1
|
Chen F, Xu K, Han Y, Ding J, Ren J, Wang Y, Ma Z, Cao F. Mitochondrial dysfunction in pancreatic acinar cells: mechanisms and therapeutic strategies in acute pancreatitis. Front Immunol 2024; 15:1503087. [PMID: 39776917 PMCID: PMC11703726 DOI: 10.3389/fimmu.2024.1503087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the pancreas and a complex process involving multiple factors, with mitochondrial damage playing a crucial role. Mitochondrial dysfunction is now considered a key driver in the development of AP. This dysfunction often presents as increased oxidative stress, altered membrane potential and permeability, and mitochondrial DNA damage and mutations. Under stress conditions, mitochondrial dynamics and mitochondrial ROS production increase, leading to decreased mitochondrial membrane potential, imbalanced calcium homeostasis, and activation of the mitochondrial permeability transition pore. The release of mitochondrial DNA (mtDNA), recognized as damage-associated molecular patterns, can activate the cGAS-STING1 and NF-κB pathway and induce pro-inflammatory factor expression. Additionally, mtDNA can activate inflammasomes, leading to interleukin release and subsequent tissue damage and inflammation. This review summarizes the relationship between mitochondria and AP and explores mitochondrial protective strategies in the diagnosis and treatment of this disease. Future research on the treatment of acute pancreatitis can benefit from exploring promising avenues such as antioxidants, mitochondrial inhibitors, and new therapies that target mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kedong Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Pancreatic Disease Center of Xi’an Jiaotong University, Xi’an, China
| | - Yimin Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiachun Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaqiang Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhenhua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Pancreatic Disease Center of Xi’an Jiaotong University, Xi’an, China
| | - Fang Cao
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
2
|
Manhas N. Computational Model of Complex Calcium Dynamics: Store Operated Ca 2+ Channels and Mitochondrial Associated Membranes in Pancreatic Acinar Cells. Cell Biochem Biophys 2024:10.1007/s12013-024-01484-6. [PMID: 39266873 DOI: 10.1007/s12013-024-01484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/14/2024]
Abstract
This proposed model explores the intricate Ca2+ dynamics within the pancreatic acinar cells (PACs) by emphasizing the role of store-operated Ca2+ entry (SOCE) and the mitochondrial-associated membranes (MAMs) in the secretory region (apical) of the PACs. Traditionally, Ca2+ releases from the endoplasmic reticulum (ER) via calcium-induced calcium release (CICR). It has been shown to be important in regulating functions such as secretion of digestive enzymes in PACs. However, this model posits that upon the depletion of Ca2+ in the ER, the signaling protein stromal interaction molecule (STIM1) is activated. Activated STIM1, then facilitates the opening of Orai channels, allowing Ca2+ influx through the store-operated calcium channels (SOCCs). The model highlights the complexity of the Ca2+ dynamics, and the importance of SOCE and MAMs in the PACs Ca2+ homeostasis. The numerical and bifurcation analysis illustrate how changes in agonist concentrations can lead to the diverse Ca2+ oscillation patterns, such as thin to broader oscillations, sinusoidal patterns, and baseline fluctuations, driven by the feedback mechanisms involving Ca2+ and inositol 1,4,5 trisphosphate (IP3). This understanding could have broader implications for cellular physiology and the development of therapies targeting Ca2+ signaling pathways.
Collapse
Affiliation(s)
- Neeraj Manhas
- Department of Mathematics, National Institute of Technology, Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
3
|
Prüschenk S, Majer M, Schlossmann J. Novel Functional Features of cGMP Substrate Proteins IRAG1 and IRAG2. Int J Mol Sci 2023; 24:9837. [PMID: 37372987 DOI: 10.3390/ijms24129837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The inositol triphosphate-associated proteins IRAG1 and IRAG2 are cGMP kinase substrate proteins that regulate intracellular Ca2+. Previously, IRAG1 was discovered as a 125 kDa membrane protein at the endoplasmic reticulum, which is associated with the intracellular Ca2+ channel IP3R-I and the PKGIβ and inhibits IP3R-I upon PKGIβ-mediated phosphorylation. IRAG2 is a 75 kDa membrane protein homolog of IRAG1 and was recently also determined as a PKGI substrate. Several (patho-)physiological functions of IRAG1 and IRAG2 were meanwhile elucidated in a variety of human and murine tissues, e.g., of IRAG1 in various smooth muscles, heart, platelets, and other blood cells, of IRAG2 in the pancreas, heart, platelets, and taste cells. Hence, lack of IRAG1 or IRAG2 leads to diverse phenotypes in these organs, e.g., smooth muscle and platelet disorders or secretory deficiency, respectively. This review aims to highlight the recent research regarding these two regulatory proteins to envision their molecular and (patho-)physiological tasks and to unravel their functional interplay as possible (patho-)physiological counterparts.
Collapse
Affiliation(s)
- Sally Prüschenk
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Michael Majer
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
4
|
Li S, Ji X, Gao M, Huang B, Peng S, Wu J. Endogenous Amyloid-formed Ca 2+-permeable Channels in Aged 3xTg AD Mice. FUNCTION 2023; 4:zqad025. [PMID: 37342418 PMCID: PMC10278988 DOI: 10.1093/function/zqad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 06/22/2023] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of beta-amyloid peptides (Aβ). However, whether Aβ itself is a key toxic agent in AD pathogenesis and the precise mechanism of Aβ-elicited neurotoxicity are still debated. Emerging evidence demonstrates that the Aβ channel/pore hypothesis could explain Aβ toxicity, because Aβ oligomers are able to disrupt membranes and cause edge-conductivity pores that may disrupt cell Ca2+ homeostasis and drive neurotoxicity in AD. However, all available data to support this hypothesis have been collected from "in vitro" experiments using high concentrations of exogenous Aβ. It is still unknown whether Aβ channels can be formed by endogenous Aβ in AD animal models. Here, we report an unexpected finding of the spontaneous Ca2+ oscillations in aged 3xTg AD mice but not in age-matched wild-type mice. These spontaneous Ca2+ oscillations are sensitive to extracellular Ca2+, ZnCl2, and the Aβ channel blocker Anle138b, suggesting that these spontaneous Ca2+ oscillations in aged 3xTg AD mice are mediated by endogenous Aβ-formed channels.
Collapse
Affiliation(s)
- Shuangtao Li
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xiaoyu Ji
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Ming Gao
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Bing Huang
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Shuang Peng
- School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China
| | - Jie Wu
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| |
Collapse
|
5
|
Understanding Necroptosis in Pancreatic Diseases. Biomolecules 2022; 12:biom12060828. [PMID: 35740953 PMCID: PMC9221205 DOI: 10.3390/biom12060828] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Intermediate between apoptosis and necrosis, necroptosis is a regulated caspase-independent programmed cell death that induces an inflammatory response and mediates cancer development. As our understanding improves, its role in the physiopathology of numerous diseases, including pancreatic diseases, has been reconsidered, and especially in pancreatitis and pancreatic cancer. However, the exact pathogenesis remains elusive, even though some studies have been conducted on these diseases. Its unique mechanisms of action in diseases are expected to bring prospects for the treatment of pancreatic diseases. Therefore, it is imperative to further explore its molecular mechanism in pancreatic diseases in order to identify novel therapeutic options. This article introduces recent related research on necroptosis and pancreatic diseases, explores necroptosis-related molecular pathways, and provides a theoretical foundation for new therapeutic targets for pancreatic diseases.
Collapse
|
6
|
Moore M, Avula N, Wong A, Beetch M, Jo S, Alejandro EU. Reduction in O-GlcNAcylation Mitigates the Severity of Inflammatory Response in Cerulein-Induced Acute Pancreatitis in a Mouse Model. BIOLOGY 2022; 11:biology11030347. [PMID: 35336721 PMCID: PMC8945657 DOI: 10.3390/biology11030347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Acute pancreatitis (AP) involves premature trypsinogen activation, which mediates a cascade of pro-inflammatory signaling that causes early stages of pancreatic injury. Activation of the transcription factor κB (NF-κB) and secretion of pro-inflammatory mediators are major events in AP. O-GlcNAc transferase (OGT), a stress-sensitive enzyme, was recently implicated to regulate NF-κB activation and inflammation in AP in vitro. This study aims to determine whether a pancreas-specific transgenic reduction in OGT in a mouse model affects the severity of AP in vivo. Mice with reduced pancreatic OGT (OGTPanc+/-) at 8 weeks of age were randomized to cerulein, which induces pancreatitis, or saline injections. AP was confirmed by elevated amylase levels and on histological analysis. The histological scoring demonstrated that OGTPanc+/- mice had decreased severity of AP. Additionally, serum lipase, LDH, and TNF-α in OGTPanc+/- did not significantly increase in response to cerulein treatment as compared to controls, suggesting attenuated AP induction in this model. Our study reveals the effect of reducing pancreatic OGT levels on the severity of pancreatitis, warranting further investigation on the role of OGT in the pathology of AP.
Collapse
Affiliation(s)
- Mackenzie Moore
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (M.M.); (N.A.); (M.B.); (S.J.)
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Nandini Avula
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (M.M.); (N.A.); (M.B.); (S.J.)
| | - Alicia Wong
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Megan Beetch
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (M.M.); (N.A.); (M.B.); (S.J.)
| | - Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (M.M.); (N.A.); (M.B.); (S.J.)
| | - Emilyn U. Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (M.M.); (N.A.); (M.B.); (S.J.)
- Correspondence: ; Tel.: +1-612-301-7685
| |
Collapse
|
7
|
Prüschenk S, Majer M, Schreiber R, Schlossmann J. IRAG2 Interacts with IP 3-Receptor Types 1, 2, and 3 and Regulates Intracellular Ca 2+ in Murine Pancreatic Acinar Cells. Int J Mol Sci 2021; 22:ijms222413409. [PMID: 34948204 PMCID: PMC8707672 DOI: 10.3390/ijms222413409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/18/2023] Open
Abstract
The inositol 1,4,5-triphosphate receptor-associated 2 (IRAG2) is also known as Jaw1 or lymphoid-restricted membrane protein (LRMP) and shares homology with the inositol 1,4,5-triphosphate receptor-associated cGMP kinase substrate 1 (IRAG1). IRAG1 interacts with inositol trisphosphate receptors (IP3 receptors /IP3R) via its coiled-coil domain and modulates Ca2+ release from intracellular stores. Due to the homology of IRAG1 and IRAG2, especially in its coiled-coil domain, it is possible that IRAG2 has similar interaction partners like IRAG1 and that IRAG2 also modulates intracellular Ca2+ signaling. In our study, we localized IRAG2 in pancreatic acinar cells of the exocrine pancreas, and we investigated the interaction of IRAG2 with IP3 receptors and its impact on intracellular Ca2+ signaling and exocrine pancreatic function, like amylase secretion. We detected the interaction of IRAG2 with different subtypes of IP3R and altered Ca2+ release in pancreatic acinar cells from mice lacking IRAG2. IRAG2 deficiency decreased basal levels of intracellular Ca2+, suggesting that IRAG2 leads to activation of IP3R under unstimulated basal conditions. Moreover, we observed that loss of IRAG2 impacts the secretion of amylase. Our data, therefore, suggest that IRAG2 modulates intracellular Ca2+ signaling, which regulates exocrine pancreatic function.
Collapse
Affiliation(s)
- Sally Prüschenk
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (S.P.); (M.M.)
| | - Michael Majer
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (S.P.); (M.M.)
| | - Rainer Schreiber
- Institute of Physiology, University of Regensburg, 93040 Regensburg, Germany;
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (S.P.); (M.M.)
- Correspondence: ; Tel.: +49-941-943-4770
| |
Collapse
|
8
|
Wartenberg P, Lux F, Busch K, Fecher-Trost C, Flockerzi V, Krasteva-Christ G, Boehm U, Weissgerber P. A TRPV6 expression atlas for the mouse. Cell Calcium 2021; 100:102481. [PMID: 34628109 DOI: 10.1016/j.ceca.2021.102481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023]
Abstract
The transient receptor potential vanilloid 6 (TRPV6) channel is highly Ca2+-selective and has been implicated in mediating transcellular Ca2+ transport and thus maintaining the Ca2+ balance in the body. To characterize its physiological function(s), a detailed expression profile of the TRPV6 channel throughout the body is essential. Capitalizing on a recently established murine Trpv6-reporter strain, we identified primary TRPV6 channel-expressing cells in an organism-wide manner. In a complementary experimental approach, we characterized TRPV6 expression in different tissues of wild-type mice by TRPV6 immunoprecipitation (IP) followed by mass spectrometry analysis and correlated these data with the reporter gene expression. Taken together, we present a TRPV6 expression atlas throughout the entire body of juvenile and adult mice, providing a novel resource to investigate the role of TRPV6 channels in vivo.
Collapse
Affiliation(s)
- Philipp Wartenberg
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Femke Lux
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Kai Busch
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Claudia Fecher-Trost
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Veit Flockerzi
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | | | - Ulrich Boehm
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Petra Weissgerber
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany.
| |
Collapse
|
9
|
Sluga N, Postić S, Sarikas S, Huang YC, Stožer A, Slak Rupnik M. Dual Mode of Action of Acetylcholine on Cytosolic Calcium Oscillations in Pancreatic Beta and Acinar Cells In Situ. Cells 2021; 10:1580. [PMID: 34201461 PMCID: PMC8305080 DOI: 10.3390/cells10071580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cholinergic innervation in the pancreas controls both the release of digestive enzymes to support the intestinal digestion and absorption, as well as insulin release to promote nutrient use in the cells of the body. The effects of muscarinic receptor stimulation are described in detail for endocrine beta cells and exocrine acinar cells separately. Here we describe morphological and functional criteria to separate these two cell types in situ in tissue slices and simultaneously measure their response to ACh stimulation on cytosolic Ca2+ oscillations [Ca2+]c in stimulatory glucose conditions. Our results show that both cell types respond to glucose directly in the concentration range compatible with the glucose transporters they express. The physiological ACh concentration increases the frequency of glucose stimulated [Ca2+]c oscillations in both cell types and synchronizes [Ca2+]c oscillations in acinar cells. The supraphysiological ACh concentration further increases the oscillation frequency on the level of individual beta cells, inhibits the synchronization between these cells, and abolishes oscillatory activity in acinar cells. We discuss possible mechanisms leading to the observed phenomena.
Collapse
Affiliation(s)
- Nastja Sluga
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia; (N.S.); (A.S.)
| | - Sandra Postić
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (S.P.); (S.S.); (Y.-C.H.)
| | - Srdjan Sarikas
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (S.P.); (S.S.); (Y.-C.H.)
| | - Ya-Chi Huang
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (S.P.); (S.S.); (Y.-C.H.)
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia; (N.S.); (A.S.)
| | - Marjan Slak Rupnik
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia; (N.S.); (A.S.)
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (S.P.); (S.S.); (Y.-C.H.)
- Alma Mater Europaea, European Center Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
10
|
Burgos M, Philippe R, Antigny F, Buscaglia P, Masson E, Mukherjee S, Dubar P, Le Maréchal C, Campeotto F, Lebonvallet N, Frieden M, Llopis J, Domingo B, Stathopulos PB, Ikura M, Brooks W, Guida W, Chen JM, Ferec C, Capiod T, Mignen O. The p.E152K-STIM1 mutation deregulates Ca 2+ signaling contributing to chronic pancreatitis. J Cell Sci 2021; 134:jcs.244012. [PMID: 33468626 DOI: 10.1242/jcs.244012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 12/24/2020] [Indexed: 11/20/2022] Open
Abstract
Since deregulation of intracellular Ca2+ can lead to intracellular trypsin activation, and stromal interaction molecule-1 (STIM1) protein is the main regulator of Ca2+ homeostasis in pancreatic acinar cells, we explored the Ca2+ signaling in 37 STIM1 variants found in three pancreatitis patient cohorts. Extensive functional analysis of one particular variant, p.E152K, identified in three patients, provided a plausible link between dysregulated Ca2+ signaling within pancreatic acinar cells and chronic pancreatitis susceptibility. Specifically, p.E152K, located within the STIM1 EF-hand and sterile α-motif domain, increased the release of Ca2+ from the endoplasmic reticulum in patient-derived fibroblasts and transfected HEK293T cells. This event was mediated by altered STIM1-sarco/endoplasmic reticulum calcium transport ATPase (SERCA) conformational change and enhanced SERCA pump activity leading to increased store-operated Ca2+ entry (SOCE). In pancreatic AR42J cells expressing the p.E152K variant, Ca2+ signaling perturbations correlated with defects in trypsin activation and secretion, and increased cytotoxicity after cholecystokinin stimulation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Miguel Burgos
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France .,Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02002 Albacete, Spain.,Complejo Hospitalario Universitario de Albacete (UI-CHUA), 02002 Albacete, Spain
| | - Reginald Philippe
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Fabrice Antigny
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis Robinson, France.,Department of Cell Physiology and Metabolism, Geneva Medical Center, CH-1211 Geneva, Switzerland
| | - Paul Buscaglia
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France.,UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609 Brest, France
| | - Emmanuelle Masson
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Sreya Mukherjee
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Pauline Dubar
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | | | - Florence Campeotto
- Hôpital Necker, AP-HP, Service de Gastroentérologie et Explorations Fonctionnelles Digestives Pédiatriques, Paris Descartes-Sorbonne Paris Cité Université, Institut Imagine, 75015 Paris, France
| | - Nicolas Lebonvallet
- Laboratory of Interactions Keratinocytes Neurons (EA4685), University of Western Brittany, F-29200 Brest, France
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, Geneva Medical Center, CH-1211 Geneva, Switzerland
| | - Juan Llopis
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02002 Albacete, Spain
| | - Beatriz Domingo
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02002 Albacete, Spain
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, London, ON N6A 5C1, Canada
| | - Mitsuhiko Ikura
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Wesley Brooks
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Wayne Guida
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Jian-Min Chen
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Claude Ferec
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Thierry Capiod
- INSERM Unit 1151, Institut Necker Enfants Malades (INEM), Université Paris Descartes, Paris 75014, France
| | - Olivier Mignen
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France .,UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609 Brest, France
| |
Collapse
|
11
|
Wang F, Wen Q, Zhang S, Fu Z, Liu F, Cui J, Liu J, Tian H. Sustained bile drainage decreases the organs injuries via inflammation-associated factors modulation in a severe acute pancreatitis rat model. Exp Ther Med 2019; 17:4628-4634. [PMID: 31086593 DOI: 10.3892/etm.2019.7478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 03/07/2019] [Indexed: 11/06/2022] Open
Abstract
The timely and effective treatment for severe acute pancreatitis (SAP) is favorable to prognosis. Decompression of the bile duct might be a feasible way to decrease the progression of SAP. The present study investigated the effects of sustained bile external drainage on organs injury caused by SAP in Sprague-Dawley (SD) rats and the mechanisms involved. A total of 72 female SD rats weighting 190-230 g were randomly divided into four groups (n=18): Sham operation group (SOG), SOG + bile drainage group (BDG), SAP group, and SAP + BDG. Sodium taurocholate solution (4%; 1 mg/kg body weight) was used to set up SAP model via injection of retrograde puncture of biliopancreatic duct through the duodenum. A cannula was inserted into the bile duct and fixed externally to establish BDG model. At each time points (t=3, 6, 12; n=6), tissues from the liver, lung, and pancreas, and blood samples were collected. Serum amylase (AMY) was analyzed in all the samples. The levels of tumor necrosis factor-α (TNF-α), heme oxygenase-1 (HO-1), interleukin-10 (IL-10) and high mobility group box 1 (HMGB1) were detected by ELISA. Hematoxylin-eosin staining was performed to observe the histopathological changes, and nuclear transcription factor (NF)-κB-p65 levels in the pancreas were analyzed by western blotting. The data indicated that BDG alleviated the SAP progression and multiple organs injuries. Meanwhile, the histopathological changes of the pancreas, liver, and lungs were improved by BDG. BDG decreased the pathological scores of pancreas significantly (P<0.05). The levels of AMY, TNF-α, HMGB1, and NF-κB-p65 were significantly downregulated by BDG (P<0.05), while the level of HO-1 was upregulated and IL-10 was unchanged. In summary, BDG may attenuate the multiple organs injuries caused by SAP via downregulation of TNF-α, HMGB1, NF-κB-p65 and upregulation of HO-1.
Collapse
Affiliation(s)
- Fuhai Wang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Qingbin Wen
- Department of Surgery, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Sai Zhang
- Department of Surgery, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Zhen Fu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Feng Liu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Jing Cui
- Department of Pathology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Hu Tian
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
12
|
Saluja A, Dudeja V, Dawra R, Sah RP. Early Intra-Acinar Events in Pathogenesis of Pancreatitis. Gastroenterology 2019; 156:1979-1993. [PMID: 30776339 DOI: 10.1053/j.gastro.2019.01.268] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Premature activation of digestive enzymes in the pancreas has been linked to development of pancreatitis for more than a century. Recent development of novel models to study the role of pathologic enzyme activation has led to advances in our understanding of the mechanisms of pancreatic injury. Colocalization of zymogen and lysosomal fraction occurs early after pancreatitis-causing stimulus. Cathepsin B activates trypsinogen in these colocalized organelles. Active trypsin increases permeability of these organelles resulting in leakage of cathepsin B into the cytosol leading to acinar cell death. Although trypsin-mediated cell death leads to pancreatic injury in early stages of pancreatitis, multiple parallel mechanisms, including activation of inflammatory cascades, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction in the acinar cells are now recognized to be important in driving the profound systemic inflammatory response and extensive pancreatic injury seen in acute pancreatitis. Chymotrypsin, another acinar protease, has recently been shown be play critical role in clearance of pathologically activated trypsin protecting against pancreatic injury. Mutations in trypsin and other genes thought to be associated with pathologic enzyme activation (such as serine protease inhibitor 1) have been found in familial forms of pancreatitis. Sustained intra-acinar activation of nuclear factor κB pathway seems to be key pathogenic mechanism in chronic pancreatitis. Better understanding of these mechanisms will hopefully allow us to improve treatment strategies in acute and chronic pancreatitis.
Collapse
|
13
|
Xia KK, Shen JX, Huang ZB, Song HM, Gao M, Chen DJ, Zhang SJ, Wu J. Heterogeneity of cannabinoid ligand-induced modulations in intracellular Ca 2+ signals of mouse pancreatic acinar cells in vitro. Acta Pharmacol Sin 2019; 40:410-417. [PMID: 30202013 PMCID: PMC6460482 DOI: 10.1038/s41401-018-0074-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/20/2018] [Indexed: 02/05/2023] Open
Abstract
We recently reported that a CB2R agonist, GW405833 (GW), reduced both the ACh-induced Ca2+ oscillations and the L-arginine-induced Ca2+ signal enhancement in mouse pancreatic acinar cells, suggesting that GW-induced inhibition may prevent the pathogenesis of acute pancreatitis. In this study, we aim to evaluate the effects of other cannabinoid ligands on Ca2+ signaling in acinar cells. Patch-clamp whole-cell recordings were applied to measure ACh-induced intracellular Ca2+ oscillations in pancreatic acinar cells acutely dissociated from wild-type (WT), CB1R knockout (KO), and CB2R KO mice, and the pharmacological effects of various cannabinoid ligands on the Ca2+ oscillations were examined. We found that all the 8 CB2R agonists tested inhibited ACh-induced Ca2+ oscillations. Among them, GW, JWH133, and GP1a caused potent inhibition with IC50 values of 5.0, 6.7, and 1.2 μmol/L, respectively. In CB2R KO mice or in the presence of a CB2R antagonist (AM630), the inhibitory effects of these 3 CB2R agonists were abolished, suggesting that they acted through the CB2Rs. The CB1R agonist ACEA also induced inhibition of Ca2+ oscillations that existed in CB1R KO mice and in the presence of a CB1R antagonist (AM251), suggesting a non-CB1R effect. In WT, CB1R KO, and CB2R KO mice, a nonselective CBR agonist, WIN55,212-2, inhibited Ca2+ oscillations, which was not mediated by CB1Rs or CB2Rs. The endogenous cannabinoid substance, 2-arachidonoylglycerol (2-AG), did not show an inhibitory effect on Ca2+ oscillations. In conclusion, CB2R agonists play critical roles in modulating Ca2+ signals in mouse pancreatic acinar cells, while other cannabinoid ligands modulate Ca2+ oscillations in a heterogeneous manner through a CB receptor or non-CB-receptor mechanism.
Collapse
Affiliation(s)
- Kun-Kun Xia
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 8501, USA
| | - Jian-Xin Shen
- Department of Physiology, Shantou University Medical College, Shantou, 515100, China
| | - Ze-Bing Huang
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 8501, USA
| | - Hui-Min Song
- Department of Physiology, Shantou University Medical College, Shantou, 515100, China
| | - Ming Gao
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 8501, USA
| | - De-Jie Chen
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 8501, USA
- Department of Neurology, Yunfu People's Hospital, Yunfu, 527300, China
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jie Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 8501, USA.
- Department of Physiology, Shantou University Medical College, Shantou, 515100, China.
- Department of Neurology, Yunfu People's Hospital, Yunfu, 527300, China.
| |
Collapse
|
14
|
Ameur FZ, Mehedi N, Kheroua O, Saïdi D, Salido GM, Gonzalez A. Sulfanilic acid increases intracellular free-calcium concentration, induces reactive oxygen species production and impairs trypsin secretion in pancreatic AR42J cells. Food Chem Toxicol 2018; 120:71-80. [DOI: 10.1016/j.fct.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/09/2018] [Accepted: 07/01/2018] [Indexed: 12/12/2022]
|
15
|
Malnutrition in Pancreatic Ductal Adenocarcinoma (PDA): Dietary Pancreatic Enzymes Improve Short-Term Health but Stimulate Tumor Growth. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:616-626. [PMID: 29248457 DOI: 10.1016/j.ajpath.2017.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/20/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a deadly cancer that resists efforts to identify better chemotherapeutics. PDA is associated with chronic pancreatitis and acinar cell dedifferentiation. This reduces enzyme production by the exocrine pancreas, resulting in digestive insufficiencies. Malabsorption of partially digested food causes bloating, overfilled intestines, abdominal pain, excessive feces, steatorrhea, and malnutrition. These maladies affect quality of life and restrict treatment options for pancreatitis and PDA. Here, we characterize health benefits and risks of dietary pancreatic enzymes in three mouse models of PDA-KC, KCR8-16, and KIC. KC expresses oncogenic KrasG12D in pancreatic tissue whereas KCR8-16 also has deletions of the Rgs8 and Rgs16 genes. Rgs proteins inhibit the release of digestive enzymes evoked by G-protein-coupled-receptor agonists. KC and KCR8-16 mice developed dedifferentiated exocrine pancreata within 2 months of age and became malnourished, underweight, hypoglycemic, and hypothermic. KC mice adapted but KCR8-16 mice rapidly transitioned to starvation after mild metabolic challenges. Dietary pancreatic enzyme supplements reversed these symptoms in KC and KCR8-16 animals, and extended survival. Therefore, we tested the benefits of pancreatic enzymes in an aggressive mouse model of PDA (KIC). Median survival improved with dietary pancreatic enzyme supplements and was extended further when combined with warfarin and gemcitabine chemotherapy. However, dietary pancreatic enzymes stimulated tumor growth in the terminal stages of disease progression in KIC mice.
Collapse
|
16
|
Gerasimenko JV, Peng S, Tsugorka T, Gerasimenko OV. Ca 2+ signalling underlying pancreatitis. Cell Calcium 2017; 70:95-101. [PMID: 28552244 DOI: 10.1016/j.ceca.2017.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 12/13/2022]
Abstract
In spite of significant scientific progress in recent years, acute pancreatitis (AP) is still a dangerous and in up to 5% of cases deadly disease with no specific cure. It is self-resolved in the majority of cases, but could result in chronic pancreatitis (CP) and increased risk of pancreatic cancer (PC). One of the early events in AP is premature activation of digestive pro-enzymes, including trypsinogen, inside pancreatic acinar cells (PACs) due to an excessive rise in the cytosolic Ca2+ concentration, which is the result of Ca2+ release from internal stores followed by Ca2+ entry through the store operated Ca2+ channels in the plasma membrane. The leading causes of AP are high alcohol intake and biliary disease with gallstones obstruction leading to bile reflux into the pancreatic duct. Recently attention in this area of research turned to another cause of AP - Asparaginase based drugs - which have been used quite successfully in treatments of childhood acute lymphoblastic leukaemia (ALL). Unfortunately, Asparaginase is implicated in triggering AP in 5-10% of cases as a side effect of the anti-cancer therapy. The main features of Asparaginase-elicited AP (AAP) were found to be remarkably similar to AP induced by alcohol metabolites and bile acids. Several potential therapeutic avenues in counteracting AAP have been suggested and could also be useful for dealing with AP induced by other causes. Another interesting development in this field includes recent research related to pancreatic stellate cells (PSCs) that are much less studied in their natural environment but nevertheless critically involved in AP, CP and PC. This review will attempt to evaluate developments, approaches and potential therapies for AP and discuss links to other relevant diseases.
Collapse
Affiliation(s)
- J V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK.
| | - S Peng
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK; Department of Physiology, Medical College, Jinan University, Guangzhou 510632, China
| | - T Tsugorka
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - O V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK.
| |
Collapse
|
17
|
Huang Z, Wang H, Wang J, Zhao M, Sun N, Sun F, Shen J, Zhang H, Xia K, Chen D, Gao M, Hammer RP, Liu Q, Xi Z, Fan X, Wu J. Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca(2+) oscillations in mouse pancreatic acinar cells. Sci Rep 2016; 6:29757. [PMID: 27432473 PMCID: PMC4949433 DOI: 10.1038/srep29757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/15/2016] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence demonstrates that the blockade of intracellular Ca(2+) signals may protect pancreatic acinar cells against Ca(2+) overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca(2+) signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB2R agonist, GW405833 (GW) in agonist-induced Ca(2+) oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB1R-knockout (KO), and CB2R-KO mice. Immunohistochemical labeling revealed that CB2R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB2Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca(2+) oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB2R antagonist, AM630, or was absent in CB2R-KO but not CB1R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca(2+) oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca(2+) oscillations and L-arginine-induced enhancement of Ca(2+) signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Acinar Cells/drug effects
- Acinar Cells/metabolism
- Acinar Cells/physiology
- Animals
- Arginine/pharmacology
- Calcium/metabolism
- Calcium Signaling/drug effects
- Cholinergic Agonists/pharmacology
- Indoles/pharmacology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Morpholines/pharmacology
- Pancreas/cytology
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Zebing Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, and Key Laboratory of Viral Hepatitis, Hunan Province, Changsha 410008, China
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix AZ 85013, USA
| | - Haiyan Wang
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jingke Wang
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Mengqin Zhao
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Nana Sun
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fangfang Sun
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jianxin Shen
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Haiying Zhang
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Kunkun Xia
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix AZ 85013, USA
| | - Dejie Chen
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix AZ 85013, USA
| | - Ming Gao
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix AZ 85013, USA
| | - Ronald P. Hammer
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
- Departments of Pharmacology and Psychiatry University of Arizona College of Medicine Tucson, AZ, 85721, USA
| | - Qingrong Liu
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Zhengxiong Xi
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Xuegong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, and Key Laboratory of Viral Hepatitis, Hunan Province, Changsha 410008, China
| | - Jie Wu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, and Key Laboratory of Viral Hepatitis, Hunan Province, Changsha 410008, China
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix AZ 85013, USA
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| |
Collapse
|
18
|
Congo red modulates ACh-induced Ca(2+) oscillations in single pancreatic acinar cells of mice. Acta Pharmacol Sin 2014; 35:1514-20. [PMID: 25345744 DOI: 10.1038/aps.2014.94] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 08/19/2014] [Indexed: 12/16/2022] Open
Abstract
AIM Congo red, a secondary diazo dye, is usually used as an indicator for the presence of amyloid fibrils. Recent studies show that congo red exerts neuroprotective effects in a variety of models of neurodegenerative diseases. However, its pharmacological profile remains unknown. In this study, we investigated the effects of congo red on ACh-induced Ca(2+) oscillations in mouse pancreatic acinar cells in vitro. METHODS Acutely dissociated pancreatic acinar cells of mice were prepared. A U-tube drug application system was used to deliver drugs into the bath. Intracellular Ca(2+) oscillations were monitored by whole-cell recording of Ca(2+)-activated Cl(-) currents and by using confocal Ca(2+) imaging. For intracellular drug application, the drug was added in pipette solution and diffused into cell after the whole-cell configuration was established. RESULTS Bath application of ACh (10 nmol/L) induced typical Ca(2+) oscillations in dissociated pancreatic acinar cells. Addition of congo red (1, 10, 100 μmol/L) dose-dependently enhanced Ach-induced Ca(2+) oscillations, but congo red alone did not induce any detectable response. Furthermore, this enhancement depended on the concentrations of ACh: congo red markedly enhanced the Ca(2+) oscillations induced by ACh (10-30 nmol/L), but did not alter the Ca(2+) oscillations induced by ACh (100-10000 nmol/L). Congo red also enhanced the Ca(2+) oscillations induced by bath application of IP3 (30 μmol/L). Intracellular application of congo red failed to alter ACh-induced Ca(2+) oscillations. CONCLUSION Congo red significantly modulates intracellular Ca(2+) signaling in pancreatic acinar cells, and this pharmacological effect should be fully considered when developing congo red as a novel therapeutic drug.
Collapse
|
19
|
Sah RP, Garg SK, Dixit AK, Dudeja V, Dawra RK, Saluja AK. Endoplasmic reticulum stress is chronically activated in chronic pancreatitis. J Biol Chem 2014; 289:27551-61. [PMID: 25077966 DOI: 10.1074/jbc.m113.528174] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pathogenesis of chronic pancreatitis (CP) is poorly understood. Endoplasmic reticulum (ER) stress has now been recognized as a pathogenic event in many chronic diseases. However, ER stress has not been studied in CP, although pancreatic acinar cells seem to be especially vulnerable to ER dysfunction because of their dependence on high ER volume and functionality. Here, we aim to investigate ER stress in CP, study its pathogenesis in relation to trypsinogen activation (widely regarded as the key event of pancreatitis), and explore its mechanism, time course, and downstream consequences during pancreatic injury. CP was induced in mice by repeated episodes of acute pancreatitis (AP) based on caerulein hyperstimulation. ER stress leads to activation of unfolded protein response components that were measured in CP and AP. We show sustained up-regulation of unfolded protein response components ATF4, CHOP, GRP78, and XBP1 in CP. Overexpression of GRP78 and ATF4 in human CP confirmed the experimental findings. We used novel trypsinogen-7 knock-out mice (T(-/-)), which lack intra-acinar trypsinogen activation, to clarify the relationship of ER stress to intra-acinar trypsinogen activation in pancreatic injury. Comparable activation of ER stress was seen in wild type and T(-/-) mice. Induction of ER stress occurred through pathologic calcium signaling very early in the course of pancreatic injury. Our results establish that ER stress is chronically activated in CP and is induced early in pancreatic injury through pathologic calcium signaling independent of trypsinogen activation. ER stress may be an important pathogenic mechanism in pancreatitis that needs to be explored in future studies.
Collapse
Affiliation(s)
- Raghuwansh P Sah
- From the Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Sushil K Garg
- From the Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Ajay K Dixit
- From the Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Vikas Dudeja
- From the Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Rajinder K Dawra
- From the Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Ashok K Saluja
- From the Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| |
Collapse
|
20
|
Modelling mechanism of calcium oscillations in pancreatic acinar cells. J Bioenerg Biomembr 2014; 46:403-20. [DOI: 10.1007/s10863-014-9561-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/24/2014] [Indexed: 01/18/2023]
|
21
|
Manhas N, Sneyd J, Pardasani KR. Modelling the transition from simple to complex Ca²⁺ oscillations in pancreatic acinar cells. J Biosci 2014; 39:463-84. [PMID: 24845510 DOI: 10.1007/s12038-014-9430-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A mathematical model is proposed which systematically investigates complex calcium oscillations in pancreatic acinar cells. This model is based on calcium-induced calcium release via inositol trisphosphate receptors (IPR) and ryanodine receptors (RyR) and includes calcium modulation of inositol (1,4,5) trisphosphate (IP3) levels through feedback regulation of degradation and production. In our model, the apical and the basal regions are separated by a region containing mitochondria, which is capable of restricting Ca2+ responses to the apical region. We were able to reproduce the observed oscillatory patterns, from baseline spikes to sinusoidal oscillations. The model predicts that calcium-dependent production and degradation of IP3 is a key mechanism for complex calcium oscillations in pancreatic acinar cells. A partial bifurcation analysis is performed which explores the dynamic behaviour of the model in both apical and basal regions.
Collapse
Affiliation(s)
- Neeraj Manhas
- Department of Mathematics, Maulana Azad National Institute of Technology, Bhopal 462 051, India,
| | | | | |
Collapse
|
22
|
Ivanova H, Vervliet T, Missiaen L, Parys JB, De Smedt H, Bultynck G. Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2164-83. [PMID: 24642269 DOI: 10.1016/j.bbamcr.2014.03.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/06/2014] [Accepted: 03/09/2014] [Indexed: 01/22/2023]
Abstract
Cell-death and -survival decisions are critically controlled by intracellular Ca(2+) homeostasis and dynamics at the level of the endoplasmic reticulum (ER). Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a pivotal role in these processes by mediating Ca(2+) flux from the ER into the cytosol and mitochondria. Hence, it is clear that many pro-survival and pro-death signaling pathways and proteins affect Ca(2+) signaling by directly targeting IP3R channels, which can happen in an IP3R-isoform-dependent manner. In this review, we will focus on how the different IP3R isoforms (IP3R1, IP3R2 and IP3R3) control cell death and survival. First, we will present an overview of the isoform-specific regulation of IP3Rs by cellular factors like IP3, Ca(2+), Ca(2+)-binding proteins, adenosine triphosphate (ATP), thiol modification, phosphorylation and interacting proteins, and of IP3R-isoform specific expression patterns. Second, we will discuss the role of the ER as a Ca(2+) store in cell death and survival and how IP3Rs and pro-survival/pro-death proteins can modulate the basal ER Ca(2+) leak. Third, we will review the regulation of the Ca(2+)-flux properties of the IP3R isoforms by the ER-resident and by the cytoplasmic proteins involved in cell death and survival as well as by redox regulation. Hence, we aim to highlight the specific roles of the various IP3R isoforms in cell-death and -survival signaling. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Hristina Ivanova
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Tim Vervliet
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Ludwig Missiaen
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Humbert De Smedt
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Geert Bultynck
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
23
|
Carrasco C, Holguín-Arévalo MS, Martín-Partido G, Rodríguez AB, Pariente JA. Chemopreventive effects of resveratrol in a rat model of cerulein-induced acute pancreatitis. Mol Cell Biochem 2013; 387:217-25. [PMID: 24234420 DOI: 10.1007/s11010-013-1887-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/05/2013] [Indexed: 12/11/2022]
Abstract
In the past decades, a greater understanding of acute pancreatitis has led to improvement in mortality rates. Nevertheless, this disease continues to be a health care system problem due to its economical costs. Future strategies such as antioxidant supplementation could be very promising, regarding to beginning and progression of the disease. For this reason, this study was aimed at assessing the effect of exogenous administration of resveratrol during the induction process of acute pancreatitis caused by the cholecystokinin analog cerulein in rats. Resveratrol pretreatment reduced histological damage induced by cerulein treatment, as well as hyperamylasemia and hyperlipidemia. Altered levels of corticosterone, total antioxidant status, and glutathione peroxidase were significantly reverted to control levels by the administration of resveratrol. Lipid peroxidation was also counteracted; nevertheless, superoxide dismutase enzyme was overexpressed due to resveratrol pretreatment. Related to immune response, resveratrol pretreatment reduced pro-inflammatory cytokine IL-1β levels and increased anti-inflammatory cytokine IL-10 levels. In addition, pretreatment with resveratrol in cerulein-induced pancreatitis rats was able to reverse, at least partially, the abnormal calcium signal induced by treatment with cerulein. In conclusion, this study confirms antioxidant and immunomodulatory properties of resveratrol as chemopreventive in cerulein-induced acute pancreatitis.
Collapse
|
24
|
Maléth J, Rakonczay Z, Venglovecz V, Dolman NJ, Hegyi P. Central role of mitochondrial injury in the pathogenesis of acute pancreatitis. Acta Physiol (Oxf) 2013; 207:226-35. [PMID: 23167280 DOI: 10.1111/apha.12037] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 12/11/2022]
Abstract
Acute pancreatitis is an inflammatory disease with no specific treatment. One of the main reasons behind the lack of specific therapy is that the pathogenesis of acute pancreatitis is poorly understood. During the development of acute pancreatitis, the disease-inducing factors can damage both cell types of the exocrine pancreas, namely the acinar and ductal cells. Because damage of either of the cell types can contribute to the inflammation, it is crucial to find common intracellular mechanisms that can be targeted by pharmacological therapies. Despite the many differences, recent studies revealed that the most common factors that induce pancreatitis cause mitochondrial damage with the consequent breakdown of bioenergetics, that is, ATP depletion in both cell types. In this review, we summarize our knowledge of mitochondrial function and damage within both pancreatic acinar and ductal cells. We also suggest that colloidal ATP delivery systems for pancreatic energy supply may be able to protect acinar and ductal cells from cellular damage in the early phase of the disease. An effective energy delivery system combined with the prevention of further mitochondrial damage may, for the first time, open up the possibility of pharmacological therapy for acute pancreatitis, leading to reduced disease severity and mortality.
Collapse
Affiliation(s)
- J. Maléth
- First Department of Medicine; University of Szeged; Szeged; Hungary
| | - Z. Rakonczay
- First Department of Medicine; University of Szeged; Szeged; Hungary
| | - V. Venglovecz
- Department of Pharmacology and Pharmacotherapy; University of Szeged; Szeged; Hungary
| | - N. J. Dolman
- Molecular Probes Labelling and Detection Technologies; Life Technologies Corporation; Eugene; OR; USA
| | - P. Hegyi
- First Department of Medicine; University of Szeged; Szeged; Hungary
| |
Collapse
|
25
|
Lee MG, Ohana E, Park HW, Yang D, Muallem S. Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev 2012; 92:39-74. [PMID: 22298651 DOI: 10.1152/physrev.00011.2011] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fluid and HCO(3)(-) secretion is a vital function of all epithelia and is required for the survival of the tissue. Aberrant fluid and HCO(3)(-) secretion is associated with many epithelial diseases, such as cystic fibrosis, pancreatitis, Sjögren's syndrome, and other epithelial inflammatory and autoimmune diseases. Significant progress has been made over the last 20 years in our understanding of epithelial fluid and HCO(3)(-) secretion, in particular by secretory glands. Fluid and HCO(3)(-) secretion by secretory glands is a two-step process. Acinar cells secrete isotonic fluid in which the major salt is NaCl. Subsequently, the duct modifies the volume and electrolyte composition of the fluid to absorb the Cl(-) and secrete HCO(3)(-). The relative volume secreted by acinar and duct cells and modification of electrolyte composition of the secreted fluids varies among secretory glands to meet their physiological functions. In the pancreas, acinar cells secrete a small amount of NaCl-rich fluid, while the duct absorbs the Cl(-) and secretes HCO(3)(-) and the bulk of the fluid in the pancreatic juice. Fluid secretion appears to be driven by active HCO(3)(-) secretion. In the salivary glands, acinar cells secrete the bulk of the fluid in the saliva that is driven by active Cl(-) secretion and contains high concentrations of Na(+) and Cl(-). The salivary glands duct absorbs both the Na(+) and Cl(-) and secretes K(+) and HCO(3)(-). In this review, we focus on the molecular mechanism of fluid and HCO(3)(-) secretion by the pancreas and salivary glands, to highlight the similarities of the fundamental mechanisms of acinar and duct cell functions, and to point out the differences to meet gland-specific secretions.
Collapse
Affiliation(s)
- Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
26
|
Kanno T, Nishizaki T. A2aAdenosine Receptor Mediates PKA-Dependent Glutamate Release from Synaptic-like Vesicles and Ca2+Efflux from an IP3- and Ryanodine-Insensitive Intracellular Calcium Store in Astrocytes. Cell Physiol Biochem 2012; 30:1398-412. [DOI: 10.1159/000343328] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2012] [Indexed: 11/19/2022] Open
|
27
|
Hegyi P, Rakonczay Z. The role of nitric oxide in the physiology and pathophysiology of the exocrine pancreas. Antioxid Redox Signal 2011; 15:2723-41. [PMID: 21777142 DOI: 10.1089/ars.2011.4063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO), a ubiquitous gaseous signaling molecule, contributes to both pancreatic physiology and pathophysiology. RECENT ADVANCES The present review provides a general overview of NO synthesis, signaling, and function. Further, it specifically discusses NO metabolism and its effects in the exocrine pancreas and focuses on the role of NO in the pathogenesis of acute pancreatitis and pancreatic ischemia/reperfusion injury. CRITICAL ISSUES Unfortunately, the role of NO in pancreatic physiology and pathophysiology remains controversial in numerous areas. Many questions regarding the messenger molecule still remain unanswered. FUTURE DIRECTIONS Probably the least is known about the downstream targets of NO, which need to be identified, especially at the molecular level.
Collapse
Affiliation(s)
- Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | | |
Collapse
|
28
|
Yamamura J, Grosse R, Jarisch A, Janka GE, Nielsen P, Adam G, Fischer R. Pancreatic exocrine function and cardiac iron in patients with iron overload and with thalassemia. Pediatr Blood Cancer 2011; 57:674-6. [PMID: 21671371 DOI: 10.1002/pbc.22990] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 11/30/2010] [Indexed: 12/25/2022]
Abstract
Patients with β-thalassemia major at risk of cardiac iron overload have to be identified to undergo myocardial iron measurements by magnetic resonance imaging (MRI), especially, in areas and centers with restricted access to MRI. Measurements of heart iron, liver iron, and pancreatic exocrine function were performed in 44 patients by MRI-R2* [the transverse relaxation rate R2* (= 1/T2*) characterizes the magnetic resonance decay from protons not being in phase with each other in contrast to R2 (= 1/T2)], biomagnetic liver susceptometry (LIC), and pancreatic serum amylase (PAM) and lipase (LIP), respectively. ROC analysis (area: 0.88) for detecting patients with cardiac R2* > 50 sec(-1) (T2* < 20 msec) by LIP revealed a cut-off level of 19 U/L. In conclusion, patients at risk of elevated cardiac iron levels could be identified by the exocrine pancreatic lipase and amylase function parameters.
Collapse
Affiliation(s)
- Jin Yamamura
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
García M, Calvo JJ. Cardiocirculatory pathophysiological mechanisms in severe acute pancreatitis. World J Gastrointest Pharmacol Ther 2010; 1:9-14. [PMID: 21577289 PMCID: PMC3091142 DOI: 10.4292/wjgpt.v1.i1.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 12/25/2009] [Accepted: 01/01/2010] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is a common and potentially lethal acute inflammatory process. Although the majority of patients have a mild episode of AP, 10%-20% develop a severe acute pancreatitis (SAP) and suffer systemic inflammatory response syndrome (SIRS) and/or pancreatic necrosis. The main aim of this article is to review the set of events, first localized in the pancreas, that lead to pancreatic inflammation and to the spread to other organs contributing to multiorganic shock. The early pathogenic mechanisms in SAP are not completely understood but both premature activation of enzymes inside the pancreas, related to an impaired cytosolic Ca2+ homeostasis, as well as release of pancreatic enzymes into the bloodstream are considered important events in the onset of pancreatitis disease. Moreover, afferent fibers within the pancreas release neurotransmitters in response to tissue damage. The vasodilator effects of these neurotransmitters and the activation of pro-inflammatory substances play a crucial role in amplifying the inflammatory response, which leads to systemic manifestation of AP. Damage extension to other organs leads to SIRS, which is usually associated with cardiocirculatory physiology impairment and a hypotensive state. Hypotension is a risk factor for death and is associated with a significant hyporesponsiveness to vasoconstrictors. This indicates that stabilization of the patient, once this pathological situation has been established, would be a very difficult task. Therefore, it seems particularly necessary to understand the pathological mechanisms involved in the first phases of AP to avoid damage beyond the pancreas. Moreover, efforts must also be directed to identify those patients who are at risk of developing SAP.
Collapse
Affiliation(s)
- Mónica García
- Mónica García, José Julián Calvo, Department of Physiology and Pharmacology, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain
| | | |
Collapse
|
30
|
IV Miguel R. Covian Symposium: new challenges for physiologists. Braz J Med Biol Res 2009. [DOI: 10.1590/s0100-879x2009000100001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|