1
|
Martins YC, Rosa-Gonçalves P, Daniel-Ribeiro CT. Theories of immune recognition: Is anybody right? Immunology 2024; 173:274-285. [PMID: 39034280 DOI: 10.1111/imm.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
The clonal selection theory (CST) is the centrepiece of the current paradigm used to explain immune recognition and memory. Throughout the past decades, the original CST had been expanded and modified to explain new experimental evidences since its original publication by Burnet. This gave origin to new paradigms that govern experimental immunology nowadays, such as the associative recognition of antigen model and the stranger/danger signal model. However, these new theories also do not fully explain experimental findings such as natural autoimmune immunoglobulins, idiotypic networks, low and high dose tolerance, and dual-receptor T and B cells. To make sense of these empirical data, some authors have been trying to change the paradigm of immune cognition using a systemic approach, analogies with brain processing and concepts from second-order cybernetics. In the present paper, we review the CST and some of the theories/hypotheses derived from it, focusing on immune recognition. We point out their main weaknesses and highlight arguments made by their opponents and believers. We conclude that, until now, none of the proposed theories can fully explain the totality of immune phenomena and that a theory of everything is needed in immunology.
Collapse
Affiliation(s)
- Yuri Chaves Martins
- Department of Anesthesiology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Pamela Rosa-Gonçalves
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Hagadorn KA, Peterson ME, Kole H, Scott B, Skinner J, Diouf A, Takashima E, Ongoiba A, Doumbo S, Doumtabe D, Li S, Sekar P, Yan M, Zhu C, Nagaoka H, Kanoi BN, Li QZ, Long C, Long EO, Kayentao K, Jenks SA, Sanz I, Tsuboi T, Traore B, Bolland S, Miura K, Crompton PD, Hopp CS. Autoantibodies inhibit Plasmodium falciparum growth and are associated with protection from clinical malaria. Immunity 2024; 57:1769-1779.e4. [PMID: 38901428 PMCID: PMC11324401 DOI: 10.1016/j.immuni.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/23/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
Many infections, including malaria, are associated with an increase in autoantibodies (AAbs). Prior studies have reported an association between genetic markers of susceptibility to autoimmune disease and resistance to malaria, but the underlying mechanisms are unclear. Here, we performed a longitudinal study of children and adults (n = 602) in Mali and found that high levels of plasma AAbs before the malaria season independently predicted a reduced risk of clinical malaria in children during the ensuing malaria season. Baseline AAb seroprevalence increased with age and asymptomatic Plasmodium falciparum infection. We found that AAbs purified from the plasma of protected individuals inhibit the growth of blood-stage parasites and bind P. falciparum proteins that mediate parasite invasion. Protected individuals had higher plasma immunoglobulin G (IgG) reactivity against 33 of the 123 antigens assessed in an autoantigen microarray. This study provides evidence in support of the hypothesis that a propensity toward autoimmunity offers a survival advantage against malaria.
Collapse
Affiliation(s)
- Kelly A Hagadorn
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA; Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, USA
| | - Mary E Peterson
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Hemanta Kole
- Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Bethany Scott
- Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Aissata Ongoiba
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Safiatou Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Didier Doumtabe
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Padmapriya Sekar
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Mei Yan
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chengsong Zhu
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan; Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Genecopoeia Inc, Rockville, MD, USA
| | - Carole Long
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Eric O Long
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Kassoum Kayentao
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Scott A Jenks
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology and Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology and Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Boubacar Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Silvia Bolland
- Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA.
| | - Christine S Hopp
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA; Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
3
|
Saleh BH, Lugaajju A, Storry JR, Persson KEM. Autoantibodies against red blood cell antigens are common in a malaria endemic area. Microbes Infect 2023; 25:105060. [PMID: 36270601 DOI: 10.1016/j.micinf.2022.105060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Plasmodium falciparum malaria can cause severe anemia. Even after treatment, hematocrit can decrease. The role of autoantibodies against erythrocytes is not clearly elucidated and how common they are, or what they are directed against, is still largely unknown. We have investigated antibodies against erythrocytes in healthy adult men living in a highly malaria endemic area in Uganda. We found antibodies in more than half of the individuals, which is significantly more than in a non-endemic area (Sweden). Some of the Ugandan samples had a broad reactivity where it was not possible to determine the exact target of the autoantibodies, but we also found specific antibodies directed against erythrocyte surface antigens known to be of importance for merozoite invasion such as glycophorin A (anti-Ena, anti-M) and glycophorin B (anti-U, anti-S). In addition, several autoantibodies had partial specificities against glycophorin C and the blood group systems Rh, Diego (located on Band 3), Duffy (located on ACKR1), and Cromer (located on CD55), all of which have been described to be important for malaria and therefore of interest for understanding how autoantibodies could potentially stop parasites from entering the erythrocyte. In conclusion, specific autoantibodies against erythrocytes are common in a malaria endemic area.
Collapse
Affiliation(s)
- Bandar Hasan Saleh
- Department of Laboratory Medicine, Lund University, Skåne University Hospital Lund, Klinikgatan 19, 22185 Lund, Sweden; Faculty of Medicine, Department of Medical Microbiology and Parasitology, King Abdulaziz University, Building 7, 21589 Jeddah, Saudi Arabia
| | - Allan Lugaajju
- Department of Laboratory Medicine, Lund University, Skåne University Hospital Lund, Klinikgatan 19, 22185 Lund, Sweden; School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jill R Storry
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Klinikgatan 26, Lund, Sweden; Clinical Immunology and Transfusion Medicine, Laboratory Medicine, Office for Medical Services, Region Skåne, Akutgatan 8, Lund, Sweden
| | - Kristina E M Persson
- Department of Laboratory Medicine, Lund University, Skåne University Hospital Lund, Klinikgatan 19, 22185 Lund, Sweden.
| |
Collapse
|
4
|
Rivera-Correa J, Rodriguez A. Autoantibodies during infectious diseases: Lessons from malaria applied to COVID-19 and other infections. Front Immunol 2022; 13:938011. [PMID: 36189309 PMCID: PMC9520403 DOI: 10.3389/fimmu.2022.938011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmunity is a common phenomenon reported in many globally relevant infections, including malaria and COVID-19. These and other highly inflammatory diseases have been associated with the presence of autoantibodies. The role that these autoantibodies play during infection has been an emerging topic of interest. The vast numbers of studies reporting a range of autoantibodies targeting cellular antigens, such as dsDNA and lipids, but also immune molecules, such as cytokines, during malaria, COVID-19 and other infections, underscore the importance that autoimmunity can play during infection. During both malaria and COVID-19, the presence of autoantibodies has been correlated with associated pathologies such as malarial anemia and severe COVID-19. Additionally, high levels of Atypical/Autoimmune B cells (ABCs and atypical B cells) have been observed in both diseases. The growing literature of autoimmune B cells, age-associated B cells and atypical B cells in Systemic Lupus erythematosus (SLE) and other autoimmune disorders has identified recent mechanistic and cellular targets that could explain the development of autoantibodies during infection. These new findings establish a link between immune responses during infection and autoimmune disorders, highlighting shared mechanistic insights. In this review, we focus on the recent evidence of autoantibody generation during malaria and other infectious diseases and their potential pathological role, exploring possible mechanisms that may explain the development of autoimmunity during infections.
Collapse
Affiliation(s)
- Juan Rivera-Correa
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, NY, United States
- *Correspondence: Juan Rivera-Correa,
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Autoimmunity in human CE: Correlative with the fertility status of the CE cyst. Helminthologia 2022; 59:1-17. [PMID: 35601761 PMCID: PMC9075880 DOI: 10.2478/helm-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/27/2022] [Indexed: 11/20/2022] Open
Abstract
Cystic echinococcosis is speculated to exert several immune-evasion strategies involving autoimmune-phenomena. We evaluated the hypothesizes that the prevalence of autoantibodies increases in the sera of CE patients that may evidence the association between the parasite and autoimmune diseases. Sera from 63 subjects at distinct types of CE cyst fertility were investigated for antinuclear antibodies (ANA), and anti-CCP antibodies. Plasma levels and cellular production of IL-17A cytokine were specifically defined as being assumed to prime for autoimmunity. Healthy-controls were age and gender-matched to test sera. ANA expressions inside the surgically removed metacestode and adventitial layer were also assayed. Out of 63 patients, 35 % had fertile highly viable cysts (group-1), 41 % had fertile low viable cysts (group-2) and 24 % had non-fertile cysts (group-3). A four-fold increase in ANA sera-levels was detected in group-1 compared with their controls (p-value 0.001) while anti-CCP levels were of insignificant differences. In group-2 and group-3, no significant differences were detected between ANA and anti-CCP sera-levels in CE patients and their controls. IL-17A sera-levels in group-1 and group- 2 were significantly higher than their healthy-controls while being of insignificant differences in group-3, p-value= 0.300. No association was detected between sera-levels of IL-17A and ANA as well as anti-CCP antibodies. Interestingly, relative IL-17A cellular expression associated positive ANA deposition in the parasite cells and adventitial layer. Collectively, based on the parasite fertility, IL-17A and ANA seemed to be involved in the host immune defenses against CE. There is no association between CE and anti-CCP antibodies.
Collapse
|
6
|
El Saftawy EA, Abdelmoktader A, Sabry MM, Alghandour SM. Histological and immunological insights to hydatid disease in camels. Vet Parasitol Reg Stud Reports 2021; 26:100635. [PMID: 34879946 DOI: 10.1016/j.vprsr.2021.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 11/15/2022]
Abstract
PURPOSE To investigate the immuno-histological evidences in viable and non-viable hydatid cysts obtained from naturally infected camels. METHODS A cohort study (February 2018-December 2019), a total of 15 hydatidosis-infected camels from slaughter houses in Cairo were involved. Specimens were investigated for parasite viability, liver histological changes, IL-17A cytokine immunohistochemical expressions in the adventitial layer, and the anti-nuclear antibodies (ANAs) immunofluorescent expression in the metacestode's structures. Real-Time Quantitative -Morphocytometry and SPSS were utilized. RESULTS Multi-focal lesions and high viability were found in 60% of the cases. Overall accumulation of collagen associated the parasite establishment that involved infiltrations of mononuclear cells with significantly increased IL-17A expression. Interestingly, the ANAs appeared to have a role in the immune-defense against the metacestode showing different patterns. ANAs production correlated with IL-17A expression and the viability of the parasite. CONCLUSION IL-17A responses in hydatidosis is associated with collagen deposition and ANA production as a sort of anti-parasite immunity in a viability dependent manner.
Collapse
Affiliation(s)
- Enas A El Saftawy
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt; Medical Parasitology Department, Faculty of Medicine, Armed Forces College of Medicine, Cairo, Egypt.
| | - Abdelrahman Abdelmoktader
- Medical Microbiology and Immunology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Marwa Mohamed Sabry
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
7
|
Naturally Acquired Antibodies against Plasmodium falciparum: Friend or Foe? Pathogens 2021; 10:pathogens10070832. [PMID: 34357982 PMCID: PMC8308493 DOI: 10.3390/pathogens10070832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Antibodies are central to acquired immunity against malaria. Plasmodium falciparum elicits antibody responses against many of its protein components, but there is also formation of antibodies against different parts of the red blood cells, in which the parasites spend most of their time. In the absence of a decisive intervention such as a vaccine, people living in malaria endemic regions largely depend on naturally acquired antibodies for protection. However, these antibodies do not confer sterile immunity and the mechanisms of action are still unclear. Most studies have focused on the inhibitory effect of antibodies, but here, we review both the beneficial as well as the potentially harmful roles of naturally acquired antibodies, as well as autoantibodies formed in malaria. We discuss different studies that have sought to understand acquired antibody responses against P. falciparum antigens, and potential problems when different antibodies are combined, such as in naturally acquired immunity.
Collapse
|
8
|
Mourão LC, Cardoso-Oliveira GP, Braga ÉM. Autoantibodies and Malaria: Where We Stand? Insights Into Pathogenesis and Protection. Front Cell Infect Microbiol 2020; 10:262. [PMID: 32596165 PMCID: PMC7300196 DOI: 10.3389/fcimb.2020.00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Autoantibodies are frequently reported in patients with malaria, but whether they contribute to protection or to pathology is an issue of debate. A large body of evidence indicates that antibodies against host-self components are associated to malaria clinical outcomes such as cerebral malaria, renal dysfunction and anemia. Nonetheless, self-reactive immunoglobulins induced during an infection can also mediate protection. In light of these controversies, we summarize here the latest findings in our understanding of autoimmune responses in malaria, focusing on Plasmodium falciparum and Plasmodium vivax. We review the main targets of self-antibody responses in malaria as well as the current, but still limited, knowledge of their role in disease pathogenesis or protection.
Collapse
Affiliation(s)
- Luiza Carvalho Mourão
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Érika Martins Braga
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Silveira ELV, Dominguez MR, Soares IS. To B or Not to B: Understanding B Cell Responses in the Development of Malaria Infection. Front Immunol 2018; 9:2961. [PMID: 30619319 PMCID: PMC6302011 DOI: 10.3389/fimmu.2018.02961] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
Malaria is a widespread disease caused mainly by the Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) protozoan parasites. Depending on the parasite responsible for the infection, high morbidity and mortality can be triggered. To escape the host immune responses, Plasmodium parasites disturb the functionality of B cell subsets among other cell types. However, some antibodies elicited during a malaria infection have the potential to block pathogen invasion and dissemination into the host. Thus, the question remains, why is protection not developed and maintained after the primary parasite exposure? In this review, we discuss different aspects of B cell responses against Plasmodium antigens during malaria infection. Since most studies have focused on the quantification of serum antibody titers, those B cell responses have not been fully characterized. However, to secrete antibodies, a complex cellular response is set up, including not only the activation and differentiation of B cells into antibody-secreting cells, but also the participation of other cell subsets in the germinal center reactions. Therefore, a better understanding of how B cell subsets are stimulated during malaria infection will provide essential insights toward the design of potent interventions.
Collapse
Affiliation(s)
- Eduardo L V Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana R Dominguez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene S Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Gomes LR, Martins YC, Ferreira-da-Cruz MF, Daniel-Ribeiro CT. Autoimmunity, phospholipid-reacting antibodies and malaria immunity. Lupus 2015; 23:1295-8. [PMID: 25228731 DOI: 10.1177/0961203314546021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several questions regarding the production and functioning of autoantibodies (AAb) during malaria infection remain open. Here we provide an overview of studies conducted in our laboratory that shed some light on the questions of whether antiphospholipid antibodies (aPL) and other AAb associated with autoimmune diseases (AID) can recognize Plasmodia antigens and exert anti-parasite activity; and whether anti-parasite phospholipid antibodies, produced in response to malaria, can inhibit phospholipid-induced inflammatory responses and protect against the pathogenesis of severe malaria. Our work showed that sera from patients with AID containing AAb against dsDNA, ssDNA, nuclear antigens (ANA), actin, cardiolipin (aCL) and erythrocyte membrane antigens recognize plasmodial antigens and can, similarly to monoclonal AAb of several specificities including phospholipid, inhibit the growth of P. falciparum in vitro. However, we did not detect a relationship between the presence of anti-glycosylphosphatidylinositol (GPI) antibodies in the serum and asymptomatic malaria infection, although we did register a relationship between these antibodies and parasitemia levels in infected individuals. Taken together, these results indicate that autoimmune responses mediated by AAb of different specificities, including phospholipid, may have anti-plasmodial activity and protect against malaria, although it is not clear whether anti-parasite phospholipid antibodies can mediate the same effect. The potential effect of anti-parasite phospholipid antibodies in malarious patients that are prone to the development of systemic lupus erythematosus or antiphospholipid syndrome, as well as the (possibly protective?) role of the (pathogenic) aPL on the malaria symptomatology and severity in these individuals, remain open questions.
Collapse
Affiliation(s)
- L R Gomes
- Laboratory for Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro and Center for Malaria Research and Training (CPD-Mal), Fiocruz, Rio de Janeiro / Secretary for Health Surveillance (SVS), Ministry of Health, Brazil
| | - Y C Martins
- Laboratory for Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro and Center for Malaria Research and Training (CPD-Mal), Fiocruz, Rio de Janeiro / Secretary for Health Surveillance (SVS), Ministry of Health, Brazil Department of Pathology, Albert Einstein College of Medicine, The Bronx, New York, USA
| | - M F Ferreira-da-Cruz
- Laboratory for Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro and Center for Malaria Research and Training (CPD-Mal), Fiocruz, Rio de Janeiro / Secretary for Health Surveillance (SVS), Ministry of Health, Brazil
| | - C T Daniel-Ribeiro
- Laboratory for Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro and Center for Malaria Research and Training (CPD-Mal), Fiocruz, Rio de Janeiro / Secretary for Health Surveillance (SVS), Ministry of Health, Brazil
| |
Collapse
|
11
|
Autoantibody profile of patients infected with knowlesi malaria. Clin Chim Acta 2015; 448:33-8. [PMID: 26086445 DOI: 10.1016/j.cca.2015.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/05/2015] [Accepted: 06/03/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND Autoantibodies or antibodies against self-antigens are produced either during physiological processes to maintain homeostasis or pathological process such as trauma and infection. Infection with parasites including Plasmodium has been shown to generally induce elevated self-antibody (autoantibody) levels. Plasmodium knowlesi is increasingly recognized as one of the most important emerging human malaria in Southeast Asia that can cause severe infection leading to mortality. Autoimmune-like phenomena have been hypothesized to play a role in the protective immune responses in malaria infection. METHODS We studied the autoantibody profile from serum of eleven patients diagnosed with P. knowlesi. Autoantigen arrays were used to elucidate the autoantibody repertoire of P. knowlesi infected patients. The patented OGT Discovery Array with 1636 correctly folded antigen was employed. RESULTS Analysis of the patient versus control sera gave us 24 antigens with high reactivity with serum antibodies. CONCLUSIONS Understanding the autoantibody profile of malarious patients infected with P. knowlesi would help to further understand the host-parasite interaction, host immune response and disease pathogenesis. These reactive antigens may serve as potential biomarkers for cases of asymptomatic malaria and mild malaria or predictive markers for severe malaria.
Collapse
|
12
|
Wunderlich F, Al-Quraishy S, Dkhil MA. Liver-inherent immune system: its role in blood-stage malaria. Front Microbiol 2014; 5:559. [PMID: 25408684 PMCID: PMC4219477 DOI: 10.3389/fmicb.2014.00559] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022] Open
Abstract
The liver is well known as that organ which is obligately required for the intrahepatocyte development of the pre-erythrocytic stages of the malaria-causative agent Plasmodium. However, largely neglected is the fact that the liver is also a central player of the host defense against the morbidity- and mortality-causing blood stages of the malaria parasites. Indeed, the liver is equipped with a unique immune system that acts locally, however, with systemic impact. Its main “antipodal” functions are to recognize and to generate effective immunoreactivity against pathogens on the one hand, and to generate tolerance to avoid immunoreactivity with “self” and harmless substances as dietary compounds on the other hand. This review provides an introductory survey of the liver-inherent immune system: its pathogen recognition receptors including Toll-like receptors (TLRs) and its major cell constituents with their different facilities to fight and eliminate pathogens. Then, evidence is presented that the liver is also an essential organ to overcome blood-stage malaria. Finally, we discuss effector responses of the liver-inherent immune system directed against blood-stage malaria: activation of TLRs, acute phase response, phagocytic activity, cytokine-mediated pro- and anti-inflammatory responses, generation of “protective” autoimmunity by extrathymic T cells and B-1 cells, and T cell-mediated repair of liver injuries mainly produced by malaria-induced overreactions of the liver-inherent immune system.
Collapse
Affiliation(s)
- Frank Wunderlich
- Department of Biology, Heinrich-Heine-University , Düsseldorf, Germany
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia ; Department of Zoology and Entomology, Faculty of Science, Helwan University , Cairo, Egypt
| |
Collapse
|
13
|
Testosterone persistently dysregulates hepatic expression of Tlr6 and Tlr8 induced by Plasmodium chabaudi malaria. Parasitol Res 2014; 113:3609-20. [PMID: 25056943 DOI: 10.1007/s00436-014-4026-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/04/2014] [Indexed: 01/20/2023]
Abstract
Testosterone (T) is known to induce persistent susceptibility to Plasmodium chabaudi malaria. Pathogens recognizing Toll-like receptors (TLRs), though potentially important against malaria, have not yet been examined for their T-sensitivity. Here, we investigate effects of T and P. chabaudi on mRNA expression and promoter DNA methylation of Tlr1-9 genes in the liver of female C57BL/6 mice. These are treated with T or vehicle for 3 weeks, and then treatment is discontinued for 12 weeks, before challenging with P. chabaudi for 8 days. Our data reveal that T induces a 9.1-fold downregulation of Tlr6 mRNA and 6.3-fold upregulation of Tlr8 mRNA. Blood-stage infections induce significant increases in mRNA expression of Tlr1, 2, 4, 6, 7, and 8 varying between 2.5-fold and 21-fold in control mice. In T-pretreated mice, these Tlr genes are also significantly responsive to infections. However, the malaria-induced upregulations of the relative mRNA expressions of Tlr6 and Tlr8 are 5.6-fold higher and 6.5-fold lower in T-pretreated mice than in control mice. Infections induce a massive DNA down-methylation of the Tlr6 gene promoter in control mice, which is still more pronounced in T-pretreated mice, while significant changes are not detectable for the DNA methylation status of the Tlr8 promoter. Our data support the view that hepatic expression of Tlr6, but not that of Tlr8 is epigenetically controlled, and that the dysregulations of Tlr6 and Tlr8 critically contribute to T-induced persistent susceptibility to P. chabaudi malaria, possibly by dys-balancing responses of TLR6-mediated pathogen recognition and TLR8-mediated generation of anti-malaria "protective" autoimmunity.
Collapse
|