1
|
Akbarzadeh A, Ming TJ, Schulze AD, Kaukinen KH, Li S, Günther OP, Houde ALS, Miller KM. Developing molecular classifiers to detect environmental stressors, smolt stages and morbidity in coho salmon, Oncorhynchus kisutch. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175626. [PMID: 39168345 DOI: 10.1016/j.scitotenv.2024.175626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Aquatic species are increasingly confronted with environmental stressors because of climate change. Although molecular technologies have advanced our understanding of how organisms respond to stressors in laboratory settings, the ability to detect physiological responses to specific stressors under complex field conditions remains underdeveloped. This research applied multi-stressor challenge trials on coho salmon, employing the "Salmon Fit-Chips" genomic tool and a random forest-based classification model to develop classifiers predictive for chronic thermal and hypoxic stress, as well as salinity acclimation, smolt stage and morbidity status. The study also examined how smolts and de-smolts (smolts not having entered SW during the smolt window) responded transcriptionally to exposure to saltwater. Using RF classifiers optimized with 4 to 12 biomarkers, we identified transcriptional signatures that accurately predicted the presence of each stressor and physiological state, achieving prediction accuracy rates between 86.8 % and 100 %, regardless of other background stressors present. Stressor recovery time was established by placing fish back into non-stressor conditions after stress exposure, providing important context to stressor detections in field applications. Recovery from thermal and hypoxic stress requires about 3 and 2 days, respectively, with >3 days needed for re-acclimation to freshwater for seawater acclimated fish. The study also found non-additive (synergistic) effects of multiple stressors on mortality risk. Importantly, osmotic stress associated with de-smolts was the most important predictor of mortality. In saltwater, de-smolts exposed to salinity, high temperature, and hypoxia experienced a 9-fold increase in mortality compared to those only exposed to saltwater, suggesting a synergistic response to multiple stressors. These findings suggest that delays in hatchery releases to support release of larger fish need to be carefully scrutinized to ensure fish are not being released as de-smolts, which are highly susceptible to additional climate-induced stressors like rising temperatures and reduced dissolved oxygen levels in the marine environment.
Collapse
Affiliation(s)
- Arash Akbarzadeh
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada; Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Angela D Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Oliver P Günther
- Günther Analytics, 402-5775 Hampton Place, Vancouver, BC V6T 2G6, Canada
| | - Aimee Lee S Houde
- Environmental Dynamics Inc. (EDI), 208A - 2520 Bowen Road, Nanaimo, BC V9T 3L3, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
2
|
Negrete B, Ackerly KL, Esbaugh AJ. Hypoxia-acclimation adjusts skeletal muscle anaerobic metabolism and burst swim performance in a marine fish. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111734. [PMID: 39216551 DOI: 10.1016/j.cbpa.2024.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Red drum, Sciaenops ocellatus, are a marine teleost native to the Gulf of Mexico that routinely experiences periods of low oxygen (hypoxia). Recent work has demonstrated this species has the capacity to improve aerobic performance in hypoxia through respiratory acclimation. However, it remains unknown how hypoxia acclimation impacts anaerobic metabolism in red drum, and the consequences of exhaustive exercise and recovery. Juvenile fish were acclimated to normoxia (n = 15, DO 90.4 ± 6.42 %) or hypoxia (n = 15, DO 33.6 ± 7.2 %) for 8 days then sampled at three time points: at rest, after exercise, and after a 3 h recovery period. The resting time point was used to characterize the acclimated phenotype, while the remaining time points demonstrate how this phenotype responds to exhaustive exercise. Whole blood, red muscle, white muscle, and heart tissues were sampled for metabolites and enzyme activity. The resting phenotype was characterized by lower pHe and changes to skeletal muscle ATP. Exhaustive exercise increased muscle lactate, and decreased phosphocreatine and ATP with no effect of acclimation. Interestingly, hypoxia-acclimated fish had higher pHe and pHi than control in all exercise time points. Red muscle ATP was lower in hypoxia-acclimated fish versus control at each sample period. Moreover, acclimated fish increased lactate dehydrogenase activity in the red muscle. Hypoxia acclimation increased white muscle ATP and hexokinase activity, a glycolytic enzyme. In a gait-transition swim test, hypoxia-acclimated fish recruited anaerobic-powered burst swimming at lower speeds in normoxia compared to control fish. These data suggest that acclimation increases reliance on anaerobic metabolism, and does not benefit recovery from exhaustive exercise.
Collapse
Affiliation(s)
- Benjamin Negrete
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA; Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Kerri Lynn Ackerly
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA. https://twitter.com/KerriAckerlyPhD
| | - Andrew J Esbaugh
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
3
|
Rahane D, Dhingra T, Chalavady G, Datta A, Ghosh B, Rana N, Borah A, Saraf S, Bhattacharya P. Hypoxia and its effect on the cellular system. Cell Biochem Funct 2024; 42:e3940. [PMID: 38379257 DOI: 10.1002/cbf.3940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Eukaryotic cells utilize oxygen for different functions of cell organelles owing to cellular survival. A balanced oxygen homeostasis is an essential requirement to maintain the regulation of normal cellular systems. Any changes in the oxygen level are stressful and can alter the expression of different homeostasis regulatory genes and proteins. Lack of oxygen or hypoxia results in oxidative stress and formation of hypoxia inducible factors (HIF) and reactive oxygen species (ROS). Substantial cellular damages due to hypoxia have been reported to play a major role in various pathological conditions. There are different studies which demonstrated that the functions of cellular system are disrupted by hypoxia. Currently, study on cellular effects following hypoxia is an important field of research as it not only helps to decipher different signaling pathway modulation, but also helps to explore novel therapeutic strategies. On the basis of the beneficial effect of hypoxia preconditioning of cellular organelles, many therapeutic investigations are ongoing as a promising disease management strategy in near future. Hence, the present review discusses about the effects of hypoxia on different cellular organelles, mechanisms and their involvement in the progression of different diseases.
Collapse
Affiliation(s)
- Dipali Rahane
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Tannu Dhingra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Guruswami Chalavady
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Bijoyani Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Nikita Rana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Shailendra Saraf
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Kolesnikova EE, Golovina IV, Soldatov AA, Gavruseva TV. Synchronized Activity of Oxidoreductases in the Brain and Heart Compartments of the Scorpionfish Scorpaena porcus under Acute Hypoxia. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Bayliak MM, Mosiichuk NM, Sorochynska OM, Kuzniak OV, Sishchuk LO, Hrushchenko AO, Semchuk AO, Pryimak TV, Vasylyk YV, Gospodaryov DV, Storey KB, Garaschuk O, Lushchak VI. Middle aged turn point in parameters of oxidative stress and glucose catabolism in mouse cerebellum during lifespan: minor effects of every-other-day fasting. Biogerontology 2021; 22:315-328. [PMID: 33786674 DOI: 10.1007/s10522-021-09918-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/15/2021] [Indexed: 01/06/2023]
Abstract
The cerebellum is considered to develop aging markers more slowly than other parts of the brain. Intensification of free radical processes and compromised bioenergetics, critical hallmarks of normal brain aging, may be slowed down by caloric restriction. This study aimed to evaluate the intensity of oxidative stress and the enzymatic potential to utilize glucose via glycolysis or the pentose phosphate pathway (PPP) in the cerebellum of mice under ad libitum versus every-other-day fasting (EODF) feeding regimens. Levels of lipid peroxides, activities of antioxidant and key glycolytic and PPP enzymes were measured in young (6-month), middle-aged (12-month) and old (18-month) C57BL/6J mice. The cerebellum showed the most dramatic increase in lipid peroxide levels, antioxidant capacity and PPP key enzyme activities and the sharpest decline in the activities of key glycolytic enzymes under transition from young to middle age but these changes slowed when transiting from middle to old age. A decrease in the activity of the key glycolytic enzyme phosphofructokinase was accompanied by a concomitant increase in the activities of hexokinase and glucose-6-phosphate dehydrogenase (G6PDH), which may suggest that during normal cerebellar aging glucose metabolism shifts from glycolysis to the pentose phosphate pathway. The data indicate that intensification of free radical processes in the cerebellum occurred by middle age and that activation of the PPP together with increased antioxidant capacity can help to resist these changes into old age. However, the EODF regime did not significantly modulate or alleviate any of the metabolic processes studied in this analysis of the aging cerebellum.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Nadia M Mosiichuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Oksana M Sorochynska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Oksana V Kuzniak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Lesia O Sishchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Anastasiia O Hrushchenko
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Alina O Semchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Taras V Pryimak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Yulia V Vasylyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074, Tübingen, Germany
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
6
|
Bayliak MM, Sorochynska OM, Kuzniak OV, Gospodaryov DV, Demianchuk OI, Vasylyk YV, Mosiichuk NM, Storey KB, Garaschuk O, Lushchak VI. Middle age as a turning point in mouse cerebral cortex energy and redox metabolism: Modulation by every-other-day fasting. Exp Gerontol 2020; 145:111182. [PMID: 33290862 DOI: 10.1016/j.exger.2020.111182] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/19/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
Normal brain aging is accompanied by intensification of free radical processes and compromised bioenergetics. Caloric restriction is expected to counteract these changes but the underlying protective mechanisms remain poorly understood. The present work aimed to investigate the intensity of oxidative stress and energy metabolism in the cerebral cortex comparing mice of different ages as well as comparing mice given one of two regimens of food availability: ad libitum versus every-other-day fasting (EODF). Levels of oxidative stress markers, ketone bodies, glycolytic intermediates, mitochondrial respiration, and activities of antioxidant and glycolytic enzymes were assessed in cortex from 6-, 12- and 18-month old C57BL/6J mice. The greatest increase in oxidative stress markers and the sharpest decline in key glycolytic enzyme activities was observed in mice upon the transition from young (6 months) to middle (12 months) age, with smaller changes occurring upon transition to old-age (18 months). Brain mitochondrial respiration showed no significant changes with age. A decrease in the activities of key glycolytic enzymes was accompanied by an increase in the activity of glucose-6-phosphate dehydrogenase suggesting that during normal brain aging glucose metabolism is altered to lower glycolytic activity and increase dependence on the pentose-phosphate pathway. Interestingly, levels of ketone bodies and antioxidant capacity showed a greater decrease in the brain cortex of females as compared with males. The EODF regimen further suppressed glycolytic enzyme activities in the cortex of old mice, and partially enhanced oxygen consumption and respiratory control in the cortex of middle aged and old males. Thus, in the mammalian cortex the major aging-induced metabolic changes are already seen in middle age and are slightly alleviated by an intermittent fasting mode of feeding.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Oksana M Sorochynska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Oksana V Kuzniak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Oleh I Demianchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Yulia V Vasylyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Nadia M Mosiichuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Olga Garaschuk
- Department of Neurophysiology, University of Tübingen, 72074 Tübingen, Germany
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
7
|
Bayliak MM, Demianchuk OI, Gospodaryov DV, Abrat OB, Lylyk MP, Storey KB, Lushchak VI. Mutations in genes cnc or dKeap1 modulate stress resistance and metabolic processes in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2020; 248:110746. [PMID: 32579905 DOI: 10.1016/j.cbpa.2020.110746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
The transcription factor Nrf2 and its negative regulator Keap1 play important roles in the maintenance of redox homeostasis in animal cells. Nrf2 activates defenses against oxidative stress and xenobiotics. Homologs of Nrf2 and Keap1 are present in Drosophila melanogaster (CncC and dKeap1, respectively). The aim of this study was to explore effects of CncC deficiency (due to mutation in the cnc gene) or enhanced activity (due to mutation in the dKeap1 gene) on redox status and energy metabolism of young adult flies in relation to behavioral traits and resistance to a number of stressors. Deficiency in either CncC or dKeap1 delayed pupation and increased climbing activity and heat stress resistance in 2-day-old adult flies. Males and females of the ∆keap1 line shared some similarities such as elevated antioxidant defense as well as lower triacylglyceride and higher glucose levels. Males of the ∆keap1 line also had a higher activity of hexokinase, whereas ∆keap1 females showed higher glycogen levels and lower values of respiratory control and ATP production than flies of the control line. Mutation of cnc gene in allele cncEY08884 caused by insertion of P{EPgy2} transposon in cnc promotor did not affect significantly the levels of metabolites and redox parameters, and even activated some components of antioxidant defense. These data suggest that the mutation can be hypomorphic as well as CncC protein can be dispensable for adult fruit flies under physiological conditions. In females, CncC mutation led to lower mitochondrial respiration, higher hexokinase activity and higher fecundity as compared with the control line. Either CncC activation or its deficiency affected stress resistance of flies.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| | - Oleh I Demianchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| | - Oleksandra B Abrat
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Maria P Lylyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
8
|
Hashemzadeh S, Shahmorad S, Rafii-Tabar H, Omidi Y. Computational modeling to determine key regulators of hypoxia effects on the lactate production in the glycolysis pathway. Sci Rep 2020; 10:9163. [PMID: 32514127 PMCID: PMC7280308 DOI: 10.1038/s41598-020-66059-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
In solid tumors, hypoxia can trigger aberrant expression of transcription factors and genes, resulting in abnormal biological functions such as altered energetic pathways in cancer cells. Glucose metabolism is an important part of this phenomenon, which is associated with changes in the functional expression of transporters and enzymes involved in the glycolysis pathway. The latter phenomenon can finally lead to the lactate accumulation and pH dysregulation in the tumor microenvironment and subsequently further invasion and metastasis of cancer cells. Having capitalized on the computational modeling, in this study, for the first time, we aimed to investigate the effects of hypoxia-induced factor-1 (HIF-1) mediated hypoxia on the magnitude of functional expression of all the enzymes and transporters involved in the glycolysis process. The main objective was to establish a quantitative relationship between the hypoxia intensity and the intracellular lactate levels and determine the key regulators of the glycolysis pathway. This model clearly showed an increase in the lactate concentration during the oxygen depletion. The proposed model also predicted that the phosphofructokinase-1 and phosphoglucomutase enzymes might play the most important roles in the regulation of the lactate production.
Collapse
Affiliation(s)
- Shabnam Hashemzadeh
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sedaghat Shahmorad
- Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,The Physics Branch of the IRI Academy of Sciences, Tehran, Iran.
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Comparative Transcriptome Analysis of Gill Tissue in Response to Hypoxia in Silver Sillago ( Sillago sihama). Animals (Basel) 2020; 10:ani10040628. [PMID: 32268576 PMCID: PMC7222756 DOI: 10.3390/ani10040628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 12/11/2022] Open
Abstract
Silver sillago (Sillago sihama) is a commercially important marine fish species in East Asia. In this study, we compared the transcriptome response to hypoxia stress in the gill tissue of S. sihama. The fish were divided into four groups, such as 1 h of hypoxia (hypoxia1h, DO = 1.5 ± 0.1 mg/L), 4 h of hypoxia (hypoxia4h, DO = 1.5 ± 0.1 mg/L), 4 h of reoxygen (reoxygen4h, DO = 8.0 ± 0.2 mg/L) after 4 h of hypoxia (DO = 1.5 mg/L), and normoxia or control (DO = 8.0 ± 0.2 mg/L) groups. Compared to the normoxia group, a total of 3550 genes were identified as differentially expressed genes (DEGs) (log2foldchange > 1 and padj < 0.05), including 1103, 1451 and 996 genes in hypoxia1h, hypoxia4h and reoxygen4h groups, respectively. Only 247 DEGs were differentially co-expressed in all treatment groups. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, DEGs were significantly enriched in steroid biosynthesis, biosynthesis of amino acids, glutathione metabolism and metabolism of xenobiotics by cytochrome P450, ferroptosis and drug metabolism-cytochrome P450 pathways. Of these, the cytochrome P450 (CYP) and glutathione S-transferase (GST) gene families were widely expressed. Our study represents the insights into the underlying molecular mechanisms of hypoxia stress.
Collapse
|
10
|
Sorochynska OM, Bayliak MM, Gospodaryov DV, Vasylyk YV, Kuzniak OV, Pankiv TM, Garaschuk O, Storey KB, Lushchak VI. Every-Other-Day Feeding Decreases Glycolytic and Mitochondrial Energy-Producing Potentials in the Brain and Liver of Young Mice. Front Physiol 2019; 10:1432. [PMID: 31824339 PMCID: PMC6883932 DOI: 10.3389/fphys.2019.01432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/04/2019] [Indexed: 01/02/2023] Open
Abstract
Intermittent fasting is used to reduce body mass in obese adult humans and animals. However, information on the impact of one type of intermittent fasting (IF) called every-other-day feeding (EODF) on young animals is scarce. In this study, 1-month-old mice of both sexes were subjected to a 4-week regimen of EODF using age-matched counterparts fed ad libitum as controls. At the end of EODF exposure, experimental male and female mice weighed 14 and 13% less than the control counterparts. The EODF regimen resulted in lower liver levels of glycogen, glucose, and lactate, but did not affect lactate level in mouse cerebral cortex of both sexes. Activities of key glycolytic enzymes (hexokinase, phosphofructokinase, and pyruvate kinase) in liver of experimental mice were lower than those in controls. In the cerebral cortex, only hexokinase and pyruvate kinase activities were lower than in controls, but phosphofructokinase activity was not affected in IF females and was higher in IF males as compared with ad libitum fed males. Mitochondria isolated from liver of IF mice had lower respiratory control ratios, but those from the cortex had the same values as control animals. The concentration of β-hydroxybutyrate and the activity of β-hydroxybutyrate dehydrogenase were lower in the IF mouse liver, but not changed or enhanced in the IF cerebral cortex. Thus, animal responses to IF do not depend significantly on sex and are directed to decrease energy metabolism to save resources, and the effects are more pronounced in the liver than in the brain.
Collapse
Affiliation(s)
- Oksana M Sorochynska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Yulia V Vasylyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Oksana V Kuzniak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Tetiana M Pankiv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
11
|
Apraku A, Huang X, Yusuf A, Cornel A, Ayisi CL, Asiedu B. Impact of dietary oil replacement on muscle and liver enzymes activity, histomorphology and growth-related genes on Nile tilapia. Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:15-25. [PMID: 31059784 DOI: 10.1016/j.cbpc.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 11/25/2022]
Abstract
This study evaluated the efficacy of replacing dietary fish oil (FO) with vegetable oils (virgin coconut and corn oil) on enzyme activities (glycolytic, oxidative and lipid metabolites), mRNA expression of lipid metabolic genes and histomorphology of liver and intestine in O. niloticus. O. niloticus (6.07 ± 0.07 g) was fed six experimental diets where fish oil (FO) served as the control diet, and then was supplemented by dietary oils; virgin coconut oil (VCO) {3%FO + 3%VCO; 3FVCO}, and corn oil (CO) {3%FO + 3%CO; 3FCO}, 6%VCO (VCO), 6%CO (CO) and 6%VO {3%VCO + 3%CO; VO}. Growth performances measured indicated fish fed diet 3FCO had higher weight gain (WG) and specific growth rate (SGR). Fish fed diet 3FCO recorded the highest activities in lactate dehydrogenase (LDH), pyruvate kinase (PK), citrate synthase (CS), cytochrome coxidase (COX), malic enzymes (ME) and lipoprotein lipase (LPL) respectively. Stearoyl-CoA desaturase (SCD1) was upregulated in groups fed diets 3FVCO and 3FCO. Also, groups fed diet VCO and CO expressed highly in LPL, whereas, elongase of very long-chain fatty acids (ELOVL-5) was not influenced by the lipid sources. Histological representations in the liver were highly impacted in vegetable diets where lipid accumulation was higher except those fed VCO. However, in the digestive tract from distal to middle and posterior, the same group (VCO) exhibited altered morphological structure as those fed diet 3FCO were similar to FO. The study shows that, corn oil in diets relates positively to growth and enzymatic activities which becomes evident in their depositions in liver and functional intestinal tracts. This study indicates dietary alternatives may cause alterations in lipid metabolic pathways (LPL and SCD1) involved in fatty acid transport. As such, polyunsaturated fatty acid (PUFA) rich diets (CO) based on this study results increases metabolic activities involving especially the production, distribution and consumption of adenosine triphosphate (ATP) in O. niloticus.
Collapse
Affiliation(s)
- Andrews Apraku
- College of Fisheries and Life Sciences, Center for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xuxiong Huang
- College of Fisheries and Life Sciences, Center for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Abdullateef Yusuf
- College of Fisheries and Life Sciences, Center for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Angela Cornel
- College of Fisheries and Life Sciences, Center for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Christian L Ayisi
- University for Development Studies, Faculty of Natural Resources and Environment, Department of Fisheries and Aquatic Resources Management, Tamale, Ghana
| | - Berchie Asiedu
- University of Energy and Natural Resources, School of Natural Resources, Department of Fisheries and Water Resources, Sunyani, Ghana
| |
Collapse
|
12
|
Li Q, Sun S, Zhang F, Wang M, Li M. Effects of hypoxia on survival, behavior, metabolism and cellular damage of Manila clam (Ruditapes philippinarum). PLoS One 2019; 14:e0215158. [PMID: 30998696 PMCID: PMC6472746 DOI: 10.1371/journal.pone.0215158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
The Manila clam Ruditapes philippinarum has become a common and dominant macrobenthic species in coastal areas of the northwestern Pacific and temperate waters of Europe; it is also a major cultured shellfish, with annual worldwide production exceeding 3.3 million tonnes. This species faces greater risk of exposure to hypoxia as eutrophication worsens throughout its coastal habitats; however, its tolerance to hypoxia remains unclear, and the toxicological indicators including LC50 and LT50 have not yet been assessed. Previous studies on the effects of hypoxia on marine benthos have focused largely on functional responses, such as metabolism and gene expression, leaving potential structural damage to the mitochondria or the cells unknown. In this study we assessed the effects of hypoxia on Manila clam in terms of survival, behavior, metabolism and cellular damage, using a newly designed automated hypoxia simulation device that features exceptional accuracy and good stability. The clams exhibited strong tolerance to hypoxia as the 20-day LC50 for dissolved oxygen (DO) was estimated to be 0.57 mg L-1, and the LT50 at 0.5 mg L-1 DO was 422 hours. Adaptations included fewer buried clams and a depressed metabolism, while the unexpected rise in the activities of key enzymes involved in glycolysis may indicate a diverse strategy of shellfish under hypoxia. Cellular damage was observed as collapse of the mitochondrial cristae and both cellular and mitochondrial vacuolization. This multi-level study complements and updates our knowledge of the effects of hypoxia on marine benthos, by improving our understanding of the potential for marine ecological transformation under hypoxic conditions and providing useful information for Manila clam farming.
Collapse
Affiliation(s)
- Qiao Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Song Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail:
| | - Fang Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Mengna Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Metabolic responses in Antarctic Nototheniidae brains subjected to thermal stress. Brain Res 2019; 1708:126-137. [PMID: 30527682 DOI: 10.1016/j.brainres.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/08/2018] [Accepted: 12/04/2018] [Indexed: 12/23/2022]
Abstract
Antarctic Nototheniidae is an attractive group for studying metabolic and physiological responses at high temperatures. The present work investigated the metabolic responses of the carbohydrate metabolism and antioxidant system to thermal stress at 8 °C (for 2-144 h) in the brains of Notothenia rossii and Notothenia coriiceps. In N. coriiceps, glycogenolysis was essential in the first hours of exposure (2 h) at 8 °C and, in addition to inhibiting glucose-6-phosphatase activity, was important for activating the pentose phosphate pathway. In N. rossii, anaerobic metabolism was reduced in the first hours of exposure (2 and 6 h) at 8 °C, followed by reduced hexokinase activity, suggesting energy regulation between neurons and astrocytes. The antioxidant system results indicated the importance of the actions of the glutathione-dependent antioxidant enzymes glutathione-S-transferase and glutathione peroxidase as well as those of catalase in N. coriiceps and the action of glutathione-S-transferase, glutathione peroxidase and glutathione reductase in N. rossii, especially during the first 12 h of thermal stress exposure. These results indicate tissue-specific patterns and species-specific responses to this stress.
Collapse
|
14
|
Mandic M, Regan MD. Can variation among hypoxic environments explain why different fish species use different hypoxic survival strategies? ACTA ACUST UNITED AC 2018; 221:221/21/jeb161349. [PMID: 30381477 DOI: 10.1242/jeb.161349] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In aquatic environments, hypoxia is a multi-dimensional stressor that can vary in O2 level (partial pressure of O2 in water, PwO2 ), rate of induction and duration. Natural hypoxic environments can therefore be very different from one another. For the many fish species that have evolved to cope with these different hypoxic environments, survival requires adjusting energy supply and demand pathways to maintain energy balance. The literature describes innumerable ways that fishes combine aerobic metabolism, anaerobic metabolism and metabolic rate depression (MRD) to accomplish this, but it is unknown whether the evolutionary paths leading to these different strategies are determined primarily by species' phylogenetic histories, genetic constraint or their native hypoxic environments. We explored this idea by devising a four-quadrant matrix that bins different aquatic hypoxic environments according to their duration and PwO2 characteristics. We then systematically mined the literature for well-studied species native to environments within each quadrant, and, for each of 10 case studies, described the species' total hypoxic response (THR), defined as its hypoxia-induced combination of sustained aerobic metabolism, enhanced anaerobic metabolism and MRD, encompassing also the mechanisms underlying these metabolic modes. Our analysis revealed that fishes use a wide range of THRs, but that distantly related species from environments within the same matrix quadrant have converged on similar THRs. For example, environments of moderately hypoxic PwO2 favoured predominantly aerobic THRs, whereas environments of severely hypoxic PwO2 favoured MRD. Capacity for aerial emergence as well as predation pressure (aquatic and aerial) also contributed to these responses, in addition to other biotic and abiotic factors. Generally, it appears that the particular type of hypoxia experienced by a fish plays a major role in shaping its particular THR.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Matthew D Regan
- Comparative Biosciences Department, University of Wisconsin-Madison, Madison, WI 35706, USA
| |
Collapse
|
15
|
Aljbour SM, Al-Horani FA, Kunzmann A. Metabolic and oxidative stress responses of the jellyfish Cassiopea to pollution in the Gulf of Aqaba, Jordan. MARINE POLLUTION BULLETIN 2018; 130:271-278. [PMID: 29866557 DOI: 10.1016/j.marpolbul.2018.03.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/20/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Physiological responses of jellyfish to pollution are virtually overlooked. We measured the activity of two glycolytic enzymes (pyruvate kinase (PK) and lactate dehydrogenase (LDH)), lipid peroxidation (LPO), protein and chlorophyll a content in the jellyfish Cassiopea sp. from polluted and reference sites along the Gulf of Aqaba, Jordan. In jellyfish from polluted sites, low PK/LDH ratios and high LDH activity clarify their reliance on anaerobic metabolism. PK and LDH were positively correlated in the jellyfish. While medusae from polluted sites showed no signs of oxidative stress damage, protein content was significantly lower. This might suggest protein utilization for energy production needed for maintenance. Unchanged LPO in polluted sites indicates the ability of jellyfish to keep reactive oxygen species under control. Overall these results suggest that the jellyfish seems to tolerate the current levels of pollution at the studied sites and they might be anaerobically poised to live at such habitats.
Collapse
Affiliation(s)
- Samir M Aljbour
- Leibniz-Zentrum für Marine Tropenforschung (ZMT) GmbH, Bremen, Germany; Universität Bremen, Faculty of Biology and Chemistry, Bremen, Germany.
| | - Fuad A Al-Horani
- The University of Jordan, Aqaba, Jordan; Marine Science Station, Jordan
| | - Andreas Kunzmann
- Leibniz-Zentrum für Marine Tropenforschung (ZMT) GmbH, Bremen, Germany
| |
Collapse
|
16
|
Cota-Ruiz K, Leyva-Carrillo L, Peregrino-Uriarte AB, Valenzuela-Soto EM, Gollas-Galván T, Gómez-Jiménez S, Hernández J, Yepiz-Plascencia G. Role of HIF-1 on phosphofructokinase and fructose 1, 6-bisphosphatase expression during hypoxia in the white shrimp Litopenaeus vannamei. Comp Biochem Physiol A Mol Integr Physiol 2016; 198:1-7. [DOI: 10.1016/j.cbpa.2016.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 02/07/2023]
|
17
|
Redox proteomics and the dynamic molecular landscape of the aging brain. Ageing Res Rev 2014; 13:75-89. [PMID: 24374232 DOI: 10.1016/j.arr.2013.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/04/2013] [Accepted: 12/16/2013] [Indexed: 12/13/2022]
Abstract
It is well established that the risk to develop neurodegenerative disorders increases with chronological aging. Accumulating studies contributed to characterize the age-dependent changes either at gene and protein expression level which, taken together, show that aging of the human brain results from the combination of the normal decline of multiple biological functions with environmental factors that contribute to defining disease risk of late-life brain disorders. Finding the "way out" of the labyrinth of such complex molecular interactions may help to fill the gap between "normal" brain aging and development of age-dependent diseases. To this purpose, proteomics studies are a powerful tool to better understand where to set the boundary line of healthy aging and age-related disease by analyzing the variation of protein expression levels and the major post translational modifications that determine "protein" physio/pathological fate. Increasing attention has been focused on oxidative modifications due to the crucial role of oxidative stress in aging, in addition to the fact that this type of modification is irreversible and may alter protein function. Redox proteomics studies contributed to decipher the complexity of brain aging by identifying the proteins that were increasingly oxidized and eventually dysfunctional as a function of age. The purpose of this review is to summarize the most important findings obtained by applying proteomics approaches to murine models of aging with also a brief overview of some human studies, in particular those related to dementia.
Collapse
|
18
|
Mandic M, Speers-Roesch B, Richards JG. Hypoxia tolerance in sculpins is associated with high anaerobic enzyme activity in brain but not in liver or muscle. Physiol Biochem Zool 2012; 86:92-105. [PMID: 23303324 DOI: 10.1086/667938] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We assessed hypoxia tolerance in 11 species of fish from the superfamily Cottoidea (commonly called sculpins) that are known to differ in their critical O(2) tensions (P(crit)) and examined whether hypoxia tolerance correlated with larger substrate stores and higher maximal activity of enzymes associated with anaerobic adenosine triphosphate production (especially glycolysis). Among the sculpins studied, there was large variation in time to loss of equilibrium (LOE(50)) at 6.4 ± 0.1 torr, with values ranging between 25 and 538 min, and the variation in LOE(50) was correlated with P(crit). Our measures of time to LOE(50) and P(crit) were regressed against maximal enzyme activities of lactate dehydrogenase (LDH), pyruvate kinase (PK), creatine phosphokinase (CPK), and citrate synthase (CS) as well as the concentrations of glycogen, glucose, and creatine phosphate in the brain, liver, and white muscle. In the brain, there was a phylogenetically independent relationship between P(crit) and tissue LDH, PK, CPK, and CS activities expressed relative to tissue mass. Hypoxia-tolerant sculpins (those with low P(crit) values) had higher levels of brain LDH, PK, CPK, and CS than did hypoxia-sensitive sculpins. Similarly, LOE(50) regressed against brain LDH, PK, and CPK activities expressed relative to tissue mass, with the more hypoxia-tolerant species (i.e., those with higher LOE(50)) having higher enzyme activities. However, when the phylogenetic relationship among our sculpins was taken into account, only the relationship between hypoxia tolerance and LDH activity remained significant. When enzyme activities were expressed relative to total soluble protein in the tissue, the only relationships that remained were between brain LDH activity and P(crit) and LOE(50). In liver and white muscle, there were no relationships between the measures of hypoxia tolerance and enzyme activity or metabolite content. Overall, our analysis suggests that hypoxia-tolerant sculpins maintain higher maximal activities of some of the enzymes involved in anaerobic metabolism in the brain, and this may be an adaptation to hypoxia.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada.
| | | | | |
Collapse
|
19
|
Wulff T, Jokumsen A, Højrup P, Jessen F. Time-dependent changes in protein expression in rainbow trout muscle following hypoxia. J Proteomics 2012; 75:2342-51. [PMID: 22370164 DOI: 10.1016/j.jprot.2012.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/30/2012] [Accepted: 02/02/2012] [Indexed: 12/17/2022]
Abstract
Adaptation to hypoxia is a complex process, and individual proteins will be up- or down-regulated in order to address the main challenges at any given time. To investigate the dynamics of the adaptation, rainbow trout (Oncorhynchus mykiss) was exposed to 30% of normal oxygen tension for 1, 2, 5 and 24 h respectively, after which muscle samples were taken. The successful investigation of numerous proteins in a single study was achieved by selectively separating the sarcoplasmic proteins using 2-DE. In total 46 protein spots were identified as changing in abundance in response to hypoxia using one-way ANOVA and multivariate data analysis. Proteins of interest were subsequently identified by MS/MS following tryptic digestion. The observed regulation following hypoxia in skeletal muscle was determined to be time specific, as only a limited number of proteins were regulated in response to more than one time point. The cellular response to hypoxia included regulation of proteins involved in maintaining iron homeostasis, energy levels and muscle structure. In conclusion, this proteome-based study presents a comprehensive investigation of the expression profiles of numerous proteins at four different time points. This increases our understanding of timed changes in protein expression in rainbow trout muscle following hypoxia.
Collapse
Affiliation(s)
- Tune Wulff
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | | | | | | |
Collapse
|
20
|
Bremer K, Moyes CD. Origins of variation in muscle cytochrome c oxidase activity within and between fish species. J Exp Biol 2011; 214:1888-95. [DOI: 10.1242/jeb.053330] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Mitochondrial content, central to aerobic metabolism, is thought to be controlled by a few transcriptional master regulators, including nuclear respiratory factor 1 (NRF-1), NRF-2 and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Though well studied in mammals, the mechanisms by which these factors control mitochondrial content have been less studied in lower vertebrates. We evaluated the role of these transcriptional regulators in seasonal changes in white muscle cytochrome c oxidase (COX) activity in eight local fish species representing five families: Centrarchidae, Umbridae, Esocidae, Gasterosteidae and Cyprinidae. Amongst centrarchids, COX activity was significantly higher in winter for pumpkinseed (2-fold) and black crappie (1.3-fold) but not bluegill or largemouth bass. In esociforms, winter COX activity was significantly higher in central mudminnow (3.5-fold) but not northern pike. COX activity was significantly higher in winter-acclimatized brook stickleback (2-fold) and northern redbelly dace (3-fold). Though mudminnow COX activity increased in winter, lab acclimation to winter temperatures did not alter COX activity, suggesting a role for non-thermal cues. When mRNA was measured for putative master regulators of mitochondria, there was little evidence for a uniform relationship between COX activity and any of NRF-1, NRF-2α or PGC-1α mRNA levels Collectively, these studies argue against a simple temperature-dependent mitochondrial response ubiquitous in fish, and suggest that pathways which control mitochondrial content in fish may differ in important ways from those of the better studied mammals.
Collapse
Affiliation(s)
- Katharina Bremer
- Department of Biology, Queen's University, Kingston, ON, Canada, K7L 3N6
| | | |
Collapse
|
21
|
Dieni CA, Storey KB. Regulation of hexokinase by reversible phosphorylation in skeletal muscle of a freeze-tolerant frog. Comp Biochem Physiol B Biochem Mol Biol 2011; 159:236-43. [PMID: 21616160 DOI: 10.1016/j.cbpb.2011.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 02/02/2023]
Abstract
Hexokinase (HK) was isolated from hind leg skeletal muscle of the wood frog, Rana sylvatica, a freeze tolerant species that uses glucose as a cryoprotectant. Analysis of kinetic parameters (K(m) and V(max)) of HK showed significant increases in K(m) glucose (from 144 ± 4.4 to 248 ± 1 2.0 μM) and K(m) ATP (from 248 ± 8.5 to 330 ± 20.9 μM), as well as a decrease in V(max) (from 86.1 ± 0.40 to 52 ± 0.49 mUmg(-1) of protein) in frogs following freezing exposure, indicating lower affinity for HK substrates and lower enzyme activity in this state. Subsequent analyses indicated that differential phosphorylation of HK between the two states was responsible for the altered kinetic properties. HK was analyzed by SDS-PAGE; phosphoprotein staining revealed a 33% decrease in phosphate content of HK from frozen frogs but immunoblotting showed no change in total HK protein content. Muscle extracts from control and frozen frogs were incubated with ions and second messengers to stimulate the actions of protein kinases and protein phosphatases, with results indicating that HK can be phosphorylated by protein kinases A and C, and AMP-activated protein kinase, and can be dephosphorylated by protein phosphatases 1, 2A and 2C. The data indicate that in control frogs, HK is in a higher phosphate form and displays a high substrate affinity and high activity, whereas in frozen frogs HK is less phosphorylated, with lower substrate affinity and lower activity. Studies also showed that HK affinity for ATP decreases further in response to low temperature, but that high cryoprotective glucose concentrations can prevent these changes in affinity. Finally, the activity and structure of HK from frozen frogs is more sensitive to non-compatible osmolytes than the enzyme in control frogs.
Collapse
Affiliation(s)
- Christopher A Dieni
- Institute of Biochemistry and Department of Chemistry, Carleton University, Ottawa, Ontario, Canada.
| | | |
Collapse
|
22
|
Ngan AK, Wang YS. Tissue-specific transcriptional regulation of monocarboxylate transporters (MCTs) during short-term hypoxia in zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 2009; 154:396-405. [DOI: 10.1016/j.cbpb.2009.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/11/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
|
23
|
Wulff T, Jessen F, Roepstorff P, Hoffmann EK. Long term anoxia in rainbow trout investigated by 2-DE and MS/MS. Proteomics 2008; 8:1009-18. [DOI: 10.1002/pmic.200700460] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Lushchak VI, Bagnyukova TV, Lushchak OV, Storey JM, Storey KB. Diethyldithiocarbamate injection induces transient oxidative stress in goldfish tissues. Chem Biol Interact 2007; 170:1-8. [PMID: 17662702 DOI: 10.1016/j.cbi.2007.06.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/13/2007] [Accepted: 06/14/2007] [Indexed: 01/11/2023]
Abstract
The effects of intraperitoneal injection of diethyldithiocarbamate (DDC) on free radical processes were examined in brain, liver and kidney of goldfish (Carassius auratus). Levels of oxidatively modified lipids and proteins as well as the activities of antioxidant and associated enzymes were measured. Intraperitoneal injection of DDC at a concentration of 0.01 mg/g wet mass decreased SOD activities by about 30-50% after 48 and 168 h compared to corresponding sham-injected values. This treatment resulted in transient oxidative stress. Lipid peroxide content increased after DDC injection at all time points in the kidney, after 48 h in the liver and was elevated in most experimental groups in the brain. Thiobarbituric-acid reactive substances (end products of lipid peroxidation) rose within the first 48 h after injection, but returned to initial levels after 168 h. Two other indices of oxidative stress were also transiently modified: protein carbonyl levels in the brain and kidney increased 24h post-injection, and the low-molecular mass thiol content was reduced over the same period in all tissues examined. Activities of catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase, and glucose-6-phosphate dehydrogenase showed differential responses to DDC treatment that rebounded by 168 h post-injection. Glutathione peroxidase activities were reduced by 60, 45 and 65% in the brain, liver and kidney, respectively, after 24h but rebounded thereafter. After 48 h post-injection with DDC significant decreases were also seen in liver and kidney catalase, GST activities in all three tissues, and kidney GR and G6PDH activities. In some cases, catalase, GST, GR and G6PDH activities transiently increased after 24 h. It was concluded that DDC injection depleted SOD and simultaneously stimulated lipid peroxidation, but did not require compensatory enhancement of other enzymatic defenses. Different actions of the superoxide anion in cellular metabolism and possible consequences of the impairment of superoxide dismutase are discussed.
Collapse
Affiliation(s)
- Volodymyr I Lushchak
- Department of Biochemistry, Precarpathian National University Named After Vassyl Stefanyk, 57 Shevchenko Str, Ivano-Frankivsk, Ukraine.
| | | | | | | | | |
Collapse
|
25
|
Martínez ML, Landry C, Boehm R, Manning S, Cheek AO, Rees BB. Effects of long-term hypoxia on enzymes of carbohydrate metabolism in the Gulf killifish, Fundulus grandis. ACTA ACUST UNITED AC 2006; 209:3851-61. [PMID: 16985201 DOI: 10.1242/jeb.02437] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The goal of the current study was to generate a comprehensive, multi-tissue perspective of the effects of chronic hypoxic exposure on carbohydrate metabolism in the Gulf killifish Fundulus grandis. Fish were held at approximately 1.3 mg l(-1) dissolved oxygen (approximately 3.6 kPa) for 4 weeks, after which maximal activities were measured for all glycolytic enzymes in four tissues (white skeletal muscle, liver, heart and brain), as well as for enzymes of glycogen metabolism (in muscle and liver) and gluconeogenesis (in liver). The specific activities of enzymes of glycolysis and glycogen metabolism were strongly suppressed by hypoxia in white skeletal muscle, which may reflect decreased energy demand in this tissue during chronic hypoxia. In contrast, several enzyme specific activities were higher in liver tissue after hypoxic exposure, suggesting increased capacity for carbohydrate metabolism. Hypoxic exposure affected fewer enzymes in heart and brain than in skeletal muscle and liver, and the changes were smaller in magnitude, perhaps due to preferential perfusion of heart and brain during hypoxia. The specific activities of some gluconeogenic enzymes increased in liver during long-term hypoxic exposure, which may be coupled to increased protein catabolism in skeletal muscle. These results demonstrate that when intact fish are subjected to prolonged hypoxia, enzyme activities respond in a tissue-specific fashion reflecting the balance of energetic demands, metabolic role and oxygen supply of particular tissues. Furthermore, within glycolysis, the effects of hypoxia varied among enzymes, rather than being uniformly distributed among pathway enzymes.
Collapse
Affiliation(s)
- Mery L Martínez
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | | | | | | | | | | |
Collapse
|
26
|
Mediavilla D, Metón I, Baanante IV. Purification and kinetic properties of 6-phosphofructo-1-kinase from gilthead sea bream muscle. Biochim Biophys Acta Gen Subj 2006; 1770:706-15. [PMID: 17229526 DOI: 10.1016/j.bbagen.2006.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 11/27/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
The kinetic properties of 6-phosphofructo-1-kinase (PFK) from skeletal muscle (PFKM) of gilthead sea bream (Sparus aurata) were studied, after 10,900-fold purification to homogeneity. The native enzyme had an apparent molecular mass of 662 kDa and is composed of 81 kDa subunits, suggesting a homooctameric structure. At physiological pH, S. aurata PFKM exhibited sigmoidal kinetics for the substrates, fructose-6-phosphate (fru-6-P) and ATP. Fructose-2,6-bisphosphate (fru-2,6-P(2)) converted the saturation curves for fru-6-P to hyperbolic, activated PFKM synergistically with other positive effectors of the enzyme such as AMP and ADP, and counteracted ATP and citrate inhibition. The fish enzyme showed differences regarding other animal PFKs: it is active as a homooctamer, and fru-2,6-P(2) and pH affected affinity for ATP. By monitoring incorporation of (32)P from ATP, we show that fish PFKM is a substrate for the cAMP-dependent protein kinase. The mechanism involved in PFKM activation by phosphorylation contrasts with previous observations in other species: it increased V(max) and did not affect affinity for fru-6-P. Unlike the mammalian muscle enzyme, our findings support that phosphorylation of PFKM may exert a major role during starvation in fish muscle.
Collapse
Affiliation(s)
- Dominica Mediavilla
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | | | | |
Collapse
|
27
|
Simpfendörfer RW, Oelckers KB, López DA. Phosphofructokinase from muscle of the marine giant barnacle Austromegabalanus psittacus: kinetic characterization and effect of in vitro phosphorylation. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:382-389. [PMID: 16464641 DOI: 10.1016/j.cbpc.2005.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 11/22/2005] [Accepted: 11/25/2005] [Indexed: 11/26/2022]
Abstract
The kinetic properties of phosphofructokinase from muscle of the giant cirripede Austromegabalanus psittacus were characterized, after partial purification by ion exchange chromatography on DEAE-cellulose. This enzyme showed differences regarding PFKs from other marine invertebrates: the affinity for fructose 6-phosphate (Fru 6-P) was very low, with an S(0.5) of 22.6+/-1.4 mM (mean+/-S.D., n=3), and a high cooperativity (n(H) of 2.90+/-0.21; mean+/-S.D., n=3). The barnacle PFK showed hyperbolic saturation kinetics for ATP (apparent K(m ATP)=70 microM, at 5 mM Fru 6-P, in the presence of 2 mM ammonium sulfate). ATP concentrations higher than 1 mM inhibited the enzyme. Ammonium sulfate activated the PFK several folds, increasing the affinity of the enzyme for Fru 6-P and V(max). 5'-AMP (0.2 mM) increased the affinity for Fru 6-P (S(0.5) of 6.2 mM). Fructose 2,6-bisphosphate activated the PFK, with a maximal activation at concentrations higher than 2 microM. Citrate reverted the activation of PFK produced by 0.2 mM 5'-AMP (IC(50 citrate)=2.0 mM), producing a higher inhibition than that exerted on other invertebrate PFKs. Barnacle muscular PFK was activated in vitro after exposure to exogenous cyclic-AMP (0.1 mM) as well as by phosphatidylserine (50 microg/ml), indicating a possible control by protein kinase A and a phospholipid dependent protein kinase (PKC). The results suggest a highly regulated enzyme in vivo, by allosteric mechanisms and also by protein phosphorylation.
Collapse
Affiliation(s)
- Robert W Simpfendörfer
- Departamento de Acuicultura y Recursos Acuáticos, Universidad de Los Lagos, Casilla 933, Osorno, Chile.
| | - Karin B Oelckers
- Departamento de Acuicultura y Recursos Acuáticos, Universidad de Los Lagos, Casilla 933, Osorno, Chile
| | - Daniel A López
- Departamento de Acuicultura y Recursos Acuáticos, Universidad de Los Lagos, Casilla 933, Osorno, Chile
| |
Collapse
|
28
|
Abstract
The role of oxygen in regulating patterns of gene expression in mammalian development, physiology, and pathology has received increasing attention, especially after the discovery of the hypoxia-inducible factor (HIF), a transcription factor that has been likened to a "master switch" in the transcriptional response of mammalian cells and tissues to low oxygen. At present, considerably less is known about the molecular responses of nonmammalian vertebrates and invertebrates to hypoxic exposure. Because many animals live in aquatic habitats that are variable in oxygen tension, it is relevant to study oxygen-dependent gene expression in these animals. The purpose of this review is to discuss hypoxia-induced gene expression in fishes from an evolutionary and ecological context. Recent studies have described homologs of HIF in fish and have begun to evaluate their function. A number of physiological processes are known to be altered by hypoxic exposure of fish, although the evidence linking them to HIF is less well developed. The diversity of fish presents many opportunities to evaluate if inter- and intraspecific variation in HIF structure and function correlate with hypoxia tolerance. Furthermore, as an aquatic group, fish offer the opportunity to examine the interactions between hypoxia and other stressors, including pollutants, common in aquatic environments. It is possible, if not likely, that results obtained by studying the molecular responses of fish to hypoxia will find parallels in the oxygen-dependent responses of mammals, including humans. Moreover, novel responses to hypoxia could be discovered through studies of this diverse and species-rich group.
Collapse
Affiliation(s)
- Mikko Nikinmaa
- Dept. of Biology, Univ. of Turku, FI-20014 Turku, Finland.
| | | |
Collapse
|
29
|
Semchyshyn H, Lushchak V, Storey K. Possible Reasons for Difference in Sensitivity to Oxygen of Two Escherichia coli Strains. BIOCHEMISTRY (MOSCOW) 2005; 70:424-31. [PMID: 15892608 DOI: 10.1007/s10541-005-0132-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In preliminary experiments it was found that Escherichia coli strains AB1157 and KS400 are different in their abilities to grow under various oxygen levels in cultivation medium: the first strain does not grow under high oxygen conditions, unlike the second one. To investigate whether the damage to cellular components due to production of reactive oxygen species (ROS) was responsible for this difference, the intensity of free radical oxidation of proteins and lipids as well as the activities of selected antioxidant and associated enzymes (superoxide dismutase, catalase, peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase) were compared in the two strains. The level of thiobarbituric acid-reactive substances was 1.8-2.5-fold higher in AB1157 than in KS400, but the concentration of carbonyl proteins was lower in the AB1157 strain. In both strains growth under higher oxygen levels resulted in higher superoxide dismutase and peroxidase activities in both exponential and stationary phases. Overall, the activities of antioxidant enzymes were always higher in the KS400 strain than in AB1157. The results for both lipid and protein oxidative damage and antioxidant enzyme activities suggest that the differences in oxygen tolerance between these two strains may be due to their different abilities to cope with ROS.
Collapse
Affiliation(s)
- H Semchyshyn
- Department of Biochemistry, Vassyl Stefanyk Precarpathian National University, 76025 Ivano-Frankivsk, Ukraine
| | | | | |
Collapse
|
30
|
De Fraga LS, Da Silva RSM, Achaval M, Zancan DM. Carbohydrate metabolism in the central nervous system of the megalobulimus oblongus snail during anoxia exposure and post-anoxia recovery. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2004; 301:968-78. [PMID: 15562446 DOI: 10.1002/jez.a.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The effects of anoxic exposure and the post-anoxia aerobic recovery period on carbohydrate metabolism in the central nervous system (CNS) of the land snail Megalobulimus oblongus, an anoxia-tolerant land gastropod, were studied. The snails were exposed to anoxia for periods of 1.5, 3, 6, 12, 18, or 24 hr. In order to study the post-anoxia recovery phase, snails exposed to a 3-hr period of anoxia were returned to aerobic conditions for 1.5, 3, 6, or 15 hr. Glycogen and glucose concentrations in the CNS, hemolymph glucose concentration, and glycogen phosphorylase (active form, GPa) activity in the CNS were analyzed. Anoxia does not significantly affect the concentration of CNS glucose but induces hyperglycemia and a reduction of CNS GPa activity. The glycogen concentration was decreased at 12 hr of anoxia; however, by 18 and 24 hr in anoxia, the glycogen content was not significantly different from basal control values. During the post-anoxia period, the reduction in GPa activity and the increased hemolymph glucose concentration induced by anoxia returned to control values. These results suggest that the CNS of M. oblongus may use hemolymph glucose to fulfill the metabolic demands during anoxia. However, the hypothesis of tissue metabolic arrest cannot be excluded.
Collapse
Affiliation(s)
- Luciano S De Fraga
- Departamento de Fisiologia, Laboratório de Neurobiologia Comparada e Laboratório de Metabolismo e Endocrinologia de Invertebrados, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90050-170, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
31
|
Poon HF, Castegna A, Farr SA, Thongboonkerd V, Lynn BC, Banks WA, Morley JE, Klein JB, Butterfield DA. Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain. Neuroscience 2004; 126:915-26. [PMID: 15207326 DOI: 10.1016/j.neuroscience.2004.04.046] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 04/23/2004] [Accepted: 04/27/2004] [Indexed: 10/26/2022]
Abstract
The senescence-accelerated mouse (SAM) is a murine model of accelerated senescence that was established using phenotypic selection. The SAMP series includes nine substrains, each of which exhibits characteristic disorders. SAMP8 is known to exhibit age-dependent learning and memory deficits. In our previous study, we reported that brains from 12-month-old SAMP8 have greater protein oxidation, as well as lipid peroxidation, compared with brains from 4-month-old SAMP8 mice. In order to investigate the relation between age-associated oxidative stress on specific protein oxidation and age-related learning and memory deficits in SAMP8, we used proteomics to identify proteins that are expressed differently and/or modified oxidatively in aged SAMP8 brains. We report here that in 12 month SAMP8 mice brains the expressions of neurofilament triplet L protein, lactate dehydrogenase 2 (LDH-2), heat shock protein 86, and alpha-spectrin are significantly decreased, while the expression of triosephosphate isomerase (TPI) is increased compared with 4-month-old SAMP8 brains. We also report that the specific protein carbonyl levels of LDH-2, dihydropyrimidinase-like protein 2, alpha-spectrin and creatine kinase, are significantly increased in the brain of 12-month-old SAMP8 mice when compared with the 4-month-old SAMP8 brain. These findings are discussed in reference to the effect of specific protein oxidation and changes of expression on potential mechanisms of abnormal alterations in metabolism and neurochemicals, as well as to the learning and memory deficits in aged SAMP8 mice.
Collapse
Affiliation(s)
- H F Poon
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
This review focuses on recent research on the metabolic function of fish brain. Fish brain is isolated from the systemic circulation by a blood-brain barrier that allows the transport of glucose, monocarboxylates and amino acids. The limited information available in fishes suggests that oxidation of exogenous glucose and oxidative phosphorylation provide most of the ATP required for brain function in teleosts, whereas oxidation of ketones and amino acids occurs preferentially in elasmobranchs. In several agnathans and benthic teleosts brain glycogen levels rather than exogenous glucose may be the proximate glucose source for oxidation. In situations when glucose is in limited supply, teleost brains utilize other fuels such as lactate or ketones. Information on use of lipids and amino acids as fuels in fish brain is scarce. The main pathways of brain energy metabolism are changed by several effectors. Thus, several parameters of brain energy metabolism have been demonstrated to change post-prandially in teleostean fishes. The absence of food in teleosts elicits profound changes in brain energy metabolism (increased glycogenolysis and use of ketones) in a way similar to that demonstrated in mammals though delayed in time. Environmental factors induce changes in brain energy parameters in teleosts such as the enhancement of glycogenolysis elicited by pollutants, increased capacity for anaerobic glycolysis under hypoxia/anoxia or changes in substrate utilization elicited by adaptation to cold. Furthermore, several studies demonstrate effects of melatonin, insulin, glucagon, GLP-1, cortisol or catecholamines on energy parameters of teleost brain, although in most cases the results are quite preliminary being difficult to relate the effects of those hormones to physiological situations. The few studies performed with the different cell types available in the nervous system of fish allow us to hypothesize few functional relationships among those cells. Future research perspectives are also outlined.
Collapse
Affiliation(s)
- José L Soengas
- Laboratorio de Fisioloxía Animal, Facultade de Ciencias, Universidade de Vigo, E-36200, Vigo, Spain.
| | | |
Collapse
|
33
|
Effects of acute hypoxia on the energy status and antioxidant defense system in the blood of carp - Cyprinvs carpio L. ARCH BIOL SCI 2002. [DOI: 10.2298/abs0202011z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The influence of acute hypoxia on glucose, pyruvate, lipid peroxide (LP) reduced glutathione (GSH) concentrations and lactate level in the whole blood of carp (Cyprinus carpio L) under aquarium conditions were studied. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), the concentrations of ATP and ADP and ATP/ADP ratio in the red blood cells (RBCs) were analyzed. Glutathione-S-transferase (GST) activity was determined in the plasma. Our experiments showed that short-term and long-term hypoxia causes significant changes of all examined haema-tological parameters. Increased concentration of LP and increased SOD CAT and GST activities, as well as a decreased GSH-Px activity showed that under hypoxic conditions oxidative stress and RBCs damage were produced.
Collapse
|
34
|
Lushchak VI, Bagnyukova TV, Storey JM, Storey KB. Influence of exercise on the activity and the distribution between free and bound forms of glycolytic and associated enzymes in tissues of horse mackerel. Braz J Med Biol Res 2001; 34:1055-64. [PMID: 11471046 DOI: 10.1590/s0100-879x2001000800013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effects of short-term burst (5 min at 1.8 m/s) swimming and long-term cruiser (60 min at 1.2 m/s) swimming on maximal enzyme activities and enzyme distribution between free and bound states were assessed for nine glycolytic and associated enzymes in tissues of horse mackerel, Trachurus mediterraneus ponticus. The effects of exercise were greatest in white muscle. The activities of phosphofructokinase (PFK), pyruvate kinase (PK), fructose-1,6-bisphosphatase (FBPase), and phosphoglucomutase (PGM) all decreased to 47, 37, 37 and 67%, respectively, during 60-min exercise and all enzymes except phosphoglucoisomerase (PGI) and PGM showed a change in the extent of binding to subcellular particulate fractions during exercise. In red muscle, exercise affected the activities of PGI, FBPase, PFK, and lactate dehydrogenase (LDH) and altered percent binding of only PK and LDH. In liver, exercise increased the PK activity 2.3-fold and reduced PGI 1.7-fold only after 5 min of exercise but altered the percent binding of seven enzymes. Fewer effects were seen in brain, with changes in the activities of aldolase and PGM and in percent binding of hexokinase, PFK and PK. Changes in enzyme activities and in binding interactions with subcellular particulate matter appear to support the altered demands of tissue energy metabolism during exercise.
Collapse
Affiliation(s)
- V I Lushchak
- Department of Natural Sciences, Precarpathian University, 57 Shevchenko Str., Ivano-Frankivsk, 76000 Ukraine.
| | | | | | | |
Collapse
|