1
|
Dos Santos FE, Sousa Carvalho MS, Cardoso MDG, Vilela LR, Andrade-Vieira LF. Bioactivity of hydroalcoholic extracts from tropaeolum majus L. (tropaeolaceae) on the germination, initial plant development and cell cycle of Lactuca sativa L. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:579-591. [PMID: 38708983 DOI: 10.1080/15287394.2024.2349107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Natural products are usually considered harmless; however, these substances need to be consumed with caution. Biological assays with plant models are a suitable alternative for prospective studies to assess natural product-initiated toxicity. The aim of this study was to examine the toxic potential of leaf and flower extracts derived from Tropaeolum majus L. a widely used plant in traditional medicine. Seeds of Lactuca sativa L. were exposed to T. majus extracts and based upon the seedling growth curve values, the 50% Inhibition Concentration (IC50) was calculated and applied for cell cycle analysis exposure. Both extracts contained organic acids, proteins, amino acids, and terpene steroids. Sesquiterpene lactones and depside were detected in leaf extracts. The higher concentration tested exhibited a marked phytotoxic effect. The extracts induced clastogenic, aneugenic cytotoxic, and potential mutagenic effects. The possible relationships between the classes of compounds found in the extracts and effects on cells and DNA were determined.
Collapse
|
2
|
Grecco KD, Santos KR, Aragão FB, Galter IN, Lascola MB, Dos Santos SN, Trindade JL, Silva EZM, Fernandes MN, Matsumoto ST. Toxicogenetic, biochemical, and physiological effects of azoxystrobin and carbendazim fungicides over Lactuca sativa L. and Phaseolus vulgaris L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44036-44048. [PMID: 38922465 DOI: 10.1007/s11356-024-34013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Fungicides are pesticides that are frequently used in agriculture because of their action against fungal diseases. However, the widespread application of pesticides around the world raises environmental and public health concerns, since these compounds are toxic and can pose risks to ecosystems and human health. The aim of this study was to evaluate the phytotoxic, cytogenotoxic, and biochemical effects of azoxystrobin and carbendazim on Lactuca sativa L. and their physiological effects on Phaseolus vulgaris L. by analyzing the cell cycle and chromosomal and nuclear alterations in L. sativa; the biochemical effects of azoxystrobin and carbendazim on Phaseolus vulgaris L. and their physiological effects on Phaseolus vulgaris L. by analyzing the cell cycle and chromosomal and nuclear alterations in L. sativa; the biochemical effects by analyzing the activity of antioxidant enzymes in L. sativa; and the physiological effects by analyzing chlorophyll content and chlorophyll a fluorescence in P. vulgaris. It was observed that both fungicides were phytotoxic and cytotoxic, reducing root growth and the mitotic index, cytogenotoxic, increasing the occurrence of chromosomal alterations, as well as inducing oxidative stress and an increase in chlorophyll fluorescence emission and altered energy absorption in the plants used as a test system. In view of this, studies such as the one presented here indicate that the use of pesticides, even in small quantities, can lead to damage to the metabolism of plant organisms.
Collapse
Affiliation(s)
- Kalia Dável Grecco
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Kristian Rodolfo Santos
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil.
| | - Francielen Barroso Aragão
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Iasmini Nicoli Galter
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Mylena Boeque Lascola
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Sara Nascimento Dos Santos
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Juliana Lima Trindade
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Enzo Zini Moreira Silva
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Marisa Narciso Fernandes
- Department of Physiological Sciences, Center for Biological and Health Sciences, Federal University of São Carlos, Rodovia Washington Luiz, Km 235 Monjolinho, São Carlos, São Paulo, SP, 13565-905, Brazil
| | - Silvia Tamie Matsumoto
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| |
Collapse
|
3
|
Kiełtyka-Dadasiewicz A, Esteban J, Jabłońska-Trypuć A. Antiviral, Antibacterial, Antifungal, and Anticancer Activity of Plant Materials Derived from Cymbopogon citratus (DC.) Stapf Species. Pharmaceuticals (Basel) 2024; 17:705. [PMID: 38931371 PMCID: PMC11206715 DOI: 10.3390/ph17060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The importance of natural plant materials in modern medicine is considerable, and raw materials with antiviral, antibacterial, antifungal, and anticancer properties are still sought because of microbe resistance and difficulties in anticancer therapy. This review focuses on the lemongrass Cymbopogon citratus (DC.) Stapf. and on the lemongrass oil properties and applications. Multiple applications of this plant were described in different latitudes and cultures, including cases of digestive disorders and anti-inflammatory, antipyretic, diaphoretic, stimulating, and antispasmodic conditions. Data from the literature on the composition of essential oil and extracts from C. citratus were analyzed, and the results of research on the antifungal, antibacterial, and antiviral effects were quoted. Essential oil inhibits the growth of fungi (Aspergillus niger, A. fumigatus, Candida spp.) and has an antibacterial effect (Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa). It also shows antiviral activity and deters insects. Lemongrass contains active substances with potential anticancer effects. This plant has apoptosis-stimulating properties, mainly through the activity of apigenin, which is the main active flavonoid in this plant. This active substance helps inhibit cell proliferation by stopping the cell cycle and directing cancer cells toward apoptosis.
Collapse
Affiliation(s)
- Anna Kiełtyka-Dadasiewicz
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Garden of Cosmetic Plants and Raw Materials, Research and Science Innovation Centre, 20-819 Lublin, Poland
| | - Javier Esteban
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, 03202 Elche, Spain;
| | - Agata Jabłońska-Trypuć
- Garden of Cosmetic Plants and Raw Materials, Research and Science Innovation Centre, 20-819 Lublin, Poland
- Division of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Białystok, Poland
| |
Collapse
|
4
|
de Freitas AR, Fávaris NAB, Alexandre RS, da Silva Souza T, Galter IN, Baptista JO, de Lima PAM, de Mello T, Otoni WC, Lopes JC. Germination, cytotoxicity, and mutagenicity in Lactuca sativa L. and Passiflora alata Curtis in response to sewage sludge application. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:628-637. [PMID: 37269409 DOI: 10.1007/s10646-023-02673-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
The physical and chemical characteristics of the soil can influence plant growth. When sewage sludge (SS) is applied as a soil fertilizer, the accumulation of non-essential elements contained in it can be toxic for plants. The aim of this study was to understand the effect of SS dosage on the cell cycle of Lactuca sativa L. meristematic cells and on the initial growth of L. sativa and Passiflora alata Curtis. Nine concentrations of SS + distilled water (mg dm-3) corresponding to 0, 20, 40, 60, 80, 120, 160, 320, and 520 t ha-1 were tested in four replicates of 25 seeds. Chemical analysis showed an increase in pH of the sludge from 0 to 80 t ha-1 SS followed by its stabilization thereafter. The highest electrical conductivity was observed at 520 t ha-1 SS. SS negatively affected the germination and initial growth of seedlings from P. alata and L. sativa. Cytogenetic analysis on 6000 L. sativa meristematic cells for each treatment revealed that SS could adversely affect the genetic stability of this species. SS concentrations above 120 t ha-1 adversely affected the germination and early seedling growth of L. sativa and P. alata. At high concentrations (120 t ha-1), SS induced genetic lesions in L. sativa, along with chromosomal and nuclear alterations.
Collapse
Affiliation(s)
- Allan Rocha de Freitas
- Faculty of the Future, Department of Agronomy, Rua Duarte Peixoto, Coqueiro, 259, 36900-000, Manhuaçu, MG, Brazil
| | - Nathália Aparecida Bragança Fávaris
- Center for Agricultural Sciences and Engineering (UFES-CCAE), Federal University of Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, ES, Brazil
| | - Rodrigo Sobreira Alexandre
- Center for Agricultural Sciences and Engineering (UFES-CCAE), Federal University of Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, ES, Brazil
| | - Tatiana da Silva Souza
- Center for Exact, Natural and Health Sciences, Department of Biology, Federal University of Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, ES, Brazil
| | - Iasmini Nicoli Galter
- Center for Exact, Natural and Health Sciences, Department of Biology, Federal University of Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, ES, Brazil
| | - Julcinara Oliveira Baptista
- Center for Agricultural Sciences and Engineering (UFES-CCAE), Federal University of Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, ES, Brazil
| | - Paula Aparecida Muniz de Lima
- Center for Agricultural Sciences and Engineering (UFES-CCAE), Federal University of Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, ES, Brazil
| | - Tamyris de Mello
- Center for Agricultural Sciences and Engineering (UFES-CCAE), Federal University of Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, ES, Brazil.
| | - Wagner Campos Otoni
- Center for Biological Sciences and Health, Federal University of Viçosa/UFV, Av. Peter Henry Rolfs, s/n, 36570-000, Viçosa, MG, Brazil
| | - José Carlos Lopes
- Center for Agricultural Sciences and Engineering (UFES-CCAE), Federal University of Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, ES, Brazil
| |
Collapse
|
5
|
Agougui C, Cecilia JA, Saad H, Franco-Duro F, Essid R, Khabbouchi M, Frini-Srasra N. Adsorption of Carvone and Limonene from Caraway essential oil onto Tunisian montmorillonite clay for pharmaceutical application. Sci Rep 2022; 12:19814. [PMID: 36396702 PMCID: PMC9672104 DOI: 10.1038/s41598-022-24268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
To explore a novel kind of green composite material having excellent antibacterial, antifungal ability and specific-targeting capability for pharmaceutical uses, a novel kind of bio-composite was prepared using sodium purified clay as carrier of Caraway essential oil (CEO). Gas chromatography-mass spectroscopy (GC-MS) analyses of CEO reveals that Carvone (68.30%) and Limonene (22.54%) are the two major components with a minimum inhibitory concentration (MIC) value equal to 125 mg/mL against Staphylococcus (S) aureus bacteria and Candida albicans fungi. Clay from Zaghouan was purified and characterized by X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR) and N2 adsorption-desorption (BET method). Results obtained by chromatograph equipped with a flame ionization detector (GC-FID) show that the concentration of 130 mg/mL of essential oil and 5 h of contact with the purified clay are the optimal conditions for the bio-hybrid formation. The pseudo-second-order model can describe the kinetic study of the adsorption of Carvone and Limonene on sodium montmorillonite, and the adsorption isotherms have been established to the Langmuir type. Limonene registers a maximum adsorption value equal to 3.05 mg/g of clay however Carvone register the higher amount of adsorption (19.98 mg/g) according to its polarity and the abundance of this compound in the crude CEO. X-ray diffraction, Fourier transformed infrared spectroscopy, elemental analyses (CHN) and X-ray fluorescence characterization valid the success adsorption of CEO in sodium montmorillonite surface. The purified clay/CEO hybrid (purified clay/CEO) combined the advantages of both the clay and the essential oil used in exerting the antibacterial and antifungal activity, and thus, the composite has a double antibacterial and antifungal activity compared to the separately uses of inactive clay and CEO, suggesting the great potential application in pharmaceutical treatments.
Collapse
Affiliation(s)
- Chaima Agougui
- grid.12574.350000000122959819Faculty of Sciences of Tunis (FST), Tunis El Manar University, Campus Universitaire Tunis El Manar, 2092 Tunis, Tunisia ,Laboratory of Composite Materials and Clay Minerals, National Center of Materials Research, Borj Cedria Technopole, Tunis, Tunisia
| | - Juan Antonio Cecilia
- grid.10215.370000 0001 2298 7828Department of Inorganic Chemistry, Crystallography and Mineralogy, Universidad de Málaga, Campus de Teatinos, 29071 Malaga, Spain
| | - Houda Saad
- Laboratory of Composite Materials and Clay Minerals, National Center of Materials Research, Borj Cedria Technopole, Tunis, Tunisia
| | - Francisco Franco-Duro
- grid.10215.370000 0001 2298 7828Department of Inorganic Chemistry, Crystallography and Mineralogy, Universidad de Málaga, Campus de Teatinos, 29071 Malaga, Spain
| | - Rym Essid
- Laboratory of Bioactive Substances, Biotechnologie Center, Borj Cedria Technopole, Tunis, Tunisia
| | - Mohamed Khabbouchi
- grid.12574.350000000122959819Faculty of Sciences of Tunis (FST), Tunis El Manar University, Campus Universitaire Tunis El Manar, 2092 Tunis, Tunisia ,Laboratory of Composite Materials and Clay Minerals, National Center of Materials Research, Borj Cedria Technopole, Tunis, Tunisia
| | - Najoua Frini-Srasra
- grid.12574.350000000122959819Faculty of Sciences of Tunis (FST), Tunis El Manar University, Campus Universitaire Tunis El Manar, 2092 Tunis, Tunisia ,Laboratory of Composite Materials and Clay Minerals, National Center of Materials Research, Borj Cedria Technopole, Tunis, Tunisia
| |
Collapse
|
6
|
Innovations in the development and application of edible coatings for fresh and minimally processed Apple. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Long Y, Li D, Yu S, Zhang YL, Liu SY, Wan JY, Shi A, Deng J, Wen J, Li XQ, Ma Y, Li N, Yang M. Natural essential oils: A promising strategy for treating cardio-cerebrovascular diseases. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115421. [PMID: 35659628 DOI: 10.1016/j.jep.2022.115421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Essential oils (EO) are volatile compounds obtained from different parts of natural plants, and have been used in national, traditional and folk medicine to treat various health problems all over the world. Records indicate that in history, herbal medicines rich in EO have been widely used for the treatment of CVDs in many countries, such as China. AIM OF THE STUDY This review focused on the traditional application and modern pharmacological mechanisms of herbal medicine EO against CVDs in preclinical and clinical trials through multi-targets synergy. Besides, the EO and anti-CVDs drugs were compared, and the broad application of EO was explained from the properties of drugs and aromatic administration routes. MATERIALS AND METHODS Information about EO and CVDs was collected from electronic databases such as Web of Science, ScienceDirect, PubMed, and China National Knowledge Infrastructure (CNKI). The obtained data sets were sequentially arranged for better understanding of EO' potential. RESULTS The study showed that EO had significant application in CVDs at different countries or regions since ancient times. Aiming at the complex pathological mechanisms of CVDs, including intracellular calcium overload, oxidative stress, inflammation, vascular endothelial cell injury and dysfunction and dyslipidemia, we summarized the roles of EO on CVDs in preclinical and clinical through multi-targets intervention. Besides, EO had the dual properties of drug and excipients. And aromatherapy was one of the complementary therapies to improve CVDs. CONCLUSIONS This paper reviewed the EO on traditional treatment, preclinical mechanism and clinical application of CVDs. As important sources of traditional medicines, EO' remarkable efficacy had been confirmed in comprehensive literature reports, which showed that EO had great medicinal potential.
Collapse
Affiliation(s)
- Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Lu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song-Yu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Qiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.
| |
Collapse
|
8
|
Potential Therapeutic Effect of Citronellal on Diabetic Cardiomyopathy in Experimental Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9987531. [PMID: 34840590 PMCID: PMC8612793 DOI: 10.1155/2021/9987531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
Diabetic cardiomyopathy (DCM), a cardiovascular complication of patients with diabetes, is a special cardiomyopathy that is independent of coronary heart disease, hypertension, and valvular disease. Citronellal (CT) is a monoterpene compound generated by the secondary metabolism of plants. In this work, the therapeutic effect and mechanism of CT in DCM were investigated. Experimental diabetic rat models were constructed through a high-fat and high-carbohydrate diet combined with low-dosage streptozotocin (STZ) treatment. CT was intragastrically administered at the dosage of 150 mg/kg/day. The cardiac functions of the rats were evaluated via cardiac Doppler ultrasound. Changes in myocardial structure were analyzed through histopathology. Changes in the representative indices of oxidative stress, namely, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were detected on the basis of a biochemical test. Related protein levels were assayed via immunofluorescence and Western blot analyses. The DCM rats in the nontreatment group experienced diastolic and systolic dysfunctions, associated with myocardial hypertrophy, fibrosis, and cardiomyocyte apoptosis. Moreover, this condition was concurrent with metabolic disorders, the degradation of SOD activity in myocardial tissues, the increase in MDA content, the abnormal activation of sodium–hydrogen exchanger 1 (NHE1), and the aggravation of cell apoptosis (Bax levels were elevated, whereas Bcl-2 levels decreased). Myocardial hypertrophy, fibrosis, oxidative stress, and cell apoptosis were obviously inhibited after treatment with CT (150 mg/kg/day). The abnormal activation of NHE1 was recovered under the action of CT. Our study results showed that CT might play a protective role in the treatment of DCM by repressing the abnormal activation of NHE1.
Collapse
|
9
|
M Aljedani D. Effects of Some Insecticides (Deltamethrin and Malathion) and Lemongrass Oil on Fruit Fly ( Drosophila melanogaster). Pak J Biol Sci 2021; 24:477-491. [PMID: 34486307 DOI: 10.3923/pjbs.2021.477.491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> The continuous use of pesticides in the ecosystem is of great concern, as some of them are highly stable and impact non-target organisms. The effect was tested of different concentrations of insecticides such as (Deltamethrin and Malathion) and natural products, Including, lemongrass oil on Fruit Fly (<i>Drosophila melanogaster</i>), to calculate the concentration at which the highest mortality occurred and death half the number of individuals after 96 hrs, as well as calculating the half-lethal time for individuals. <b>Materials and Methods:</b> This study, which evaluated the toxicity of five different concentrations (0.75, 1.00, 1.25, 1.50 and 1.75 mg L<sup>1</sup>) of Malathion, (0.05, 0.10, 0.21, 0.53 and 1.48 mg L<sup>1</sup>) of Deltamethrin and lemongrass oil (0.25, 0.50, 0.75, 1.00 and 1.50 mg L<sup>1</sup>) on the insect of <i>Drosophila melanogaster</i> after 96 hrs of treatment. <b>Results:</b> From the results of this study, the concentration (LC<sub>50 </sub>= 2.938 mg L<sup>1</sup>) of Malathion leads to kills half of the individuals, compared to Deltamethrin a higher concentration (LC<sub>50 </sub>= 4.8673 mg L<sup>1</sup>) that leads to killing half of the individuals. While lemongrass oil the concentration (LC<sub>50 </sub>= 9.7478 mg L<sup>1</sup>) leads to kills half of individuals. Also, when used Deltamethrin it takes (LT<sub>50 </sub>= 660.277) hours to kill half of the individuals compared to Malathion, which takes approximately (LT<sub>50</sub> = 321.862) hours to death half of the individuals. But lemongrass oil (LT<sub>50 </sub>= 819.745) hours to kill half of the individuals. <b>Conclusion:</b> In conclusion, the lemon plant and its components have excellent potential for being used in the control of <i>Drosophila melanogaster</i>, which had an effective role in biological control.
Collapse
|
10
|
Majewska E, Kozłowska M, Gruczyńska-Sękowska E, Kowalska D, Tarnowska K. Lemongrass (Cymbopogon citratus) Essential Oil: Extraction, Composition, Bioactivity and Uses for Food Preservation – a Review. POL J FOOD NUTR SCI 2019. [DOI: 10.31883/pjfns/113152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
11
|
Ranjani S, Shariq Ahmed M, Ruckmani K, Hemalatha S. Green Nanocolloids Control Multi Drug Resistant Pathogenic Bacteria. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01694-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Ekpenyong CE, Akpan EE. Use of Cymbopogon citratus essential oil in food preservation: Recent advances and future perspectives. Crit Rev Food Sci Nutr 2017; 57:2541-2559. [DOI: 10.1080/10408398.2015.1016140] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Ernest E. Akpan
- Department of Physiology, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| |
Collapse
|
13
|
Pinto ZT, Sánchez FF, dos Santos AR, Amaral ACF, Ferreira JLP, Escalona-Arranz JC, Queiroz MMDC. Chemical composition and insecticidal activity of Cymbopogon citratus essential oil from Cuba and Brazil against housefly. ACTA ACUST UNITED AC 2017; 24:36-44. [PMID: 25909251 DOI: 10.1590/s1984-29612015006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/17/2014] [Indexed: 11/22/2022]
Abstract
Essential oil of Cymbopogon citratus collected from Brazil and Cuba was tested to a chemical characterization and then was tested on the post-embryonic development of Musca domestica. The chemical composition analysis by GC-MS of the oils from Brazil/Cuba allowed the identification of 13 and 12 major constituents respectively; nine of them common to both. In the both oils, the main components were the isomers geranial and neral, which together form the compound citral. This corresponds to a total of 97.92%/Brazil and 97.69%/Cuba of the compounds identified. The monoterpene myrcene, observed only in the sample of Cuba, presented a large relative abundance (6.52%). The essential oil of C. citratus (Brazil/Cuba) was dissolved in DMSO and tested at concentrations of 5, 10, 25, 50, 75 and 100% and citral was prepared by mixing 16.8 mg with 960 µL DMSO. Both essential oils and monoterpene citral were applied topically to newly-hatched larvae (1µL/larva). The results showed a lethal concentration (LC50) of 4.25 and 3.24% for the Brazilian and Cuban essential oils, respectively. Mortalities of larval and newly-hatched larvae to adult periods were dose-dependent for the two both oils as for monoterpene citral, reaching 90%. Both essential oils and citral caused morphological changes in adult specimens.
Collapse
Affiliation(s)
- Zeneida Teixeira Pinto
- Laboratório de Educação em Ambiente e Saúde, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | | | - Arith Ramos dos Santos
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | | | - José Luiz Pinto Ferreira
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | | | | |
Collapse
|
14
|
Silva DO, Seifert M, Nora FR, Bobrowski VL, Freitag RA, Kucera HR, Nora L, Gaikwad NW. Acute Toxicity and Cytotoxicity of Pereskia aculeata, a Highly Nutritious Cactaceae Plant. J Med Food 2017; 20:403-409. [PMID: 28355092 DOI: 10.1089/jmf.2016.0133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pereskia aculeata is a Cactaceae plant with valuable nutritional properties, including terrific amounts of protein, minerals, vitamins, and fiber. However, P. aculeata is reported to contain antinutrients and alkaloids in its leaves. In addition, in a study on growth and development, Wistar rats fed with P. aculeata and casein as protein source grew less than the control group (fed with casein only). Therefore, in this study, we evaluated, for the first time, the oral acute toxicity of P. aculeata in rats and also the cytotoxicity behavior of the plant on lettuce seeds. The acute toxicity research was carried out using dried P. aculeata ethanolic extract, in three different doses, administered by gavage to 24 female Wistar rats. The rats were then examined for signs of toxicity, food intake, body weight, and fecal excretion fluctuations, as well as histopathological alterations, using eight different body tissues. The acute toxicity study did not show any difference among the groups in either clinical evaluation or histopathological analyses. For the cytotoxicity study, dried P. aculeata ethanolic extract was applied on lettuce seeds in five different concentrations. These seeds were evaluated for germination, root and shoot length, and mitotic index. The results show that P. aculeata extract affects lettuce root and shoot growth, but not germination or mitotic index. In conclusion, the acute toxicity on rats and the cytogenotoxicity on lettuce of P. aculeata are neglectable, validating the potential of this plant to be used as a functional food.
Collapse
Affiliation(s)
- Debora O Silva
- 1 Department of Food Science and Technology, Federal University of Pelotas, Rio Grande do Sul, Brazil
| | - Mauricio Seifert
- 1 Department of Food Science and Technology, Federal University of Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana R Nora
- 1 Department of Food Science and Technology, Federal University of Pelotas, Rio Grande do Sul, Brazil
| | - Vera L Bobrowski
- 2 Department of Zoology and Genetics, Federal University of Pelotas, Rio Grande do Sul, Brazil
| | - Rogerio A Freitag
- 3 Science Center of Chemistry, Pharmacology and Food, Federal University of Pelotas, Rio Grande do Sul, Brazil
| | - Heidi R Kucera
- 4 Departments of Nutrition and Environmental Toxicology, University of California Davis , Davis, California, USA
| | - Leonardo Nora
- 1 Department of Food Science and Technology, Federal University of Pelotas, Rio Grande do Sul, Brazil
| | - Nilesh W Gaikwad
- 4 Departments of Nutrition and Environmental Toxicology, University of California Davis , Davis, California, USA
| |
Collapse
|
15
|
Aloui H, Khwaldia K. Natural Antimicrobial Edible Coatings for Microbial Safety and Food Quality Enhancement. Compr Rev Food Sci Food Saf 2016; 15:1080-1103. [DOI: 10.1111/1541-4337.12226] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Hajer Aloui
- Laboratoire des Substances Naturelles (LSN, LR10 INRAP02), Inst. Natl. de Recherche et d'Analyse Physico-chimique (INRAP); Pôle Technologique de Sidi Thabet; 2020 Sidi Thabet Tunisia
| | - Khaoula Khwaldia
- Laboratoire des Substances Naturelles (LSN, LR10 INRAP02), Inst. Natl. de Recherche et d'Analyse Physico-chimique (INRAP); Pôle Technologique de Sidi Thabet; 2020 Sidi Thabet Tunisia
| |
Collapse
|
16
|
Mori HM, Iwahashi H. Characterization of radicals arising from oxidation of commercially-important essential oils. Free Radic Res 2016; 50:638-44. [PMID: 27136257 DOI: 10.3109/10715762.2016.1162299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Inappropriate use of essential oils may entail risks to human health due to mutational events, carcinogenic effects, genetic damages and sensitizing effect caused by generation of reactive oxygen species. In order to detect radicals that are expected to form during their oxidation, we measured the electron spin resonance (ESR) spectra of a standard reaction mixture (I) containing 25 μM flavin mononucleotide, 0.018% several essential oils (or 0.015% geraniol), 1.9 M acetonitrile, 20 mM phosphate buffer (pH 7.4), 0.1 M α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) and 1.0 mM FeSO4(NH4)2SO4 irradiated with 436 nm visible light (7.8 J/cm(2)). The ESR peak heights of the standard reaction mixture (I) of the essential oils increased in the following order: tea tree > palmarosa >geranium > clary sage > petitgrain > lavender > bergamot > frankincense > ravintsara > ylang ylang > lemongrass > niaouli > eucalyptus globulus > peppermint. The ESR peak height of the standard reaction mixture (I) of geraniol, a main component of palmarosa, was comparable to the one of palmarosa (97 ± 19% of palmarosa). Furthermore, high performance liquid chromatography (HPLC)-ESR analyses of the standard reaction mixture (I) of palmarosa and geraniol gave the same peaks. The results suggest that the radicals formed in the standard reaction mixture (I) of palmarosa are derived from geraniol. HPLC-ESR-mass spectrometry analyses detected m/z 294 ions, 4-POBN/5-hydroxy-3-methyl-3-pentenyl radical adducts and m/z 320 ions, 4-POBN/C7O2H9 radical adducts in the standard reaction (I) of geraniol. The 5-hydroxy-3-methyl-3-pentenyl and C7O2H9 radicals may be implicated in the sensitizing effect of palmarosa.
Collapse
Affiliation(s)
- Hiroko-Miyuki Mori
- a Department of Chemistry , Wakayama Medical University , Wakayama , Japan ;,b Graduate School of Health Sciences, Morinomiya University of Medical Sciences , Osaka , Japan
| | - Hideo Iwahashi
- a Department of Chemistry , Wakayama Medical University , Wakayama , Japan
| |
Collapse
|
17
|
Kouame NM, Kamagate M, Koffi C, Die-Kakou HM, Yao NAR, Kakou A. Cymbopogon citratus (DC.) Stapf : ethnopharmacologie, phytochimie, activités pharmacologiques et toxicologie. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s10298-015-1014-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Tavares F, Costa G, Francisco V, Liberal J, Figueirinha A, Lopes MC, Cruz MT, Batista MT. Cymbopogon citratus industrial waste as a potential source of bioactive compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2652-2659. [PMID: 25389117 DOI: 10.1002/jsfa.6999] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/15/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Cymbopogon citratus (Cc), commonly known as lemongrass, is a very important crop worldwide, being grown in tropical countries. It is widely used in the food, pharmaceutical, cosmetic and perfumery industries for its essential oil. Cc aqueous extracts are also used in traditional medicine. They contain high levels of polyphenols, which are known for their antioxidant and anti-inflammatory properties. Hydrodistillation of lemongrass essential oil produces an aqueous waste (CcHD) which is discarded. Therefore a comparative study between CcHD and Cc infusion (CcI) was performed to characterize its phytochemical profile and to research its antioxidant and anti-inflammatory potential. RESULTS HPLC-PDA/ESI-MS(n) analysis showed that CcI and CcHD have similar phenolic profiles, with CcHD presenting a higher amount of polyphenols. Additionally, both CcI and CcHD showed antioxidant activity against DPPH (EC50 of 41.72 ± 0.05 and 42.29 ± 0.05 µg mL(-1) respectively) and strong anti-inflammatory properties, by reducing NO production and iNOS expression in macrophages and through their NO-scavenging activity, in a dose-dependent manner. Furthermore, no cytotoxicity was observed. CONCLUSION The data of this study encourage considering the aqueous solution from Cc leaf hydrodistillation as a source of bioactive compounds, which may add great industrial value to this crop.
Collapse
Affiliation(s)
- Filipa Tavares
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gustavo Costa
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3004-517 Coimbra, Portugal
| | - Vera Francisco
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3004-517 Coimbra, Portugal
| | - Joana Liberal
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3004-517 Coimbra, Portugal
| | - Artur Figueirinha
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Departmento de Ambiente, Instituto Politécnico de Viseu, Campus Politécnico de Repeses, 3504-510 Viseu, Portugal
| | - Maria Celeste Lopes
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3004-517 Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3004-517 Coimbra, Portugal
| | - Maria Teresa Batista
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3004-517 Coimbra, Portugal
| |
Collapse
|
19
|
Llana-Ruiz-Cabello M, Pichardo S, Maisanaba S, Puerto M, Prieto AI, Gutiérrez-Praena D, Jos A, Cameán AM. In vitro toxicological evaluation of essential oils and their main compounds used in active food packaging: A review. Food Chem Toxicol 2015; 81:9-27. [PMID: 25865936 DOI: 10.1016/j.fct.2015.03.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 01/19/2023]
Abstract
Essential oils (EOs) and their main constituent compounds have been extensively investigated due to their application in the food industry for improving the shelf life of perishable products. Although they are still not available for use in food packaging in the market in Europe, considerable research in this field has been carried out recently. The safety of these EOs should be guaranteed before being commercialized. The aim of this work was to review the scientific publications, with a primary focus on the last 10 years, with respect to different in vitro toxicological aspects, mainly focussed on mutagenicity/genotoxicity. In general, fewer genotoxic studies have been reported on EOs in comparison to their main components, and most of them did not show mutagenic activity. However, more studies are needed in this field since the guidelines of the European Food Safety Authority have not always been followed accurately. The mutagenic/genotoxic activities of these substances have been related to metabolic activation. Therefore, in vivo tests are required to confirm the absence of genotoxic effects. Considering the great variability of the EOs and their main compounds, a case-by-case evaluation is needed to assure their safe use in food packaging.
Collapse
Affiliation(s)
- Maria Llana-Ruiz-Cabello
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain
| | - Silvia Pichardo
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain
| | - Sara Maisanaba
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain
| | - Maria Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain
| | - Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain
| | - Daniel Gutiérrez-Praena
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain.
| |
Collapse
|
20
|
Luber J, Palmieri MJ, Botelho CM, Rinaldo D, Andrade-Vieira LF. Investigation on the effects of guava (Psidium guajava L.) infusions on germination, root tips and meristematic cells of Latuca sativa. AN ACAD BRAS CIENC 2015; 87:903-13. [PMID: 25993362 DOI: 10.1590/0001-3765201520140286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/25/2014] [Indexed: 01/02/2023] Open
Abstract
Guava (Psidium guajava L.) is a plant often employed in popular medicine. Recently several studies have alerted about the toxicity of substances present in medicinal plants, which can pose risks to the human health. In this sense, the present work aimed to investigate the phytotoxic, cytotoxic and genotoxic action of three guava varieties - Paluma, Pedro Sato and Roxa ("purple") - on the plant test system Lactuca sativa L. Thus, macro- and microscopic evaluations were carried out for five infusion concentrations (2.5, 5.0, 10.0, 20.0 and 40.0 g.L(-1)) prepared from each variety. Distilled water was used as negative control. Chromatographic and spectroscopic analysis by HPLC-PAD indicated that the chemical composition of the infusion of Roxa is different than that of the infusions of the varieties Paluma and Pedro Sato. It was observed that seed germination and root growth in L. sativa exposed to infusions decreased with increasing infusion concentration, regardless of the tested cultivar. For the mitotic index, no statistical differences were observed. On the other hand, a significant increase in the frequency of cell cycle alterations was verified, especially for the highest concentrations tested. The cytogenotoxic effect was significant. Therefore, guava should not be used indiscriminately in popular medicine.
Collapse
Affiliation(s)
- Jaquelini Luber
- Departamento de Biologia, Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, Alegre, ES, Brasil
| | - Marcel J Palmieri
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG, Brasil
| | - Carolina M Botelho
- Departamento de Biologia, Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, Alegre, ES, Brasil
| | - Daniel Rinaldo
- Departamento de Química, Faculdade de Ciências, Universidade Estadual Paulista, Bauru, SP, Brasil
| | | |
Collapse
|
21
|
Evaluation of toxicity of essential oils palmarosa, citronella, lemongrass and vetiver in human lymphocytes. Food Chem Toxicol 2014; 68:71-7. [DOI: 10.1016/j.fct.2014.02.036] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/08/2014] [Accepted: 02/26/2014] [Indexed: 11/22/2022]
|
22
|
Andrade-Vieira LF, Botelho CM, Laviola BG, Palmieri MJ, Praça-Fontes MM. Effects of Jatropha curcas oil in Lactuca sativa root tip bioassays. AN ACAD BRAS CIENC 2014; 86:373-82. [PMID: 24676174 DOI: 10.1590/0001-3765201420130041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 07/05/2013] [Indexed: 11/21/2022] Open
Abstract
Jatropha curcas L. (Euphorbiaceae) is important for biofuel production and as a feed ingredient for animal. However, the presence of phorbol esters in the oil and cake renders the seeds toxic. The toxicity of J. curcas oil is currently assessed by testing in animals, leading to their death. The identification of toxic and nontoxic improved varieties is important for the safe use of J. curcas seeds and byproducts to avoid their environmental toxicity. Hence, the aim of this study was to propose a short-term bioassay using a plant as a model to screen the toxicity of J. curcas oil without the need to sacrifice any animals. The toxicity of J. curcas oil was evident in germination, root elongation and chromosomal aberration tests in Lactuca sativa. It was demonstrated that J. curcas seeds contain natural compounds that exert phyto-, cyto- and genotoxic effects on lettuce, and that phorbol esters act as aneugenic agents, leading to the formation of sticky chromosomes and c-metaphase cells. In conclusion, the tests applied have shown reproducibility, which is important to verify the extent of detoxification and to determine toxic doses, thus reducing the numbers of animals that would be used for toxicity tests.
Collapse
Affiliation(s)
- Larissa F Andrade-Vieira
- Departamento de Biologia, Centro de Ciencias Agrarias, Universidade Federal do Espirito Santo, Alto Universitario, Alegre, ES, Brasil
| | - Carolina M Botelho
- Departamento de Biologia, Centro de Ciencias Agrarias, Universidade Federal do Espirito Santo, Alto Universitario, Alegre, ES, Brasil
| | - Bruno G Laviola
- Empresa Brasileira de Pesquisa Agropecuaria/EMBRAPA Agroenergia, Parque Estacao Biologica/PqEB, Brasilia, DF, Brasil
| | - Marcel J Palmieri
- Departamento de Biologia, Universidade Federal de Lavras, Campus Universitario, Lavras, MG, Brasil
| | - Milene M Praça-Fontes
- Departamento de Biologia, Centro de Ciencias Agrarias, Universidade Federal do Espirito Santo, Alto Universitario, Alegre, ES, Brasil
| |
Collapse
|
23
|
Laughinghouse HD, Prá D, Silva-Stenico ME, Rieger A, Frescura VDS, Fiore MF, Tedesco SB. Biomonitoring genotoxicity and cytotoxicity of Microcystis aeruginosa (Chroococcales, cyanobacteria) using the Allium cepa test. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 432:180-188. [PMID: 22728963 DOI: 10.1016/j.scitotenv.2012.05.093] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 05/30/2012] [Accepted: 05/30/2012] [Indexed: 06/01/2023]
Abstract
Water pollution caused by toxic cyanobacteria is a problem worldwide, increasing with eutrophication. Due to its biological significance, genotoxicity should be a focus for biomonitoring pollution owing to the increasing complexity of the toxicological environment in which organisms are exposed. Cyanobacteria produce a large number of bioactive compounds, most of which lack toxicological data. Microcystins comprise a class of potent cyclic heptapeptide toxins produced mainly by Microcystis aeruginosa. Other natural products can also be synthesized by cyanobacteria, such as the protease inhibitor, aeruginosin. The hepatotoxicity of microcystins has been well documented, but information on the genotoxic effects of aeruginosins is relatively scarce. In this study, the genotoxicity and ecotoxicity of methanolic extracts from two strains of M. aeruginosa NPLJ-4, containing high levels of microcystin, and M. aeruginosa NPCD-1, with high levels of aeruginosin, were evaluated. Four endpoints, using plant assays in Allium cepa were applied: rootlet growth inhibition, chromosomal aberrations, mitotic divisions, and micronucleus assays. The microcystin content of M. aeruginosa NPLJ-4 was confirmed through ELISA, while M. aeruginosa NPCD-1 did not produce microcystins. The extracts of M. aeruginosa NPLJ-4 were diluted at 0.01, 0.1, 1 and 10 ppb of microcystins; the same procedure was used to dilute M. aeruginosa NPCD-1 used as a parameter for comparison, and water was used as the control. The results demonstrated that both strains inhibited root growth and induced rootlet abnormalities. The strain rich in aeruginosin was more genotoxic, altering the cell cycle, while microcystins were more mitogenic. These findings indicate the need for future research on non-microcystin producing cyanobacterial strains. Understanding the genotoxicity of M. aeruginosa extracts can help determine a possible link between contamination by aquatic cyanobacteria and high risk of primary liver cancer found in some areas as well as establish water level limits for compounds not yet studied.
Collapse
Affiliation(s)
- Haywood Dail Laughinghouse
- Laboratory of Biotechnology and Genetics, Department of Biology and Pharmacy, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil.
| | | | | | | | | | | | | |
Collapse
|