1
|
Sun X, Xiao T, Qin J, Song Y, Lu K, Ding R, Shi W, Bian Q. Mechanism of circRNA_SMG6 mediating lung macrophage ECM degradation via miR-570-3p in microplastics-induced emphysema. ENVIRONMENT INTERNATIONAL 2024; 187:108701. [PMID: 38685156 DOI: 10.1016/j.envint.2024.108701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Microplastics (MPs) are plastic particles < 5 mm in diameter, of which polystyrene microplastics (PS-MPs) are representative type. The extracellular matrix (ECM) degradation of macrophages is associated with the development of emphysema. Additionally, circular RNAs (circRNAs) have a regulatory role in epigenetic mechanisms related to lung disease. However, the mechanisms of the ECM degradation and circRNAs in MPs-induced emphysema are still unclear. In our study, Sprague-Dawley (SD) rats were treated with 0, 0.5, 1.0 and 2.0 mg/m3 100 nm PS-MPs for 90 days in an inhalation experiment. PS-MPs-exposed rats showed elevated airway resistance and pulmonary dysfunction. Lung histopathology exhibited inflammatory cell infiltration, septal thickening and alveolar dilatation. Exposure to PS-MPs was able to induce elevated levels of ECM degradation-related markers MMP9 and MMP12, as well as reduced levels of elastin in rat lung tissues. CircRNA_SMG6 is a non-coding RNA (ncRNA) with a homologous circular structure in human, rat and mouse. The expression level of circRNA_SMG6 was decreased in both rat lung tissues exposed to PS-MPs and PS-MPs-treated THP-1 cells. The luciferase reporter gene demonstrated that circRNA_SMG6 combined with miR-570-3p and co-regulated PTEN, the target gene of miR-570-3p. Moreover, overexpression of circRNA_SMG6 or inhibition of miR-570-3p attenuated PS-MPs-induced ECM degradation in THP-1 cells. Taken together, circRNA_SMG6 may have a significant function in the deterioration of emphysema caused by PS-MPs-induced macrophage ECM degradation by regulating miR-570-3p. Our findings reveal a novel mechanism of emphysema caused by PS-MPs and provide valuable information for assessing the health risks of MPs.
Collapse
Affiliation(s)
- Xiaoxue Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Tian Xiao
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Junjie Qin
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Song
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 211198, China
| | - Kuikui Lu
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Ruoheng Ding
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weiqing Shi
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Qian Bian
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China.
| |
Collapse
|
2
|
Xu W, Li F, Zhu L, Cheng M, Cheng Y. Pacenta polypeptide injection alleviates the fibrosis and inflammation in cigarette smoke extracts-induced BEAS-2B cells by modulating MMP-9/TIMP-1 signaling. J Biochem Mol Toxicol 2023; 37:e23453. [PMID: 37437075 DOI: 10.1002/jbt.23453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) has high morbidity and mortality. Here, we aimed to explore the roles and potential correlation of placenta polypeptide injection (PPI) and MMP-9/TIMP-1 signaling pathway in COPD. BEAS-2B cells were treated with cigarette smoke extract (CSE) to establish a COPD cell model in vitro. The cell survival and cytotoxic effect were measured by CCK-8, LDH release and flow cytometry assays. The inflammatory responses were determined by western blot and ELISA assay. Cell fibrosis was assessed by immunofluorescence and western blot assays. PPI treatment had no cytotoxic effect on BEAS-2B cells until the final concentration reached to 10%. In the range of 0%-8% final concentration, PPI treatment weakened CSE-induced the decrease of cell viability and the increase of LDH level in a concentration-dependent manner. Four percent PPI treatment enhanced cell viability and decreased cell apoptosis of CSE-treated cells in a time-dependent manner. Moreover, 4% PPI treatment significantly decreased inflammatory responses and fibrosis induced by CSE, while AMPA (MMPs agonist) had opposite effects. Notably, AMPA reversed the protective roles of PPI on CSE-induced inflammation and fibrosis. Mechanistically, 4% PPI treatment significantly suppressed MMP-1, MMP-2, MMP-3, MMP-9, MMP-13, and MMP-19 levels, but enhanced TIMP-1, TIMP-2, TIMP-3, and TIMP-4 levels. Among them, MMP-9 and TIMP-1 might be the main target of PPI. PPI effectively attenuated CSE-induced inflammation and fibrosis in vitro by regulating MMP-9/TIMP-1 signaling pathway.
Collapse
Affiliation(s)
- Wei Xu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, PR China
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China
| | - Fuqiang Li
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China
| | - Lihong Zhu
- Department of General Practice, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China
| | - Mingliang Cheng
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China
| | - Yiju Cheng
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, PR China
- Suzhou Medical College of Soochow University & The First People's Hospital of Guiyang, Guiyang, Guizhou Province, PR China
| |
Collapse
|
3
|
Zhao Z, Tong Y, Kang Y, Qiu Z, Li Q, Xu C, Wu G, Jia W, Wang P. Sodium butyrate (SB) ameliorated inflammation of COPD induced by cigarette smoke through activating the GPR43 to inhibit NF-κB/MAPKs signaling pathways. Mol Immunol 2023; 163:224-234. [PMID: 37864932 DOI: 10.1016/j.molimm.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Cigarette smoke is recognized as a major trigger for individuals with chronic obstructive pulmonary disease (COPD), leading to an amplified inflammatory response. The onset and progression of COPD are affected by multiple environmental and genetic risk factors, such as inflammatory mechanisms, oxidative stress, and an imbalance between proteinase and antiprotease. As a result, conventional drug therapies often have limited effectiveness. This study aimed to investigate the anti-inflammatory effect of sodium butyrate (SB) in COPD and explore its molecular mechanism, thereby deepening our understanding of the potential application of SB in the treatment of COPD. In our study, we observed an increase in the mRNA and protein expressions of inflammatory factors interleukin-1beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), Matrix metallopeptidase 9 (MMP9) and MMP12 in both NR8383 cell and rat models of COPD. However, these expressions were significantly reduced after SB treatment. Meanwhile, SB treatment effectively decreased the phosphorylation levels of nuclear transcription factor-kappa B (NF-κB) p65, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) and inhibited the nuclear translocation of these proteins in the COPD cells, leading to a reduction in the expression of various inflammatory cytokines. Additionally, SB also inhibited the expression level of the Nod-like receptor pyrin domain 3 (NLRP3) inflammasome, which consists of NLRP3, apoptosis-associated speck-like protein (ASC), and Caspase-1 in the cigeratte smoke extract (CSE)-stimulated cells. Our results showed that CSE down-regulated the mRNA levels of G-protein-coupled receptor 43 (GPR43) and GPR109A, while SB only up-regulated the expression of GPR43 and had no effect on GPR109A. Moreover, additional analysis demonstrated that the knockdown of GPR43 diminishes the anti-inflammatory effects of SB. It is evident that siRNA-mediated knockdown of GPR43 prevented the reduction in mRNA expression of IL-1β, IL-6, TNF-α, MMP9, and MMP12, as well as the expression of phosphorylated proteins NF-κB p65, JNK, and p38 MAPKs with SB treatment. These findings revealed a SB/GPR43 mediated pathway essential for attenuating pulmonary inflammatory responses in COPD, which may offer potential new treatments for COPD.
Collapse
Affiliation(s)
- Zhijun Zhao
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China; Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuting Kang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Zhuoran Qiu
- College of clinical medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Qiujie Li
- College of clinical medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Chao Xu
- College of clinical medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Geng Wu
- College of clinical medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Wei Jia
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China; Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Pengtao Wang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
4
|
Liu Z, Pan H, Liu B, Li L, Yang H, Shen T. Environmental and occupational risk factors for COPD and its prevalence among miners worldwide: a Mendelian randomization and meta-analysis study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97545-97561. [PMID: 37592069 DOI: 10.1007/s11356-023-29269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death after cardiovascular disease and stroke, and its incidence is associated with genetic, environmental, and occupational factors. Miner is high-risk population for COPD, but the global prevalence of COPD in this group is inaccurate. In this study, the environmental and occupational risk factors for COPD were explored comprehensively with a two-sample Mendelian randomization study by combining genome-wide association data from two large global sample sizes of publicly available databases, UK Biobank (n = 503,317) and FinnGen (n = 193,638), as well as the prevalence of COPD among miners was investigated with meta-analysis followed a random-effects model including seven studies (16,033 miners in total). This study found that asthma, smoking, shift work, and workplace dust exposure may increase an individual's risk of COPD. The pooled prevalence of COPD among miners globally was 12% (95% CI: 8%, 18%), with higher prevalence of COPD among ex-smokers and dust-exposed individuals, and was significantly influenced by the method of diagnosis. Our findings suggest that there is currently a lack of practical criteria for diagnosing COPD in the physical examination and screening of miners. The actual prevalence of COPD may be underestimated due to the healthy worker effect and the phenomenon of job switching, and appropriate policies should be favored in the future to reduce the risk of COPD in miner.
Collapse
Affiliation(s)
- Zikai Liu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Haihong Pan
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Bin Liu
- Department of Medical Aspects of Specific Environments, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Lanlan Li
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Hongxu Yang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
5
|
Rodriguez-Herrera AJ, de Souza ABF, Castro TDF, Machado-Junior PA, Gomez ECM, Menezes TP, da Cruz Castro ML, Talvani A, Costa DC, Cangussú SD, Bezerra FS. Long-term e-cigarette aerosol exposure causes pulmonary emphysema in adult female and male mice. Regul Toxicol Pharmacol 2023:105412. [PMID: 37247649 DOI: 10.1016/j.yrtph.2023.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/14/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
This study aimed to evaluate long-term exposure to conventional cigarette smoke (CC) and electronic cigarette (EC) aerosol in adult male and female C57BL/6 mice. Forty-eight C57BL/6 mice were used, male (n = 24) and female (n = 24), both were divided into three groups: control, CC and EC. The CC and EC groups were exposed to cigarette smoke or electronic cigarette aerosol, respectively, 3 times a day for 60 consecutive days. Afterwards, they were maintained for 60 days without exposure to cigarettes or electronic cigarette aerosol. Both cigarettes promoted an influx of inflammatory cells to the lung in males and females. All animals exposed to CC and EC showed an increase in lipid peroxidation and protein oxidation. There was an increase of IL-6 in males and females exposed to EC. The IL-13 levels were higher in the females exposed to EC and CC. Both sexes exposed to EC and CC presented tissue damage characterized by septal destruction and increased alveolar spaces compared to control. Our results demonstrated that exposure to CC and EC induced pulmonary emphysema in both sexes, and females seem to be more susceptible to EC.
Collapse
Affiliation(s)
- Andrea Jazel Rodriguez-Herrera
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Pedro Alves Machado-Junior
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Elena Cecilia Marcano Gomez
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Tatiana Prata Menezes
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Maria Laura da Cruz Castro
- Laboratory of Metabolic Biochemistry, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil.
| |
Collapse
|
6
|
Cao X, Wang Y, Chen Y, Zhao M, Liang L, Yang M, Li J, Peng M, Li W, Yue Y, Zhang H, Li C, Shu Z. Advances in traditional Chinese medicine for the treatment of chronic obstructive pulmonary disease. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116229. [PMID: 36773789 DOI: 10.1016/j.jep.2023.116229] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally and thus imposes heavy economic burden on patients, their families, and society. Furthermore, COPD seriously affects the quality of life of patients. The concept of "overall regulation" of traditional Chinese medicine (TCM) plays an important role in the prevention and treatment of COPD. AIM OF THE STUDY The objective of this review is to summarize the TCM theories, experimental methods, TCM extracts, active TCM ingredients, and TCM formulas for the treatment of COPD and reveal the effects and mechanisms of TCM treatments on COPD. MATERIALS AND METHODS This article reviewed literature on TCM-based treatments for COPD reported from 2016 to 2021. Relevant scientific studies were obtained from databases that included PubMed, China National Knowledge Infrastructure, Web of Science, Google Scholar, The Plant List, ScienceDirect, and SciFinder. RESULTS This review summarized TCM-based theory, experimental methods, active ingredients, and potential toxicities, the effects of TCM extracts and formulations, and their mechanisms for the treatment of COPD. Most investigators have used in vivo models of cigarette smoke combined with lipopolysaccharide induction in rats and in vitro models of cigarette smoke extract induction. The active ingredients of TCM used for the treatment of COPD in relevant studies were triterpenoids, flavonoids, phenolics, quinones, glycosides, and alkaloids. TCMs commonly used in the treatment of COPD include antipyretic drugs, tonic medicines, anticough medications, and asthma medications. TCM can treat COPD by suppressing inflammation, reducing oxidative stress, inhibiting apoptosis, and improving airway remodeling. CONCLUSIONS This review enriches the theory of COPD treatments based on TCM, established the clinical significance and development prospects of TCM-based COPD treatments, and provided the necessary theoretical support for the further development of TCM resources for the treatment of COPD.
Collapse
Affiliation(s)
- Xia Cao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mantong Zhao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lanyuan Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mengru Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianhua Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mingming Peng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wei Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yiming Yue
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Han Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Pharmacy, Jiamusi University, Jiamusi, 154000, China
| | - Chuanqiu Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zunpeng Shu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Nurlu Temel E, Savran M, Erzurumlu Y, Hasseyid N, Buyukbayram HI, Okuyucu G, Sevuk MA, Ozmen O, Beyan AC. The β1 Adrenergic Blocker Nebivolol Ameliorates Development of Endotoxic Acute Lung Injury. J Clin Med 2023; 12:jcm12051721. [PMID: 36902508 PMCID: PMC10003295 DOI: 10.3390/jcm12051721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Acute lung injury (ALI) is a disease, with no effective treatment, which might result in death. Formations of excessive inflammation and oxidative stress are responsible for the pathophysiology of ALI. Nebivolol (NBL), a third-generation selective β1 adrenoceptor antagonist, has protective pharmacological properties, such as anti-inflammatory, anti-apoptotic, and antioxidant functions. Consequently, we sought to assess the efficacy of NBL on a lipopolysaccharide (LPS)-induced ALI model via intercellular adhesion molecule-1 (ICAM-1) expression and the tissue inhibitor of metalloproteinases-1 (TIMP-1)/matrix metalloproteinases-2 (MMP-2) signaling. Thirty-two rats were split into four categories: control, LPS (5 mg/kg, intraperitoneally [IP], single dose), LPS (5 mg/kg, IP, one dosage 30 min after last NBL treatment), + NBL (10 mg/kg oral gavage for three days), and NBL (10 mg/kg oral gavage for three days). Six hours after the administration of LPS, the lung tissues of the rats were removed for histopathological, biochemical, gene expression, and immunohistochemical analyses. Oxidative stress markers such as total oxidant status and oxidative stress index levels, leukocyte transendothelial migration markers such as MMP-2, TIMP-1, and ICAM-1 expressions in the case of inflammation, and caspase-3 as an apoptotic marker, significantly increased in the LPS group. NBL therapy reversed all these changes. The results of this study suggest that NBL has utility as a potential therapeutic agent to dampen inflammation in other lung and tissue injury models.
Collapse
Affiliation(s)
- Esra Nurlu Temel
- Department of Infectious Diseases, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
- Correspondence: ; Tel.: +90-532-551-94-39; Fax: +90-246-237-11-65
| | - Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Yalcın Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Nursel Hasseyid
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Halil Ibrahim Buyukbayram
- Department of Medical Biochemistry, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Gozde Okuyucu
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Turkey
| | - Mehmet Abdulkadir Sevuk
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Turkey
| | - Ayse Coskun Beyan
- Department of Occupational Medicine, Faculty of Medicine, Dokuz Eylul University, 35220 İzmir, Turkey
| |
Collapse
|
8
|
Ortiz-Zapater E, Signes-Costa J, Montero P, Roger I. Lung Fibrosis and Fibrosis in the Lungs: Is It All about Myofibroblasts? Biomedicines 2022; 10:biomedicines10061423. [PMID: 35740444 PMCID: PMC9220162 DOI: 10.3390/biomedicines10061423] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
In the lungs, fibrosis is a growing clinical problem that results in shortness of breath and can end up in respiratory failure. Even though the main fibrotic disease affecting the lung is idiopathic pulmonary fibrosis (IPF), which affects the interstitial space, there are many fibrotic events that have high and dangerous consequences for the lungs. Asthma, chronic obstructive pulmonary disease (COPD), excessive allergies, clearance of infection or COVID-19, all are frequent diseases that show lung fibrosis. In this review, we describe the different kinds of fibrosis and analyse the main types of cells involved-myofibroblasts and other cells, like macrophages-and review the main fibrotic mechanisms. Finally, we analyse present treatments for fibrosis in the lungs and highlight potential targets for anti-fibrotic therapies.
Collapse
Affiliation(s)
- Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Faculty of Medicine-IIS INCLIVA, University of Valencia, 46010 Valencia, Spain
- Correspondence:
| | | | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (P.M.); (I.R.)
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (P.M.); (I.R.)
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Ramírez-Martínez G, Jiménez-Álvarez LA, Cruz-Lagunas A, Ignacio-Cortés S, Gómez-García IA, Rodríguez-Reyna TS, Choreño-Parra JA, Zúñiga J. Possible Role of Matrix Metalloproteinases and TGF-β in COVID-19 Severity and Sequelae. J Interferon Cytokine Res 2022; 42:352-368. [PMID: 35647937 PMCID: PMC9422783 DOI: 10.1089/jir.2021.0222] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The costs of coronavirus disease 2019 (COVID-19) are devastating. With millions of deaths worldwide, specific serological biomarkers, antiviral agents, and novel therapies are urgently required to reduce the disease burden. For these purposes, a profound understanding of the pathobiology of COVID-19 is mandatory. Notably, the study of immunity against other respiratory infections has generated reference knowledge to comprehend the paradox of the COVID-19 pathogenesis. Past studies point to a complex interplay between cytokines and other factors mediating wound healing and extracellular matrix (ECM) remodeling that results in exacerbated inflammation, tissue injury, severe manifestations, and a sequela of respiratory infections. This review provides an overview of the immunological process elicited after severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Also, we analyzed available data about the participation of matrix metalloproteinases (MMPs) and transforming growth factor-beta (TGF-β) in immune responses of the lungs. Furthermore, we discuss their possible implications in severe COVID-19 and sequela, including pulmonary fibrosis, and remark on the potential of these molecules as biomarkers for diagnosis, prognosis, and treatment of convalescent COVID-19 patients. Our review provides a theoretical framework for future research aimed to discover molecular hallmarks that, combined with clinical features, could serve as therapeutic targets and reliable biomarkers of the different clinical forms of COVID-19, including convalescence.
Collapse
Affiliation(s)
- Gustavo Ramírez-Martínez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Luis Armando Jiménez-Álvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Sergio Ignacio-Cortés
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| | - Tatiana Sofia Rodríguez-Reyna
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| |
Collapse
|
10
|
Sánchez KE, Rosenberg GA. Shared Inflammatory Pathology of Stroke and COVID-19. Int J Mol Sci 2022; 23:5150. [PMID: 35563537 PMCID: PMC9101120 DOI: 10.3390/ijms23095150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Though COVID-19 is primarily characterized by symptoms in the periphery, it can also affect the central nervous system (CNS). This has been established by the association between stroke and COVID-19. However, the molecular mechanisms that cause stroke related to a COVID-19 infection have not been fully explored. More specifically, stroke and COVID-19 exhibit an overlap of molecular mechanisms. These similarities provide a way to better understand COVID-19 related stroke. We propose here that peripheral macrophages upregulate inflammatory proteins such as matrix metalloproteinases (MMPs) in response to SARS-CoV-2 infection. These inflammatory molecules and the SARS-CoV-2 virus have multiple negative effects related to endothelial dysfunction that results in the disruption of the blood-brain barrier (BBB). Finally, we discuss how the endothelial blood-brain barrier injury alters central nervous system function by leading to astrocyte dysfunction and inflammasome activation. Our goal is to elucidate such inflammatory pathways, which could provide insight into therapies to combat the negative neurological effects of COVID-19.
Collapse
Affiliation(s)
- Kathryn E. Sánchez
- Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87106, USA;
| | - Gary A. Rosenberg
- Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87106, USA;
- Department of Neurology, University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|
11
|
Marshall CL, Hasani K, Mookherjee N. Immunobiology of Steroid-Unresponsive Severe Asthma. FRONTIERS IN ALLERGY 2022; 2:718267. [PMID: 35387021 PMCID: PMC8974815 DOI: 10.3389/falgy.2021.718267] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022] Open
Abstract
Asthma is a heterogeneous respiratory disease characterized by airflow obstruction, bronchial hyperresponsiveness and airway inflammation. Approximately 10% of asthma patients suffer from uncontrolled severe asthma (SA). A major difference between patients with SA from those with mild-to-moderate asthma is the resistance to common glucocorticoid treatments. Thus, steroid-unresponsive uncontrolled asthma is a hallmark of SA. An impediment in the development of new therapies for SA is a limited understanding of the range of immune responses and molecular networks that can contribute to the disease process. Typically SA is thought to be characterized by a Th2-low and Th17-high immunophenotype, accompanied by neutrophilic airway inflammation. However, Th2-mediated eosinophilic inflammation, as well as mixed Th1/Th17-mediated inflammation, is also described in SA. Thus, existing studies indicate that the immunophenotype of SA is diverse. This review attempts to summarize the interplay of different immune mediators and related mechanisms that are associated with airway inflammation and the immunobiology of SA.
Collapse
Affiliation(s)
- Courtney Lynn Marshall
- Department of Internal Medicine, Manitoba Center of Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kosovare Hasani
- Department of Internal Medicine, Manitoba Center of Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Neeloffer Mookherjee
- Department of Internal Medicine, Manitoba Center of Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
12
|
Noël A, Perveen Z, Xiao R, Hammond H, Le Donne V, Legendre K, Gartia MR, Sahu S, Paulsen DB, Penn AL. Mmp12 Is Upregulated by in utero Second-Hand Smoke Exposures and Is a Key Factor Contributing to Aggravated Lung Responses in Adult Emphysema, Asthma, and Lung Cancer Mouse Models. Front Physiol 2021; 12:704401. [PMID: 34912233 PMCID: PMC8667558 DOI: 10.3389/fphys.2021.704401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022] Open
Abstract
Matrix metalloproteinase-12 (Mmp12) is upregulated by cigarette smoke (CS) and plays a critical role in extracellular matrix remodeling, a key mechanism involved in physiological repair processes, and in the pathogenesis of emphysema, asthma, and lung cancer. While cigarette smoking is associated with the development of chronic obstructive pulmonary diseases (COPD) and lung cancer, in utero exposures to CS and second-hand smoke (SHS) are associated with asthma development in the offspring. SHS is an indoor air pollutant that causes known adverse health effects; however, the mechanisms by which in utero SHS exposures predispose to adult lung diseases, including COPD, asthma, and lung cancer, are poorly understood. In this study, we tested the hypothesis that in utero SHS exposure aggravates adult-induced emphysema, asthma, and lung cancer. Methods: Pregnant BALB/c mice were exposed from gestational days 6–19 to either 3 or 10mg/m3 of SHS or filtered air. At 10, 11, 16, or 17weeks of age, female offspring were treated with either saline for controls, elastase to induce emphysema, house-dust mite (HDM) to initiate asthma, or urethane to promote lung cancer. At sacrifice, specific disease-related lung responses including lung function, inflammation, gene, and protein expression were assessed. Results: In the elastase-induced emphysema model, in utero SHS-exposed mice had significantly enlarged airspaces and up-regulated expression of Mmp12 (10.3-fold compared to air-elastase controls). In the HDM-induced asthma model, in utero exposures to SHS produced eosinophilic lung inflammation and potentiated Mmp12 gene expression (5.7-fold compared to air-HDM controls). In the lung cancer model, in utero exposures to SHS significantly increased the number of intrapulmonary metastases at 58weeks of age and up-regulated Mmp12 (9.3-fold compared to air-urethane controls). In all lung disease models, Mmp12 upregulation was supported at the protein level. Conclusion: Our findings revealed that in utero SHS exposures exacerbate lung responses to adult-induced emphysema, asthma, and lung cancer. Our data show that MMP12 is up-regulated at the gene and protein levels in three distinct adult lung disease models following in utero SHS exposures, suggesting that MMP12 is central to in utero SHS-aggravated lung responses.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Zakia Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Rui Xiao
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, United States
| | - Harriet Hammond
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | | | - Kelsey Legendre
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Sushant Sahu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Daniel B Paulsen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Arthur L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
13
|
All layers matter: Innovative three-dimensional epithelium-stroma-endothelium intestinal model for reliable permeability outcomes. J Control Release 2021; 341:414-430. [PMID: 34871636 DOI: 10.1016/j.jconrel.2021.11.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Drug development is an ever-growing field, increasingly requesting reliable in vitro tools to speed up early screening phases, reducing the need for animal experiments. In oral delivery, understanding the absorption pattern of a new drug in the small intestine is paramount. Classical two-dimensional (2D) in vitro models are generally too simplistic and do not accurately represent native tissues. The main goal of this work was to develop an advanced three-dimensional (3D) in vitro intestinal model to test absorption in a more reliable manner, by better mimicking the native environment. The 3D model is composed of a collagen-based stromal layer with embedded fibroblasts mimicking the intestinal lamina propria and providing support for the epithelium, composed of enterocytes and mucus-secreting cells. An endothelial layer, surrogating the absorptive capillary network, is also present. The cellular crosstalk between the different cells present in the model is unveiled, disclosing key players, namely those involved in the contraction of collagen by fibroblasts. The developed 3D model presents lower levels of P-glycoprotein (P-gp) and Multidrug Resistance Protein 2 (MRP2) efflux transporters, which are normally overexpressed in traditional Caco-2 models, and are paramount in the absorption of many compounds. This, allied with transepithelial electrical resistance (TEER) values closer to physiological ranges, leads to improved and more reliable permeability outcomes, which are observed when comparing our results with in vivo data.
Collapse
|
14
|
Babu AA, Vellaichamy E. Enhanced Activation of Atrial Natriuretic Peptide (ANP) and Natriuretic Peptide Receptor-A (NPRA) in Chronic Cigarette Smoke-Induced Lung Inflammation in Experimental Rats. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10271-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Zhao Y, Yan Z, Liu Y, Zhang Y, Shi J, Li J, Ji F. Effectivity of mesenchymal stem cells for bleomycin-induced pulmonary fibrosis: a systematic review and implication for clinical application. Stem Cell Res Ther 2021; 12:470. [PMID: 34420515 PMCID: PMC8380478 DOI: 10.1186/s13287-021-02551-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive, fibrotic interstitial disease of the lung with poor prognosis and without effective treatment currently. Data from previous coronavirus infections, such as the Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome, as well as current clinical evidence from the Coronavirus disease 2019 (COVID-19), support that SARS-CoV-2 infection may lead to PF, seriously impacting patient prognosis and quality of life. Therefore, effective prevention and treatment of PF will improve patient prognosis and reduce the overall social and economic burdens. Stem cells, especially mesenchymal stem cells (MSCs) have many great advantages, including migration to damaged lung tissue and secretion of various paracrine factors, thereby regulating the permeability of endothelial and epithelial cells, reducing inflammatory response, promoting tissue repair and inhibiting bacterial growth. Clinical trials of MSCs for the treatment of acute lung injury, PF and severe and critically ill COVID-19 are ongoing. The purpose of this study is to systematically review preclinical studies, explored the effectiveness of MSCs in the treatment of bleomycin (BLM)-induced pulmonary fibrosis and analyze the potential mechanism, combined with clinical trials of current MSCs for idiopathic pulmonary fibrosis (IPF) and COVID-19, so as to provide support for clinical research and transformation of MSCs. Searching PubMed and Embase (- 2021.4) identified a total of 36 preclinical studies of MSCs as treatment of BLM-induced acute lung injury and PF in rodent models. Most of the studies showed the MSCs treatment to reduce BLM-induced lung tissue inflammatory response, inflammatory cell infiltration, inflammatory cytokine expression, extracellular matrix production and collagen deposition, and to improve Ashcroft score. The results of present studies indicate that MSCs may serve as a potential therapeutic modality for the treatment of PF, including viral-induced PF and IPF.
Collapse
Affiliation(s)
- Yunyu Zhao
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi, China
| | - Zhipeng Yan
- Department of Liver Diseases, The Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ying Liu
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yue Zhang
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jie Shi
- Department of Respiratory, The Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jingtao Li
- Department of Liver Diseases, The Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Fanpu Ji
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi, China. .,National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China. .,Key Laboratory of Environment and Genes Related To Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China.
| |
Collapse
|
16
|
Hardy E, Fernandez-Patron C. Targeting MMP-Regulation of Inflammation to Increase Metabolic Tolerance to COVID-19 Pathologies: A Hypothesis. Biomolecules 2021; 11:biom11030390. [PMID: 33800947 PMCID: PMC7998259 DOI: 10.3390/biom11030390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Many individuals infected with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) develop no or only mild symptoms, but some can go on onto develop a spectrum of pathologies including pneumonia, acute respiratory distress syndrome, respiratory failure, systemic inflammation, and multiorgan failure. Many pathogens, viral and non-viral, can elicit these pathologies, which justifies reconsidering whether the target of therapeutic approaches to fight pathogen infections should be (a) the pathogen itself, (b) the pathologies elicited by the pathogen interaction with the human host, or (c) a combination of both. While little is known about the immunopathology of SARS-CoV-2, it is well-established that the above-mentioned pathologies are associated with hyper-inflammation, tissue damage, and the perturbation of target organ metabolism. Mounting evidence has shown that these processes are regulated by endoproteinases (particularly, matrix metalloproteinases (MMPs)). Here, we review what is known about the roles played by MMPs in the development of COVID-19 and postulate a mechanism by which MMPs could influence energy metabolism in target organs, such as the lung. Finally, we discuss the suitability of MMPs as therapeutic targets to increase the metabolic tolerance of the host to damage inflicted by the pathogen infection, with a focus on SARS-CoV-2.
Collapse
Affiliation(s)
- Eugenio Hardy
- Center for Molecular Immunology, 16040 Havana, Cuba
- Correspondence: (E.H.); (C.F.-P.)
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Correspondence: (E.H.); (C.F.-P.)
| |
Collapse
|
17
|
Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J, Tian H. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther 2020; 5:248. [PMID: 33110061 PMCID: PMC7588592 DOI: 10.1038/s41392-020-00345-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is emphysema and/or chronic bronchitis characterised by long-term breathing problems and poor airflow. The prevalence of COPD has increased over the last decade and the drugs most commonly used to treat it, such as glucocorticoids and bronchodilators, have significant therapeutic effects; however, they also cause side effects, including infection and immunosuppression. Here we reviewed the pathogenesis and progression of COPD and elaborated on the effects and mechanisms of newly developed molecular targeted COPD therapeutic drugs. Among these new drugs, we focussed on thioredoxin (Trx). Trx effectively prevents the progression of COPD by regulating redox status and protease/anti-protease balance, blocking the NF-κB and MAPK signalling pathways, suppressing the activation and migration of inflammatory cells and the production of cytokines, inhibiting the synthesis and the activation of adhesion factors and growth factors, and controlling the cAMP-PKA and PI3K/Akt signalling pathways. The mechanism by which Trx affects COPD is different from glucocorticoid-based mechanisms which regulate the inflammatory reaction in association with suppressing immune responses. In addition, Trx also improves the insensitivity of COPD to steroids by inhibiting the production and internalisation of macrophage migration inhibitory factor (MIF). Taken together, these findings suggest that Trx may be the ideal drug for treating COPD.
Collapse
Affiliation(s)
- Cuixue Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Jiedong Zhou
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Jinquan Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Shujing Li
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Atsushi Fukunaga
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Junji Yodoi
- Laboratory of Infection and Prevention, Department of Biological Response, Institute for Virus Research, Kyoto University, Kyoto, 606-8501, Japan
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China.
- Jiaozhimei Biotechnology (Shaoxing) Co, Ltd, Shaoxing, 312000, China.
| |
Collapse
|
18
|
Sadeghi S, Tapak M, Ghazanfari T, Mosaffa N. A review of Sulfur Mustard-induced pulmonary immunopathology: An Alveolar Macrophage Approach. Toxicol Lett 2020; 333:115-129. [PMID: 32758513 DOI: 10.1016/j.toxlet.2020.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022]
Abstract
Despite many studies investigating the mechanism of Sulfur Mustard (SM) induced lung injury, the underlying mechanism is still unclear. Inflammatory and subsequent fibroproliferative stages of SM-toxicity are based upon several highly-related series of events controlled by the immune system. The inhalation of SM gas variably affects different cell populations within the lungs. Various studies have shown the critical role of macrophages in triggering a pulmonary inflammatory response as well as its maintenance, resolution, and repair. Importantly, macrophages can serve as either pro-inflammatory or anti-inflammatory populations depending on the present conditions at any pathological stage. Different characteristics of macrophages, including their differentiation, phenotypic, and functional properties, as well as interactions with other cell populations determine the outcomes of lung diseases and the extent of long- or short-term pulmonary damage induced by SM. In this paper, we summarize the current state of knowledge regarding the role of alveolar macrophages and their mediators in the pathogenesis of SM in pulmonary injury. Investigating the specific cells and mechanisms involved in SM-lung injury may be useful in finding new target opportunities for treatment of this injury.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Tapak
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran; Department of Immunology, Shahed University, Tehran, Iran.
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
‘PARP’ing fibrosis: repurposing poly (ADP ribose) polymerase (PARP) inhibitors. Drug Discov Today 2020; 25:1253-1261. [DOI: 10.1016/j.drudis.2020.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/14/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
|
20
|
Isabela Avila-Rodríguez M, Meléndez-Martínez D, Licona-Cassani C, Manuel Aguilar-Yañez J, Benavides J, Lorena Sánchez M. Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review). Biomed Rep 2020; 13:3-14. [PMID: 32440346 PMCID: PMC7238406 DOI: 10.3892/br.2020.1300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Skin wounds have been extensively studied as their healing represents a critical step towards achieving homeostasis following a traumatic event. Dependent on the severity of the damage, wounds are categorized as either acute or chronic. To date, chronic wounds have the highest economic impact as long term increases wound care costs. Chronic wounds affect 6.5 million patients in the United States with an annual estimated expense of $25 billion for the health care system. Among wound treatment categories, active wound care represents the fastest-growing category due to its specific actions and lower costs. Within this category, proteases from various sources have been used as successful agents in debridement wound care. The wound healing process is predominantly mediated by matrix metalloproteinases (MMPs) that, when dysregulated, result in defective wound healing. Therapeutic activity has been described for animal secretions including fish epithelial mucus, maggot secretory products and snake venom, which contain secreted proteases (SPs). No further alternatives for use, sources or types of proteases used for wound healing have been found in the literature to date. Through the present review, the context of enzymatic wound care alternatives will be discussed. In addition, substrate homology of SPs and human MMPs will be compared and contrasted. The purpose of these discussions is to identify and propose the stages of wound healing in which SPs may be used as therapeutic agents to improve the wound healing process.
Collapse
Affiliation(s)
| | - David Meléndez-Martínez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
| | | | - José Manuel Aguilar-Yañez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
- Scicore Medical SAPI de CV, Monterrey, Nuevo León 64920, Mexico
| | - Jorge Benavides
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
| | - Mirna Lorena Sánchez
- Laboratorio de Materiales Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes-Imbice-Conicet-Cicpba, Bernal, Buenos Aires B1876BXD, Argentina
| |
Collapse
|
21
|
Solun B, Shoenfeld Y. Inhibition of metalloproteinases in therapy for severe lung injury due to COVID-19. MEDICINE IN DRUG DISCOVERY 2020; 7:100052. [PMID: 32537610 PMCID: PMC7273161 DOI: 10.1016/j.medidd.2020.100052] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023] Open
Abstract
Since its first appearance in December 2019 in the Chinese province of Wuhan, COVID-19 has spread rapidly throughout the world and poses a serious threat to public health. Acute respiratory failure due to widespread lung inflammation progress to acute respiratory distress syndrome (ARDS) with an altered pulmonary and alveolar function that can lead to disability, prolong hospitalizations, and adverse outcomes. While there is no specific treatment for severe acute lung injury (ALI) and ARDS due to the COVID-19 and the management is mostly supportive, it is very important to better understand the pathophysiological processes activated by the inflammatory mediators such as cytokines and metalloproteinases with the aim of their subsequent inhibition in the course of the complex treatment. Herein, we will discuss the pathophysiological mechanisms of ALI/ARDS, with a focus on the pivotal role played by matrix metalloproteinases (MMP) and the kinin-kallikrein system (KKS), and the effects of the possible pharmacological interventions. Aprotinin is a nonspecific protease inhibitor especially of trypsin, chymotrypsin, plasmin, and kallikrein, and it is many years in clinical use. Aprotinin inhibits the release of pro-inflammatory cytokines and involved in the process of glycoprotein homeostasis. Experimental data support that the use of aprotinin to inhibit MMPs and KKS may be a new potential approach to the treatment of ALI / ARDS.
Collapse
Affiliation(s)
- B Solun
- Department of Internal Medicine D, Hasharon Hospital, Rabin Medical Center, Petah Tikva, affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Y Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, affiliated to Tel-Aviv University, Israel Laboratory of the Mosaics of Autoimmunity, Sechenov First Moscow State Medical University of the Ministry of Health of, the Russian Federation
| |
Collapse
|
22
|
Agraval H, Yadav UCS. MMP-2 and MMP-9 mediate cigarette smoke extract-induced epithelial-mesenchymal transition in airway epithelial cells via EGFR/Akt/GSK3β/β-catenin pathway: Amelioration by fisetin. Chem Biol Interact 2019; 314:108846. [PMID: 31606474 DOI: 10.1016/j.cbi.2019.108846] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/26/2022]
Abstract
Matrix metalloproteinases (MMPs) have been implicated in EMT but their role in the regulation of cigarette smoke-induced EMT in airway epithelium is not clear. We have therefore investigated the potential role of MMP-2 and -9 in cigarette smoke extract (CSE) induced EMT using A549 lung epithelial cells and human small airway epithelial cells (SAEC). The cells were treated with different concentration of CSE, and MTT and trypan blue assays, acridine orange-ethidium bromide assay, gelatin zymography, Western blotting, immunofluorescence studies, Boyden-chamber assay, wound healing assay and air-liquid interface (ALI) culture were used to assess different cellular and molecular changes associated with EMT. The results depict that CSE increased the cytotoxicity along with a concurrent increase in the expression and activity of MMP-2 and -9. CSE further altered EMT markers like E-cadherin, N-cadherin, vimentin, and the molecular modulators of EMT such as β-catenin and pGSK-3β. Further, CSE also upregulated EGFR, AKT, and ERK1/2 in airway epithelial cells. SB-3CT, a known inhibitor of MMP-2 and -9, altered and reversed the expression of markers of EMT and kinases, validating the role of MMP-2 and -9 in CSE-induced EMT. Fisetin, a plant-derived bioflavonoid, also reversed the expression of EMT markers and molecular regulators in a similar fashion as SB-3CT. In summary, this study highlights the role of MMP-2 and -9 in CSE-induced EMT and curate its molecular cascade through EGFR/AKT/ERK/β-catenin axis, which could be restored by MMP-2 and -9 inhibitor and fisetin. Fisetin is hitherto unknown to modulate CSE-induced MMPs activity in airway epithelial cells, and our study suggests its potential role as a therapeutic approach in CSE-induced EMT in lung epithelial cells.
Collapse
Affiliation(s)
- Hina Agraval
- Metabolic Disorders and Inflammatory Pathologies Laboratory, School of Life Sciences, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, India.
| | - Umesh C S Yadav
- Metabolic Disorders and Inflammatory Pathologies Laboratory, School of Life Sciences, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, India.
| |
Collapse
|
23
|
A novel miRNA-4484 is up-regulated on microarray and associated with increased MMP-21 expression in serum of systemic sclerosis patients. Sci Rep 2019; 9:14264. [PMID: 31582779 PMCID: PMC6776520 DOI: 10.1038/s41598-019-50695-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/18/2019] [Indexed: 12/18/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex, heterogeneous connective tissue disease, characterized by fibrosis and ECM deposition in skin and internal organs, autoimmunity, and changes in the microvasculature. Profiling of circulating miRNAs in serum has been found to be changed in pathological states, creating new possibilities for molecular diagnostics as blood-based biomarkers. This study was designed to identify miRNAs that are differentially expressed in SSc and might be potentially contributing to the disease etiopathogenesis or be used for diagnostic purposes. Thus, we compared the expression pattern of multiple miRNAs in serum of 10 SSc patients to 6 healthy controls using microarray analysis, and RT-qPCR to confirm the obtained results. In addition, bioinformatics analysis was performed to explore miRNAs target genes and the signaling pathways that may be potentially involved in SSc pathogenesis. Our study shows a different expression of 15 miRNAs in SSc patients. We identified that miR-4484, located on chromosome 10q26.2, was an 18-fold up-regulated in SSc patients compared to a control group. Bioinformatics analysis of the miR-4484 target genes and the signaling pathways showed that it might be potentially involved in the TGF-β signaling pathway, ECM-receptor interaction, and metalloproteinases expression. Based on the chromosomal location, the most interesting target gene of miR-4484 may be MMP-21. We found that the expression of MMP-21 significantly increased in SSc patients compared to healthy subjects (P < 0.05). Our results suggest that miR-4484, and MMP-21 might be novel serum biomarkers that may correspond to pathological fibrosis in SSc, but it needs to be validated in further studies.
Collapse
|
24
|
Tian M, Chang X, Zhang Q, Li C, Li S, Sun Y. TGF-β1 mediated MAPK signaling pathway promotes collagen formation induced by Nano NiO in A549 cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:719-727. [PMID: 30810263 DOI: 10.1002/tox.22738] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Nickel oxide nanoparticles (Nano NiO) could induce pulmonary fibrosis, however, the mechanisms are still unknown. The aim of the present study was to explore the roles of transforming growth factor-β1 (TGF-β1), mitogen-activated protein kinase (MAPK) pathway and MMPs/TIMPs balance in Nano NiO-induced pulmonary fibrosis. For that purpose, we first established Nano NiO-induced human lung adenocarcinoma epithelial cells (A549 cells) model of collagen excessive formation through detecting the levels of hydroxyproline (Hyp) and type I collagen (Col-I). Then the protein levels of TGF-β1, MAPKs, and MMPs/TIMPs were assessed by Western blot. The results showed that Nano NiO resulted in the increased contents of Hyp, Col-I, and TGF-β1, the MAPK pathway activation and MMPs/TIMPs imbalance with a dose-dependent manner. In addition, to investigate whether TGF-β1 mediated MAPK signaling pathway, A549 cells were treated by 100 μg/mL Nano NiO combined with TGF-β1, p38 MAPK, and ERK1/2 inhibitors (10 μM SB431542, 10 μM SB203580, and 10 μM U0126), respectively. We found that MAPK signal pathway was suppressed by TGF-β1 inhibitor. Meanwhile, the increased contents of Hyp and Col-I, and MMPs/TIMPs imbalance were alleviated by the p38 MAPK and ERK1/2 inhibitors, respectively. These findings indicated that the MAPK pathway and MMPs/TIMPs imbalance were involved in collagen excessive formation induced by Nano NiO.
Collapse
Affiliation(s)
- Minmin Tian
- Department of Toxicology, School of public Health, Lanzhou University, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of public Health, Lanzhou University, Lanzhou, China
| | - Qiong Zhang
- Department of Toxicology, School of public Health, Lanzhou University, Lanzhou, China
| | - Chengyun Li
- Department of Toxicology, School of public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Lanzhou Municipal Center for Disease Control, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
25
|
Dharwal V, Sandhir R, Naura AS. PARP-1 inhibition provides protection against elastase-induced emphysema by mitigating the expression of matrix metalloproteinases. Mol Cell Biochem 2019; 457:41-49. [DOI: 10.1007/s11010-019-03510-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022]
|
26
|
Kennedy-Feitosa E, Cattani-Cavalieri I, Barroso MV, Romana-Souza B, Brito-Gitirana L, Valenca SS. Eucalyptol promotes lung repair in mice following cigarette smoke-induced emphysema. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:70-79. [PMID: 30668445 DOI: 10.1016/j.phymed.2018.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/26/2018] [Accepted: 08/07/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Eucalyptol is a monoterpenoid oil present in many plants, principally the Eucalyptus species, and has been reported to have anti-inflammatory and antioxidative effects. HYPOTHESIS/PURPOSE Since the potential effect of eucalyptol on mouse lung repair has not yet been studied, and considering that chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide, the aim of this study was to investigate eucalyptol treatment in emphysematous mice. STUDY DESIGN Male mice (C57BL/6) were divided into the following groups: control (sham-exposed), cigarette smoke (CS) (mice exposed to 12 cigarettes a day for 60 days), CS + 1 mg/ml (CS mice treated with 1 mg/ml eucalyptol for 60 days), and CS + 10 mg/ml (CS mice treated with 10 mg/ml eucalyptol for 60 days). Mice in the CS and control groups received vehicle for 60 days. Eucalyptol (or the vehicle) was administered via inhalation (15 min/daily). Mice were sacrificed 24 h after the completion of the 120-day experimental procedure. METHODS Histology and additional lung morphometric analyses, including analysis of mean linear intercept (Lm) and volume density of alveolar septa (Vv[alveolar septa]) were performed. Biochemical analyses were also performed using colorimetric assays for myeloperoxidase (MPO), malondialdehyde (MDA), and superoxide dismutase (SOD) activity, in addition to using ELISA kits for the determination of inflammatory marker levels (tumor necrosis factor alpha [TNF-α], interleukin-1 beta [IL-1β], interleukin 6 [IL-6], keratinocyte chemoattractant [KC], and tumor growth factor beta 1 [TGF-β1]). Finally, we investigated protein levels by western blotting (nuclear factor (erythroid-derived 2)-like 2 [Nrf2], nuclear factor kappa B [NF-κB], matrix metalloproteinase 12 [MMP-12], tissue inhibitor of matrix metalloproteinase 1 [TIMP-1], neutrophil elastase [NE], and elastin). RESULTS Eucalyptol promoted lung repair at the higher dose (10 mg/ml), with de novo formation of alveoli, when compared to the CS group. This result was confirmed with Lm and Vv[alveolar septa] morphometric analyses. Moreover, collagen deposit around the peribronchiolar area was reduced with eucalyptol treatment when compared to the CS group. Eucalyptol also reduced all inflammatory (MPO, TNF-α, IL-1β, IL-6, KC, and TGF-β1) and redox marker levels (MDA) when compared to the CS group (at least p < 0.05). In general, 10 mg/ml eucalyptol was more effective than 1 mg/ml and, at both doses, we observed an upregulation of SOD activity when compared to the CS group (p < 0.001). Eucalyptol upregulated elastin and TIMP-1 levels, and reduced neutrophil elastase (NE) levels, when compared to the CS group. CONCLUSION In summary, eucalyptol promoted lung repair in emphysematous mice and represents a potential therapeutic phytomedicine in the treatment of COPD.
Collapse
Affiliation(s)
| | | | - Marina Valente Barroso
- Pós-graduação em Imunologia e Inflamação, Universidade Federal do Rio de Janeiro, Brazil
| | - Bruna Romana-Souza
- Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lycia Brito-Gitirana
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | | |
Collapse
|
27
|
Jalaeefar A, Mohammadi Tofigh A, Gharib A, Khandaghy M, Rahimi MR. Effects of N-acetylcysteine on arterial neo-intimal hyperplasia in rat model of arteriovenous fistula. J Vasc Access 2018; 20:190-194. [PMID: 30141362 DOI: 10.1177/1129729818793368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION: Arteriovenous fistula is the best choice for vascular access in hemodialysis patients. However, arteriovenous fistula dysfunction is a major clinical issue. The most common cause of arteriovenous fistula failure is intimal hyperplasia. In this study, we have investigated the effect of N-acetylcysteine on neo-intimal hyperplasia after arteriovenous fistula creation in rats. METHODS: This study was conducted in 24 rats which were randomly divided into two groups: control and N-acetylcysteine groups. An end-to-side anastomosis was made between the femoral artery and vein. The control group received distilled water intraperitoneally while the animals in N-acetylcysteine group received 300 mg/kg/day of N-acetylcysteine via the same route. After 28 days, the thickness of intima and media was measured using hematoxylin and eosin. RESULTS: There was no significant difference between the two groups regarding age ( p = 0.6) and weight ( p = 0.1). The mean intima thickness in N-acetylcysteine group was significantly less than control group (17 ± 20 and 119 ± 46 µm, respectively; p < 0.001). The mean intima/media thickness in the N-acetylcysteine group was significantly less than control group (0.5 ± 0.63 vs 2.05 ± 1.17 µm; p < 0.001). CONCLUSION: N-acetylcysteine is effective in inhibiting neo-intimal hyperplasia in a rat model of arteriovenous fistula.
Collapse
Affiliation(s)
- Amirmohsen Jalaeefar
- 1 Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Atoosa Gharib
- 3 Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
28
|
March JT, Golshirazi G, Cernisova V, Carr H, Leong Y, Lu-Nguyen N, Popplewell LJ. Targeting TGFβ Signaling to Address Fibrosis Using Antisense Oligonucleotides. Biomedicines 2018; 6:biomedicines6030074. [PMID: 29941814 PMCID: PMC6164894 DOI: 10.3390/biomedicines6030074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Fibrosis results from the excessive accumulation of extracellular matrix in chronically injured tissue. The fibrotic process is governed by crosstalk between many signaling pathways. The search for an effective treatment is further complicated by the fact that there is a degree of tissue-specificity in the pathways involved, although the process is not completely understood for all tissues. A plethora of drugs have shown promise in pre-clinical models, which is not always borne out translationally in clinical trial. With the recent approvals of two antisense oligonucleotides for the treatment of the genetic diseases Duchenne muscular dystrophy and spinal muscular atrophy, we explore here the potential of antisense oligonucleotides to knockdown the expression of pro-fibrotic proteins. We give an overview of the generalized fibrotic process, concentrating on key players and highlight where antisense oligonucleotides have been used effectively in cellular and animal models of different fibrotic conditions. Consideration is given to the advantages antisense oligonucleotides would have as an anti-fibrotic therapy alongside factors that would need to be addressed to improve efficacy. A prospective outlook for the development of antisense oligonucleotides to target fibrosis is outlined.
Collapse
Affiliation(s)
- James T March
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Golnoush Golshirazi
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Viktorija Cernisova
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Heidi Carr
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Yee Leong
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Ngoc Lu-Nguyen
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Linda J Popplewell
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
29
|
Chen Y, Thomas PS, Kumar RK, Herbert C. The role of noncoding RNAs in regulating epithelial responses in COPD. Am J Physiol Lung Cell Mol Physiol 2018; 315:L184-L192. [PMID: 29722561 DOI: 10.1152/ajplung.00063.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), one of the leading causes of death in the world, is a chronic inflammatory disease of the airways usually caused by long-term exposure to inhaled irritants. Airway epithelial cells (AECs) play a key role in initializing COPD and driving the exacerbation of this disease through the release of various cytokines. This AEC-derived cytokine response is tightly regulated possibly through the regulatory effects of noncoding RNAs (ncRNAs). Although the importance of ncRNAs in pulmonary diseases has been increasingly realized, little is known about the role of ncRNA in the regulation of inflammatory responses in COPD. This review outlines the features of AEC-derived cytokine responses in COPD and how ncRNAs regulate these inflammatory responses.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Pathology, School of Medical Sciences, University of New South Wales Australia , Sydney , Australia
| | - Paul S Thomas
- Department of Pathology, School of Medical Sciences, University of New South Wales Australia , Sydney , Australia.,Department of Respiratory Medicine, Prince of Wales Hospital , Sydney , Australia
| | - Rakesh K Kumar
- Department of Pathology, School of Medical Sciences, University of New South Wales Australia , Sydney , Australia
| | - Cristan Herbert
- Department of Pathology, School of Medical Sciences, University of New South Wales Australia , Sydney , Australia
| |
Collapse
|
30
|
Caruso JA, Stemmer PM. Petroleum coke exposure leads to altered secretome profiles in human lung models. Hum Exp Toxicol 2018; 37:1215-1232. [PMID: 29577758 DOI: 10.1177/0960327118765326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Petroleum coke (PC) is a coal-like product that is produced during the refinement of crude oil and bituminous sand. Fugitive dust from open storage of PC in urban areas is a potential human health concern. Animal inhalation studies suggest that PC leads to an adverse pulmonary histopathology, including areas of fibrosis and chronic inflammation; however, little is known about its impact on human health. In order to identify biomarkers and cellular pathways that are associated with exposure, we performed two-dimensional liquid chromatography-mass spectrometric analyses on secreted proteins from two human lung culture models. A total of 2795 proteins were identified and relatively quantified from an immortalized cell line and 2406 proteins from primary cultures that were either mock treated or exposed to particulate matter with a diameter of 2.5-10 μm PC or filtered urban air particulates for 16 h. Pathway analysis on secretomes from primary lung cultures indicated that PC exposure suppressed the secretion of proteins involved in the organization of the extracellular matrix and epithelial differentiation. Because these cellular processes could facilitate fibrosis, we performed chronic 12-day exposure studies on three-dimensional human lung cultures consisting of epithelia and stromal fibroblasts. Relative to mock-treated cells, matrix metallopeptidase 9 levels in the conditioned media were lower by 4 days postexposure and remained suppressed for the duration of the experiment. Immunocytochemical staining of collagen III, a marker associated with fibrosis, showed increased accumulation in the epithelial layer and at the air-liquid interface.
Collapse
Affiliation(s)
- J A Caruso
- 1 Proteomics Core Facility, Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - P M Stemmer
- 2 Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
31
|
Schwotzer D, Niehof M, Schaudien D, Kock H, Hansen T, Dasenbrock C, Creutzenberg O. Cerium oxide and barium sulfate nanoparticle inhalation affects gene expression in alveolar epithelial cells type II. J Nanobiotechnology 2018; 16:16. [PMID: 29463257 PMCID: PMC5819288 DOI: 10.1186/s12951-018-0343-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/13/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Understanding the molecular mechanisms of nanomaterial interacting with cellular systems is important for appropriate risk assessment. The identification of early biomarkers for potential (sub-)chronic effects of nanoparticles provides a promising approach towards cost-intensive and animal consuming long-term studies. As part of a 90-day inhalation toxicity study with CeO2 NM-212 and BaSO4 NM-220 the present investigations on gene expression and immunohistochemistry should reveal details on underlying mechanisms of pulmonary effects. The role of alveolar epithelial cells type II (AEII cells) is focused since its contribution to defense against inhaled particles and potentially resulting adverse effects is assumed. Low dose levels should help to specify particle-related events, including inflammation and oxidative stress. RESULTS Rats were exposed to clean air, 0.1, 0.3, 1.0, and 3.0 mg/m3 CeO2 NM-212 or 50.0 mg/m3 BaSO4 NM-220 and the expression of 391 genes was analyzed in AEII cells after one, 28 and 90 days exposure. A total number of 34 genes was regulated, most of them related to inflammatory mediators. Marked changes in gene expression were measured for Ccl2, Ccl7, Ccl17, Ccl22, Ccl3, Ccl4, Il-1α, Il-1ß, and Il-1rn (inflammation), Lpo and Noxo1 (oxidative stress), and Mmp12 (inflammation/lung cancer). Genes related to genotoxicity and apoptosis did not display marked regulation. Although gene expression was less affected by BaSO4 compared to CeO2 the gene pattern showed great overlap. Gene expression was further analyzed in liver and kidney tissue showing inflammatory responses in both organs and marked downregulation of oxidative stress related genes in the kidney. Increases in the amount of Ce were measured in liver but not in kidney tissue. Investigation of selected genes on protein level revealed increased Ccl2 in bronchoalveolar lavage of exposed animals and increased Lpo and Mmp12 in the alveolar epithelia. CONCLUSION AEII cells contribute to CeO2 nanoparticle caused inflammatory and oxidative stress reactions in the respiratory tract by the release of related mediators. Effects of BaSO4 exposure are low. However, overlap between both substances were detected and support identification of potential early biomarkers for nanoparticle effects on the respiratory system. Signs for long-term effects need to be further evaluated by comparison to a respective exposure setting.
Collapse
Affiliation(s)
- Daniela Schwotzer
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany.
| | - Monika Niehof
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Heiko Kock
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Tanja Hansen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Clemens Dasenbrock
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| |
Collapse
|
32
|
Ishikawa S, Ishimori K, Ito S. A 3D epithelial-mesenchymal co-culture model of human bronchial tissue recapitulates multiple features of airway tissue remodeling by TGF-β1 treatment. Respir Res 2017; 18:195. [PMID: 29166920 PMCID: PMC5700468 DOI: 10.1186/s12931-017-0680-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/13/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The collagen gel contraction assay measures gel size to assess the contraction of cells embedded in collagen gel matrices. Using the assay with lung fibroblasts is useful in studying the lung tissue remodeling process in wound healing and disease development. However, the involvement of bronchial epithelial cells in this process should also be investigated. METHODS We applied a layer of mucociliary differentiated bronchial epithelial cells onto collagen gel matrices with lung fibroblasts. This co-culture model enables direct contact between epithelial and mesenchymal cells. We stimulated the culture with transforming growth factor (TGF) β1 as an inducer of tissue remodeling for 21 days, and measured gel size, histological changes, and expression of factors related to extracellular matrix homeostasis. RESULTS TGF-β1 exerted a concentration-dependent effect on collagen gel contraction and on contractile myofibroblasts in the mesenchymal collagen layer. TGF-β1 also induced expression of the mesenchymal marker vimentin in the basal layer of the epithelium, suggesting the induction of epithelial-mesenchymal transition. In addition, the expression of various genes encoding extracellular matrix proteins was upregulated. Fibrotic tenascin-C accumulated in the sub-epithelial region of the co-culture model. CONCLUSION Our findings indicate that TGF-β1 can affect both epithelial and mesenchymal cells, and induce gel contraction and structural changes. Our novel in vitro co-culture model will be a useful tool for investigating the roles of epithelial cells, fibroblasts, and their interactions in the airway remodeling process.
Collapse
Affiliation(s)
- Shinkichi Ishikawa
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan.
| | - Kanae Ishimori
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Shigeaki Ito
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan
| |
Collapse
|
33
|
Ahmed E, Sansac C, Assou S, Gras D, Petit A, Vachier I, Chanez P, De Vos J, Bourdin A. Lung development, regeneration and plasticity: From disease physiopathology to drug design using induced pluripotent stem cells. Pharmacol Ther 2017; 183:58-77. [PMID: 28987320 DOI: 10.1016/j.pharmthera.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lungs have a complex structure composed of different cell types that form approximately 17 million airway branches of gas-delivering bronchioles connected to 500 million gas-exchanging alveoli. Airways and alveoli are lined by epithelial cells that display a low rate of turnover at steady-state, but can regenerate the epithelium in response to injuries. Here, we review the key points of lung development, homeostasis and epithelial cell plasticity in response to injury and disease, because this knowledge is required to develop new lung disease treatments. Of note, canonical signaling pathways that are essential for proper lung development during embryogenesis are also involved in the pathophysiology of most chronic airway diseases. Moreover, the perfect control of these interconnected pathways is needed for the successful differentiation of induced pluripotent stem cells (iPSC) into lung cells. Indeed, differentiation of iPSC into airway epithelium and alveoli is based on the use of biomimetics of normal embryonic and fetal lung development. In vitro iPSC-based models of lung diseases can help us to better understand the impaired lung repair capacity and to identify new therapeutic targets and new approaches, such as lung cell therapy.
Collapse
Affiliation(s)
- Engi Ahmed
- Department of Respiratory Diseases, Hôpital Arnaud de Villeneuve, Montpellier F34000, France; CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, Montpellier F34000, France; INSERM, U1183, Montpellier F34000, France; Université de MONTPELLIER, UFR de Médecine, Montpellier F34000, France
| | - Caroline Sansac
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, Montpellier F34000, France
| | - Said Assou
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, Montpellier F34000, France; INSERM, U1183, Montpellier F34000, France; Université de MONTPELLIER, UFR de Médecine, Montpellier F34000, France
| | - Delphine Gras
- Dept of Respiratory Diseases APHM, INSERM CNRS U 1067, UMR7333, Aix-Marseille University, Marseille, France
| | - Aurélie Petit
- INSERM, U1046, PhyMedExp, Montpellier F34000, France
| | | | - Pascal Chanez
- Dept of Respiratory Diseases APHM, INSERM CNRS U 1067, UMR7333, Aix-Marseille University, Marseille, France
| | - John De Vos
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, Montpellier F34000, France; INSERM, U1183, Montpellier F34000, France; Université de MONTPELLIER, UFR de Médecine, Montpellier F34000, France; CHU Montpellier, Unit for Cellular Therapy, Hospital Saint-Eloi, Montpellier F 34000, France.
| | - Arnaud Bourdin
- Department of Respiratory Diseases, Hôpital Arnaud de Villeneuve, Montpellier F34000, France; Université de MONTPELLIER, UFR de Médecine, Montpellier F34000, France; INSERM, U1046, PhyMedExp, Montpellier F34000, France.
| |
Collapse
|
34
|
Tawfik MK, Makary S. 5-HT7 receptor antagonism (SB-269970) attenuates bleomycin-induced pulmonary fibrosis in rats via downregulating oxidative burden and inflammatory cascades and ameliorating collagen deposition: Comparison to terguride. Eur J Pharmacol 2017; 814:114-123. [PMID: 28821451 DOI: 10.1016/j.ejphar.2017.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022]
Abstract
The neurotransmitter 5-hydroxytryptamine (5-HT) is involved in regulation of local tissue inflammation and repair through a set of receptors (5-HT1-7 receptors), which are expressed in the lung. Considering the protective importance of 5-HT receptor antagonists against development of pulmonary fibrosis, we evaluated whether 5-HT7 receptor antagonist (SB-269970) modulates lung inflammatory and fibrogenic processes in comparison with 5-HT2A/B receptor antagonist (terguride), in bleomycin (BLM)-induced idiopathic pulmonary fibrosis (IPF) model. IPF model induced by a single dose of intra-tracheal BLM instillation (5mg/kg), and rats were treated with intraperitoneal injection of SB-269970 (1mg/kg day) or terguride (1.2mg/kg/d). The experiment was carried out on two separate sets of rats that were killed at day 7th and day 21st to evaluate the endpoint of the IPF inflammatory and fibrogenic phases, respectively. During the inflammatory phase 5-HT2A/B and 5-HT7 receptor antagonists attenuated the BLM-induced increase in the lung fluid content, the inflammatory cytokines levels and oxidative stress burden. In the fibrogenic phase, both SB-269970 and terguride reduced the serotonin concentrations in lung homogenates and significantly protected against IPF fibrogenic phase by attenuating collagen deposition and mRNA expression of both transforming growth factor-β1 (TGF- β1), and procollagen type Ӏ (PINP). 5-hydroxytryptamine 5-HT7 receptor antagonist showed more benefits than 5-HT2A/B receptor antagonist on the deleterious effects accompanied BLM instillation. The present study showed involvement of 5-HT7 receptor in the pathophysiology of BLM-induced IPF in rats and identified it as a potential therapeutic target in lung fibrotic disorders.
Collapse
Affiliation(s)
- Mona K Tawfik
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Samy Makary
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
35
|
Kotnala S, Tyagi A, Muyal JP. rHuKGF ameliorates protease/anti-protease imbalance in emphysematous mice. Pulm Pharmacol Ther 2017; 45:124-135. [DOI: 10.1016/j.pupt.2017.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/02/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
|
36
|
Hendrix AY, Kheradmand F. The Role of Matrix Metalloproteinases in Development, Repair, and Destruction of the Lungs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:1-29. [PMID: 28662821 DOI: 10.1016/bs.pmbts.2017.04.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Normal gas exchange after birth requires functional lung alveolar units that are lined with epithelial cells, parts of which are intricately fused with microvascular capillaries. A significant phase of alveolar lung development occurs in the perinatal period, continues throughout early stages in life, and requires activation of matrix-remodeling enzymes. Failure to achieve an optimum number of alveoli during lung maturation can cause several untoward medical consequences including disabling obstructive and/or restrictive lung diseases that limit physiological endurance and increase mortality. Several members of the matrix metalloproteinase (MMP) family are critical in lung remodeling before and after birth; however, their resurgence in response to environmental factors, infection, and injury can also compromise lung function. Therefore, temporal expression, regulation, and function of MMPs play key roles in developing and maintaining adequate oxygenation under steady state, as well as in diseased conditions. Broadly, with the exception of MMP2 and MMP14, most deletional mutations of MMPs fail to perturb lung development; however, their individual absence can alter the pathophysiology of respiratory diseases. Specifically, under stressed conditions such as acute respiratory infection and allergic inflammation, MMP2 and MMP9 can play a protective role through bacterial clearance and production of chemotactic gradient, while loss of MMP12 can protect mice from smoke-induced lung disease. Therefore, better understanding of the expression and function of MMPs under normal lung development and their resurgence in response respiratory diseases could provide new therapeutic options in the future.
Collapse
Affiliation(s)
- Amanda Y Hendrix
- Section of Pulmonary and Critical Care, and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Farrah Kheradmand
- Section of Pulmonary and Critical Care, and Immunology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
37
|
Freeman MR, Sathish V, Manlove L, Wang S, Britt RD, Thompson MA, Pabelick CM, Prakash YS. Brain-derived neurotrophic factor and airway fibrosis in asthma. Am J Physiol Lung Cell Mol Physiol 2017; 313:L360-L370. [PMID: 28522569 DOI: 10.1152/ajplung.00580.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/17/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
Airway remodeling in asthma driven by inflammation involves proliferation of epithelial cells and airway smooth muscle (ASM), as well as enhanced extracellular matrix (ECM) generation and deposition, i.e., fibrosis. Accordingly, understanding profibrotic mechanisms is important for developing novel therapeutic strategies in asthma. Recent studies, including our own, have suggested a role for locally produced growth factors such as brain-derived neurotrophic factor (BDNF) in mediating and modulating inflammation effects. In this study, we explored the profibrotic influence of BDNF in the context of asthma by examining expression, activity, and deposition of ECM proteins in primary ASM cells isolated from asthmatic vs. nonasthmatic patients. Basal BDNF expression and secretion, and levels of the high-affinity BDNF receptor TrkB, were higher in asthmatic ASM. Exogenous BDNF significantly increased ECM production and deposition, especially of collagen-1 and collagen-3 (less so fibronectin) and the activity of matrix metalloproteinases (MMP-2, MMP-9). Exposure to the proinflammatory cytokine TNFα significantly increased BDNF secretion, particularly in asthmatic ASM, whereas no significant changes were observed with IL-13. Chelation of BDNF using TrkB-Fc reversed TNFα-induced increase in ECM deposition. Conditioned media from asthmatic ASM enhanced ECM generation in nonasthmatic ASM, which was blunted by BDNF chelation. Inflammation-induced changes in MMP-2, MMP-9, and tissue inhibitor metalloproteinases (TIMP-1, TIMP-2) were reversed in the presence of TrkB-Fc. These novel data suggest ASM as an inflammation-sensitive source of BDNF within human airways, with autocrine effects on fibrosis relevant to asthma.
Collapse
Affiliation(s)
- Michelle R Freeman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Venkatachalem Sathish
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Logan Manlove
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Shengyu Wang
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Respiratory Medicine, First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Rodney D Britt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota; .,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
38
|
Weinberger B, Malaviya R, Sunil VR, Venosa A, Heck DE, Laskin JD, Laskin DL. Mustard vesicant-induced lung injury: Advances in therapy. Toxicol Appl Pharmacol 2016; 305:1-11. [PMID: 27212445 PMCID: PMC5119915 DOI: 10.1016/j.taap.2016.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/18/2016] [Indexed: 01/17/2023]
Abstract
Most mortality and morbidity following exposure to vesicants such as sulfur mustard is due to pulmonary toxicity. Acute injury is characterized by epithelial detachment and necrosis in the pharynx, trachea and bronchioles, while long-term consequences include fibrosis and, in some instances, cancer. Current therapies to treat mustard poisoning are primarily palliative and do not target underlying pathophysiologic mechanisms. New knowledge about vesicant-induced pulmonary disease pathogenesis has led to the identification of potentially efficacious strategies to reduce injury by targeting inflammatory cells and mediators including reactive oxygen and nitrogen species, proteases and proinflammatory/cytotoxic cytokines. Therapeutics under investigation include corticosteroids, N-acetyl cysteine, which has both mucolytic and antioxidant properties, inducible nitric oxide synthase inhibitors, liposomes containing superoxide dismutase, catalase, and/or tocopherols, protease inhibitors, and cytokine antagonists such as anti-tumor necrosis factor (TNF)-α antibody and pentoxifylline. Antifibrotic and fibrinolytic treatments may also prove beneficial in ameliorating airway obstruction and lung remodeling. More speculative approaches include inhibitors of transient receptor potential channels, which regulate pulmonary epithelial cell membrane permeability, non-coding RNAs and mesenchymal stem cells. As mustards represent high priority chemical threat agents, identification of effective therapeutics for mitigating toxicity is highly significant.
Collapse
Affiliation(s)
- Barry Weinberger
- Division of Neonatal and Perinatal Medicine, Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, NY 11040, USA.
| | - Rama Malaviya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Vasanthi R Sunil
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Alessandro Venosa
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, School of Public Health, Valhalla, NY 10595, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
39
|
Asumeng Koffuor G, Boye A, Kyei S, Ofori-Amoah J, Akomanin Asiamah E, Barku A, Acheampong J, Amegashie E, Kumi Awuku A. Anti-asthmatic property and possible mode of activity of an ethanol leaf extract of Polyscias fruticosa. PHARMACEUTICAL BIOLOGY 2016; 54:1354-1363. [PMID: 26449896 DOI: 10.3109/13880209.2015.1077465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Polyscias fruticosa (L.) Harms (Araliaceae) is used as a traditional remedy for asthma in Ghana. OBJECTIVE The objective of this study is to establish the anti-asthmatic property and a possible mode of activity of an ethanol leaf extract of P. fruticosa (PFE). MATERIALS AND METHODS The time (min) for pre-convulsive dyspnea, and time for recovery, after sensitization with 150 μg OVA and induction of bronchospasm with 1% acetylcholine or histamine in normal, and 100, 250, and 500 mg/kg PFE-treated Dunkin Hartley guinea pigs, were recorded. Atropine (0.1 mg), mepyramine (0.1 mg), and PFE (1 mg) effect on a contractile response of 2.0 × 10(-2) μg/ml acetylcholine and 5.8 × 10(-2) μg/ml histamine on the isolated guinea pig ileum was investigated. Cytological and histological studies were conducted using guinea pig peritoneal mast cells and mesenteric cells, respectively, to establish PFE effect on compound 48/80-induced mast cell degranulation. RESULTS PFE (100-500 mg/kg) prolonged the onset of pre-convulsive dyspnea by 76.1-180.2% (p ≤ 0.01-0.001), and decreased recovery time by 71.9-78.5% (p ≤ 0.01-0.001). It also enhanced percentage protection against histamine-induced bronchospasm by 15.8-80.1-fold (p ≤ 0.05-0.01), and decreased percentage recovery time 2.5-3.3-fold (p ≤ 0.05-0.01). PFE significantly inhibited (60.4 ± 8.3%) contractile responses of histamine and produced significant inhibition (56-79%: p ≤ 0.001) of mast cell degranulation. CONCLUSION PFE has anti-asthmatic, antihistaminic, and mast cell stabilization effect making it useful in traditional asthma management.
Collapse
Affiliation(s)
- George Asumeng Koffuor
- a Department of Pharmacology , Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology , Kumasi , Ghana
- b Department of Medical Laboratory Technology , School of Physical Sciences, University of Cape-Coast , Cape-Coast , Ghana
| | - Alex Boye
- b Department of Medical Laboratory Technology , School of Physical Sciences, University of Cape-Coast , Cape-Coast , Ghana
| | - Samuel Kyei
- c Department of Optometry , School of Physical Sciences, University of Cape-Coast , Cape-Coast , Ghana
| | - Jones Ofori-Amoah
- a Department of Pharmacology , Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology , Kumasi , Ghana
| | | | - Atsu Barku
- e Department of Chemistry , School of Physical Sciences, University of Cape-Coast , Cape-Coast , Ghana
| | - Jacqueline Acheampong
- b Department of Medical Laboratory Technology , School of Physical Sciences, University of Cape-Coast , Cape-Coast , Ghana
| | - Elikplim Amegashie
- b Department of Medical Laboratory Technology , School of Physical Sciences, University of Cape-Coast , Cape-Coast , Ghana
| | - Albert Kumi Awuku
- b Department of Medical Laboratory Technology , School of Physical Sciences, University of Cape-Coast , Cape-Coast , Ghana
| |
Collapse
|
40
|
Matrix Metalloproteinases in Non-Neoplastic Disorders. Int J Mol Sci 2016; 17:ijms17071178. [PMID: 27455234 PMCID: PMC4964549 DOI: 10.3390/ijms17071178] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/16/2016] [Accepted: 07/04/2016] [Indexed: 12/23/2022] Open
Abstract
The matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. There are at least 23 members of MMPs ever reported in human, and they and their substrates are widely expressed in many tissues. Recent growing evidence has established that MMP not only can degrade a variety of components of extracellular matrix, but also can cleave and activate various non-matrix proteins, including cytokines, chemokines and growth factors, contributing to both physiological and pathological processes. In normal conditions, MMP expression and activity are tightly regulated via interactions between their activators and inhibitors. Imbalance among these factors, however, results in dysregulated MMP activity, which causes tissue destruction and functional alteration or local inflammation, leading to the development of diverse diseases, such as cardiovascular disease, arthritis, neurodegenerative disease, as well as cancer. This article focuses on the accumulated evidence supporting a wide range of roles of MMPs in various non-neoplastic diseases and provides an outlook on the therapeutic potential of inhibiting MMP action.
Collapse
|
41
|
Shaw OM, Hurst RD, Harper JL. Boysenberry ingestion supports fibrolytic macrophages with the capacity to ameliorate chronic lung remodeling. Am J Physiol Lung Cell Mol Physiol 2016; 311:L628-38. [PMID: 27371734 DOI: 10.1152/ajplung.00309.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 07/01/2016] [Indexed: 12/21/2022] Open
Abstract
Lung fibrosis negatively impacts on lung function in chronic asthma and is linked to the development of profibrotic macrophage phenotypes. Epidemiological studies have found that lung function benefits from increased consumption of fruit high in polyphenols. We investigated the effect of boysenberry consumption, in both therapeutic and prophylactic treatment strategies in a mouse model of chronic antigen-induced airway inflammation. Boysenberry consumption reduced collagen deposition and ameliorated tissue remodeling alongside an increase in the presence of CD68+CD206+arginase+ alternatively activated macrophages in the lung tissue. The decrease in tissue remodeling was associated with increased expression of profibrolytic matrix metalloproteinase-9 protein in total lung tissue. We identified alternatively activated macrophages in the mice that consumed boysenberry as a source of the matrix metalloproteinase-9. Oral boysenberry treatment may moderate chronic tissue remodeling by supporting the development of profibrolytic alternatively activated macrophages expressing matrix metalloproteinase-9. Regular boysenberry consumption therefore has the potential to moderate chronic lung remodeling and fibrosis in asthma and other chronic pulmonary diseases.
Collapse
Affiliation(s)
- Odette M Shaw
- Inflammation and Arthritis Group, Malaghan Institute of Medical Research, Wellington, New Zealand; Food & Wellness Group, The New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand; and
| | - Roger D Hurst
- Food & Wellness Group, The New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand; and
| | - Jacquie L Harper
- Inflammation and Arthritis Group, Malaghan Institute of Medical Research, Wellington, New Zealand; WelTec, Lower Hutt, New Zealand
| |
Collapse
|
42
|
Parasaram V, Nosoudi N, LeClair RJ, Binks A, Vyavahare N. Targeted drug delivery to emphysematous lungs: Inhibition of MMPs by doxycycline loaded nanoparticles. Pulm Pharmacol Ther 2016; 39:64-73. [PMID: 27354173 DOI: 10.1016/j.pupt.2016.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 01/03/2023]
Affiliation(s)
| | - Nasim Nosoudi
- Department of Bioengineering, Clemson University, SC, USA
| | - Renee J LeClair
- University of South Carolina School of Medicine, Greenville, SC, USA
| | - Andrew Binks
- University of South Carolina School of Medicine, Greenville, SC, USA
| | | |
Collapse
|
43
|
Ma X, Prakash J, Ruscitti F, Glasl S, Stellari FF, Villetti G, Ntziachristos V. Assessment of asthmatic inflammation using hybrid fluorescence molecular tomography-x-ray computed tomography. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:15009. [PMID: 26803669 DOI: 10.1117/1.jbo.21.1.015009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/15/2015] [Indexed: 05/05/2023]
Affiliation(s)
- Xiaopeng Ma
- Helmholtz Zentrum München, Institute for Biological and Medical Imaging, Ingolstaedter Landstrasse 1, Neuherberg, D-85746, GermanybTechnische Universität München, Chair for Biological Imaging, Ismaninger Street 22, Munich 81675, Germany
| | - Jaya Prakash
- Helmholtz Zentrum München, Institute for Biological and Medical Imaging, Ingolstaedter Landstrasse 1, Neuherberg, D-85746, GermanybTechnische Universität München, Chair for Biological Imaging, Ismaninger Street 22, Munich 81675, Germany
| | - Francesca Ruscitti
- University of Parma, Department of Biomedical, Biotechnological and Translational Science, via del Taglio 10, Parma, 43126, Italy
| | - Sarah Glasl
- Helmholtz Zentrum München, Institute for Biological and Medical Imaging, Ingolstaedter Landstrasse 1, Neuherberg, D-85746, GermanybTechnische Universität München, Chair for Biological Imaging, Ismaninger Street 22, Munich 81675, Germany
| | - Fabio Franco Stellari
- Corporate Pre-clinical R&D, Chiesi Farmaceutici S.p.A, Largo Francesco Belloli 11/A, Parma, 43122, Italy
| | - Gino Villetti
- Corporate Pre-clinical R&D, Chiesi Farmaceutici S.p.A, Largo Francesco Belloli 11/A, Parma, 43122, Italy
| | - Vasilis Ntziachristos
- Helmholtz Zentrum München, Institute for Biological and Medical Imaging, Ingolstaedter Landstrasse 1, Neuherberg, D-85746, GermanybTechnische Universität München, Chair for Biological Imaging, Ismaninger Street 22, Munich 81675, Germany
| |
Collapse
|
44
|
McGillick EV, Orgeig S, Morrison JL. Structural and molecular regulation of lung maturation by intratracheal vascular endothelial growth factor administration in the normally grown and placentally restricted fetus. J Physiol 2015; 594:1399-420. [PMID: 26537782 DOI: 10.1113/jp271113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022] Open
Abstract
Inhibition of hypoxia signalling leads to respiratory distress syndrome (RDS), whereas administration of vascular endothelial growth factor (VEGF), the most widely characterized hypoxia responsive factor, protects from RDS. In the lung of the chronically hypoxaemic placentally restricted (PR) fetus, there is altered regulation of hypoxia signalling. This leads to reduced surfactant maturation in late gestation and provides evidence for the increased risk of RDS in growth restricted neonates at birth. We evaluated the effect of recombinant human VEGF administration with respect to bypassing the endogenous regulation of hypoxia signalling in the lung of the normally grown and PR sheep fetus. There was no effect of VEGF administration on fetal blood pressure or fetal breathing movements. We examined the effect on the expression of genes regulating VEGF signalling (FLT1 and KDR), angiogenesis (ANGPT1, AQP1, ADM), alveolarization (MMP2, MMP9, TIMP1, COL1A1, ELN), proliferation (IGF1, IGF2, IGF1R, MKI67, PCNA), inflammation (CCL2, CCL4, IL1B, TNFA, TGFB1, IL10) and surfactant maturation (SFTP-A, SFTP-B, SFTP-C, SFTP-D, PCYT1A, LPCAT, LAMP3, ABCA3). Despite the effects of PR on the expression of genes regulating airway remodelling, inflammatory signalling and surfactant maturation, there were very few effects of VEGF administration on gene expression in the lung of both the normally grown and PR fetus. There were, however, positive effects of VEGF administration on percentage tissue, air space and numerical density of SFTP-B positive alveolar epithelial cells in fetal lung tissue. These results provide evidence for the stimulatory effects of VEGF administration on structural maturation in the lung of both the normally grown and PR fetus.
Collapse
Affiliation(s)
- Erin V McGillick
- Early Origins of Adult Health Research Group.,Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Sandra Orgeig
- Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | | |
Collapse
|
45
|
Khazdair MR, Boskabady MH, Ghorani V. Respiratory effects of sulfur mustard exposure, similarities and differences with asthma and COPD. Inhal Toxicol 2015; 27:731-44. [PMID: 26635274 DOI: 10.3109/08958378.2015.1114056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Previous research has found relationships between sulfur mustard (SM) toxicity and its adverse effects. OBJECTIVE SM is highly toxic to the respiratory system, leading to hacking cough, rhinorrheachest tightness, acute pharyngitis and laryngitis, chronic bronchitis and lung fibrosis. In this review, based on the scientific literature, we provide an updated summary of information on SM exposures and their differences with asthma and COPD. METHOD Information of this review was obtained by searching Medline/PubMed, ScienceDirect, Scopus, Google Scholar, ISI Web of Knowledge and Chemical Abstracts. RESULTS SM exposure can decrease pulmonary function tests (PFTs) values. In addition, inflammatory cell accumulation in the respiratory tract and increased expression of some pro-inflammatory cytokines including tumor necrosis factor-α (TNFα), IL-1a, IL-1β, and reactive oxygen radicals due to SM exposure have been shown. Matrix metalloproteinase (MMP) which degrade extracellular matrix proteins, contributing to inflammatory cell recruitment, tissue injury and fibrosis are also up-regulated in the lung after SM exposure. In the lung, SM exposure also can cause serious pathological changes including airway inflammation, parenchymal tissue destruction and airway obstruction which can lead to asthma or chronic obstructive pulmonary disease (COPD). Following SM poisoning, DNA damage, apoptosis and autophagy are observed in the lung along with the increased expression of activated caspases and DNA repair enzymes. CONCLUSION In the present article, respiratory symptoms, changes in PFTs, lung pathology and lung inflammation due to SM exposure and the similarities and differences between them and those observed in asthma and COPD were reviewed.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- a Pharmaceutical Research Center and Department of Physiology, School of Medicine .,b Student Research Committee , and
| | - Mohammad Hossein Boskabady
- c Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Vahideh Ghorani
- a Pharmaceutical Research Center and Department of Physiology, School of Medicine
| |
Collapse
|
46
|
Jiang H, Zhang J, Zhang Z, Ren S, Zhang C. Effect of transplanted adipose‑derived stem cells in mice exhibiting idiopathic pulmonary fibrosis. Mol Med Rep 2015; 12:5933-8. [PMID: 26252797 DOI: 10.3892/mmr.2015.4178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 05/15/2015] [Indexed: 11/06/2022] Open
Abstract
Stem cell‑based cell therapy has provided a promising method for the treatment of pulmonary diseases, including idiopathic pulmonary fibrosis (IPF). Furthermore, adipose‑derived stem cells (ADSCs) have been reported to be effective in lung repair and regeneration. In the current study, IPF was induced in mice by intratracheal instillation of bleomycin (BLM), and ADSCs were delivered systemically into the mice via the tail vein to evaluate the effects of ADSC transplantation. The ADSC engraftment rate and morphometric changes in lung tissue samples in vivo were investigated by histochemistry and immunohistochemistry, as well as by western blotting. The results indicated that ADSCs may relieve IPF and provide a significant contribution to lung repair when administered at an early stage.
Collapse
Affiliation(s)
- Hongbin Jiang
- Department of Anatomy, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jun Zhang
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Zhemin Zhang
- Department of Respiratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Shengxiang Ren
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Chuansen Zhang
- Department of Anatomy, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
47
|
Gao W, Li L, Wang Y, Zhang S, Adcock IM, Barnes PJ, Huang M, Yao X. Bronchial epithelial cells: The key effector cells in the pathogenesis of chronic obstructive pulmonary disease? Respirology 2015; 20:722-9. [PMID: 25868842 DOI: 10.1111/resp.12542] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 01/06/2023]
Abstract
The primary function of the bronchial epithelium is to act as a defensive barrier aiding the maintenance of normal airway function. Bronchial epithelial cells (BEC) form the interface between the external environment and the internal milieu, making it a major target of inhaled insults. However, BEC can also serve as effectors to initiate and orchestrate immune and inflammatory responses by releasing chemokines and cytokines, which recruit and activate inflammatory cells. They also produce excess reactive oxygen species as a result of an oxidant/antioxidant imbalance that contributes to chronic pulmonary inflammation and lung tissue damage. Accumulated mucus from hyperplastic BEC obstructs the lumen of small airways, whereas impaired cell repair, squamous metaplasia and increased extracellular matrix deposition underlying the epithelium is associated with airway remodelling particularly fibrosis and thickening of the airway wall. These alterations in small airway structure lead to airflow limitation, which is critical in the clinical diagnosis of chronic obstructive pulmonary disease (COPD). In this review, we discuss the abnormal function of BEC within a disturbed immune homeostatic environment consisting of ongoing inflammation, oxidative stress and small airway obstruction. We provide an overview of recent insights into the function of the bronchial epithelium in the pathogenesis of COPD and how this may provide novel therapeutic approaches for a number of chronic lung diseases.
Collapse
Affiliation(s)
- Wei Gao
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingling Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yujie Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sini Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Mao Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Yao
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Lee CC, Wang CN, Lee YL, Tsai YR, Liu JJ. High mobility group box 1 induced human lung myofibroblasts differentiation and enhanced migration by activation of MMP-9. PLoS One 2015; 10:e0116393. [PMID: 25692286 PMCID: PMC4332862 DOI: 10.1371/journal.pone.0116393] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 12/10/2014] [Indexed: 11/21/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear protein that involves the binding with DNA and influences chromatin regulation and transcription. HMGB1 is also a cytokine that can activate monocytes and neutrophils involved in inflammation. In this study, we investigated the role of HMGB1 on cellular activation using human fibroblast cell line WI-38. After treatment with 1, 10, and 100 ng/mL of HMGB1 for 24 h, we did not find obviously cytotoxicity and cellular proliferation of WI-38 cells by MTT and BrdU incorporation assay, respectively. However, we found that treatment with 10 and 100 ng/mL of HMGB1 induced the differentiation of lung fibroblasts into myofibroblasts and myofibroblasts showed higher migration ability through activation of matrix metalloproteinase (MMP)-9 activation. To delineate the mechanism underlying HMGB1-induced cellular migration, we examined HMGB1-induced mitogen activated protein kinases (MAPKs), including extracellular signal related kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen activated protein kinase (p38) phosphorylation, as well as nuclear factor (NF)-κB nuclear translocation. Using specific inhibitors and shRNAs of protein kinases, we observed that repression of ERK, JNK, p38, and NF-κB all inhibited HMGB1-induced cellular differentiation, migration and MMP-9 activation in WI-38 cells. In addition, knocking down of RAGE but not TLR2 and TLR4 by shRNAs attenuated HMGB1-induced myofibroblast differentiation and migration. In conclusion, our study demonstrated that HMGB1 induced lung fibroblasts’ differentiation into myofibroblasts and enhanced cell migration through induction of MMP-9 activation and the RAGE-MAPK and NF-κB interaction signaling pathways. Targeting HMGB1 might be a potential therapeutic approach for alleviation of airway remodeling seen in chronic airway inflammatory diseases.
Collapse
Affiliation(s)
- Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
- * E-mail:
| | - Chien-Neng Wang
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ru Tsai
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Jau-Jin Liu
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
49
|
Wu W, Ichihara G, Hashimoto N, Hasegawa Y, Hayashi Y, Tada-Oikawa S, Suzuki Y, Chang J, Kato M, D'Alessandro-Gabazza CN, Gabazza EC, Ichihara S. Synergistic effect of bolus exposure to zinc oxide nanoparticles on bleomycin-induced secretion of pro-fibrotic cytokines without lasting fibrotic changes in murine lungs. Int J Mol Sci 2014; 16:660-76. [PMID: 25561223 PMCID: PMC4307267 DOI: 10.3390/ijms16010660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/16/2014] [Indexed: 01/20/2023] Open
Abstract
Zinc oxide (ZnO) nanoparticles are widely used in various products, and the safety evaluation of this manufactured material is important. The present study investigated the inflammatory and fibrotic effects of pulmonary exposure to ZnO nanoparticles in a mouse model of pulmonary fibrosis. Pulmonary fibrosis was induced by constant subcutaneous infusion of bleomycin (BLM). Female C57BL/6Jcl mice were divided into BLM-treated and non-treated groups. In each treatment group, 0, 10, 20 or 30 µg of ZnO nanoparticles were delivered into the lungs through pharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) and the lungs were sampled at Day 10 or 14 after administration. Pulmonary exposure by a single bolus of ZnO nanoparticles resulted in severe, but transient inflammatory infiltration and thickening of the alveolar septa in the lungs, along with the increase of total and differential cell counts in BLAF. The BALF level of interleukin (IL)-1β and transforming growth factor (TGF)-β was increased at Day 10 and 14, respectively. At Day 10, the synergistic effect of BLM and ZnO exposure was detected on IL-1β and monocyte chemotactic protein (MCP)-1 in BALF. The present study demonstrated the synergistic effect of pulmonary exposure to ZnO nanoparticles and subcutaneous infusion of BLM on the secretion of pro-fibrotic cytokines in the lungs.
Collapse
Affiliation(s)
- Wenting Wu
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda 278-8510, Japan.
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Yasuhiko Hayashi
- Department of Electrical and Electronic Engineering, Okayama University, Okayama 700-8530, Japan.
| | - Saeko Tada-Oikawa
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan.
| | - Yuka Suzuki
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan.
| | - Jie Chang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | | | - Esteban C Gabazza
- Department of Immunology, Mie University School of Medicine, Tsu 514-8507, Japan.
| | - Sahoko Ichihara
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan.
| |
Collapse
|
50
|
Pérez-Rial S, Del Puerto-Nevado L, Girón-Martínez A, Terrón-Expósito R, Díaz-Gil JJ, González-Mangado N, Peces-Barba G. Liver growth factor treatment reverses emphysema previously established in a cigarette smoke exposure mouse model. Am J Physiol Lung Cell Mol Physiol 2014; 307:L718-26. [PMID: 25172913 DOI: 10.1152/ajplung.00293.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease largely associated with cigarette smoke exposure (CSE) and characterized by pulmonary and extrapulmonary manifestations, including systemic inflammation. Liver growth factor (LGF) is an albumin-bilirubin complex with demonstrated antifibrotic, antioxidant, and antihypertensive actions even at extrahepatic sites. We aimed to determine whether short LGF treatment (1.7 μg/mouse ip; 2 times, 2 wk), once the lung damage was established through the chronic CSE, contributes to improvement of the regeneration of damaged lung tissue, reducing systemic inflammation. We studied AKR/J mice, divided into three groups: control (air-exposed), CSE (chronic CSE), and CSE + LGF (LGF-treated CSE mice). We assessed pulmonary function, morphometric data, and levels of various systemic inflammatory markers to test the LGF regenerative capacity in this system. Our results revealed that the lungs of the CSE animals showed pulmonary emphysema and inflammation, characterized by increased lung compliance, enlargement of alveolar airspaces, systemic inflammation (circulating leukocytes and serum TNF-α level), and in vivo lung matrix metalloproteinase activity. LGF treatment was able to reverse all these parameters, decreasing total cell count in bronchoalveolar lavage fluid and T-lymphocyte infiltration in peripheral blood observed in emphysematous mice and reversing the decrease in monocytes observed in chronic CSE mice, and tends to reduce the neutrophil population and serum TNF-α level. In conclusion, LGF treatment normalizes the physiological and morphological parameters and levels of various systemic inflammatory biomarkers in a chronic CSE AKR/J model, which may have important pathophysiological and therapeutic implications for subjects with stable COPD.
Collapse
Affiliation(s)
- Sandra Pérez-Rial
- Respiratory Research Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-CIBERES (IIS-FJD-CIBERES), Madrid, Spain
| | - Laura Del Puerto-Nevado
- Respiratory Research Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-CIBERES (IIS-FJD-CIBERES), Madrid, Spain
| | - Alvaro Girón-Martínez
- Respiratory Research Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-CIBERES (IIS-FJD-CIBERES), Madrid, Spain
| | - Raúl Terrón-Expósito
- Respiratory Research Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-CIBERES (IIS-FJD-CIBERES), Madrid, Spain
| | - Juan J Díaz-Gil
- Respiratory Research Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-CIBERES (IIS-FJD-CIBERES), Madrid, Spain
| | - Nicolás González-Mangado
- Respiratory Research Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-CIBERES (IIS-FJD-CIBERES), Madrid, Spain
| | - Germán Peces-Barba
- Respiratory Research Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-CIBERES (IIS-FJD-CIBERES), Madrid, Spain
| |
Collapse
|