1
|
Al-Shaebi EM, Al-Quraishy S, Abdel-Gaber R. Potential role of the methanolic extract for Olea europaea (stem and leaves) on sporulation of Eimeria papillata oocysts: In vitro study. Biomed Chromatogr 2024; 38:e5972. [PMID: 39079944 DOI: 10.1002/bmc.5972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 10/19/2024]
Abstract
Many plants are efficient anticoccidial agents owing to their content of active chemicals. Drug-resistant Eimeria species have emerged as a result of excessive drug use. The current work aimed to investigate the oocysticidal activity (Eimeria papillata) of Olea europaea stem extract (OESE) and leaf extract (OELE) in vitro. The results of gas chromatography-mass spectrometry analysis for OELE and OESE showed the presence of 12 and 9 phytochemical compounds, respectively. Also, chemical examination revealed that the plant extracts are rich in phenols, flavonoids and tannins. Additionally, the best radical scavenging activity of OESE and OELE was at a concentration of 100 μg/ml, reaching 92.04 ± 0.02 and 92.4 ± 0.2%, respectively. The in vitro study revealed that concentrations of 200 mg/ml from OESE and OELE caused significant inhibition (100%) of process sporulation for E. papillata oocysts, in contrast to the other commercial products, which displayed varying degrees of suppression sporulation. Our findings showed that OESE and OELE have anticoccidial activity, which motivates further the conduction of in vivo studies in the search for a less expensive and more efficient cure.
Collapse
Affiliation(s)
- Esam M Al-Shaebi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Lien YY, Shyur LF, Cheng YB, Chang MT, Chang CT, Chen YH, Lai GH, Liao HY, Cheng MC. Trifolium pratense as a novel phytogenic supplement, is an anticoccidial agent in chickens. Poult Sci 2024; 103:104064. [PMID: 39106704 PMCID: PMC11347856 DOI: 10.1016/j.psj.2024.104064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 08/09/2024] Open
Abstract
Coccidiosis, caused by a protozoan parasite of the genus Eimeria, is one of the most severe contagious parasite diseases affecting the poultry industry worldwide. Using phytogenics to prevent chicken coccidiosis is a strategy aimed at combating the increasing issue of drug-resistant strains of Eimeria spp. This study demonstrates the anticoccidial activities of a medicinal herb, Trifolium pratense (TP) powder, and its ethanolic extract (designated TPE) against Eimeria spp. TPE exhibited significant suppressive activity against E. maxima oocyst sporulation and E. tenella sporozoite invasion and reproduction in Madin-Darby bovine kidney cells. Furthermore, administration of basal chicken diets containing TP powder or TPE to Eimeria-infected chickens significantly reduced the output of oocysts and severity of intestinal lesions. Dietary supplementation with TP significantly improved relative weight gain in E. tenella- and E. acervulina-infected chickens, while there was no significant improvement in E. maxima-infected chickens. The anticoccidial activities of TP and TPE on E. acervulina, E. tenella and E. maxima were further supported by anticoccidial index scores, which showed greater efficacy than those of amprolium, a commercial coccidiostat used in poultry. TP supplementation positively impacted the primary metabolism of chickens challenged with E. tenella or E. acervulina. The chemical fingerprints of TPE were established using liquid column chromatography; TPE contained 4 major compounds: ononin, sissotrin, formononetin, and biochanin A. In addition, various spectrometric methods were used to ensure the batch-to-batch consistency of TP/TPE. In conclusion, T. pratense is demonstrated to be a novel phytogenic supplement that can be used to control Eimeria-induced coccidiosis in chickens.
Collapse
Affiliation(s)
- Yi-Yang Lien
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Lie-Fen Shyur
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; PhD Program in Translational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Meng-Ting Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Ting Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Hsin Chen
- Taichung District Agriculture Research and Extension Station, Ministry of Agriculture, Executive Yuan, Changhua 515, Taiwan
| | - Guan-Hua Lai
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Hsing-Yu Liao
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Ming-Chu Cheng
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan.
| |
Collapse
|
3
|
Wang L, Liu D, Zhu Y, Wang F, Cai W, Feng Q, Su S, Hou Z, Xu J, Hu J, Tao J. Comparative proteomic analysis of wall-forming bodies and oocyst wall reveals the molecular basis underlying oocyst wall formation in Eimeria necatrix. Parasit Vectors 2023; 16:460. [PMID: 38111000 PMCID: PMC10729351 DOI: 10.1186/s13071-023-06076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND The durable oocyst wall formed from the contents of wall-forming bodies (WFBs) protects Eimeria parasites from harsh conditions and enhances parasite transmission. Comprehending the contents of WFBs and proteins involved in oocyst wall formation is pivotal to understanding the mechanism of the oocyst wall formation and the search for novel targets to disrupt parasite transmission. METHODS Total proteins extracted from WFBs and the oocyst wall of Eimeria necatrix were subjected to comparative proteomic analysis using tandem mass tag in conjunction with liquid chromatography tandem-mass spectrometry techniques. After functional clustering analysis of the identified proteins, three proteins, including E. necatrix disulfide isomerase (EnPDI), thioredoxin (EnTrx) and phosphoglycerate kinase (EnPGK), were selected for further study to confirm their potential roles in oocyst wall formation. RESULTS A total of 3009 and 2973 proteins were identified from WFBs and the oocyst wall of E. necatrix, respectively. Among these proteins, 1102 were identified as differentially expressed proteins, of which 506 were upregulated and 596 downregulated in the oocyst wall compared to the WFBs. A total of 108 proteins, including compositional proteins of the oocyst wall, proteases, oxidoreductases, proteins involved in glycosylation, proteins involved in synthesis of the acid-fast lipid layer and proteins related to transport, were proposed to be involved in oocyst wall formation. The approximate molecular sizes of native EnPDI, EnTrx and EnPGK proteins were 55, 50 and 45 kDa, respectively. EnPDI was present in both type 1 and type 2 WFBs, EnTrx was present only in type 2 WFB2 and EnPGK was present only in type 1 WFBs, whereas all of them were localized to the outer layer of the oocyst wall, indicating that all of them participate in the formation of the oocyst wall. CONCLUSIONS To the best of our knowledge, this is the first report on the proteomes of WFBs and the oocyst wall of E. necatrix. The data obtained from this study form a basis for deciphering the molecular mechanisms underlying oocyst wall formation of Eimeria parasites. They also provide valuable resources for future studies on the development of novel therapeutic agents and vaccines aimed at combating coccidian transmission.
Collapse
Affiliation(s)
- Lele Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yu Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Feiyan Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Weimin Cai
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qianqian Feng
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Junjie Hu
- School of Ecology and Environmental Sciences and Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
4
|
Jia L, Zhao Q, Zhu S, Han H, Zhao H, Yu Y, Yang J, Dong H. Proteomic Analysis of Fractionated Eimeria tenella Sporulated Oocysts Reveals Involvement in Oocyst Wall Formation. Int J Mol Sci 2023; 24:17051. [PMID: 38069374 PMCID: PMC10707475 DOI: 10.3390/ijms242317051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Eimeria tenella is the most pathogenic intracellular protozoan parasite of the Eimeria species. Eimeria oocyst wall biogenesis appears to play a central role in oocyst transmission. Proteome profiling offers insights into the mechanisms governing the molecular basis of oocyst wall formation and identifies targets for blocking parasite transmission. Tandem mass tags (TMT)-labeled quantitative proteomics was used to analyze the oocyst wall and sporocysts of E. tenella. A combined total of 2865 E. tenella proteins were identified in the oocyst wall and sporocyst fractions; among these, 401 DEPs were identified, of which 211 were upregulated and 190 were downregulated. The 211 up-regulated DEPs were involved in various biological processes, including DNA replication, fatty acid metabolism and biosynthesis, glutathione metabolism, and propanoate metabolism. Among these proteins, several are of interest for their likely role in oocyst wall formation, including two tyrosine-rich gametocyte proteins (EtGAM56, EtSWP1) and two cysteine-rich proteins (EtOWP2, EtOWP6). Concurrently, 96 uncharacterized proteins may also participate in oocyst wall formation. The present study significantly expands our knowledge of the proteome of the oocyst wall of E. tenella, thereby providing a theoretical basis for further understanding of the biosynthesis and resilience of the E. tenella oocyst wall.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China; (L.J.); (Q.Z.); (S.Z.); (H.H.); (H.Z.); (Y.Y.); (J.Y.)
| |
Collapse
|
5
|
Al-Shaebi EM, Al-Quraishy S, Maodaa SN, Abdel-Gaber R. In vitro studies for antiparasitic activities of Punica granatum extract. Microsc Res Tech 2023; 86:1655-1666. [PMID: 37606089 DOI: 10.1002/jemt.24401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
Because of the drug resistance, medicinal plants are used more frequently than coccidiostats to treat and control coccidiosis. Punica granatum is a powerful antioxidant with a variety of medicinal uses. This study used an in vitro experiment to investigate how different P. granatum from Yemen (Y) and Egypt (E) sources affected oocyst sporulation and served as an anthelminthic effector. In contrast to PGE and mebendazole, PGY (200 mg/mL) has the shortest time to paralyze and death the earthworm Eisenia fetida in this investigation. In addition, the treated worm groups' cuticle thickness and shrinkage in comparison to the control group were assessed and contrasted. Eimeria papillata is used as a model protozoan parasite in anticoccidial assays. This study shows that P. granatum affects oocysts sporulation in a dose-dependent manner, with maximal percentages of 100% (PGY) and 48.60% (PGE) at 96 h for P. granatum concentrations of 200 mg/mL. Inhibition (%) was compared to various detergents, as well as positive and negative controls. According to our research, the P. granatum extract had powerful anthelmintic and anticoccidial properties, with the potency changing according to the environmental conditions of each fruit source. RESEARCH HIGHLIGHTS: Habitat of the plant is useful for production and accumulation of some secondary metabolites in plants which be effective for the therapeutic uses. Different parameters in the environmental ecosystem affecting variation in chemical compositions and biological activity of P. granatum.
Collapse
Affiliation(s)
- Esam M Al-Shaebi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh N Maodaa
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Wang F, Ye Z, Liu Y, Wang L, Su S, Hou Z, Xu J, Tao J, Liu D. Characterization of the novel glucose-methanol-choline (GMC) oxidoreductase EnOXIO1 in Eimeria necatrix. Vet Parasitol 2023; 321:110002. [PMID: 37567028 DOI: 10.1016/j.vetpar.2023.110002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Eimeria species are intracellular obligate parasites, among the most common pathogens affecting the intensive poultry industry. Oxidoreductases are members of a class of proteins with redox activity and are widely found in apicomplexan protozoans. However, there have been few reports related to Eimeria species. In this study, total RNA was extracted from the gametocytes of E. necatrix Yangzhou strain to amplify the EnOXIO1 gene using reverse-transcription polymerase chain reaction. After cloning and sequence analysis, the prokaryotic expression vector pET-28a(+)-EnOXIO1 was constructed and transformed into Escherichia coli BL21(DE3), and the recombinant protein rEnOXIO1 was expressed by induction with isopropyl ß-D-1-thiogalactopyranoside. The full length EnOXIO1 gene was 2535 bp encoding 844 amino acids, and the EnOXIO1 protein had a molecular weight of about 100 kDa and was mainly expressed in inclusion bodies. Western blot analysis indicated that the rEnOXIO1 protein had good antigenicity and cross-reactivity and was specifically recognized by a 6 ×HIS labeled monoclonal antibody, mouse anti-recombinant protein polyclonal antibody, and recovery serum from chickens infected with E. necatrix, E. acervulina, and E. tenella sporulated oocysts. The results of laser confocal immunofluorescence localization showed that the EnOXIO1 protein was mainly located on the wall-forming bodies in gametocytes and played an important role in the formation of the oocyst wall. Quantitative PCR analysis revealed that transcript levels of EnOXIO1 were highest in the gametocyte stage. Protein expression levels of EnOXIO1 were higher in the gametocyte stage than in other developmental stages according to western blot analysis. Vaccination of chickens against E. necatrix was achieved with recombinant protein rEnOXIO1, which triggered humoral immunity and antibody production, increased average body weight gain, reduced oocyst output and alleviated lesions after E. necatrix infection. The highest ACI value (172.36) was observed in chickens that received 200 μg rEnOXIO1 compared with other immunization groups.
Collapse
Affiliation(s)
- Feiyan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhuang Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
7
|
Uzelac A, Betić N, Karabasil N, Ćirković V, Djurković-Djaković O, Klun I. A Pork Industry in the Backyard: An Analysis of Toxoplasma gondii Infection in Serbia's Pigs. Microorganisms 2023; 11:1857. [PMID: 37513029 PMCID: PMC10385063 DOI: 10.3390/microorganisms11071857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
As pork is an important source for Toxoplasma gondii infection, we have analyzed T. gondii genotypes and toxoplasmosis prevalence in pigs in Serbia in the context of production statistics and economics to assess the specific risk to public health. Genotyping was performed using MnPCR-RFLP; T. gondii-specific IgG antibodies were detected using a modified agglutination test (MAT); and statistical data were extracted from official records and provided by government authorities. The results indicate that, from 2006 to 2021, the median number of annually slaughtered pigs was 5.6 million, yet only 36.1% were processed by abattoirs. The remainder were "backyard pigs" slaughtered on family farms and homesteads. Toxoplasmosis seroprevalence in market-weight (MW) pigs prior to 2006 was 15.2%, and was 15.1% in 2019. The seroprevalence in owned city cats, likely infected by livestock meat, was 33.2%. ToxoDB#1 was identified in pig tissues. The results indicate that backyard pigs are the backbone of the industry and provide as much as 60% of the pork in Serbia. The seroprevalence in pigs and city cats shows that farms are reservoirs for the parasite. Thus, innovative means of reducing T. gondii infection designed with backyard farmers in mind are needed to reduce the risk to public health.
Collapse
Affiliation(s)
- Aleksandra Uzelac
- Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia
| | - Nikola Betić
- Institute of Meat Hygiene and Technology, 11000 Belgrade, Serbia
| | - Nedjeljko Karabasil
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vladimir Ćirković
- Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia
| | - Olgica Djurković-Djaković
- Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia
| | - Ivana Klun
- Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia
| |
Collapse
|
8
|
Murshed M, Al-Tamimi J, Aljawdah HMA, Al-Quraishy S. Pharmacological Effects of Grape Leaf Extract Reduce Eimeriosis-Induced Inflammation, Oxidative Status Change, and Goblet Cell Response in the Jejunum of Mice. Pharmaceuticals (Basel) 2023; 16:928. [PMID: 37513840 PMCID: PMC10383619 DOI: 10.3390/ph16070928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Coccidiosis is a parasitic infection threatening poultry products globally. Parasite resistance to drugs is one of the barriers to Eimeria control. Natural products are one of the sources of compounds that prevent parasite infections. The current study was, therefore, conducted to evaluate the effect of Vitis vinifera leaf extract on anti-inflammatory response, oxidative status, and goblet cell response against Eimeria papillate infection in mice. Methanol was used as a solvent for phytochemicals. The mice were divided into six groups: The first group was the control. The second group was uninfected and treated with 200 mg/kg of extract to test toxicity, and the third, fourth, fifth, and sixth groups of mice received 1 × 103 sporulated E. papillate oocysts. The third group received no treatment. The fourth and fifth groups were treated daily with 100 and 200 mg/kg of V. vinifera leaf extract, respectively, while the sixth group received 25 mg/kg of toltrazuril daily via gavage. On day 5 p.i., the animals were sacrificed, and jejunum samples were prepared for analyses of histological sections and oxidative stress. The phytochemical analysis using GC-MS of the extract showed the presence of 12 biologically active compounds. The most effective dose was 200 mg/kg, which significantly decreased the number of parasitic stages in the jejunal sections of the mice. The findings demonstrate that E. papillate infection in mice results in significant histopathological changes in the jejunum, including inflammation, epithelial vacuolation, villi loss, and a decrease in goblet cell density. When infected mice received treatment, the histological injury score within the infected jejunum tissue decreased by 63%, and the goblet cell quantity dramatically increased, approaching the control values. Finally, the extract ameliorated the changes in glutathione and malondialdehyde due to E. papillate infection. The extract was proven to have anti-inflammatory properties and reduce the number of oocysts. Overall, the findings show that V. vinifera leaf extract has significant anticoccidial effects in vivo.
Collapse
Affiliation(s)
- Mutee Murshed
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jameel Al-Tamimi
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hossam M A Aljawdah
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Wang L, Liu D, Gao Y, Hou Z, Zhu Y, Wang F, Li W, Zhang A, Xu J, Hu J, Tao J. Examination of gametocyte protein 22 localization and oocyst wall formation in Eimeria necatrix using laser confocal microscopy and scanning electron microscopy. Parasit Vectors 2023; 16:124. [PMID: 37046313 PMCID: PMC10091644 DOI: 10.1186/s13071-023-05742-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Eimeria parasite infection occurs via ingestion of oocysts. The robust, bilayer oocyst wall is formed from the contents of wall-forming bodies (WFBs), WFB1 and WFB2, located exclusively in macrogametocytes. Eimeria necatrix gametocyte proteins 22 and 59 (EnGAM22 and EnGAM59) have been found to localize to WFBs and the oocyst wall. However, the exact localization of these two proteins is not clear. METHODS WFBs of E. necatrix were extracted from purified gametocytes using a cutoff filter and the extracts of purified WFBs and gametocytes were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. Then, the localization of EnGAM22 and EnGAM59 proteins was determined using an indirect immunofluorescence assay. Finally, the development of macrogametocytes and the oocyst wall of E. necatrix was analyzed using laser confocal microscopy and scanning electron microscopy. RESULTS Purified WFBs had the same shape and size as those observed in macrogametocytes. EnGAM22 protein localized to WFB1, whereas EnGAM59 protein localized to WFB2. Both EnGAM22 and EnGAM59 native proteins were detected in the extracts of WFBs and gametocytes. The outer layer of the oocyst wall was formed by the release of the contents of WFB1 at the surface of the macrogametocyte to form an anti-EnGAM22 positive layer. WFB2 then appeared to give rise to the inner layer, which was anti-EnGAM59 positive. CONCLUSIONS EnGAM22 and EnGAM59 proteins localized to WFB1 and WFB2 and were involved in the formation of the outer and inner layers of the oocyst wall of E. necatrix, respectively. The processes of macrogametogenesis and oocyst wall formation of E. necatrix are similar to other Eimeria parasites. The anti-EnGAM22 antibody could be used as a tool to track the transport and secretion of proteins in WFB1 during oocyst development.
Collapse
Affiliation(s)
- Lele Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| | - Yang Gao
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yu Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Feiyan Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Wenjing Li
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Amin Zhang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Junjie Hu
- School of Ecology and Environmental Sciences and Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
10
|
Katiyar M, Gulati R, Rajkumari N, Singh R. Development of a new multiplex PCR to detect fecal coccidian parasite. Indian J Gastroenterol 2023; 42:241-248. [PMID: 36930399 DOI: 10.1007/s12664-022-01315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/22/2022] [Indexed: 03/18/2023]
Abstract
BACKGROUND Cryptosporidium spp., Cystoisospora belli and Cyclospora cayetanensis are common intestinal coccidian parasites causing gastroenteritis. The clinical presentation caused by each parasite is indistinguishable from each other. Uniplex polymerase chain reaction (PCR) for these three groups of intestinal coccidian parasites was developed by us in our laboratory. Thereafter, we planned to develop a single-run multiplex polymerase chain reaction (mPCR) assay to detect Cryptosporidium spp., C. belli and C. cayetanensis simultaneously from a stool sample and described it here as coccidian mPCR. METHODS New primers for C. belli and C. cayetanensis were designed and uniplex PCRs were standardized. The coccidian mPCR was standardized with known positive DNA control isolates. It was validated with 58 known positive and 58 known negative stool samples, which were previously identified by uniplex PCR. RESULTS The coccidian mPCR was standardized with earlier primers designed by us for Cryptosporidium spp. and C. cayetanensis, and a newly designed primer for the internal transcribed spacer-1 (ITS-1) gene for C. belli. The coccidian mPCR was 92.1% sensitive for Cryptosporidium spp., and 100% sensitive for C. belli and C. cayetanensis each, when tested on 116 known samples. It was 100% specific for all intestinal coccidian parasites. Two representative PCR products of the newly designed ITS-1 primer for C. belli were sequenced and submitted to the GenBank, which best match with the sequences of C. belli. CONCLUSION A highly sensitive, specific, cost-effective, indigenous, single-run coccidian mPCR has been developed, which can simultaneously detect Cryptosporidium spp., C. belli and C. cayetanensis.
Collapse
Affiliation(s)
- Manish Katiyar
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605 006, India
| | - Reena Gulati
- Department of Paediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605 006, India
| | - Nonika Rajkumari
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605 006, India
| | - Rakesh Singh
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605 006, India.
| |
Collapse
|
11
|
Late Embryogenesis Abundant Proteins Contribute to the Resistance of Toxoplasma gondii Oocysts against Environmental Stresses. mBio 2023; 14:e0286822. [PMID: 36809045 PMCID: PMC10128015 DOI: 10.1128/mbio.02868-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Toxoplasma gondii oocysts, which are shed in large quantities in the feces from infected felines, are very stable in the environment, resistant to most inactivation procedures, and highly infectious. The oocyst wall provides an important physical barrier for sporozoites contained inside oocysts, protecting them from many chemical and physical stressors, including most inactivation procedures. Furthermore, sporozoites can withstand large temperature changes, even freeze-thawing, as well as desiccation, high salinity, and other environmental insults; however, the genetic basis for this environmental resistance is unknown. Here, we show that a cluster of four genes encoding Late Embryogenesis Abundant (LEA)-related proteins are required to provide Toxoplasma sporozoites resistance to environmental stresses. Toxoplasma LEA-like genes (TgLEAs) exhibit the characteristic features of intrinsically disordered proteins, explaining some of their properties. Our in vitro biochemical experiments using recombinant TgLEA proteins show that they have cryoprotective effects on the oocyst-resident lactate dehydrogenase enzyme and that induced expression in E. coli of two of them leads to better survival after cold stress. Oocysts from a strain in which the four LEA genes were knocked out en bloc were significantly more susceptible to high salinity, freezing, and desiccation compared to wild-type oocysts. We discuss the evolutionary acquisition of LEA-like genes in Toxoplasma and other oocyst-producing apicomplexan parasites of the Sarcocystidae family and discuss how this has likely contributed to the ability of sporozoites within oocysts to survive outside the host for extended periods. Collectively, our data provide a first molecular detailed view on a mechanism that contributes to the remarkable resilience of oocysts against environmental stresses. IMPORTANCE Toxoplasma gondii oocysts are highly infectious and may survive in the environment for years. Their resistance against disinfectants and irradiation has been attributed to the oocyst and sporocyst walls by acting as physical and permeability barriers. However, the genetic basis for their resistance against stressors like changes in temperature, salinity, or humidity, is unknown. We show that a cluster of four genes encoding Toxoplasma Late Embryogenesis Abundant (TgLEA)-related proteins are important for this resistance to environmental stresses. TgLEAs have features of intrinsically disordered proteins, explaining some of their properties. Recombinant TgLEA proteins show cryoprotective effects on the parasite's lactate dehydrogenase, an abundant enzyme in oocysts, and expression in E. coli of two TgLEAs has a beneficial effect on growth after cold stress. Moreover, oocysts from a strain lacking all four TgLEA genes were more susceptible to high salinity, freezing, and desiccation compared to wild-type oocysts, highlighting the importance of the four TgLEAs for oocyst resilience.
Collapse
|
12
|
The In Vitro Anticoccidial Activity of Some Herbal Extracts against Eimeria spp. Oocysts Isolated from Piglets. Pathogens 2023; 12:pathogens12020258. [PMID: 36839530 PMCID: PMC9964294 DOI: 10.3390/pathogens12020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Coccidiosis in pigs seldom results in important economic losses. However, it can influence growth rates in weaners and it is an important hygiene indicator in swine farms. Certain herbs, along with their extracts, have been used over the course of history in traditional medicine. The aim of this study was to evaluate the in vitro anticoccidial effects of Allium sativum L. (garlic), Artemisia absinthium L. (wormwood), Coriandrum sativum L. (coriander), Cucurbita pepo L. (pumpkin), Satureja hortensis L. (summer savory), and Calendula officinalis L. (marigold) against Eimeria suis and Eimeria debliecki oocysts. The stock solution of oocysts (58% E. suis + 42% E. debliecki) was incubated for three days, before adding the tested solutions. The unsporulated Eimeria spp. oocysts were then placed in a 3 mL well plate and incubated for 96 h at 27 °C, in a suspension containing serial dilutions of alcoholic plant extracts (5%, 2.5%, 1.25%, 0.625%, and 0.312%). The percentage of sporulated and destroyed oocysts was recorded every 24 h for 96 h. All extracts had a good in vitro anticoccidial effect against oocysts of Eimeria spp. compared with the control groups. Oocyst sporulation was significantly (p = 0.05) inhibited by the 5% marigold extract (3.6% sporulated oocysts). The same extract had the highest lytic effect on oocysts (65.2% destroyed oocysts). Our results prove that the most effective alcoholic plant extract is the marigold extract, followed, in order of efficiency, by the wormwood, coriander, garlic, pumpkin, and summer savory extracts. This study represents a preliminary contribution for establishing a new generation of natural disinfectants aimed at destroying Eimeria oocysts in the context of swine contamination.
Collapse
|
13
|
Murshed M, Al-Quraishy S, Alghamdi J, Aljawdah HMA, Mares MM. The Anticoccidial Effect of Alcoholic Vitis vinifera Leaf Extracts on Eimeria papillate Oocysts Isolated in Mice In Vitro and In Vivo. Vet Sci 2023; 10:vetsci10020097. [PMID: 36851401 PMCID: PMC9966314 DOI: 10.3390/vetsci10020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Eimeria spp. causes eimeriosis in the guts of numerous domestic mammals and poultry, and the employment of medication and the effects of certain aspects of synthetic anticoccidials in the treatment of eimeriosis have given rise to the appearance of resistant parasites that require the search for alternate remedies. Natural products, which are safe and have no negative impact on the environment, may be utilized in the therapy of an enormous range of parasitic infections. This research aimed to assess the effectiveness of VVLE on the oocyst sporulation of an E. papillate infection in the mouse jejunum. In addition, obtaining the ideal concentration will interrupt the parasite's life cycle and limit infection. In vitro: Collected unsporulated oocysts (1 × 103) of E. papillata were given six different concentrations (w/v) of Vitis vinifera leaf extract (10, 25, 50, 100, 150, and 200 mg/mL) and toltrazuril (25 mg/mL), three replicates per group, whereas the control group received 2.5% potassium dichromate solution. In vivo: The mice were separated into six groups; the first and second groups did not receive infection, whilst the third, fourth, fifth, and sixth groups were each given 1 × 103 sporulated oocysts of E. papillate in the experiment. In addition, an oral dosage of 100 and 200 mg/kg VVLE were given to the fourth and fifth groups, while the sixth group was given toltrazuril at 25 mg/kg. On the fifth day, unpopulated oocysts were collected from each mouse separately. The incubation period and treatments had considerable impacts on the rate of sporulation. The infrared spectroscopy of V. vinifera extract revealed many expected active classes of chemical compounds. Further, the infection of mice with E. papillata caused an oocyst output of nearly 2 × 104 oocysts/g of faeces. VVLE significantly decreased the oocyst output to nearly 88%. In addition, we detected an inhibitory effect on the sporulation (%) and harm (%) of E. papillata oocysts in a dosage-dependent modality compared with the control group. Furthermore, they destroyed the oocyst morphology in terms of the shape, size, and quantity of sporocysts. The results indicate that grape vines have powerful activity as anticoccidials.
Collapse
|
14
|
ABU HAWSAH M, AL-OTAIBI T, ALOJAYRI G, AL-SHAEBI EM, DKHIL MA, ELKHADRAGY MF, AL-QURAISHY S, ABDEL-GABER R. In vitro studies for the antiparasitic activities of Azadirachta indica extract. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Feix AS, Cruz-Bustos T, Ruttkowski B, Joachim A. Inhibition of sexual stage-specific proteins results in reduced numbers of sexual stages and oocysts of Cystoisospora suis (Apicomplexa: Coccidia) in vitro. Int J Parasitol 2022; 52:829-841. [PMID: 36270547 DOI: 10.1016/j.ijpara.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
Abstract
Parasites of the order Coccidia (phylum: Alveolata, subphylum: Apicomplexa) have sophisticated life cycles that include a switch from asexual to sexual development, characterised by distinct cell types. During the development of gametes (gamogony), substantial changes occur at the cellular and subcellular levels, leading to cell fusion of micro- and microgametes, and the development of a zygote that forms a protective outer layer for environmental survival as an oocyst, the transmissible stage. Studies on the porcine coccidian Cystoisospora suis already identified changes in transcription profiles during different time points in the parasite's development and identified proteins with potential roles in the sexual development of this parasite. Here, we focus on three proteins that are possibly involved in the sexual development of C. suis. Enkurin and hapless protein 2 (HAP2) play important roles in signal transduction and gamete fusion during the fertilisation process, and oocyst wall forming protein 1 (OWP1) is a homologue of oocyst wall forming proteins of related parasites. We evaluated their locations in the different life cycle stages of C. suis and their inhibition by specific antibodies in vitro. Immunolocalization detected enkurin in merozoites and sporulated oocysts, HAP2 in merozoites and microgamonts, and OWP2 in merozoites, macrogamonts, oocysts and sporozoites. Up to 100% inhibition of the development of sexual stages and oocyst formation with purified chicken immunoglobulin IgY sera against recombinant enkurin, HAP2, and especially OWP1, were demonstrated. We conclude that the three investigated sexual stage-specific proteins constitute targets for in vivo intervention strategies to interrupt parasite development and transmission to susceptible hosts.
Collapse
Affiliation(s)
- Anna Sophia Feix
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna A-1210, Austria.
| | - Teresa Cruz-Bustos
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna A-1210, Austria
| | - Bärbel Ruttkowski
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna A-1210, Austria
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna A-1210, Austria
| |
Collapse
|
16
|
Kasem SM, Mira NM, Mahfouz ME, Helal IB. In Vitro Study to Evaluate the Efficacy of Ultrasonicated Ethanolic Extract of Rosmarinus officinalis and its Chitosan-Based Nanoparticles Against Eimeria tenella Oocysts of Chickens. AAPS PharmSciTech 2022; 23:295. [PMID: 36329254 PMCID: PMC9633124 DOI: 10.1208/s12249-022-02445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, chitosan nanoparticles (CsNPs) were used as nanocarrier for ultrasonicated ethanolic extract of Rosmarinus officinalis (UEERO) as a new nanoformulation against Eimeria tenella. Herein, CsNPs have been synthesized by ionic gelation method at pH 3 (CsNPs3) and pH 5 (CsNPs5), followed by characterization of morphology, size, polydispersity index (PDI), surface charge, and loading efficiency of UEERO. An in vitro sporulation inhibition assay (10, 5, 2.5, 1.25, 0.62, 0.31, 0.15, 0.07, 0.04, 0.02, and 0.01 mg/ml normal saline solution) against E. tenella was conducted. Results showed that free CsNPs and UEERO-CsNPs3/5 were cubic- and spherical-shaped with positive charge and average size of ~ 150.8 nm (314.4 nm) and 151.7 nm (321.1 nm), respectively. The total loading efficiency using UV–vis spectrophotometer, was 80.05 at pH 5 and 64.39% at pH 3. The in vitro sporulation inhibition assay revealed that UEERO, CsNPs3/5, and UEERO-CsNPs3/5 showed a potential inhibitory effect on sporulation (%), distortion in wall (%), and sporocyst abnormality (%) in a dose-dependent manner. Accordingly, the concentration (10 mg/ml) showed the best efficacy after 24 h in UEERO, free CsNPs, and UEERO-CsNPs. Moreover, UEERO-CsNPs3 and UEERO-CsNPs5 had stopped the sporulation (%) after 72 h. Taken all together, UEERO-CsNPs3 and UEERO-CsNPs5 are best effective against E. tenella in a dose-dependent manner in terms of sporulation (%), distortion in wall (%), and sporocysts abnormality.
Collapse
Affiliation(s)
- Shaimaa M Kasem
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt.
| | - Nabila M Mira
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt
| | - Magdy E Mahfouz
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt
| | - Ibrahim B Helal
- Zoology Department, Faculty of Science, Tanta University, EL Gharbia, 31527, Egypt
| |
Collapse
|
17
|
In vitro cultivation methods for coccidian parasite research. Int J Parasitol 2022:S0020-7519(22)00153-9. [DOI: 10.1016/j.ijpara.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022]
|
18
|
In vitro: Anti-coccidia activity of Calotropis procera leaf extract on Eimeria papillata oocysts sporulation and sporozoite. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Abstract
Natural products play an important role as environmentally friendly agents that can be used against parasitic diseases. Many Eimeria species cause eimeriosis in poultry. The negative effects of synthetic anti-coccidiosis medications necessitate the quest for alternative treatments derived from medicinal plants in the treatment of eimeriosis. The study was conducted to evaluate the effects of Calotropis procera leaf extract (CPLE) (Madar) on the sporulation of Eimeria oocysts and sporozoites that affect mammalian jejunum and to obtain the best concentration for sporulation inhibition and infection prevention. Extracts were tested in vitro to prevent oocyst sporulation, wall deformity, and anti-sporozoite activity with Eimeria papillata. The plant-chemical compounds analysis of CPLE some active compounds were shown as well as CPLE in vitro effects at various concentrations (200, 100, 50, 25,12.5, and 6.25 mg/mL), while potassium dichromate solution 2.5% and Toltrazuril 25 mg/mL were administered as the control groups. C. procera leaf extract showed the highest inhibitory percentage on E. papillata oocyst at 200 mg/mL of extract, approximately 91%. In addition, CPLE showed the sporozoite highest viability inhibitory percentage on E. papillata at 200 mg/mL of extract, approximately 88%, and the lowest efficacy was 5% at 6.25 mg/mL. Also, we noticed the deformation and destruction of the oocyst wall based on the concentration rate. Sporulation inhibition rate is significantly affected by incubation time and treatment concentration ratio. The results showed that Madar has an effective, inhibitory potential, and protective effect on coccidian oocyst sporulation and sporozoites of E. papillata.
Collapse
|
19
|
Tucker MS, Khan A, Jenkins MC, Dubey JP, Rosenthal BM. Hastening Progress in Cyclospora Requires Studying Eimeria Surrogates. Microorganisms 2022; 10:1977. [PMID: 36296256 PMCID: PMC9608778 DOI: 10.3390/microorganisms10101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Cyclospora cayetanensis is an enigmatic human parasite that sickens thousands of people worldwide. The scarcity of research material and lack of any animal model or cell culture system slows research, denying the produce industry, epidemiologists, and regulatory agencies of tools that might aid diagnosis, risk assessment, and risk abatement. Fortunately, related species offer a strong foundation when used as surrogates to study parasites of this type. Species of Eimeria lend themselves especially well as surrogates for C. cayetanensis. Those Eimeria that infect poultry can be produced in abundance, share many biological features with Cyclospora, pose no risk to the health of researchers, and can be studied in their natural hosts. Here, we overview the actual and potential uses of such surrogates to advance understanding of C. cayetanensis biology, diagnostics, control, and genomics, focusing on opportunities to improve prevention, surveillance, risk assessment, and risk reduction. Studying Eimeria surrogates accelerates progress, closing important research gaps and refining promising tools for producers and food safety regulators to monitor and ameliorate the food safety risks imposed by this emerging, enigmatic parasite.
Collapse
Affiliation(s)
| | | | | | | | - Benjamin M. Rosenthal
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, BARC-East, Beltsville, MD 20705, USA
| |
Collapse
|
20
|
Peacock D, Croxford A, Iannella A, Kovaliski J, Lavazza A, Cooke B, Spratt D, Strive T, Taggart D, Campbell S, Robinson S, Sawyers E. Using genetic analysis to determine the distribution, prevalence and diversity of Eimeria species in pest rabbits (Oryctolagus cuniculus) in Australia. Parasitol Int 2022; 91:102642. [DOI: 10.1016/j.parint.2022.102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
|
21
|
Bangoura B, Bhuiya MAI, Kilpatrick M. Eimeria infections in domestic and wild ruminants with reference to control options in domestic ruminants. Parasitol Res 2022; 121:2207-2232. [PMID: 35680677 DOI: 10.1007/s00436-022-07564-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
Eimeria infections are commonly seen in a variety of mammalian hosts. This genus of unicellular sporozoan parasites causes significant disease (coccidiosis) in different livestock species leading to economic losses for agricultural producers. Especially the production of cattle, sheep, and goat is strongly dependent on efficient coccidiosis control. However, many other livestock hosts like, e.g., camelids, bison, rabbits, and guinea pigs may benefit from reduced parasite transmission and targeted control measures as well. Besides livestock, also wildlife and pet animals may be affected by Eimeria infections resulting in clinical or subclinical coccidiosis. Wildlife herd health is crucial to conservation efforts, and Eimeria species are a prevalent pathogen in multiple mammalian wildlife species. This review aims to highlight the epidemiology of mammalian Eimeria infections in both wild and domestic ruminants, including host specificity, transmission, survival of environmental oocysts, occurrence, and risk factors for infection. Understanding general drivers of Eimeria infection may support adequate livestock and wildlife management. Furthermore, control options for livestock with reference to management factors, drug application, and alternative approaches are discussed. The goal of Eimeria control should be to reduce pathogen transmission in different host species and to improve sustainable livestock production. Controlling Eimeria infections in livestock is important considering both their animal welfare impact and their high economic relevance.
Collapse
Affiliation(s)
- Berit Bangoura
- Department of Veterinary Sciences, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82070, USA.
| | - Md Ashraful Islam Bhuiya
- Department of Veterinary Sciences, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82070, USA
| | - Michelle Kilpatrick
- Department of Veterinary Sciences, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82070, USA
| |
Collapse
|
22
|
The transcriptome from asexual to sexual in vitro development of Cystoisospora suis (Apicomplexa: Coccidia). Sci Rep 2022; 12:5972. [PMID: 35396557 PMCID: PMC8993856 DOI: 10.1038/s41598-022-09714-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
The apicomplexan parasite Cystoisospora suis is an enteropathogen of suckling piglets with woldwide distribution. As with all coccidian parasites, its lifecycle is characterized by asexual multiplication followed by sexual development with two morphologically distinct cell types that presumably fuse to form a zygote from which the oocyst arises. However, knowledge of the sexual development of C. suis is still limited. To complement previous in vitro studies, we analysed transcriptional profiles at three different time points of development (corresponding to asexual, immature and mature sexual stages) in vitro via RNASeq. Overall, transcription of genes encoding proteins with important roles in gametes biology, oocyst wall biosynthesis, DNA replication and axonema formation as well as proteins with important roles in merozoite biology was identified. A homologue of an oocyst wall tyrosine rich protein of Toxoplasma gondii was expressed in macrogametes and oocysts of C. suis. We evaluated inhibition of sexual development in a host-free culture for C. suis by antiserum specific to this protein to evaluate whether it could be exploited as a candidate for control strategies against C. suis. Based on these data, targets can be defined for future strategies to interrupt parasite transmission during sexual development.
Collapse
|
23
|
Diao NC, Zhao B, Chen Y, Wang Q, Chen ZY, Yang Y, Sun YH, Shi JF, Li JM, Shi K, Gong QL, Du R. Prevalence of Eimeria Spp. Among Goats in China: A Systematic Review and Meta-Analysis. Front Cell Infect Microbiol 2022; 12:806085. [PMID: 35310846 PMCID: PMC8924409 DOI: 10.3389/fcimb.2022.806085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Eimeria spp. infection can cause weight loss in goats, and severe cases can lead to the death of lambs, resulting in economic losses to the goat industry. To explore the pooled prevalence of Eimeria spp. in goats in China, we obtained 70 related publications from five databases and conducted a meta-analysis. In China, the combined prevalence of Eimeria spp. in goats was 78.7% (95% confidence interval (CI): 68.15–87.67). Among them, the most serious infections occurred in Northeast China (88.0%, 95% CI: 83.54–91.86). The main Eimeria species were E. alijevi (43.7%, 95% CI: 29.53–58.45), E. arloingi (49.7%, 95% CI: 34.83–64.49), E. christenseni (41.2%, 95% CI: 27.07–56.16), and E. ninakohlyakimovae (35.9%, 95% CI: 21.02–52.31). In the sampling year subgroup, 2006 or later presented a lower prevalence (75.3%, 95%CI: 58.72–88.72). In terms of age, the point estimate for young goats (≤ 1 year) was higher (89.9%, 95% CI: 80.82–96.48). The Float (NaCl) method showed the lowest prevalence of Eimeria spp. in goats (75.9%, 95%CI: 62.00–87.46). In the season subgroup, the highest prevalence was in summer (81.5%, 95%CI: 49.62–99.18). Female goats presented a higher prevalence of Eimeria spp. infection than male goats (70.7%, 95%CI: 27.90–98.96). The prevalence was lower in the intensive feeding model (77.4%, 95%CI: 66.56–86.67) and higher in free feeding goats (79.4%, 95%CI: 66.46–89.92). In addition, we also analyzed the potential relationship between geographical factors and the prevalence of Eimeria spp. infection in goats in China. Our findings suggested that Eimeria spp. infection in goats is widespread in China. Despite the overall downward trend, this infection cannot be ignored. We recommend that breeders use anticoccidial drugs to prevent and treat this disease, while improving the feeding conditions and managemental practices to reduce the economic losses caused by Eimeria infection to the goat industry.
Collapse
Affiliation(s)
- Nai-Chao Diao
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun City, China
| | - Bo Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, China
| | - Yu Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing City, China
| | - Qi Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, China
| | - Zi-Yang Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, China
| | - Yang Yang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun City, China
| | - Yu-Han Sun
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun City, China
| | - Jun-Feng Shi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, China
| | - Jian-Ming Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun City, China
| | - Kun Shi
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun City, China
- *Correspondence: Kun Shi, ; Qing-Long Gong, ; Rui Du,
| | - Qing-Long Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, China
- *Correspondence: Kun Shi, ; Qing-Long Gong, ; Rui Du,
| | - Rui Du
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun City, China
- *Correspondence: Kun Shi, ; Qing-Long Gong, ; Rui Du,
| |
Collapse
|
24
|
Abstract
Apicomplexans are important pathogens that cause severe infections in humans and animals. The biology and pathogeneses of these parasites have shown that proteins are intrinsically modulated during developmental transitions, physiological processes and disease progression. Also, proteins are integral components of parasite structural elements and organelles. Among apicomplexan parasites, Eimeria species are an important disease aetiology for economically important animals wherein identification and characterisation of proteins have been long-winded. Nonetheless, this review seeks to give a comprehensive overview of constitutively expressed Eimeria proteins. These molecules are discussed across developmental stages, organelles and sub-cellular components vis-à-vis their biological functions. In addition, hindsight and suggestions are offered with intention to summarise the existing trend of eimerian protein characterisation and to provide a baseline for future studies.
Collapse
|
25
|
Antibacterial activity of supernatants of Lactoccocus lactis, Lactobacillus rhamnosus, Pediococcus pentosaceus and curcumin against Aeromonas hydrophila. In vitro study. Vet Res Commun 2022; 46:459-470. [PMID: 34997440 DOI: 10.1007/s11259-021-09871-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
Secretions of beneficial intestinal bacteria can inhibit the growth and biofilm formation of a wide range of microorganisms. Curcumin has shown broad spectrum antioxidant, anti-inflammatory, and antimicrobial potential. It is important to evaluate the influence of these secretions with bioactive peptides, in combination with curcumin, to limit growth and inhibit biofilm formation of pathogenic bacteria of importance in aquaculture. In the present study, the supernatants of Lactoccocus lactis NZ9000, Lactobacillus rhamnosus GG and Pediococcus pentosaceus NCDO 990, and curcumin (0,1,10,25 and 50 μM) were used to evaluate their efficacy in growth, inhibition biofilm and membrane permeability of Aeromonas hydrophila CAIM 347 (A. hydrophila). The supernatants of probiotics and curcumin 1,10 and 25 μM exerted similar effects in reducing the growth of A. hydrophila at 12 h of interaction. The supernatants of the probiotics and curcumin 25 and 50 μM exerted similar effects in reducing the biofilm of A. hydrophila. There is a significant increase in the membrane permeability of A. hydrophila in interaction with 50 μM curcumin at two hours of incubation and with the supernatants separately in the same period. Different modes of action of curcumin and bacteriocins separately were demonstrated as effective substitutes for antibiotics in containing A. hydrophila and avoiding the application of antibiotics. The techniques implemented in this study provide evidence that there is no synergy between treatments at the selected concentrations and times.
Collapse
|
26
|
Lodoen MB, Smith NC, Soldati-Favre D, Ferguson DJP, van Dooren GG. Nanos gigantium humeris insidentes: old papers informing new research into Toxoplasma gondii. Int J Parasitol 2021; 51:1193-1212. [PMID: 34736901 PMCID: PMC10538201 DOI: 10.1016/j.ijpara.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
Since Nicolle, Manceaux and Splendore first described Toxoplasma gondii as a parasite of rodents and rabbits in the early 20th century, a diverse and vigorous research community has been built around studying this fascinating intracellular parasite. In addition to its importance as a pathogen of humans, livestock and wildlife, modern researchers are attracted to T. gondii as a facile experimental system to study many aspects of evolutionary biology, cellular biology, host-microbe interactions, and host immunity. For new researchers entering the field, the extensive literature describing the biology of the parasite, and the interactions with its host, can be daunting. In this review, we examine four foundational studies that describe various aspects of T. gondii biology, presenting a 'journal club'-style analysis of each. We have chosen a paper that established the beguiling life cycle of the parasite (Hutchison et al., 1971), a paper that described key features of its cellular biology that the parasite shares with related organisms (Gustafson et al., 1954), a paper that characterised the origin of the unique compartment in which the parasite resides within host cells (Jones and Hirsch, 1972), and a paper that established a key mechanism in the host immune response to parasite infection (Pfefferkorn, 1984). These interesting and far-reaching studies set the stage for subsequent research into numerous facets of parasite biology. As well as providing new researchers with an entry point into the literature surrounding the parasite, revisiting these studies can remind us of the roots of our discipline, how far we have come, and the new directions in which we might head.
Collapse
Affiliation(s)
- Melissa B Lodoen
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
| | - Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
27
|
Lopez-Osorio S, Velasquez ZD, Conejeros I, Taubert A, Hermosilla C. Morphometric analysis of aerobic Eimeria bovis sporogony using live cell 3D holotomographic microscopy imaging. Parasitol Res 2021; 121:1179-1189. [PMID: 34633548 PMCID: PMC8986681 DOI: 10.1007/s00436-021-07338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022]
Abstract
M
onoxenous Eimeria species are widespread enteropathogenic apicomplexan protozoa with a high economic impact on livestock. In cattle, tenacious oocysts shed by E. bovis-infected animals are ubiquitously found and making infection of calves almost inevitable. To become infectious oocysts, exogenous oxygen-dependent E. bovis sporogony must occur leading to the formation of sporulated oocysts containing four sporocysts each harboring two sporozoites. Investigations on sporogony by live cell imaging techniques of ruminant Eimeria species are still absent in literature as commonly used fluorescent dyes do not penetrate resistant oocyst bi-layered wall. Sporogonial oocysts were daily analyzed by a 3D Cell Explorer Nanolive microscope to explore ongoing aerobic-dependent sporogony as close as possible to an in vivo situation. Subsequently, 3D holotomographic images of sporulating E. bovis oocysts were digitally stained based on refractive indices (RI) of oocyst bi-layered wall and sub-compartments of circumplasm using STEVE software (Nanolive), and the cellular morphometric parameters were obtained. Overall, three different E. bovis sporogony phases, each of them divided into two sub-phases, were documented: (i) sporoblast/sporont transformation into sporogonial stages, (ii) cytokinesis followed by nuclear division, and finally (iii) formation of four sporocysts with two fully developed sporozoites. Approximately 60% of sporulating E. bovis oocysts accomplished aerobic sporogony in a synchronized manner. E. bovis sporogony was delayed (i.e., 6 days) when compared to an in vivo situation where 2–3 days are required but under optimal environmental conditions. Live cell 3D holotomography analysis might facilitate the evaluation of either novel disinfectants- or anti-coccidial drug-derived effects on ruminant/avian Eimeria sporogony in vitro as discrimination of sporogony degrees based on compactness, and dry mass was here successfully achieved. Main changes were observed in the oocyst area, perimeter, compactness, extent, and granularity suggesting those parameters as an efficient tool for a fast evaluation of the sporulation degree.
Collapse
Affiliation(s)
- Sara Lopez-Osorio
- CIBAV Research Group, Faculty of Agrarian Sciences, University of Antioquia, Medellín, Colombia.,Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schuberstrasse 81, 35392, Giessen, Germany
| | - Zahady D Velasquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schuberstrasse 81, 35392, Giessen, Germany.
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schuberstrasse 81, 35392, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schuberstrasse 81, 35392, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schuberstrasse 81, 35392, Giessen, Germany
| |
Collapse
|
28
|
Dumètre A, Dubey JP, Ferguson DJP. Effect of household bleach on the structure of the sporocyst wall of Toxoplasma gondii. ACTA ACUST UNITED AC 2021; 28:68. [PMID: 34617883 PMCID: PMC8496345 DOI: 10.1051/parasite/2021066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/19/2021] [Indexed: 01/23/2023]
Abstract
Toxoplasma gondii oocysts are responsible for food- and water-borne infections in humans worldwide. They are resistant to common chemical disinfectants, including chlorinated products, presumably due to the structure and molecular nature of the oocyst wall but also the sporocyst wall. In this study, we used fluorescence microscopy and transmission electron microscopy to characterise the structure of both the oocyst and sporocyst walls, exposed to household bleach. Bleach removed the outer layer of the oocyst wall and the outer layer of the wall of sporocysts exposed due to rupture of the oocyst wall. The loss of the outer sporocyst wall layer was associated with a decrease in its autofluorescence, which can be linked to the degradation of dityrosine cross-link proteins, and loss of Maclura pomifera lectin-reactive glycoproteins. This study suggests that the inner layers of the oocyst and sporocyst walls are the main structures responsible for the resistance of the parasite to household bleach.
Collapse
Affiliation(s)
- Aurélien Dumètre
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France - IHU-Méditerranée Infection, 13005 Marseille, France
| | - Jitender P Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Building 1001, Beltsville, 20705-2350 MD, United States
| | - David J P Ferguson
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, OX3 0FL Oxford, United Kingdom - Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, United Kingdom
| |
Collapse
|
29
|
Daneshmand A, Young P, Campbell B, Kheravii SK, Sharma NK, Afshari R, Dias DA, Flavel M, Kitchen B, Wu SB. In vitro inhibitory activities of sugarcane extract on avian Eimeria sporozoites. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 17:1-4. [PMID: 34303187 PMCID: PMC8326975 DOI: 10.1016/j.ijpddr.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/15/2022]
Abstract
The current in vitro study aimed to investigate the effects of a processed sugarcane extract on the viability of avian Eimeria sporozoites. Treatments were applied to hatched sporozoites: 1) without additives (no-treatment control); 2) with ethanol; 3) with salinomycin; 4) with Polygain™. All treatments were incubated in RPMI media containing live sporozoites at 37 °C for 14 h and then the number of viable sporozoites were counted. Compared to the no-treatment control, Polygain™ decreased (P < 0.001) the counts of E. maxima, E. acervulina, E. bruneti, and E. mitis sporozoites to a level similar to salinomycin (P > 0.05). In conclusion, Polygain™ could be a potential candidate as an anticoccidial agent.
Collapse
Affiliation(s)
- Ali Daneshmand
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | | | - Bronwyn Campbell
- Department of Biosciences and Food Technology, RMIT University, Bundoora, VIC, 3083, Australia
| | - Sarbast K Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Nishchal K Sharma
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Roya Afshari
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Daniel A Dias
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Matthew Flavel
- The Product Makers (TPM) Pty. Ltd., Keysborough, VIC, 3173, Australia; School of Life Sciences, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Barry Kitchen
- The Product Makers (TPM) Pty. Ltd., Keysborough, VIC, 3173, Australia; School of Life Sciences, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.
| |
Collapse
|
30
|
Progression of asexual to sexual stages of Cystoisospora suis in a host cell-free environment as a model for Coccidia. Parasitology 2021; 148:1475-1481. [PMID: 34193323 PMCID: PMC8426156 DOI: 10.1017/s0031182021001074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Collapse
|
31
|
Peng H, Tang L, Wu C, Li J, Tao L, Li C, Chen Z, Xie Y. Recombinant Expression And Indirect ELISA For COWP And HSP70 Proteins From Cryptosporidium andersoni. Acta Trop 2021; 214:105767. [PMID: 33245908 DOI: 10.1016/j.actatropica.2020.105767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/13/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Cryptosporidium spp. infect cattle at a high rates, and reduce milk production. Cryptosporidiosis has caused economic losses for the dairy industry. Studies in Western countries have shown that Cryptosporidium can also infect humans. Therefore, the development of methods for the early detection of Cryptosporidium is an important public health objective. Total RNA isolated from C. andersoni was used as template for generating cDNA encoding the COWP and HSP70 proteins. The recombinant plasmid, pET-32a(+)-COWP-HSP70, was constructed by double digestion and subcloning. The expression of the three recombinant proteins was induced in Escherichia coli BL21 using isopropyl-β-D-thiogalactopyranoside. The antigenicity of the recombinant proteins was examined using western blotting and indirect ELISA. The identities of the COWP fusion protein (CFP), HSP70 fusion protein (HFP), and COWP-HSP70 fusion protein (CHFP) were confirmed by BLAST searches of known sequences in GenBank respectively. The ELISA and western blot analyses indicated that all three of the proteins were highly immunogenic and antigenic. An indirect ELISA method was developed using the three recombinant proteins as coating antigens for the analysis of 40 clinical samples. The results showed that CHFP was the best candidate antigen for clinical testing, with a detection rate of 100%, compared with general parasitological screening. Above of all, the recombinant CHFP protein represents the best candidate antigen among three ones for detecting anti-Cryptosporidium antibodies in clinical samples. The development of the indirect ELISA lays the foundation for further research in immunodiagnosis and disease prevention of cryptosporidiosis.
Collapse
|
32
|
S Al-Malki E. Toxoplasmosis: stages of the protozoan life cycle and risk assessment in humans and animals for an enhanced awareness and an improved socio-economic status. Saudi J Biol Sci 2021; 28:962-969. [PMID: 33424388 PMCID: PMC7783816 DOI: 10.1016/j.sjbs.2020.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Toxoplasma gondii is a protozoan parasite distributed globally. It causes toxoplasmosis, which is prevalent in animals, birds, and soil. T. gondii infection leads to severe pathological impacts in immunodeficient patients and congenital cases. This review indicated that high prevalence groups had close contact with cats, dogs, consumed uncooked raw fruits, meat, or vegetables and the socio-economic level noted to be one of the crucial factors that influence toxoplasmosis. Toxoplasmosis infection is high in low-income countries and low in developed European countries. Immunosuppressed groups and pregnant women were the highly vulnerable groups. The epidemiology of the parasite enumerated various routes of infections; but consumption of T. gondii contaminated food was the major route of disease transmission. However, the role of meat and meat-producing animals on disease transmission remained unclear. Unfiltered water acts as the primary reservoir of toxoplasmosis transmission. The diagnostic methods for determining T. gondii infection are not the gold standard, and different approaches have been prescribed to analyze the infected populations based on the organs affected. Although toxoplasmosis was reported before 70 years, no appropriate solution noted to be recommended to treat this disease. Based on the present analyses, it concluded that the eradication of toxoplasmosis would be challenging from the world until people's socio-economic level is improved. The main aim of the present study was to analyze and update the disease transmission, epidemiology, and possible clinical interventions of toxoplasmosis.
Collapse
Affiliation(s)
- Esam S Al-Malki
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| |
Collapse
|
33
|
Kareem SM, Kawan MH. Traditional Diagnosis of Eimeria spp. in Fallow Deer at Middle Parts of Iraq. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.30539/ijvm.v44i(e0).1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Eimeria is an apicomplex protozoon which affects many species of birds, domestic and wild animals including deer. This is the first study in Iraq that was designed for diagnosis Eimeria spp. in deer using traditional methods. Eighty fecal samples of Fallow deer (Damadama) were collected in different provinces in the middle part of Iraq during December 2018 to the end of September 2019. Samples were examined by direct smear and flotation with Sheather's solution. The total infection rate with Eimeria spp. was 70% (56/80), in which higher infection rate was observed in female deer (78%, 39/50). The results also showed that Fawn at age<3-11 months recorded higher rate of infection (86.3%, 19/22). Eimeria infection was more prevalent in Karbala and Baghdad provinces where recorded (73.3% and 72%) respectively, sharp increase of infection recorded during March (87.5%, 7/8). In addition, four species of Eimeria (E. crandalis, E. intricate, E. parva, and E. sordida) were detected in Iraqi deer according to morphological characterization of oocysts. This study highlighted the distribution of some Eimeria species in deer and revealed the effect of some epidemiological factors on prevalence in different middle Iraq provinces.
Collapse
|
34
|
Martorelli Di Genova B, Knoll LJ. Comparisons of the Sexual Cycles for the Coccidian Parasites Eimeria and Toxoplasma. Front Cell Infect Microbiol 2020; 10:604897. [PMID: 33381466 PMCID: PMC7768002 DOI: 10.3389/fcimb.2020.604897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii and Eimeria spp. are widely prevalent Coccidian parasites that undergo sexual reproduction during their life cycle. T. gondii can infect any warm-blooded animal in its asexual cycle; however, its sexual cycle is restricted to felines. Eimeria spp. are usually restricted to one host species, and their whole life cycle is completed within this same host. The literature reviewed in this article comprises the recent findings regarding the unique biology of the sexual development of T. gondii and Eimeria spp. The molecular basis of sex in these pathogens has been significantly unraveled by new findings in parasite differentiation along with transcriptional analysis of T. gondii and Eimeria spp. pre-sexual and sexual stages. Focusing on the metabolic networks, analysis of these transcriptome datasets shows enrichment for several different metabolic pathways. Transcripts for glycolysis enzymes are consistently more abundant in T. gondii cat infection stages than the asexual tachyzoite stage and Eimeria spp. merozoite and gamete stages compared to sporozoites. Recent breakthroughs in host-pathogen interaction and host restriction have significantly expanded the understating of the unique biology of these pathogens. This review aims to critically explore advances in the sexual cycle of Coccidia parasites with the ultimate goal of comparing and analyzing the sexual cycle of Eimeria spp. and T. gondii.
Collapse
Affiliation(s)
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
35
|
Thagfan FA, Al-Megrin WA, Al-Quraishy S, Dkhil MAM. Mulberry extract as an ecofriendly anticoccidial agent: in vitro and in vivo application. ACTA ACUST UNITED AC 2020; 29:e009820. [PMID: 33111843 DOI: 10.1590/s1984-29612020072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/08/2020] [Indexed: 11/22/2022]
Abstract
Natural products are ecofriendly agents that can be used against parasitic diseases. Eimeria species cause eimeriosis in many birds and mammals and resistance to available medications used in the treatment of eimeriosis is emerging. We investigated the in vitro and in vivo activity of Morus nigra leaf extracts (MNLE) against sporulation of oocysts and infection of mice with Eimeria papillata. Phytochemical analysis of MNLE showed the presence of seven compounds and the in vitro effects of MNLE, amprolium, DettolTM, formalin, ethanol, and phenol were studied after incubation with oocysts before sporulation. Furthermore, infection of mice with E. papillata induced an oocyst output of approximately 12 × 105 oocysts/g of feces. MNLE significantly decreased oocyst output to approximately 86% and the total number of parasitic stages in the jejunum by approximately 87%. In addition, the reduction in the number of goblet cells in the jejuna of mice was increased after treatment. These findings suggest that mulberry exhibited powerful anticoccidial activity.
Collapse
Affiliation(s)
- Felwa Abdullah Thagfan
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wafa Abdullah Al-Megrin
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Abdel Monem Dkhil
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
36
|
Polyphyletic origin, intracellular invasion, and meiotic genes in the putatively asexual agamococcidians (Apicomplexa incertae sedis). Sci Rep 2020; 10:15847. [PMID: 32985520 PMCID: PMC7522995 DOI: 10.1038/s41598-020-72287-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
Agamococcidians are enigmatic and poorly studied parasites of marine invertebrates with unexplored diversity and unclear relationships to other sporozoans such as the human pathogens Plasmodium and Toxoplasma. It is believed that agamococcidians are not capable of sexual reproduction, which is essential for life cycle completion in all well studied parasitic apicomplexans. Here, we describe three new species of agamococcidians belonging to the genus Rhytidocystis. We examined their cell morphology and ultrastructure, resolved their phylogenetic position by using near-complete rRNA operon sequences, and searched for genes associated with meiosis and oocyst wall formation in two rhytidocystid transcriptomes. Phylogenetic analyses consistently recovered rhytidocystids as basal coccidiomorphs and away from the corallicolids, demonstrating that the order Agamococcidiorida Levine, 1979 is polyphyletic. Light and transmission electron microscopy revealed that the development of rhytidocystids begins inside the gut epithelial cells, a characteristic which links them specifically with other coccidiomorphs to the exclusion of gregarines and suggests that intracellular invasion evolved early in the coccidiomorphs. We propose a new superorder Eococcidia for early coccidiomorphs. Transcriptomic analysis demonstrated that both the meiotic machinery and oocyst wall proteins are preserved in rhytidocystids. The conservation of meiotic genes and ultrastructural similarity of rhytidocystid trophozoites to macrogamonts of true coccidians point to an undescribed, cryptic sexual process in the group.
Collapse
|
37
|
Liu D, Wang F, Cao L, Wang L, Su S, Hou Z, Xu J, Hu J, Tao J. Identification and characterization of a cDNA encoding a gametocyte-specific protein of the avian coccidial parasite Eimeria necatrix. Mol Biochem Parasitol 2020; 240:111318. [PMID: 32956771 DOI: 10.1016/j.molbiopara.2020.111318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 11/20/2022]
Abstract
Gametocyte proteins of Eimeria spp. are essential components of the oocyst wall, and some of these proteins have been analysed to identify targets of transmission-blocking vaccines against avian coccidiosis. In the present study, a cDNA from E. necatrix gametocytes was cloned and sequenced. The cDNA is 1473 bp in length and encodes a 490-amino-acid protein containing a tyrosine-serine (Tyr/Ser)-rich domain and a proline-methionine (Pro/Met)-rich domain. A quantitative real-time PCR (qPCR) analysis showed that the cDNA is expressed only during gametogenesis. A fragment containing the Tyr/Ser-rich domain (rEnGAM59) was expressed in Escherichia coli BL21 (DE3) cells. Immunoblotting showed that rEnGAM59 was recognized by the serum of convalescent chickens after infection with E. necatrix, and that an anti-rEnGAM59 antibody recognized a ∼59 kDa protein and two other proteins (∼35 kDa and ∼33 kDa) in gametocyte extracts. An immunofluorescence assay showed that the anti-rEnGAM59 antibody recognized wall-forming bodies in the macrogametocytes and oocyst walls. An in vivo vaccination and challenge trial was conducted to test the potential utility of rEnGAM59 as a vaccine. Immunized chickens performed better than the unimmunized and challenged (positive control) chickens. The intestinal lesion scores were significantly lower in the immunized groups than in the positive control group (P < 0.05). In contrast, the body weight gains (BWG) were significantly higher in the immunized groups than in the positive control group (P < 0.05). There were no significant differences in the lesion scores and BWG between the groups immunized with rEnGAM59 protein or with live oocysts (P> 0.05). Chickens immunized with rEnGAM59 protein had a significantly higher antigen-specific serum IgY response (P < 0.05). rEnGAM59 protein can be used as candidate antigen to develop a recombinant coccidiosis vaccine.
Collapse
Affiliation(s)
- Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Feiyan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Liqin Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Junjie Hu
- Biology Department, Yunnan University, Kunming, 650500, China.
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
38
|
Wiedmer S, Kurth T, Buder U, Bleischwitz S, Entzeroth R, Kurth M. Correlative light and electron microscopy of wall formation in Eimeria nieschulzi. Parasitol Res 2020; 119:2667-2678. [PMID: 32627078 PMCID: PMC7366593 DOI: 10.1007/s00436-020-06765-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/07/2020] [Indexed: 11/29/2022]
Abstract
AbstractCoccidian parasites possess complex life cycles involving asexual proliferation followed by sexual development leading to the production of oocysts. Coccidian oocysts are persistent stages which are secreted by the feces and transmitted from host to host guaranteeing life cycle progression and disease transmission. The robust bilayered oocyst wall is formed from the contents of two organelles, the wall-forming bodies type I and II (WFBI, WFBII), located exclusively in the macrogametocyte. Eimeria nieschulzi has been used as a model parasite to study and follow gametocyte and oocyst development. In this study, the gametocyte and oocyst wall formation of E. nieschulzi was analyzed by electron microscopy and immuno-histology. A monoclonal antibody raised against the macrogametocytes of E. nieschulzi identified a tyrosine-rich glycoprotein (EnGAM82) located in WFBII. Correlative light and electron microscopy was used to examine the vesicle-specific localization and spatial distribution of GAM82-proteins during macrogametocyte maturation by this monoclonal antibody. In early and mid-stages, the GAM82-protein is ubiquitously distributed in WFBII. Few hours later, the protein is arranged in subvesicular structures. It was possible to show that the substructure of WFBII and the spatial distribution of GAM82-proteins probably represent pre-synthesized cross-linked materials prior to the inner oocyst wall formation. Dityrosine-cross-linked gametocyte proteins can also be confirmed and visualized by fluorescence microscopy (UV light, autofluorescence of WFBII).
Collapse
Affiliation(s)
- Stefanie Wiedmer
- Faculty of Biology, Institute of Zoology, Technische Universität Dresden, Zellescher Weg 20 B, 01217, Dresden, Germany.
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Ulrike Buder
- Faculty of Biology, Institute of Zoology, Technische Universität Dresden, Zellescher Weg 20 B, 01217, Dresden, Germany
| | - Sinja Bleischwitz
- Faculty of Biology, Institute of Zoology, Technische Universität Dresden, Zellescher Weg 20 B, 01217, Dresden, Germany
| | - Rolf Entzeroth
- Faculty of Biology, Institute of Zoology, Technische Universität Dresden, Zellescher Weg 20 B, 01217, Dresden, Germany
| | - Michael Kurth
- Faculty of Biology, Institute of Zoology, Technische Universität Dresden, Zellescher Weg 20 B, 01217, Dresden, Germany.
| |
Collapse
|
39
|
Feix AS, Cruz-Bustos T, Ruttkowski B, Joachim A. Characterization of Cystoisospora suis sexual stages in vitro. Parasit Vectors 2020; 13:143. [PMID: 32188507 PMCID: PMC7079422 DOI: 10.1186/s13071-020-04014-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/10/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The porcine coccidium Cystoisospora suis is characterized by a complex life-cycle during which asexual multiplication is followed by sexual development with two morphologically distinct cell types, the micro- and macrogametes. Genes related to the sexual stages and cell cycle progression were previously identified in related Apicomplexa. Dynein light chain type 1 and male gamete fusion factor HAP2 are restricted to microgametes. Tyrosine-rich proteins and oocyst wall proteins are a part of the oocyst wall. The Rad51/Dmc1-like protein and Nima-related protein kinases are associated with the cell cycle and fertilization process. Here, the sexual stages of C. suis were characterized in vitro morphologically and for temporal expression changes of the mentioned genes to gain insight into this poorly known phase of coccidian development. METHODS Sexual stages of C. suis developing in vitro in porcine intestinal epithelial cells were examined by light and electron microscopy. The transcriptional levels of genes related to merozoite multiplication and sexual development were evaluated by quantitative real-time PCR at different time points of cultivation. Transcription levels were compared for parasites in culture supernatants at 6-9 days of cultivation (doc) and intracellular parasites at 6-15 doc. RESULTS Sexual stage of C. suis was detected during 8-11 doc in vitro. Microgamonts (16.8 ± 0.9 µm) and macrogamonts (16.6 ± 1.1 µm) are very similar in shape and size. Microgametes had a round body (3.5 ± 0.5 µm) and two flagella (11.2 ± 0.5 µm). Macrogametes were spherical with a diameter of 12.1 ± 0.5 µm. Merozoite gene transcription peaked on 10 doc and then declined. Genes related to the sexual stages and cell cycle showed an upregulation with a peak on 13 doc, after which they declined. CONCLUSIONS The present study linked gene expression changes to the detailed morphological description of C. suis sexual development in vitro, including fertilization, meiosis and oocyst formation in this unique model for coccidian parasites. Following this process at the cellular and molecular level will elucidate details on potential bottlenecks of C. suis development (applicable for coccidian parasites in general) which could be exploited as a novel target for control.
Collapse
Affiliation(s)
- Anna Sophia Feix
- Institute for Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210 Austria
| | - Teresa Cruz-Bustos
- Institute for Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210 Austria
| | - Bärbel Ruttkowski
- Institute for Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210 Austria
| | - Anja Joachim
- Institute for Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210 Austria
| |
Collapse
|
40
|
Alcala-Canto Y, Figueroa-Castillo JA, Ibarra-Velarde F, Vera-Montenegro Y, Cervantes-Valencia ME, Alberti-Navarro A. First database of the spatial distribution of Eimeria species of cattle, sheep and goats in Mexico. Parasitol Res 2020; 119:1057-1074. [PMID: 31901110 DOI: 10.1007/s00436-019-06548-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Ruminant coccidiosis is a gastrointestinal disease caused by parasites of the genus Eimeria. Environmental and climatic factors are relevant for the development, survival, and transmission of coccidiosis because Eimeria oocysts are able to survive in the environment for several weeks or months in favorable conditions of moderate heat and moisture. The aim of the present study was to georeference, for the first time, the locations of Eimeria occurrences in Mexico from 1961 to 2018. A dataset was created for 3414 reports of Eimeria occurrences in cattle, sheep, and goats in Mexico. Twelve species of Eimeria that infect cattle were recorded, 11 Eimeria species of sheep are present in Mexico, and eight species of goats are geographically distributed in the country. In the current findings, it has been observed that Eimeria colonizes mainly the temperate semihumid, temperate humid, warm humid, and warm semihumid areas during spring and summer in animals younger than 1 year of age. Macroenvironmental variables like temperature and rainfall influence the prevalence of Eimeria in cattle, sheep, and goats, and for some species, the rearing system, facility type, farm size, and altitude affect the occurrence of this parasite. Results may support future studies aimed at reducing the disease prevalence of the parasite in endemic regions of Mexico. The use of recorded cases and climate variables yields a more comprehensive perspective of the epidemiology of eimeriosis, which would be difficult to infer from laboratory studies alone.
Collapse
Affiliation(s)
- Yazmin Alcala-Canto
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, UNAM, 04510, Mexico City, Mexico.
| | | | - Froylan Ibarra-Velarde
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, UNAM, 04510, Mexico City, Mexico
| | - Yolanda Vera-Montenegro
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, UNAM, 04510, Mexico City, Mexico
| | | | - Aldo Alberti-Navarro
- Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, UNAM, 04510, Mexico City, Mexico
| |
Collapse
|
41
|
|
42
|
Freppel W, Ferguson DJ, Shapiro K, Dubey JP, Puech PH, Dumètre A. Structure, composition, and roles of the Toxoplasma gondii oocyst and sporocyst walls. Cell Surf 2019; 5:100016. [PMID: 32743133 PMCID: PMC7389338 DOI: 10.1016/j.tcsw.2018.100016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/03/2018] [Accepted: 12/14/2018] [Indexed: 01/01/2023] Open
Abstract
Toxoplasma gondii is a coccidian parasite with the cat as its definitive host but any warm-blooded animal, including humans, may act as intermediate hosts. It has a worldwide distribution where it may cause acute and chronic toxoplasmosis. Infection can result from ingestion either of tissue cysts in infected meat of intermediate hosts or oocysts found in cat faeces via contaminated water or food. In this review, we highlight how the oocyst and sporocyst walls sustain the persistence and transmission of infective T. gondii parasites from terrestrial and aquatic environments to the host. We further discuss why targeting the oocyst wall structure and molecules may reduce the burden of foodborne and waterborne T. gondii infections.
Collapse
|
43
|
Abstract
Apicomplexans, including species of Eimeria, pose a real threat to the health and wellbeing of animals and humans. Eimeria parasites do not infect humans but cause an important economic impact on livestock, in particular on the poultry industry. Despite its high prevalence and financial costs, little is known about the cell biology of these 'cosmopolitan' parasites found all over the world. In this review, we discuss different aspects of the life cycle and stages of Eimeria species, focusing on cellular structures and organelles typical of the coccidian family as well as genus-specific features, complementing some 'unknowns' with what is described in the closely related coccidian Toxoplasma gondii.
Collapse
|
44
|
A Stem-Cell-Derived Platform Enables Complete Cryptosporidium Development In Vitro and Genetic Tractability. Cell Host Microbe 2019; 26:123-134.e8. [PMID: 31231046 PMCID: PMC6617391 DOI: 10.1016/j.chom.2019.05.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 01/17/2023]
Abstract
Despite being a frequent cause of severe diarrheal disease in infants and an opportunistic infection in immunocompromised patients, Cryptosporidium research has lagged due to a lack of facile experimental methods. Here, we describe a platform for complete life cycle development and long-term growth of C. parvum in vitro using “air-liquid interface” (ALI) cultures derived from intestinal epithelial stem cells. Transcriptomic profiling revealed that differentiating epithelial cells grown under ALI conditions undergo profound changes in metabolism and development that enable completion of the parasite life cycle in vitro. ALI cultures support parasite expansion > 100-fold and generate viable oocysts that are transmissible in vitro and to mice, causing infection and animal death. Transgenic parasite lines created using CRISPR/Cas9 were used to complete a genetic cross in vitro, demonstrating Mendelian segregation of chromosomes during meiosis. ALI culture provides an accessible model that will enable innovative studies into Cryptosporidium biology and host interactions. Air-liquid interface (ALI) cultivation of Cryptosporidium supports robust parasite growth Both asexual and sexual phases of the parasite complete development in ALI cultures ALI culture supports the production of de novo oocysts that can trigger an infection in mice In vitro crossing in ALI cultures opens up forward genetics for Cryptosporidium
Collapse
|
45
|
Müller A, Wiedmer S, Kurth M. Risk Evaluation of Passive Transmission of Animal Parasites by Feeding of Black Soldier Fly ( Hermetia illucens) Larvae and Prepupae. J Food Prot 2019; 82:948-954. [PMID: 31099595 DOI: 10.4315/0362-028x.jfp-18-484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HIGHLIGHTS Black soldier fly larval intestine extracts do not affect coccidian oocysts or nematode eggs. Studied parasites passed through black soldier fly larvae or attached to the larval surface. Black soldier fly larvae as animal feed may pose a risk of parasite transmission. Larval washing is not sufficient for removing parasites; further hygiene steps are needed.
Collapse
Affiliation(s)
- Ariane Müller
- 1 Zoologie und Entwicklungsbiologie (ORCID: https://orcid.org/0000-0003-4330-826X ), Technische Universität Dresden, Institut für Zoologie, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Stefanie Wiedmer
- 2 Spezielle Zoologie und Parasitologie, Technische Universität Dresden, Institut für Zoologie, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Michael Kurth
- 2 Spezielle Zoologie und Parasitologie, Technische Universität Dresden, Institut für Zoologie, Zellescher Weg 20b, 01217 Dresden, Germany
| |
Collapse
|
46
|
Shapiro K, Bahia-Oliveira L, Dixon B, Dumètre A, de Wit LA, VanWormer E, Villena I. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterborne Parasitol 2019; 15:e00049. [PMID: 32095620 PMCID: PMC7033973 DOI: 10.1016/j.fawpar.2019.e00049] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii is a zoonotic protozoan parasite that can cause morbidity and mortality in humans, domestic animals, and terrestrial and aquatic wildlife. The environmentally robust oocyst stage of T. gondii is fundamentally critical to the parasite's success, both in terms of its worldwide distribution as well as the extensive range of infected intermediate hosts. Despite the limited definitive host species (domestic and wild felids), infections have been reported on every continent, and in terrestrial as well as aquatic environments. The remarkable resistance of the oocyst wall enables dissemination of T. gondii through watersheds and ecosystems, and long-term persistence in diverse foods such as shellfish and fresh produce. Here, we review the key attributes of oocyst biophysical properties that confer their ability to disseminate and survive in the environment, as well as the epidemiological dynamics of oocyst sources including domestic and wild felids. This manuscript further provides a comprehensive review of the pathways by which T. gondii oocysts can infect animals and people through the environment, including in contaminated foods, water or soil. We conclude by identifying critical control points for reducing risk of exposure to oocysts as well as opportunities for future synergies and new directions for research aimed at reducing the burden of oocyst-borne toxoplasmosis in humans, domestic animals, and wildlife.
Collapse
Affiliation(s)
- Karen Shapiro
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, One Shields Ave, 4206 VM3A, University of California, Davis, CA 95616-5270, USA
| | - Lillian Bahia-Oliveira
- Laboratory of Immunoparasitology, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Brent Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, A.L. 2204E, Ottawa, ON K1A 0K9, Canada
| | - Aurélien Dumètre
- Aix Marseille Univ, IRD 257, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Luz A. de Wit
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95050, USA
| | - Elizabeth VanWormer
- School of Veterinary Medicine and Biomedical Sciences, School of Natural Resources, University of Nebraska-Lincoln, VBS 111, Lincoln, NE 68583, USA
| | - Isabelle Villena
- EA 7510, UFR Medicine, University Reims Champagne-Ardenne, National Reference Center on Toxoplasmosis, Hospital Maison Blanche, Reims, France
| |
Collapse
|
47
|
Fatoba AJ, Adeleke MA. Diagnosis and control of chicken coccidiosis: a recent update. J Parasit Dis 2018; 42:483-493. [PMID: 30538344 PMCID: PMC6261147 DOI: 10.1007/s12639-018-1048-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 10/24/2018] [Indexed: 11/25/2022] Open
Abstract
Coccidiosis is a deadly disease that hampers chicken's productivity and welfare. Thus, the disease is a major menace to the global poultry industry. Coccidiosis which is caused by the apicomplexan parasite of the genus Eimeria has seven known species which affect the different parts of the intestinal tract of chickens. The disease which occurs by ingestion of sporulated oocyst has been associated with poor poultry management system. Mixed infection among the species of this parasite contributes to both pathogenicity and misdiagnosis of the disease. A progress in identification and diagnosis approach which cuts across pathological, morphological and molecular has been reported for this parasite. Control measures which include anticoccidial drugs, vaccines and natural products have dominated literature for this disease. However, the emergence of genetic and antigenic diversity with implication on resistance to anticoccidials among different strains of Eimeria parasite has generated concerns on the effectiveness of the current anticoccidial vaccines. A new look on the control strategy therefore becomes imperative. This study reviews the current trends on the identification and control of chicken coccidiosis with focus on (1) Avian coccidiosis (2) Epidemiology of chicken coccidiosis (3) Eimeria parasite and distribution in poultry (4) Diagnosis of Eimeria parasite (5) Control measures of coccidiosis (6) Threats posed by genetic and antigenic diversity of Eimeria parasite on coccidiosis control. Genomic study on diversity of Eimeria parasite becomes imperative for effective vaccine design against coccidiosis.
Collapse
Affiliation(s)
- Abiodun Joseph Fatoba
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban, 4000 South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban, 4000 South Africa
| |
Collapse
|
48
|
Hamilton KA, Waso M, Reyneke B, Saeidi N, Levine A, Lalancette C, Besner MC, Khan W, Ahmed W. Cryptosporidium and Giardia in Wastewater and Surface Water Environments. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1006-1023. [PMID: 30272766 DOI: 10.2134/jeq2018.04.0132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
and spp. are significant contributors to the global waterborne disease burden. Waterways used as sources of drinking water and for recreational activity can become contaminated through the introduction of fecal materials derived from humans and animals. Multiple studies have reported the occurence or concentrations of these pathogens in the environment. However, this information has not been comprehensively reviewed. Quantitative microbial risk assessment (QMRA) for and can be beneficial, but it often relies on the concentrations in environmental sources reported from the literature. A thorough literature review was conducted to develop an inventory of reported and concentrations in wastewater and surface water available in the literature. This information can be used to develop QMRA inputs. and (oo)cyst concentrations in untreated wastewater were up to 60,000 oocysts L and 100,000 cysts L, respectively. The maximum reported concentrations for and in surface water were 8400 oocysts L and 1000 cysts L, respectively. A summary of the factors for interpretation of concentration information including common quantification methods, survival and persistence, biofilm interactions, genotyping, and treatment removal is provided in this review. This information can help in identifying assumptions implicit in various QMRA parameters, thus providing the context and rationale to guide model formulation and application. Additionally, it can provide valuable information for water quality practitioners striving to meet the recreational water quality or treatment criteria. The goal is for the information provided in the current review to aid in developing source water protection and monitoring strategies that will minimize public health risks.
Collapse
|
49
|
Su S, Hou Z, Liu D, Jia C, Wang L, Xu J, Tao J. Comparative transcriptome analysis of Eimeria necatrix third-generation merozoites and gametocytes reveals genes involved in sexual differentiation and gametocyte development. Vet Parasitol 2018; 252:35-46. [PMID: 29559148 DOI: 10.1016/j.vetpar.2018.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 11/17/2022]
Abstract
Eimeria necatrix is one of the most pathogenic parasites causing high mortality in chicken older than 8 weeks. Eimeria spp. possess a coccidian lifecycle including both sexual and asexual stages. Sexual differentiation and development occupies a central place in the life cycle of the Eimeria parasite. However, our knowledge of the sexual differentiation and gametocyte development of Eimeria is very limited. Here using RNA sequencing, we conducted a comparative transcriptome analysis between third-generation merozoites (MZ-3) and gametocytes (GAM) of E. necatrix to identify genes with functions related to sexual differentiation and gametocyte development. Approximately 4267 genes were differentially expressed between MZ-3 and GAM. Compared with MZ-3, 2789 genes were upregulated and 1478 genes were downregulated in GAM. Approximately 329 genes in MZ-3 and 1289 genes in GAM were further analyzed in the evaluation of stage-specific genes. Gene Ontology (GO) classification and KEGG analysis revealed that 953 upregulated gametocyte genes were annotated with 170 GO assignments, and 405 upregulated genes were associated with 231 signaling pathways. We also predicted a further 83 upregulated gametocyte genes, of which 53 were involved in the biosynthesis of the oocyst wall, and 30 were involved in microgametocyte development. This information offers insights into the mechanisms governing the sexual development of E. necatrix and may potentially allow the identification of targets for blocking parasite transmission.
Collapse
Affiliation(s)
- Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Chuanli Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
50
|
Wiedmer S, Buder U, Bleischwitz S, Kurth M. Distribution and Processing of Eimeria nieschulzi
OWP13, a New Protein of the COWP Family. J Eukaryot Microbiol 2018; 65:518-530. [DOI: 10.1111/jeu.12498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Stefanie Wiedmer
- Faculty of Biology; Institute of Zoology; Technische Universität Dresden; Zellescher Weg 20 B Dresden 01217 Germany
| | - Ulrike Buder
- Faculty of Biology; Institute of Zoology; Technische Universität Dresden; Zellescher Weg 20 B Dresden 01217 Germany
| | - Sinja Bleischwitz
- Faculty of Biology; Institute of Zoology; Technische Universität Dresden; Zellescher Weg 20 B Dresden 01217 Germany
| | - Michael Kurth
- Faculty of Biology; Institute of Zoology; Technische Universität Dresden; Zellescher Weg 20 B Dresden 01217 Germany
| |
Collapse
|