be carried out in a short time, without impacting the phenolic and flavonoid content and associated bioactive effects. Proof-of-concept was attained with an IR moisture analyzer, bee pollen samples from Eucalyptus globulus Labill and Salix atrocinerea Brot. being selected as models. Impact of the IR radiation towards the phenolic and flavonoid profiles was screened by HPLC/DAD profiling and radical scavenging ability by the DPPH assay. The IR-based approach shows good reproducibility while simultaneously reducing drying time and energy consumption, thus implying a low environmental impact and being suitable for industrial scale-up once no degradation has been found to occur during the radiation process.
Collapse
|
20
|
Assessment of Bioactive Compounds under Simulated Gastrointestinal Digestion of Bee Pollen and Bee Bread: Bioaccessibility and Antioxidant Activity. Antioxidants (Basel) 2021; 10:antiox10050651. [PMID: 33922462 PMCID: PMC8146390 DOI: 10.3390/antiox10050651] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 02/05/2023] Open
Abstract
Bee pollen and bee bread have always been regarded as excellent natural resources for application in food and pharmaceutical fields due to their rich nutrient content and diversity of bioactive compounds with health-improving properties. Extensive studies on both bee products as ingredients for a healthy diet were reported, although the data concerning their metabolization on the gastrointestinal tract is quite limited. Here, we report, at each digestive stage, the bioactive profile for both bee products, their bioaccessibility levels and the antioxidant activity evaluation. The findings indicated that the average bioaccessibility level of total phenolic and total flavonoid content for bee pollen was 31% and 25%, respectively, while it was 38% and 35% for bee bread. This was reflected in a decrease of their antioxidant capacity at the end of in vitro gastrointestinal digestion, both in free radicals scavenging capacity and in reducing power. Moreover, within the 35 phytochemicals identified, the most affected by gastrointestinal digestion were phenylamides, with a complete digestibility at the end of the intestinal phase. Overall, our results highlight that bioactive compounds in both raw products do not reflect the real amount absorbed in the intestine, being bee bread more accessible in bioactive content than bee pollen.
Collapse
|
21
|
From the hive to the table: Nutrition value, digestibility and bioavailability of the dietary phytochemicals present in the bee pollen and bee bread. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Thakur M, Nanda V. Screening of Indian bee pollen based on antioxidant properties and polyphenolic composition using UHPLC-DAD-MS/MS: A multivariate analysis and ANN based approach. Food Res Int 2020; 140:110041. [PMID: 33648267 DOI: 10.1016/j.foodres.2020.110041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/18/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
Abstract
The present investigation aims to examine the polyphenolic composition and antioxidant capacity of bee pollen samples procured from various regions of India. Total phenolic (TPC) and flavonoid (TFC) content ranged from 15.50 ± 1.25-25.63 ± 1.42 mg GAE/g and 9.72 ± 0.28-15.61 ± 0.74 mg RE/g, respectively. Coriander pollen showed the significantly (p < 0.05) higher antioxidant activity than other samples, demonstrated by DPPH radical scavenging activity (93.75 ± 0.05%), ferric reducing antioxidant power (103.98 ± 0.82 mmol Fe2+/g), ABTS+• radical scavenging activity (96.58 ± 0.65%) and metal chelating activity (84.62 ± 4.37%). The observed antioxidant properties were strongly correlated with TPC and effectively predicted using artificial neural network. Sixty polyphenolic compounds including 38 flavonoids and derivatives, 21 phenolic acid and derivatives and one glucosinolates were identified using UHPLC-DAD-MS/MS wherein the presence of daidzein and sinigrin was acknowledged for the first time. Further, principal component analysis identified three principal components, illustrating 91.24% of total variation to differentiate the pollen samples which were also classified by hierarchical cluster analysis.
Collapse
Affiliation(s)
- Mamta Thakur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology (Deemed-to-be-University), Longowal 148106, Punjab, India.
| | - Vikas Nanda
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology (Deemed-to-be-University), Longowal 148106, Punjab, India
| |
Collapse
|
23
|
|
24
|
Mărgăoan R, Stranț M, Varadi A, Topal E, Yücel B, Cornea-Cipcigan M, Campos MG, Vodnar DC. Bee Collected Pollen and Bee Bread: Bioactive Constituents and Health Benefits. Antioxidants (Basel) 2019; 8:antiox8120568. [PMID: 31756937 PMCID: PMC6943659 DOI: 10.3390/antiox8120568] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
Bee products were historically used as a therapheutic approach and in food consumption, while more recent data include important details that could validate them as food supplements due to their bioproperties, which support their future use as medicines. In this review data, data collected from bee pollen (BP) and bee bread (BB) essays will be discussed and detailed for their nutritional and health protective properties as functional foods. Dietary antioxidants intake derived from BP and BB have been associated with the prevention and clinical treatment of multiple diseases. The beneficial effects of BP and BB on health result from the presence of multiple polyphenols which possess anti-inflammatory properties, phytosterols and fatty acids, which play anticancerogenic roles, as well as polysaccharides, which stimulate immunological activity. From the main bioactivity studies with BP and BB, in vitro studies and animal experiments, the stimulation of apoptosis and the inhibition of cell proliferation in multiple cell lines could be one of the major therapeutic adjuvant effects to be explored in reducing tumor growth. Tables summarizing the main data available in this field and information about other bio-effects of BP and BB, which support the conclusions, are provided. Additionally, a discussion about the research gaps will be presented to help further experiments that complete the tree main World Health Organization (WHO) Directives of Efficiency, Safety and Quality Control for these products.
Collapse
Affiliation(s)
- Rodica Mărgăoan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Mirela Stranț
- Association Health with CasaBIO, 400015 Cluj-Napoca, Romania; (M.S.); (A.V.)
| | - Alina Varadi
- Association Health with CasaBIO, 400015 Cluj-Napoca, Romania; (M.S.); (A.V.)
| | - Erkan Topal
- Apiculture Section, Aegean Agricultural Research Institute, İzmir 35661, Turkey;
| | - Banu Yücel
- Department of Animal Science, Faculty of Agriculture, Ege University, İzmir 35100, Turkey;
| | - Mihaiela Cornea-Cipcigan
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Correspondence: (M.C.-C.); (M.G.C.)
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-370 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3000-370 Coimbra, Portugal
- Correspondence: (M.C.-C.); (M.G.C.)
| | - Dan C. Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
25
|
Kostić AŽ, Milinčić DD, Gašić UM, Nedić N, Stanojević SP, Tešić ŽL, Pešić MB. Polyphenolic profile and antioxidant properties of bee-collected pollen from sunflower (Helianthus annuus L.) plant. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Xuan SH, Park YM, Park SN. Antimelanogenic and Antimigration Properties of the Ethyl Acetate Fraction of Calendula officinalis Flowers on Melanoma Cells. Photochem Photobiol 2019; 95:860-866. [PMID: 30609059 DOI: 10.1111/php.13064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Calendula officinalis L., commonly known as marigold, is not only cultivated for ornamental purposes but is also used as a traditional medicinal herb. Its flowers have been used to treat various skin diseases, including rashes, burns, cuts and bruises, since ancient times. However, to our knowledge, the impact of C. officinalis L. on melanoma and its mechanism have not been clarified. The aim of this work was to investigate the chemical characterization and antimelanogenic and antimigration activities of the ethyl acetate fraction of C. officinalis flowers (EFC), as well as elucidate the potential mechanism. The obtained results showed that EFC markedly decreased α-MSH-induced melanin production and the cell migration ability of melanoma cells in a dose-dependent manner. Additionally, EFC significantly inhibited the activity and expression of matrix metalloproteinase 2 (MMP-2) via suppressing the mitogen-activated protein kinase (MAPK) signaling pathway. Taken together, the present study demonstrated that C. officinalis flowers can be used as a natural source of antimelanogenisis and antimigration regent to treatment or prevent skin diseases.
Collapse
Affiliation(s)
- Song Hua Xuan
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, Nowon-gu, Seoul, Korea
| | - Young Min Park
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, Nowon-gu, Seoul, Korea
| | - Soo Nam Park
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, Nowon-gu, Seoul, Korea
| |
Collapse
|
27
|
Urcan AC, Criste AD, Dezmirean DS, Mărgăoan R, Caeiro A, Graça Campos M. Similarity of Data from Bee Bread with the Same Taxa Collected in India and Romania. Molecules 2018; 23:molecules23102491. [PMID: 30274204 PMCID: PMC6222490 DOI: 10.3390/molecules23102491] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022] Open
Abstract
Bee Bread samples from Romania and India were analysed by microscopy and High Performance Liquid Chromatography with Diode Array Detection (HPLC/DAD) and compared with pollen from the correspondent taxa. The quantification of sugars, fructose/glucose ratio, total phenolics and flavonoids was also carried out. From the results was possible to identify Brassica and Eucalyptus samples that present similar HPLC/DAD profiles with the respective ultraviolet (UV) identification of the main compounds as Kaempferol-3-O-glycosides and Hydrocinnamic acid derivatives. The Fructose/Glucose (F/G) ratio and the total amounts of phenolics and flavonoids was in line with the prevalence of the specie identified. These coincident fingerprints gave the identification of the samples, as was previously proposed for bee pollens. This paper relates for the first time the achievement on the taxon carried out previously only for bee pollens. It was reported for the first time that this phenolic profile remains unchanged in the case of floral pollen (hand collected), bee pollen and bee bread. Despite the biochemical transformation that occurs during the fermentation of bee bread, it seems that these phenolic compounds are not affected and remain unchanged. Also, variables such as soil and climate do not seem to influence these compounds for the kind of samples under study.
Collapse
Affiliation(s)
- Adriana Cristina Urcan
- Department of Apiculture and Sericulture, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, Cluj-Napoca 400372, Romania.
| | - Adriana Dalila Criste
- Department of Microbiology and Immunology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, Cluj-Napoca 400372, Romania.
| | - Daniel Severus Dezmirean
- Department of Apiculture and Sericulture, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, Cluj-Napoca 400372, Romania.
| | - Rodica Mărgăoan
- Department of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, Cluj-Napoca 400372, Romania.
| | - André Caeiro
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Maria Graça Campos
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3000-548 Coimbra, Portugal.
- Observatory of Herb-Drug Interactions/Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|