1
|
Indira A, Shahar B, Joshi B, Chongtham N. Assessment of bioactive compound variations and in-vitro and in-vivo antioxidant activity in edible fresh and processed Bambusa nutans shoot through FTIR, GC/MS and HPLC analyses. Food Chem 2024; 452:139552. [PMID: 38733684 DOI: 10.1016/j.foodchem.2024.139552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
This study explores the impact of processing techniques on the bioactive composition and antioxidant properties of Bambusa nutans shoots, an underutilized superfood. Boiling resulted in a significant reduction of total phenols (39.52%), flavonoid (8.07%), and tannin (27.77%). Conversely, fermentation increased total phenols (25.92%), tannin (34.72%), and phytosterol (75.39%). Antioxidant activities were notably higher in fermented-shoots, as indicated by DPPH and FRAP assays, and in-vivo experiments demonstrated increased GSH (31.85%) and decreased LPO levels (11.12%) post-administration of fermented-shoots extract. Spectral analysis revealed an increased diversity of compounds in fermented shoots, with GC/MS identifying hexadecane-1-ol in significantly higher proportions and 11 characteristic bands in FTIR spectra. HPLC analysis demonstrated changes in phenolic acids and flavonoid content, with fermentation enhancing 3,4,5-trihydroxybenzoic acid, 4'-hydroxycinnamic acid, benzene-1,2-diol, and luteolin contents. This study underscores the dynamic nature of B. nutans shoots, highlighting the potential for enhanced bioactivity and antioxidant properties through fermentation, offering promising avenues for culinary and pharmaceutical developments.
Collapse
Affiliation(s)
- Aribam Indira
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Bano Shahar
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Babita Joshi
- Department of Botany, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
2
|
El-Beltagi HS, Rageb M, El-Saber MM, El-Masry RA, Ramadan KM, Kandeel M, Alhajri AS, Osman A. Green synthesis, characterization, and hepatoprotective effect of zinc oxide nanoparticles from Moringa oleifera leaves in CCl 4-treated albino rats. Heliyon 2024; 10:e30627. [PMID: 38765133 PMCID: PMC11101797 DOI: 10.1016/j.heliyon.2024.e30627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Hepatotoxin carbon tetrachloride (CCl4) causes liver injury. This research aims to create ZnO-NPs using green synthesis from Moringa oleifera (MO) leaves aqueous extract, and chemically prepared and confirming the synthesis by specialized equipment analysis. The sizes formed of ZnO-NPs were 80 and 55 nm for chemical and green methods, respectively. In addition, to study their ability to protect Wistar Albino male rats against oxidative stress exposed to carbon tetrachloride. MO leaf aqueous extract, green synthesized ZnO-NPs, and ZnO-NPs prepared chemically at 100 and 200 mg/kg BW per day were investigated for their hepatoprotective effects on liver enzyme biomarkers, renal biomarkers, antioxidant enzymes, lipid peroxidation, hematological parameters, and histopathological changes. Compared to the control group, all liver and kidney indicators were considerably elevated after the CCl4 injection. However, the activity of antioxidant enzymes in the liver was significantly reduced after the CCl4 injection. These outcomes indicate that MO leaf aqueous extract, greenly synthesized ZnO-NPs, and ZnO-NPs chemically prepared can restore normal liver and kidney function and activity, as well as hematological and antioxidant enzymes. The highest impact on enhancing the hepatoprotective effect was recorded for rats that received green synthesized ZnO-NPs. The increased drug delivery mechanism of green synthesized ZnO-NPs resulted in a higher protective effect than that of MO leaf aqueous extract.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Biochemistry Department, Cairo University, Giza, 12613, Egypt
| | - Marwa Rageb
- Biochemistry Department, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud M. El-Saber
- Biochemistry Unit, Genetic Resources Department, Desert Research Center, Cairo, 11753, Egypt
| | | | - Khaled M.A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Agricultural Biochemistry, Ain Shams University, P.O. Box 68, Hadayek Shobra, Cairo, 11241, Egypt
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Pharmacology, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Ahlam Saleh Alhajri
- Food Science and Nutrition Department, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Ali Osman
- Biochemistry Department, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
3
|
Dubey T, Bhanukiran K, Hemalatha S. Development of phytosterol-loaded silver nanoparticles for ameliorating haemorrhoidal complications via the AMPK pathway-a mechanistic approach. Biomed Mater 2024; 19:035030. [PMID: 38518371 DOI: 10.1088/1748-605x/ad3703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
The aim of the current study was to synthesize silver nanoparticles (PLSNPs) using green technology by means of phytosterol-enriched fractions fromBlumea laceraextracts (EAF) and evaluate their toxicological and anti-haemorrhoidal potential. The average size of the synthesized particles was found to be 85.64 nm by scanning electron microscopy and transmission electron microscopy. Energy dispersive spectroscopy showed the elemental composition of PLSNPs to be 12.59% carbon and 87.41% silver, indicating the capping of phytochemicals on the PLSNPs. The PLSNPs were also standardized for total phytosterol content using chemical methods and high-perfromance liquid chromatography. The PLSNPs were found to be safe up to 1000 mg kg-1as no toxicity was observed in the acute and sub-acute toxicity studies performed as per OECD guidelines. After the induction of haemorrhoids, experimental animals were treated with different doses of EAF, PLSNPs and a standard drug (Pilex) for 7 d, and on the eighth day the ameliorative potential was assessed by evaluating the haemorrhoidal (inflammatory severity index, recto-anal coefficient) and biochemical (tumour necrosis factor-alpha and interleukin-6) parameters and histology of the recto-anal tissue. The results showed that treatment with PLSNPs and Pilex significantly (p< 0.05) reduced haemorrhoidal and biochemical parameters. This was further supported by restoration of altered antioxidant status. Further, a marked reduction in the inflammatory zones along with minimal dilated blood vessels was observed in the histopathological study. The results of molecular docking studies also confirmed the amelioration of haemorrhoids via AMP-activated protein kinase (AMPK)-mediated reduction of inflammation and endothelin B receptor modification by PLSNPs. In conclusion, PLSNPs could be a good alternative for the management of haemorrhoids.
Collapse
Affiliation(s)
- Tarkeshwar Dubey
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Kancharla Bhanukiran
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Siva Hemalatha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
4
|
Mahdlou Z, Dehkharghani RA, Niazi A, Tamaddon A, Ebrahimi MT. Co-sonicated coacervation for high-efficiency green nanoencapsulation of phytosterols by colloidal non-biotoxic solid lipid nanoparticles. Sci Rep 2024; 14:4671. [PMID: 38409285 PMCID: PMC10897223 DOI: 10.1038/s41598-024-54178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
Plant sterols are used as a supplement or an additive to reduce LDL cholesterol. The poor dispersibility and instability of phytosterols are the main limitations of their application. So, we tried to overcome these problems through nanoencapsulation of them with colloidal natural RSs (SLNs) using an effective approach to achieve higher efficiency and less intrinsic coagulation. Phytosterols extracted from flax seeds oil with caffeine by a new method were encapsulated with a stable colloid of sheep fat and ostrich oil (1:2), soy lecithin, and glucose through co-sonicated coacervation. Characterization of the obtained SLNs was conducted using FTIR, UV-Vis, SEM, DLS, and GC analysis. The three-factor three-level Behnken design (BBD) was used to prioritize the factors affecting the coacervation process to optimize particle size and loading capacity of SLNs. Operational conditions were examined, revealing that the size of SLNs was below 100 nm, with a phytosterols content (EE %) of 85.46% with high positive zeta potential. The nanocapsules' anti-microbial activity and drug-release behavior were then evaluated using the CFU count method and Beer-Lambert's law, respectively. The controlled release of nanocapsules (below 20%) at ambient temperature has been tested. The stability of nano-encapsulated phytosterols was investigated for six months. All results show that this green optimal coacervation is a better way than conventional methods to produce stable SLNs for the nanoencapsulation of phytosterols.
Collapse
Affiliation(s)
- Zolfaghar Mahdlou
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, P.O. Box 1465613111, Tehran, Iran
| | - Rahebeh Amiri Dehkharghani
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, P.O. Box 1465613111, Tehran, Iran.
| | - Ali Niazi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, P.O. Box 1465613111, Tehran, Iran.
| | - Atefeh Tamaddon
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, P.O. Box 1465613111, Tehran, Iran
| | - Maryam Tajabadi Ebrahimi
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Alcalde MA, Palazon J, Bonfill M, Hidalgo-Martinez D. Enhancing Centelloside Production in Centella asiatica Hairy Root Lines through Metabolic Engineering of Triterpene Biosynthetic Pathway Early Genes. PLANTS (BASEL, SWITZERLAND) 2023; 12:3363. [PMID: 37836103 PMCID: PMC10574710 DOI: 10.3390/plants12193363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Centella asiatica is a medicinal plant with a rich tradition of use for its therapeutic properties. Among its bioactive compounds are centellosides, a group of triterpenoid secondary metabolites whose potent pharmacological activities have attracted significant attention. Metabolic engineering has emerged as a powerful biotechnological tool to enhance the production of target compounds. In this study, we explored the effects of overexpressing the squalene synthase (SQS) gene and transcription factor TSAR2 on various aspects of C. asiatica hairy root lines: the expression level of centelloside biosynthetic genes, morphological traits, as well as squalene, phytosterol, and centelloside content. Three distinct categories of transformed lines were obtained: LS, harboring At-SQS; LT, overexpressing TSAR2; and LST, simultaneously carrying both transgenes. These lines displayed noticeable alterations in morphological traits, including changes in branching rate and biomass production. Furthermore, we observed that the expression of T-DNA genes, particularly aux2 and rolC genes, significantly modulated the expression of pivotal genes involved in centelloside biosynthesis. Notably, the LS lines boasted an elevated centelloside content but concurrently displayed reduced phytosterol content, a finding that underscores the intriguing antagonistic relationship between phytosterol and triterpene pathways. Additionally, the inverse correlation between the centelloside content and morphological growth values observed in LS lines was countered by the action of TSAR2 in the LST and LT lines. This difference could be attributed to the simultaneous increase in the phytosterol content in the TSAR2-expressing lines, as these compounds are closely linked to root development. Overall, these discoveries offer valuable information for the biotechnological application of C. asiatica hairy roots and their potential to increase centelloside production.
Collapse
Affiliation(s)
- Miguel Angel Alcalde
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.A.A.); (M.B.)
- Biotechnology, Health and Education Research Group, Posgraduate School, Cesar Vallejo University, Trujillo 13001, Peru
| | - Javier Palazon
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.A.A.); (M.B.)
| | - Mercedes Bonfill
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.A.A.); (M.B.)
| | - Diego Hidalgo-Martinez
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.A.A.); (M.B.)
| |
Collapse
|
6
|
Guan Y, Shi D, Wang S, Sun Y, Song W, Liu S, Wang C. Hericium coralloides Ameliorates Alzheimer's Disease Pathologies and Cognitive Disorders by Activating Nrf2 Signaling and Regulating Gut Microbiota. Nutrients 2023; 15:3799. [PMID: 37686830 PMCID: PMC10489620 DOI: 10.3390/nu15173799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is prone to onset and progression under oxidative stress conditions. Hericium coralloides (HC) is an edible medicinal fungus that contains various nutrients and possesses antioxidant properties. In the present study, the nutritional composition and neuroprotective effects of HC on APP/PS1 mice were examined. Behavioral experiments showed that HC improved cognitive dysfunction in APP/PS1 mice. Immunohistochemical and Western blotting results showed that HC reduced the levels of p-tau and amyloid-β deposition in the brain. By altering the composition of the gut microbiota, HC promoted the growth of short-chain fatty acid-producing bacteria and suppressed the growth of Helicobacter. Metabolomic results showed that HC decreased D-glutamic acid and oxidized glutathione levels. In addition, HC reduced the levels of reactive oxygen species, enhanced the secretion of superoxide dismutase, catalase, and glutathione peroxidase, inhibited the production of malondialdehyde and 4-hydroxynonenal, and activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Collectively, HC demonstrated antioxidant activity by activating Nrf2 signaling and regulating gut microbiota, further exerting neuroprotective effects. This study confirms that HC has the potential to be a clinically effective AD therapeutic agent and offers a theoretical justification for both the development and use of this fungus.
Collapse
Affiliation(s)
- Yue Guan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.W.)
| | - Dongyu Shi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (D.S.); (Y.S.); (W.S.)
| | - Shimiao Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.W.)
| | - Yueying Sun
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (D.S.); (Y.S.); (W.S.)
| | - Wanyu Song
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (D.S.); (Y.S.); (W.S.)
| | - Shuyan Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.W.)
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.W.)
| |
Collapse
|
7
|
Lužaić T, Kravić S, Stojanović Z, Grahovac N, Jocić S, Cvejić S, Pezo L, Romanić R. Investigation of oxidative characteristics, fatty acid composition and bioactive compounds content in cold pressed oils of sunflower grown in Serbia and Argentina. Heliyon 2023; 9:e18201. [PMID: 37519709 PMCID: PMC10372673 DOI: 10.1016/j.heliyon.2023.e18201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Background In this work, the chemical composition analysis was performed for cold pressed oils obtained from the 15 sunflower hybrids grown in Serbia and Argentina, as well as the determination of their oxidative quality. The fatty acid composition and bioactive compounds including total tocopherols, phenols, carotenoids, and chlorophyll contents were investigated. The oxidation products were monitored through the peroxide value (PV), anisidine value (AnV), conjugated dienes (CD) and conjugated trienes (CT) content, and total oxidation index (TOTOX) under accelerated oxidation conditions by the oven method. Results Linoleic acid was the most abundant fatty acid in investigated oil samples, followed by oleic and palmitic acids. The mean contents of total tocopherols, phenols, carotenoids, and chlorophyll were 518.24, 9.42, 7.54 and 0.99 mg/kg, respectively. In order to obtain an overview of sample variations according to the tested parameters Principal Component Analysis (PCA) was applied. Conclusion PCA indicated that phenols, chlorophyll, linoleic and oleic acid were the most effective variables for the differentiation of sunflower hybrids grown in Serbia and Argentina. Furthermore, based on the fatty acid composition and bioactive compounds content in the oils, a new Artificial Neural Network (ANN) model was developed to predict the oxidative stability parameters of cold pressed sunflower oil.
Collapse
Affiliation(s)
- Tanja Lužaić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Snežana Kravić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Zorica Stojanović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Nada Grahovac
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| | - Siniša Jocić
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| | - Sandra Cvejić
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, Studentski trg 12/V, 11000 Belgrade, Serbia
| | - Ranko Romanić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
8
|
Moreira R, Ferreres F, Gil-Izquierdo Á, Gomes NGM, Araújo L, Pinto E, Andrade PB, Videira RA. Antifungal Activity of Guiera senegalensis: From the Chemical Composition to the Mitochondrial Toxic Effects and Tyrosinase Inhibition. Antibiotics (Basel) 2023; 12:antibiotics12050869. [PMID: 37237772 DOI: 10.3390/antibiotics12050869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Pest resistance against fungicides is a widespread and increasing problem, with impact on crop production and public health, making the development of new fungicides an urgent need. Chemical analyses of a crude methanol extract (CME) of Guiera senegalensis leaves revealed the presence of sugars, phospholipids, phytosterols, guieranone A, porphyrin-containing compounds, and phenolics. To connect chemical composition with biological effects, solid-phase extraction was used to discard water-soluble compounds with low affinity for the C18 matrix and obtain an ethyl acetate fraction (EAF) that concentrates guieranone A and chlorophylls, and a methanol fraction (MF) dominated by phenolics. While the CME and MF exhibited poor antifungal activity against Aspergillus fumigatus, Fusarium oxysporum and Colletotrichum gloeosporioides, the EAF demonstrated antifungal activity against these filamentous fungi, particularly against C. gloeosporioides. Studies with yeasts revealed that the EAF has strong effectiveness against Saccharomyces cerevisiae, Cryptococcus neoformans and Candida krusei with MICs of 8, 8 and 16 μg/mL, respectively. A combination of in vivo and in vitro studies shows that the EAF can function as a mitochondrial toxin, compromising complexes I and II activities, and as a strong inhibitor of fungal tyrosinase (Ki = 14.40 ± 4.49 µg/mL). Thus, EAF appears to be a promising candidate for the development of new multi-target fungicides.
Collapse
Affiliation(s)
- Rute Moreira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Federico Ferreres
- Molecular Recognition and Encapsulation (REM) Group, Department of Food Technology and Nutrition, Universidad Católica de Murcia, 30107 Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus University Espinardo, 30100 Murcia, Spain
| | - Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Luísa Araújo
- MDS-Medicamentos e Diagnósticos em Saúde, Avenida dos Combatentes da Liberdade da Pátria, Bissau, Guinea-Bissau
| | - Eugénia Pinto
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Romeu A Videira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Pistelli L, Del Mondo A, Smerilli A, Corato F, Sansone C, Brunet C. Biotechnological response curve of the cyanobacterium Spirulina subsalsa to light energy gradient. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:28. [PMID: 36803279 PMCID: PMC9940373 DOI: 10.1186/s13068-023-02277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Microalgae represent a suitable and eco-sustainable resource for human needs thanks to their fast growth ability, together with the great diversity in species and intracellular secondary bioactive metabolites. These high-added-value compounds are of great interest for human health or animal feed. The intracellular content of these valuable compound families is tightly associated with the microalgal biological state and responds to environmental cues, e.g., light. Our study develops a Biotechnological response curve strategy exploring the bioactive metabolites synthesis in the marine cyanobacterium Spirulina subsalsa over a light energy gradient. The Relative Light energy index generated in our study integrates the red, green and blue photon flux density with their relative photon energy. The Biotechnological response curve combined biochemical analysis of the macromolecular composition (total protein, lipid, and carbohydrate content), total sterols, polyphenols and flavonoids, carotenoids, phenolic compounds, vitamins (A, B1, B2, B6, B9, B12, C, D2, D3, E, H, and K1), phycobiliproteins, together with the antioxidant activity of the biomass as well as the growth ability and photosynthesis. RESULTS Results demonstrated that light energy significantly modulate the biochemical status of the microalga Spirulina subsalsa revealing the relevance of the light energy index to explain the light-induced biological variability. The sharp decrease of the photosynthetic rate at high light energy was accompanied with an increase of the antioxidant network response, such as carotenoids, total polyphenols, and the antioxidant capacity. Conversely, low light energy favorized the intracellular content of lipids and vitamins (B2, B6, B9, D3, K1, A, C, H, and B12) compared to high light energy. CONCLUSIONS Results of the Biotechnological response curves were discussed in their functional and physiological relevance as well as for the essence of their potential biotechnological applications. This study emphasized the light energy as a relevant tool to explain the biological responses of microalgae towards light climate variability, and, therefore, to design metabolic manipulation of microalgae.
Collapse
Affiliation(s)
- Luigi Pistelli
- Stazione zoologica Anton Dohrn, sede Molosiglio Marina Acton, via ammiraglio F. Acton, 55., 80133, Naples, Italy
| | - Angelo Del Mondo
- Stazione zoologica Anton Dohrn, sede Molosiglio Marina Acton, via ammiraglio F. Acton, 55., 80133, Naples, Italy
| | - Arianna Smerilli
- Stazione zoologica Anton Dohrn, sede Molosiglio Marina Acton, via ammiraglio F. Acton, 55., 80133, Naples, Italy
| | - Federico Corato
- Stazione zoologica Anton Dohrn, villa comunale, 80121, Naples, Italy
| | - Clementina Sansone
- Stazione zoologica Anton Dohrn, sede Molosiglio Marina Acton, via ammiraglio F. Acton, 55., 80133, Naples, Italy.
| | - Christophe Brunet
- Stazione zoologica Anton Dohrn, sede Molosiglio Marina Acton, via ammiraglio F. Acton, 55., 80133, Naples, Italy
| |
Collapse
|
10
|
Ganai SA, Mir MA, Shah BA, Qadri RA, Wani AH, Rajamanikandan S, Sabhat A. Evaluation of free radical quenching, anti-inflammatory activity together with anticancer potential of Lychnis coronaria and characterization of novel molecules from its extract through high resolution-liquid chromatography mass spectrometry coupled to structural biochemistry approach. J Biomol Struct Dyn 2023; 41:13041-13055. [PMID: 36749717 DOI: 10.1080/07391102.2023.2173296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023]
Abstract
Lychnis coronaria, a perennial (herbaceous) belonging to Caryophyllaceae has been traditionally used for treating different complications. However, the free radical scavenging effect, anti-inflammatory activity and anticancer property of methanolic extract of this plant has not been addressed. Most importantly, the chemical constituents present in the extract of Lychnis coronaria responsible for its diverse activities have not been scrutinized till date. Here, we used a complex approach for exploring the above mentioned effects of Lychnis coronaria. We performed rigorous phytochemical screening followed by quantification of tannins, phenols, alkaloids, quinones and sterols from the extract. Moreover we employed in vitro DPPH, ABTS , FRAP assay, albumin denaturation inhibition experiment, MTT assay, high resolution liquid chromatography mass spectrometry for measurng the reactive oxygen species quenching, anti-inflammatory and anticancer strength of Lychnis coronaria and for identifying the possible bioactive molecules. We identified two novel molecules panaxynol (polyacetylenic alcohol) and norharman (9H-Pyrido [3, 4-B] indole) following rigorous analysis of the extract. Following this, the binding affinity of these molecules was estimated using human cyclooxygenase (COX)-2 enzyme as target. Among the constituents of Lychnis coronaria norharman manifested stronger binding towards COX-2 compared to panaxynol. Most importantly, norharman showed high stability in the groove of COX2 as confirmed by molecular dynamics simulation. Collectively, Lychnis coronaria manifested free radical neutralizing, inflammation soothing and anticancer effect in concentration dependent manner and thus may serve as a promising phytotherapeutic in future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shabir Ahmad Ganai
- Division of Basic Sciences and Humanities, FoA, SKUAST-K, Sopore, Jammu & Kashmir, India
| | - Mudasir A Mir
- Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, India
| | - Basit Amin Shah
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Raies A Qadri
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Arif Hussain Wani
- Division of Horticulture, FoA, SKUAST-Kashmir, Srinagar, Jammu & Kashmir, India
| | - Sundararaj Rajamanikandan
- Research and Development Wing, Sree Balaji Medical College and Hospital-BIHER, Chennai, Tamil Nadu, India
| | - Awquib Sabhat
- Department of Sericulture, Govt. Degree College for Women, Anantnag, Jammu & Kashmir, India
| |
Collapse
|
11
|
Cintya Felipe Dos Santos E, Alves Viturino da Silva W, Carla Barbosa Machado J, Rhayanny Assunção Ferreira M, Alberto Lira Soares L. Evaluation of the Antioxidant and Antifungal Actions of the Optimized Crude Extract and Fractions from the Aerial Parts of Acanthospermum hispidum. Chem Biodivers 2023; 20:e202200905. [PMID: 36487190 DOI: 10.1002/cbdv.202200905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
This study investigated the phytochemical characteristics of the aerial parts of Acanthospermum hispidum, by chromatographic and spectrophotometric methods, and evaluated the antioxidant and antifungal activities of the crude extract and polyphenol-enriched fractions of the species. The phytochemical prospection showed the presence of polyphenols from the groups of hydroxycinnamic derivatives and flavonoids in the crude extract (CE) and fractions of the aerial parts of A. hispidum. In the chromatographic analysis, it was possible to observe that the fractionation process of the CE with hexane and ethyl acetate was efficient in enriching the fractions in phenolic compounds. This enrichment provided an increase in antioxidant activity by the DPPH and ABTS methods, in which it was observed a higher antioxidant activity for EAF in the DPPH test and higher activity against the ABTS radical by the fractions AqF and RAqF. The extract and fractions were effective against Candida non-Candida albicans strains, mainly against C. glabrata, C. parapsilosis and C. krusei, acting predominantly fungicidal. The results indicate that the aerial parts of A. hispidum can serve as a basis for the development of new antioxidant and antifungal products. Moreover, the fractionation process can contribute to increasing the biological potential of the species.
Collapse
Affiliation(s)
- Ewelyn Cintya Felipe Dos Santos
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av Prof Arthur de Sá, SN, Várzea, 50740-521, Recife-PE, Brazil.,Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, 50740-600, Recife, PE, Brazil
| | - Wliana Alves Viturino da Silva
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av Prof Arthur de Sá, SN, Várzea, 50740-521, Recife-PE, Brazil.,Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, 50740-600, Recife, PE, Brazil
| | - Janaína Carla Barbosa Machado
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av Prof Arthur de Sá, SN, Várzea, 50740-521, Recife-PE, Brazil.,Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, 50740-600, Recife, PE, Brazil
| | - Magda Rhayanny Assunção Ferreira
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av Prof Arthur de Sá, SN, Várzea, 50740-521, Recife-PE, Brazil
| | - Luiz Alberto Lira Soares
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av Prof Arthur de Sá, SN, Várzea, 50740-521, Recife-PE, Brazil
| |
Collapse
|
12
|
Optimization and validation of a smartphone-based method for the determination of total sterols in selected vegetable oils by digital image colorimetry. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Puggioni G, Abd-Razak NH, Amura IF, Bird MR, Emanuelsson EA, Shahid S. Preparation and benchmarking of highly hydrophilic polyaniline poly(2-acrylamido-2-methyl-1-propanesulfonic acid) PANI PAMPSA membranes in the separation of sterols and proteins from fruit juice. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Montgomery DR, Biklé A, Archuleta R, Brown P, Jordan J. Soil health and nutrient density: preliminary comparison of regenerative and conventional farming. PeerJ 2022; 10:e12848. [PMID: 35127297 PMCID: PMC8801175 DOI: 10.7717/peerj.12848] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023] Open
Abstract
Several independent comparisons indicate regenerative farming practices enhance the nutritional profiles of crops and livestock. Measurements from paired farms across the United States indicate differences in soil health and crop nutrient density between fields worked with conventional (synthetically-fertilized and herbicide-treated) or regenerative practices for 5 to 10 years. Specifically, regenerative farms that combined no-till, cover crops, and diverse rotations-a system known as Conservation Agriculture-produced crops with higher soil organic matter levels, soil health scores, and levels of certain vitamins, minerals, and phytochemicals. In addition, crops from two regenerative no-till vegetable farms, one in California and the other in Connecticut, had higher levels of phytochemicals than values reported previously from New York supermarkets. Moreover, a comparison of wheat from adjacent regenerative and conventional no-till fields in northern Oregon found a higher density of mineral micronutrients in the regenerative crop. Finally, a comparison of the unsaturated fatty acid profile of beef and pork raised on one of the regenerative farms to a regional health-promoting brand and conventional meat from local supermarkets, found higher levels of omega-3 fats and a more health-beneficial ratio of omega-6 to omega-3 fats. Despite small sample sizes, all three crop comparisons show differences in micronutrient and phytochemical concentrations that suggest soil health is an under appreciated influence on nutrient density, particularly for phytochemicals not conventionally considered nutrients but nonetheless relevant to chronic disease prevention. Likewise, regenerative grazing practices produced meat with a better fatty acid profile than conventional and regional health-promoting brands. Together these comparisons offer preliminary support for the conclusion that regenerative soil-building farming practices can enhance the nutritional profile of conventionally grown plant and animal foods.
Collapse
Affiliation(s)
- David R. Montgomery
- Department of Earth and Space Sciences, University of Washington, Seattle, WA, United States
| | | | | | | | | |
Collapse
|
15
|
Dos Santos ECF, Machado JCB, Ferreira MRA, Soares LAL. Acanthospermum hispidum DC: An Updated Review on Phytochemistry and Biological Activities. Mini Rev Med Chem 2021; 22:684-700. [PMID: 34517800 DOI: 10.2174/1389557521666210913115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/17/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Acanthospermum hispidum DC is a medicinal plant present in America, Africa, Australia, India, Hawaii, and Brazil. In Brazil, the species is used in the treatment of gastrointestinal, respiratory disorders and has expectorant action. In the literature there are studies on the chemical composition of the species, with reports of the presence of alkaloids, flavonoids, hydrolyzable tannins, terpenes, and steroids. In addition, several studies have reported in vitro and in vivo studies that prove the biological properties of extracts and compounds isolated from different organs of the A. hispidum plant, including: hepatoprotectors, antioxidants, antimicrobials and antiparasitic. OBJECTIVE The objective of this review is to update the knowledge about the phytochemical, pharmacological and toxicity aspects of A. hispidum, to contribute to the recognition of the species and direct new studies. METHODS An extensive bibliographic search was conducted in different scientific databases. RESULTS The presence of different chemical constituents in A. hispidum have been identified, among them flavonoids, tannins, terpenes, and steroids. Additionally, antimicrobial and antiparasitic activities were mainly attributed to the species, and other activities not previously described were presented, such as anticholinesterase, antioxidant, hepatoprotective, and hypoglycemic, all based on results of in vitro and in vivo studies. Finally, no reports of toxic effects were found in the in vitro and in vivo tests. After analyzing the articles, it was evidenced that other experiments, with different models using animals, are essential to evaluate the possible mechanisms of action of the extracts and compounds isolated of A. hispidum. CONCLUSION Therefore, this review may contribute to the recognition of the importance of A. hispidum and its potential as a medicinal plant and may also guide the conduct of future research regarding the constituents, biological activities, and toxicity of the species.
Collapse
Affiliation(s)
- Ewelyn Cintya Felipe Dos Santos
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | - Janaina Carla Barbosa Machado
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | - Magda Rhayanny Assunção Ferreira
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | - Luiz Alberto Lira Soares
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| |
Collapse
|
16
|
Microalgal Co-Cultivation Prospecting to Modulate Vitamin and Bioactive Compounds Production. Antioxidants (Basel) 2021; 10:antiox10091360. [PMID: 34572991 PMCID: PMC8468856 DOI: 10.3390/antiox10091360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgal biotechnology is gaining importance. However, key issues in the pipeline from species selection towards large biomass production still require improvements to maximize the yield and lower the microalgal production costs. This study explores a co-cultivation strategy to improve the bioactive compounds richness of the harvested microalgal biomass. Based on their biotechnological potential, two diatoms (Skeletonema marinoi, Cyclotella cryptica) and one eustigmatophyte (Nannochloropsis oceanica) were grown alone or in combination. Concentrations of ten vitamins (A, B1, B2, B6, B12, C, D2, D3, E and H), carotenoids and polyphenols, together with total flavonoids, sterols, lipids, proteins and carbohydrates, were compared. Moreover, antioxidant capacity and chemopreventive potential in terms inhibiting four human tumor-derived and normal cell lines proliferation were evaluated. Co-cultivation can engender biomass with emergent properties regarding bioactivity or bioactive chemical profile, depending on the combined species. The high vitamin content of C. cryptica or N. oceanica further enhanced (until 10% more) when co-cultivated, explaining the two-fold increase of the antioxidant capacity of the combined C. cryptica and N. oceanica biomass. Differently, the chemopreventive activity was valuably enhanced when coupling the two diatoms C. cryptica and S. marinoi. The results obtained in this pilot study promote microalgal co-cultivation as a valuable strategy aiming to boost their application in eco-sustainable biotechnology.
Collapse
|
17
|
Zhang L, Meng B, Li L, Wang Y, Zhang Y, Fang X, Wang D. Boletus aereus protects against acute alcohol-induced liver damage in the C57BL/6 mouse via regulating the oxidative stress-mediated NF-κB pathway. PHARMACEUTICAL BIOLOGY 2020; 58:905-914. [PMID: 32915675 PMCID: PMC7534317 DOI: 10.1080/13880209.2020.1812672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/09/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Alcoholic liver disease, caused by abuse and consumption of alcohol, exhibits high morbidity and mortality. Boletus aereus Bull. (Boletaceae) (BA) shows antioxidant, anti-inflammatory and antimicrobial effects. OBJECTIVES To investigate the hepatoprotective effects of BA using an acute alcohol-induced hepatotoxicity mice model. MATERIALS AND METHODS The composition of BA fruit body was first systematically analyzed. Subsequently, a C57BL/6 mice model of acute alcohol-induced liver injury was established by intragastrically administration of alcohol, which was intragastrically received with BA powder at 200 mg/kg and 800 mg/kg for 2 weeks, 60 mg/kg silybin treatment was used as positive control group. By employing the pathological examination, ELISA, RT-PCR and western blot, the regulation of BA on oxidative stress signals was investigated. RESULTS The LD50 of BA was much higher than 4 g/kg/p.o. In acute alcohol-damaged mice, BA reduced the levels of alanine aminotransferase (>18.3%) and aspartate aminotransferase (>27.6%) in liver, increased the activity of liver alcohol dehydrogenase (>35.0%) and serum acetaldehyde dehydrogenase (>18.9%). BA increased the activity of superoxide dismutase (>13.4%), glutathione peroxidase (>11.0%) and 800 mg/kg BA strongly reduced chemokine (C-X-C motif) ligand 13 (14.9%) and chitinase-3 like-1 protein (13.4%) in serum. BA reversed mRNA over-expression (>70%) and phosphor-stimulated expression (>45.0%) of an inhibitor of nuclear factor κ-B kinase (NF-κB, an inhibitor of nuclear factor κ-B α and nuclear factor κ-B in the liver. CONCLUSIONS BA is effective in ameliorating alcohol-induced liver injury through regulating oxidative stress-mediated NF-κB signalling, which provides a scientific basis for further research on its clinical applications.
Collapse
Affiliation(s)
- Luping Zhang
- Gastroenterology and Endoscopy Center, The First Bethune Hospital of Jilin University, Jilin University, Changchun, China
| | - Bo Meng
- Gastroenterology and Endoscopy Center, The First Bethune Hospital of Jilin University, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Lanzhou Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yanzhen Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Pharmacy Food Science, Zhuhai College of Jilin University, Zhuhai, China
| | - Yuanzhu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xuexun Fang
- Gastroenterology and Endoscopy Center, The First Bethune Hospital of Jilin University, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Di Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Pharmacy Food Science, Zhuhai College of Jilin University, Zhuhai, China
| |
Collapse
|
18
|
Pedrosa AM, de Castro WV, Castro AHF, Duarte-Almeida JM. Validated spectrophotometric method for quantification of total triterpenes in plant matrices. Daru 2020; 28:281-286. [DOI: 10.1007/s40199-020-00342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/30/2020] [Indexed: 10/24/2022] Open
|
19
|
Tietel Z, Dag A, Yermiyahu U, Zipori I, Beiersdorf I, Krispin S, Ben-Gal A. Irrigation-induced salinity affects olive oil quality and health-promoting properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1180-1189. [PMID: 30047164 DOI: 10.1002/jsfa.9287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/24/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Olive oil, a functional food, is increasingly produced from trees irrigated with water containing high concentrations of salts. We studied the effects of irrigation-induced salinity on quality and health-related compounds in olive oil. Trees (cv Barnea) were grown in lysimeters with continuous control and monitoring of root-zone salinity. Salinity in the root zone was altered by changing irrigation solution salinity or by changing the extent of leaching. Extracted oil was analyzed for quality parameters including free fatty acid content, polyphenol, tocopherol, sterol and carotenoid levels, fatty acid (FA) profile, and antioxidative capacity. RESULTS While not all parameters changed, fruit water percentage and fruit oil content significantly decreased with increasing exposure to salt. As salinity increased, there was a desirable rise in measured polyphenol and tocopherol levels and a contrasting undesirable reduction in a number of important compounds, including 16:1 and 18:3 FA. CONCLUSION The possible negative effects on olive oil quality due to FA-related parameters should concern producers dependent on, or considering, irrigation with high-salinity water sources. A number of important quality parameters were differentially influenced by the method of inducing the root zone salinity, suggesting that additional environmental variables leading to oxidative responses were affected by the treatments. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zipora Tietel
- Food Quality and Safety, Agricultural Research Organization, Gilat Research Center, M.P. Negev, Israel
| | - Arnon Dag
- Fruit Tree Sciences, Agricultural Research Organization, Gilat Research Center, M.P. Negev, Israel
| | - Uri Yermiyahu
- Soil Chemistry, Plant Nutrition and Microbiology, Agricultural Research Organization, Gilat Research Center, M.P. Negev, Israel
| | - Isaac Zipori
- Fruit Tree Sciences, Agricultural Research Organization, Gilat Research Center, M.P. Negev, Israel
| | - Ian Beiersdorf
- Environmental Physics and Irrigation, Agricultural Research Organization, Gilat Research Center, M.P. Negev, Israel
| | - Shani Krispin
- Food Quality and Safety, Agricultural Research Organization, Gilat Research Center, M.P. Negev, Israel
| | - Alon Ben-Gal
- Environmental Physics and Irrigation, Agricultural Research Organization, Gilat Research Center, M.P. Negev, Israel
| |
Collapse
|
20
|
Abd-Razak NH, Chew YJ, Bird MR. Membrane fouling during the fractionation of phytosterols isolated from orange juice. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2018.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Resende LMB, de Souza VR, Ferreira GMD, Nunes CA. Changes in quality and phytochemical contents of avocado oil under different temperatures. Journal of Food Science and Technology 2018; 56:401-408. [PMID: 30728583 DOI: 10.1007/s13197-018-3501-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/19/2018] [Accepted: 11/07/2018] [Indexed: 11/24/2022]
Abstract
Avocado oil, which has a high content of monounsaturated fatty acid and health-beneficial phytochemicals, is consumed in salads and also can be used for cooking. Therefore, is essential to study its oxidative and photochemical stability under different temperatures. So this work aimed to evaluate the oil oxidation and the phytochemical degradation of avocado oil under three different temperatures: room, 100 °C and 180 °C. The oil oxidation was evaluated by peroxide value and specific extinction in ultraviolet. The phytochemical degradation was evaluated for phytosterol, chlorophylls, and carotenoids contents. The temperature was found to significantly influence the oil oxidation and phytochemical stability, with the oxidation/degradation rate constants increasing with temperature. At room temperature, all oxidative parameters increased linearly with time, indicating a zero-order kinetic. At 100 and 180 °C, peroxide value, K232 and K270 increased linearly at a higher rate, becoming constant or decreasing after a short reaction time. The activation energy from specific extinction at 270 nm curves was 17.74 kcal mol-1 for oil degradation. For phytochemical compounds, the mechanism of reactions depended on the temperature, in which the reaction orders increased with heating. The activation energies for carotenoids, chlorophylls and sterols degradations at high temperatures were 5.00, 6.93, and 4.48 kcal mol-1, respectively. In this way, we found that avocado oil has its stability and quality affected by temperature, and, therefore, is not indicated for use in long and/or successive heating processes.
Collapse
Affiliation(s)
- Lívia Maria Braga Resende
- 1Department of Chemistry, Federal University of Lavras, University Campus, P. O. Box 3037, Lavras, Minas Gerais 37200-000 Brazil
| | - Vanessa Rios de Souza
- 2Department of Food Science, Federal University of Lavras, University Campus, P. O. Box 3037, Lavras, Minas Gerais 37200-000 Brazil
| | - Guilherme Max Dias Ferreira
- 1Department of Chemistry, Federal University of Lavras, University Campus, P. O. Box 3037, Lavras, Minas Gerais 37200-000 Brazil
| | - Cleiton Antônio Nunes
- 2Department of Food Science, Federal University of Lavras, University Campus, P. O. Box 3037, Lavras, Minas Gerais 37200-000 Brazil
| |
Collapse
|
22
|
Andima M, Costabile G, Isert L, Ndakala AJ, Derese S, Merkel OM. Evaluation of β-Sitosterol Loaded PLGA and PEG-PLA Nanoparticles for Effective Treatment of Breast Cancer: Preparation, Physicochemical Characterization, and Antitumor Activity. Pharmaceutics 2018; 10:pharmaceutics10040232. [PMID: 30445705 PMCID: PMC6321471 DOI: 10.3390/pharmaceutics10040232] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022] Open
Abstract
β-Sitosterol (β-Sit) is a dietary phytosterol with demonstrated anticancer activity against a panel of cancers, but its poor solubility in water limits its bioavailability and therapeutic efficacy. In this study, poly(lactide-co-glycolic acid) (PLGA) and block copolymers of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) were used to encapsulate β-Sit into nanoparticles with the aim of enhancing its in vitro anticancer activity. β-Sitosterol-loaded PLGA and PEG-PLA nanoparticles (β-Sit-PLGA and β-Sit-PEG-PLA) were prepared by using a simple emulsion-solvent evaporation technique. The nanoparticles were characterized for size, particle size distribution, surface charge, and encapsulation efficiency. Their cellular uptake and antiproliferative activity was evaluated against MCF-7 and MDA-MB-231 human breast cancer cells using flow cytometry and MTT assays, respectively. β-Sit-PLGA and β-Sit-PEG-PLA nanoparticles were spherical in shape with average particle sizes of 215.0 ± 29.7 and 240.6 ± 23.3 nm, a zeta potential of -13.8 ± 1.61 and -23.5 ± 0.27 mV, respectively, and with narrow size distribution. The encapsulation efficiency of β-Sit was 62.89 ± 4.66 and 51.83 ± 19.72 % in PLGA and PEG-PLA nanoparticles, respectively. In vitro release in phosphate-buffered saline (PBS) and PBS/with 0.2% Tween 20 showed an initial burst release, followed by a sustained release for 408 h. β-Sit-PLGA nanoparticles were generally stable in a protein-rich medium, whereas β-Sit-PEG-PLA nanoparticles showed a tendency to aggregate. Flow cytometry analysis (FACS) indicated that β-Sit-PLGA nanoparticles were efficiently taken up by the cells in contrast to β-Sit-PEG-PLA nanoparticles. β-Sit-PLGA nanoparticles were therefore selected to evaluate antiproliferative activity. Cell viability was inhibited by up to 80% in a concentration range of 6.64⁻53.08 μg/mL compared to the untreated cells. Taken together, encapsulation of β-Sitosterol in PLGA nanoparticles is a promising strategy to enhance its anticancer activity against breast cancer cells.
Collapse
Affiliation(s)
- Moses Andima
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
- Department of Chemistry, Busitema University, P.O. Box 236, Tororo, Uganda.
| | - Gabriella Costabile
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Lorenz Isert
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Albert J Ndakala
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Solomon Derese
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| |
Collapse
|
23
|
The Antidiabetic and Antinephritic Activities of Tuber melanosporum via Modulation of Nrf2-Mediated Oxidative Stress in the db/db Mouse. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7453865. [PMID: 30186548 PMCID: PMC6087590 DOI: 10.1155/2018/7453865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
Tuber melanosporum (TM), a valuable edible fungus, contains 19 types of fatty acid, 17 types of amino acid, 6 vitamins, and 7 minerals. The antidiabetic and antinephritic effects of TM and the underlying mechanisms related to oxidative stress were investigated in db/db mice. Eight-week oral administration of metformin (Met) at 0.1 g/kg and TM at doses of 0.2 and 0.4 g/kg decreased body weight, plasma glucose, serum levels of glycated hemoglobin, triglyceride, and total cholesterol and increased serum levels of high-density lipoprotein cholesterol in the mice, suggesting hypoglycemic and hypolipidemic effects. TM promoted glucose metabolism by increasing the levels of pyruvate kinase and hepatic glycogen. It also regulated the levels of inflammatory factors and oxidative enzymes in serum and/or the kidneys of the mice. Additionally, TM increased the expression of nuclear respiratory factor 2 (Nrf2), catalase, heme oxygenase 1, heme oxygenase 2, and manganese superoxide dismutase 2 and decreased the expression of protein kinase C alpha, phosphor-janus kinase 2, phosphor-signal transducer and activator of transcription 3, and phosphor-nuclear factor-κB in the kidneys. The results of this study reveal the antidiabetic and antidiabetic nephritic properties of TM via modulating oxidative stress and inflammation-related cytokines through improving the Nrf2 signaling pathway.
Collapse
|
24
|
Antifatigue Potential Activity of Sarcodon imbricatus in Acute Excise-Treated and Chronic Fatigue Syndrome in Mice via Regulation of Nrf2-Mediated Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9140896. [PMID: 30050662 PMCID: PMC6046126 DOI: 10.1155/2018/9140896] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/22/2018] [Indexed: 11/19/2022]
Abstract
Sarcodon imbricatus (SI), a precious edible fungus, contains 35.22% of total sugar, 18.33% of total protein, 24 types of fatty acid, 16 types of amino acid, and 8 types of minerals. Encouragingly, it is rich in potential antioxidants such as total polyphenols (0.41%), total sterols (3.16%), and vitamins (0.44%). In the present study, the antifatigue properties of SI and its potential mechanisms of action were explored by the experiments on acute excise-treated mice and chronic fatigue syndrome (CFS) mice. SI (0.25, 0.5, and 1 g/kg) significantly enhanced exercise tolerance in the weight-loaded forced swimming test (FST) and rota-rod test (RRT) and reduced the immobility in the tail suspension test on CFS mice. SI markedly increased the levels of glycogen in the liver and adenosine triphosphate (ATP) in the liver and muscle and decreased the lactic acid (LD) and blood urea nitrogen (BUN) content in both acute swimming-treated mice and CFS mice. SI improved the endogenous cellular antioxidant enzyme contents in the two mouse models by improving the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels in serum, liver, and muscle, respectively. In CFS mice, the enhanced expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2), SOD1, SOD2, heme oxygenase-1 (HO-1), and catalase (CAT) in the liver were observed after a 32-day SI administration. Our data indicated that SI possessed antifatigue activity, which may be related to its ability to normalize energy metabolism and Nrf2-mediated oxidative stress. Consequently, SI can be expected to serve as a novel natural antifatigue supplement in health foods.
Collapse
|
25
|
Vaghela M, Sahu N, Kharkar P, Pandita N. In vivo pharmacokinetic interaction by ethanolic extract of Gymnema sylvestre with CYP2C9 (Tolbutamide), CYP3A4 (Amlodipine) and CYP1A2 (Phenacetin) in rats. Chem Biol Interact 2017; 278:141-151. [PMID: 29042257 DOI: 10.1016/j.cbi.2017.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/04/2017] [Accepted: 10/13/2017] [Indexed: 02/05/2023]
Abstract
Gymnema sylvestre (GS) is a medicinal herb used for diabetes mellitus (DM). Herbs are gaining popularity as medicines in DM for its safety purpose. The aim of the present study was to evaluate in vivo pharmacokinetic (PK) interaction between allopathic drugs tolbutamide (TOLBU), amlodipine (AMLO), and phenacetin (PHENA) at low (L) and high (H) doses with ethanolic extract (EL) from GS. EL was extracted and subjected to TLC, total triterpenoid content (19.76 ± 0.02 W/W) and sterol content (0.1837 ± 0.0046 W/W) estimation followed by identification of phytoconstituents using HRLC-MS and GC-MS. PK interaction study with CYP2C9, CYP3A4 and CYP1A2 enzymes were assessed using TOLBU, AMLO and PHENA respectively to index cytochrome (CYP) mediated interaction in rats after concomitant administration of EL extract (400 mg/kg) from GS for 7 days. The rats were divided into four groups for each PK study where, group I and II were positive control for low and high dose of test drugs (CYP substrates) while group II and IV were orally administered EL. The PK study result of PHENA indicated that area under the plasma concentration-time curve (AUC0-24) was significantly (P < 0.0001) increased by 1.4 (L) and 1.3-fold (H), plasma concentration (Cmax) was significantly (P < 0.001) increased by 1.6 (L) and 1.4-fold (H). Whereas for TOLBU; clearance rate (CL) was significantly (P < 0.0001) decreased by 2.4 (L) and 2.3-fold (H), Cmax, was significantly (P < 0.001) decreased by 26.5% (L) and 50.4% (H) and AUC0-24 was significantly (P < 0.0001) decreased by 59.8% (L) and 57.5% (H). Thus, EL is seen to be interacting with CYP1A2 by inhibiting its metabolic activity. HRLC-MS and GC-MS helped identify the presence of gymnemic acid (GA), triterpenoids and steroids in EL which could be the reason for PK interaction of CYP1A2 and CYP2C9. Also, in silico structure based site of metabolism study showed Fe accessibility and intrinsic activity for GA-IV, GA-VI, GA-VII and GA-X with CYP2C9. PK parameters of AMLO were not significantly affected by pre-treatment of EL. Thereby our findings indicate that co-administration of GS with drugs that are metabolized by CYP2C9 and CYP1A2 could lead to potential HDI.
Collapse
Affiliation(s)
- Madhuri Vaghela
- Department of Chemistry, Sunandan Divatia School of Science, SVKM's NMIMS University, Mumbai 400056, Maharashtra, India.
| | - Niteshkumar Sahu
- Department of Pharmaceutical Chemistry, SPP-School of Pharmacy and Technology Management, SVKM's NMIMS University, Mumbai 400056, Maharashtra, India
| | - Prashant Kharkar
- Department of Pharmaceutical Chemistry, SPP-School of Pharmacy and Technology Management, SVKM's NMIMS University, Mumbai 400056, Maharashtra, India
| | - Nancy Pandita
- Department of Chemistry, Sunandan Divatia School of Science, SVKM's NMIMS University, Mumbai 400056, Maharashtra, India.
| |
Collapse
|
26
|
Effect of Medium-High Energy Emulsification Condition on Physicochemical Properties of β-Sitosterol Multiple Emulsion. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1932-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Validation of a spectrophotometric methodology for the quantification of polysaccharides from roots of Operculina macrocarpa (jalapa). REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2014. [DOI: 10.1016/j.bjp.2014.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Ayaz Ahmed KB, Subramaniam S, Veerappan G, Hari N, Sivasubramanian A, Veerappan A. β-Sitosterol-d-glucopyranoside isolated from Desmostachya bipinnata mediates photoinduced rapid green synthesis of silver nanoparticles. RSC Adv 2014. [DOI: 10.1039/c4ra10626a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A sunlight-induced synthesis of silver nanoparticles using β-sitosterol-d-glucopyranoside, a bio-surfactant isolated from the Indian sacred grass Desmostachya bipinnata.
Collapse
Affiliation(s)
- Khan Behlol Ayaz Ahmed
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur – 613 401, India
| | - Shankar Subramaniam
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur – 613 401, India
| | - Ganapathy Veerappan
- SKKU Advanced Institute of Nano Technology
- Sungkyunkwan University
- Suwon, South Korea
| | - Natarajan Hari
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur – 613 401, India
| | - Aravind Sivasubramanian
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur – 613 401, India
| | - Anbazhagan Veerappan
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur – 613 401, India
| |
Collapse
|