1
|
Sannino A, Allocca M, Scarfì MR, Romeo S, Zeni O. Protective effect of radiofrequency exposure against menadione-induced oxidative DNA damage in human neuroblastoma cells: The role of exposure duration and investigation on key molecular targets. Bioelectromagnetics 2024; 45:365-374. [PMID: 39315584 DOI: 10.1002/bem.22524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/24/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
In our previous studies, we demonstrated that 20 h pre-exposure of SH-SY5Y human neuroblastoma cells to 1950 MHz, UMTS signal, at specific absorption rate of 0.3 and 1.25 W/kg, was able to reduce the oxidative DNA damage induced by a subsequent treatment with menadione in the alkaline comet assay while not inducing genotoxicity per se. In this study, the same cell model was used to test the same experimental conditions by setting different radiofrequency exposure duration and timing along the 72 h culture period. The results obtained in at least three independent experiments indicate that shorter exposure durations than 20 h, that is, 10, 3, and 1 h per day for 3 days, were still capable to exert the protective effect while not inducing DNA damage per se. In addition, to provide some hints into the mechanisms underpinning the observed phenomenon, thioredoxin-1, heat shock transcription factor 1, heat shock protein 70, and poly [ADP-ribose] polymerase 1, as key molecular players involved in the cellular stress response, were tested following 3 h of radiofrequency exposure in western blot and qRT-PCR experiments. No effect resulted from molecular analysis under the experimental conditions adopted.
Collapse
Affiliation(s)
- Anna Sannino
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Mariateresa Allocca
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Maria R Scarfì
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Stefania Romeo
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Olga Zeni
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| |
Collapse
|
2
|
Bugała E, Fornalski KW. Radiation adaptive response for constant dose-rate irradiation in high background radiation areas. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2024:10.1007/s00411-024-01093-0. [PMID: 39470814 DOI: 10.1007/s00411-024-01093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/26/2024] [Indexed: 11/01/2024]
Abstract
The presented paper describes the problem of human health in regions with high level of natural ionizing radiation in various places in the world. The radiation adaptive response biophysical model was presented and calibrated for the special case of constant dose-rate irradiation. The calibration was performed for the data of residents of several high background radiation areas, like Ramsar in Iran, Kerala in India or Yangjiang in China. Studied end-points were: chromosomal aberrations, cancer incidence and cancer mortality. For the case of aberrations, among collected publications about 45% have shown the existence of adaptive response. Average reduction of chromosomal aberrations was ∼ 10%, while for the case of cancer incidence it was ∼ 15% and ∼ 17% for cancer mortality (each taking into account only results showing adaptive response). Results of the other 55% of data regarding chromosomal aberrations have been tested with the LNT (linear no-threshold) hypothesis, but results were inconsistent with the linear model. The conditions for adaptive response occurrence are still unknown, but it is postulated to correlate with the distribution of individual radiosensitivity among members of surveyed populations.
Collapse
Affiliation(s)
- Ernest Bugała
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, Warszawa, 00-662, Poland
| | | |
Collapse
|
3
|
Talapko J, Talapko D, Katalinić D, Kotris I, Erić I, Belić D, Vasilj Mihaljević M, Vasilj A, Erić S, Flam J, Bekić S, Matić S, Škrlec I. Health Effects of Ionizing Radiation on the Human Body. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:653. [PMID: 38674299 PMCID: PMC11052428 DOI: 10.3390/medicina60040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Radioactivity is a process in which the nuclei of unstable atoms spontaneously decay, producing other nuclei and releasing energy in the form of ionizing radiation in the form of alpha (α) and beta (β) particles as well as the emission of gamma (γ) electromagnetic waves. People may be exposed to radiation in various forms, as casualties of nuclear accidents, workers in power plants, or while working and using different radiation sources in medicine and health care. Acute radiation syndrome (ARS) occurs in subjects exposed to a very high dose of radiation in a very short period of time. Each form of radiation has a unique pathophysiological effect. Unfortunately, higher organisms-human beings-in the course of evolution have not acquired receptors for the direct "capture" of radiation energy, which is transferred at the level of DNA, cells, tissues, and organs. Radiation in biological systems depends on the amount of absorbed energy and its spatial distribution, particularly depending on the linear energy transfer (LET). Photon radiation with low LET leads to homogeneous energy deposition in the entire tissue volume. On the other hand, radiation with a high LET produces a fast Bragg peak, which generates a low input dose, whereby the penetration depth into the tissue increases with the radiation energy. The consequences are mutations, apoptosis, the development of cancer, and cell death. The most sensitive cells are those that divide intensively-bone marrow cells, digestive tract cells, reproductive cells, and skin cells. The health care system and the public should raise awareness of the consequences of ionizing radiation. Therefore, our aim is to identify the consequences of ARS taking into account radiation damage to the respiratory system, nervous system, hematopoietic system, gastrointestinal tract, and skin.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Domagoj Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Darko Katalinić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
| | - Ivan Kotris
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- General Hospital Vukovar, Županijska 35, 32000 Vukovar, Croatia
| | - Ivan Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Surgery, Osijek University Hospital Center, 31000 Osijek, Croatia
| | - Dino Belić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Mila Vasilj Mihaljević
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Health Center Vukovar, 32000 Vukovar, Croatia
| | - Ana Vasilj
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Health Center Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Josipa Flam
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Suzana Matić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
4
|
Mousavikia SN, Bahreyni Toossi MT, Khademi S, Soukhtanloo M, Azimian H. Evaluation of micronuclei and antioxidant status in hospital radiation workers occupationally exposed to low-dose ionizing radiation. BMC Health Serv Res 2023; 23:540. [PMID: 37226157 DOI: 10.1186/s12913-023-09516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
PURPOSE There is scientific evidence that ionizing radiation (IR) can be responsible for various health hazards that are one of the concerns in occupational exposure. This study was performed to evaluate DNA damage and antioxidant status in hospital workers who are occupationally exposed to low doses of IR. MATERIALS AND METHODS In this study, twenty occupationally exposed to low doses of IR (CT and angiography) comprising with control groups which matched them. In order to investigate the effects of chronic irradiation of radiation workers, Micronuclei (MN) frequency and the antioxidant activity of Superoxide Dismutase (SOD), Catalase (CAT) and Total Antioxidant Capacity (TAC) were measured. Then, to check adaptation against high challenge dose, the samples (in all groups) were irradiated in vitro and MN frequency was compared. Finally, to investigated the effect of the high dose after the acute and chronic low dose of ionizing radiation, MN frequency was compared in two groups (the control group that was to in-vitro irradiated (acute low dose + high dose) and radiation workers (chronic low dose + high dose)). RESULTS MN frequency in the occupationally exposed group (n = 30) increased significantly when compared to the control group (p-value < 0.0001). However, chronic irradiation of radiation workers could not lead to an adaptive Sresponse, while acute low-doses could produce this effect (p-value ˂ 0.05). In addition, the activity levels of antioxidant enzymes SOD, CAT, and TAC were not statistically different between the radiation workers and the control group (p-value > 0.05). CONCLUSIONS We observed that exposure to low doses of IR leads to increased cytogenetic damage, could not cause an adaptive-response, and improve antioxidant capacity in radiation workers. Controlling healthcare workers' exposure is the first step to improving the health of hospital workers and the quality of patient care, thus decreasing human and economic costs.
Collapse
Affiliation(s)
- S N Mousavikia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M T Bahreyni Toossi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - S Khademi
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Bansal S, Bansal S, Fish BL, Li Y, Xu X, Fernandez JA, Griffin JH, Himburg HA, Boerma M, Medhora M, Cheema AK. Analysis of the urinary metabolic profiles in irradiated rats treated with Activated Protein C (APC), a potential mitigator of radiation toxicity. Int J Radiat Biol 2023; 99:1109-1118. [PMID: 36827630 PMCID: PMC10330346 DOI: 10.1080/09553002.2023.2182001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/26/2023]
Abstract
PURPOSE The goal of the current study was to identify longitudinal changes in urinary metabolites following IR exposure and to determine potential alleviation of radiation toxicities by administration of recombinant APC formulations. MATERIALS AND METHODS Female adult WAG/RijCmcr rats were irradiated with 13.0 Gy leg-out partial body X-rays; longitudinally collected urine samples were subject to LC-MS based metabolomic profiling. Sub-cohorts of rats were treated with three variants of recombinant APC namely, rat wildtype (WT) APC, rat 3K3A mutant form of APC, and human WT APC as two bolus injections at 24 and 48 hours post IR. RESULTS Radiation induced robust changes in the urinary profiles leading to oxidative stress, severe dyslipidemia, and altered biosynthesis of PUFAs, glycerophospholipids, sphingolipids, and steroids. Alterations were observed in multiple metabolic pathways related to energy metabolism, nucleotide biosynthesis and metabolism that were indicative of disrupted mitochondrial function and DNA damage. On the other hand, sub-cohorts of rats that were treated with rat wildtype-APC showed alleviation of radiation toxicities, in part, at the 90-day time point, while rat 3K3A-APC showed partial alleviation of radiation induced metabolic alterations 14 days after irradiation. CONCLUSIONS Taken together, these results show that augmenting the Protein C pathway and activity via administration of recombinant APC may be an effective approach for mitigation of radiation induced normal tissue toxicity.
Collapse
Affiliation(s)
- Shivani Bansal
- Department of Oncology, Georgetown University Medical Center, Washington DC, USA
| | - Sunil Bansal
- Department of Oncology, Georgetown University Medical Center, Washington DC, USA
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yaoxiang Li
- Department of Oncology, Georgetown University Medical Center, Washington DC, USA
| | - Xiao Xu
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jose A Fernandez
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - John H Griffin
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amrita K Cheema
- Department of Oncology, Georgetown University Medical Center, Washington DC, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
6
|
Assessment of Inflammation in 3D Reconstructed Human Skin Exposed to Combined Exposure to Ultraviolet and Wi-Fi Radiation. Int J Mol Sci 2023; 24:ijms24032853. [PMID: 36769173 PMCID: PMC9917807 DOI: 10.3390/ijms24032853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
In the human environment, the increasing exposure to radiofrequency (RF) radiation, especially that emitted by wireless devices, could be absorbed in the body. Recently, mobile and emerging wireless technologies (UMTS, DECT, LTE, and Wi-Fi) have been using higher frequencies than 2G GSM systems (900/1800 MHz), which means that most of the circulating RF currents are absorbed into the skin and the superficial soft tissue. The harmful genotoxic, cytotoxic, and mutagenic effects of solar ultraviolet (UV) radiation on the skin are well-known. This study aimed at investigating whether 2422 MHz (Wi-Fi) RF exposure combined with UV radiation in different sequences has any effect on the inflammation process in the skin. In vitro experiments examined the inflammation process by cytokines (IL-1α, IL-6, IL-8) and MMP-1 enzyme secretion in a 3D full-thickness human skin model. In the first study, UV exposure was immediately followed by RF exposure to measure the potential additive effects, while in the second study, the possible protective phenomenon (i.e., adaptive response) was investigated when adaptive RF exposure was challenged by UV radiation. Our results suggest that 2422 MHz Wi-Fi exposure slightly, not significantly increased cytokine concentrations of the prior UV exposure. We could not detect the adaptive response phenomenon.
Collapse
|
7
|
Kargar-Shouroki F, Halvani GH, Sharmandehmola FA. Effect of simultaneous exposure to inhalational anesthetics and radiation on the adaptive response in operating room personnel. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10128-10135. [PMID: 36070043 DOI: 10.1007/s11356-022-22873-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Some operating room personnel, such as orthopedic surgeons, are exposed simultaneously to inhalational anesthetics (IAs) and radiation that both can cause DNA damage. Some studies have shown that low doses of radiation reduce DNA damage when the cells are followed by a higher dose of the same or related agent. This study, therefore, set out to compare DNA damage in the anesthesiologists, radiologists, orthopedic surgeons, and healthcare staff (non-exposed group). In this cross-sectional study, breathing zone concentrations of anesthetic gas nitrous oxide (N2O) were measured in the studied groups using standard method. Additionally, DNA damage was measured by micronucleus (MN) assay. The mean concentrations of N2O in the anesthesiologists and orthopedic surgeons were 450.27 ± 327.44 ppm and 313.64 ± 216.14 ppm, respectively. The mean annual exposure to X-rays radiation in radiologists and orthopedic surgeons was 15.65 ± 8.46 mSy/year and 3.56 ± 1.32 mSy/year, respectively. MN frequencies were significantly higher in anesthesiologists and radiologists exposed to IAs and X-rays radiation respectively than in the non-exposed healthcare staff. While, there were no statistically significant differences between MN frequencies of orthopedic surgeons exposed to both IAs and radiation and healthcare staff. These findings suggest that an earlier exposure of orthopedic surgeons to a small dose of ionizing radiation can increase their resistance to genotoxicity caused by high doses of N2O, a phenomenon that is called adaptive response.
Collapse
Affiliation(s)
- Fatemeh Kargar-Shouroki
- Occupational Health Research Center, Department of Occupational Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Gholam Hossein Halvani
- Occupational Health Research Center, Department of Occupational Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Alsadat Sharmandehmola
- Occupational Health Research Center, Department of Occupational Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
8
|
Kucukbagriacik Y, Dastouri M, Ozgur-Buyukatalay E, Akarca Dizakar O, Yegin K. Investigation of oxidative damage, antioxidant balance, DNA repair genes, and apoptosis due to radiofrequency-induced adaptive response in mice. Electromagn Biol Med 2022; 41:389-401. [PMID: 36062506 DOI: 10.1080/15368378.2022.2117187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study aims to determine whether exposure to non-ionizing radiofrequency fields could induce an adaptive response (AR) in adult mice and to reveal potential molecular mechanisms triggered by RF-induced AR. The study was performed on 24 adult male Swiss-Albino mice. The average mass of the mice was 37 g. Four groups of adult mice, each consisting of 6, were formed. The radiofrequency group (R) and the adaptive response group (RB) were exposed to 900 MHz of global system for mobile communications (GSM) signal at 0.339 W/kg (1 g average specific absorption rate) 4 h/day for 7 days, while the control group (C) and the bleomycin group (B) were not exposed. 20 minutes after the last radiofrequency field (RF) exposure, the mice in the B and RB groups were injected intraperitoneal (ip) bleomycin (BLM), 37.5 mg/kg. All the animals were sacrificed 30 minutes after the BLM injection. Oxidative damage and antioxidant mechanism were subsequently investigated in the blood samples. Changes in the expression of the genes involved in DNA repair were detected in the liver tissue. TUNEL method was used to determine the apoptosis developed by DNA fragmentation in the liver tissue. The RB group, which produced an adaptive response, was compared with the control group. According to the results, the increase of reactive oxygen species (ROS) in the RB group may have played an important role in triggering the adaptive response and producing the required minimum stress level. Furthermore, tumor suppressor 53(p53), oxo guanine DNA glycosylase (OGG-1) levels responsible for DNA repair mechanism genes expression were increased in conjunction with the increase in ROS. The change in the poly (ADP-ribose) polymerase 1 (PARP-1) and glutathione peroxidase 1 (GPx-1) gene expression were not statistically significant. The antioxidant enzyme levels of superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (TAC) were decreased in the group with adaptive response. According to the data obtained from terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis, apoptosis was decreased in the RB group due to the decrease in cell death, which might have resulted from an increase in gene expression responsible for DNA repair mechanisms. The results of our study show that exposure to RF radiation may create a protective reaction against the bleomycin. The minimal oxidative stress due to the RF exposure leads to an adaptive response in the genes that play a role in the DNA repair mechanism and enzymes, enabling the survival of the cell.
Collapse
Affiliation(s)
- Yusuf Kucukbagriacik
- Department of Biophysics, Yozgat Bozok University, Medical School, Yozgat, Turkey
| | - Mohammadreza Dastouri
- Department of Biotechnology, Biotechnology Institute, Ankara University, Ankara, Turkey
| | | | - Ozen Akarca Dizakar
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Korkut Yegin
- Department of Electrical and Electronics Engineering, Ege University, Izmir, Turkey
| |
Collapse
|
9
|
Changes in Radiosensitivity to Gamma-Rays of Lymphocytes from Hyperthyroid Patients Treated with I-131. Int J Mol Sci 2022; 23:ijms231710156. [PMID: 36077557 PMCID: PMC9456272 DOI: 10.3390/ijms231710156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
This study investigated the peripheral blood lymphocytes (PBL) response to a dose of γ-rays in patients treated with radioiodine (I-131) for hyperthyroidism vs. healthy controls, to gain information about the individual lymphocytes’ radio-sensitivity. Blood samples were taken from 18 patients and 10 healthy donors. Phosphorylated histone variant H2AX (γ-H2AX) and micronuclei (MN) induction were used to determine the change in PBL radio-sensitivity and the correlations between the two types of damage. The two assays showed large inter-individual variability in PBL background damage and in radio-sensitivity (patients vs. healthy donors). In particular, they showed an increased radio-sensitivity in 36% and 33% of patients, decrease in 36% and 44%, respectively. There was a scarce correlation between the two assays and no dependence on age or gender. A significant association was found between high radio-sensitivity conditions and induced hypothyroidism. PBL radio-sensitivity in the patient group was not significantly affected by treatment with I-131, whereas there were significant changes inter-individually. The association found between clinical response and PBL radio-sensitivity suggests that the latter could be used in view of the development of personalized treatments.
Collapse
|
10
|
Farhadi S, Bahreyni-Toossi MT, Zafari-Ghadim N, Khademi S, Sadat-Darbandi M, Azimian H. DNA double-strand break repair and adaptive responses of low-dose radiation in normal and tumor lung cell lines. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503528. [PMID: 36031334 DOI: 10.1016/j.mrgentox.2022.503528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The adaptive response (AR), which can be induced by low-dose ionizing radiation (LD), may influence the therapeutic ratio of cancer treatment. We investigated the AR and the DNA double-strand break (DSB) repair pathway in human lung tumor cells and normal cells. We measured viability and proliferation of normal lung cells (MRC-5) and lung cancer cells (QU-DB) using the MTT and colony formation assays. Flow cytometric analysis of γ-H2AX was used to measure DNA-DSBs induction, repair, and residual damages. AR was seen in the normal cells but not in the cancer cells. Our findings suggest that LD stimulates DSB repair and that this may contribute to distinctive AR in normal vs. cancer cells.
Collapse
Affiliation(s)
- Sonia Farhadi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Navid Zafari-Ghadim
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sara Khademi
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahdi Sadat-Darbandi
- Department of Medical Physics, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Fornalski KW, Adamowski Ł, Dobrzyński L, Jarmakiewicz R, Powojska A, Reszczyńska J. The radiation adaptive response and priming dose influence: the quantification of the Raper-Yonezawa effect and its three-parameter model for postradiation DNA lesions and mutations. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:221-239. [PMID: 35150289 PMCID: PMC9021059 DOI: 10.1007/s00411-022-00963-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/12/2022] [Indexed: 05/14/2023]
Abstract
The priming dose effect, called also the Raper-Yonezawa effect or simply the Yonezawa effect, is a special case of the radiation adaptive response phenomenon (radioadaptation), which refers to: (a) faster repair of direct DNA lesions (damage), and (b) DNA mutation frequency reduction after irradiation, by applying a small priming (conditioning) dose prior to the high detrimental (challenging) one. This effect is observed in many (but not all) radiobiological experiments which present the reduction of lesion, mutation or even mortality frequency of the irradiated cells or species. Additionally, the multi-parameter model created by Dr. Yonezawa and collaborators tried to explain it theoretically based on experimental data on the mortality of mice with chronic internal irradiation. The presented paper proposes a new theoretical approach to understanding and explaining the priming dose effect: it starts from the radiation adaptive response theory and moves to the three-parameter model, separately for two previously mentioned situations: creation of fast (lesions) and delayed damage (mutations). The proposed biophysical model was applied to experimental data-lesions in human lymphocytes and chromosomal inversions in mice-and was shown to be able to predict the Yonezawa effect for future investigations. It was also found that the strongest radioadaptation is correlated with the weakest cellular radiosensitivity. Additional discussions were focussed on more general situations where many small priming doses are used.
Collapse
Affiliation(s)
- Krzysztof W Fornalski
- National Centre for Nuclear Research (NCBJ), ul. A. Sołtana 7, 05-400, Otwock-Świerk, Poland.
| | - Łukasz Adamowski
- National Centre for Nuclear Research (NCBJ), ul. A. Sołtana 7, 05-400, Otwock-Świerk, Poland
| | - Ludwik Dobrzyński
- National Centre for Nuclear Research (NCBJ), ul. A. Sołtana 7, 05-400, Otwock-Świerk, Poland
| | - Rafał Jarmakiewicz
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662, Warsaw, Poland
| | - Aleksandra Powojska
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662, Warsaw, Poland
| | - Joanna Reszczyńska
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw (WUM), ul. T. Chałubińskiego 5, 02-004, Warsaw, Poland
| |
Collapse
|
12
|
Mahgoub E, Hussain A, Sharifi M, Falahati M, Marei HE, Hasan A. The therapeutic effects of tumor treating fields on cancer and noncancerous cells. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Low Dose Ionising Radiation-Induced Hormesis: Therapeutic Implications to Human Health. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The concept of radiation-induced hormesis, whereby a low dose is beneficial and a high dose is detrimental, has been gaining attention in the fields of molecular biology, environmental toxicology and radiation biology. There is a growing body of literature that recognises the importance of hormetic dose response not only in the radiation field, but also with molecular agents. However, there is continuing debate on the magnitude and mechanism of radiation hormetic dose response, which could make further contributions, as a research tool, to science and perhaps eventually to public health due to potential therapeutic benefits for society. The biological phenomena of low dose ionising radiation (LDIR) includes bystander effects, adaptive response, hypersensitivity, radioresistance and genomic instability. In this review, the beneficial and the detrimental effects of LDIR-induced hormesis are explored, together with an overview of its underlying cellular and molecular mechanisms that may potentially provide an insight to the therapeutic implications to human health in the future.
Collapse
|
14
|
Belmans N, Oenning AC, Salmon B, Baselet B, Tabury K, Lucas S, Lambrichts I, Moreels M, Jacobs R, Baatout S. Radiobiological risks following dentomaxillofacial imaging: should we be concerned? Dentomaxillofac Radiol 2021; 50:20210153. [PMID: 33989056 PMCID: PMC8404518 DOI: 10.1259/dmfr.20210153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES This review aimed to present studies that prospectively investigated biological effects in patients following diagnostic dentomaxillofacial radiology (DMFR). METHODS Literature was systematically searched to retrieve all studies assessing radiobiological effects of using X-ray imaging in the dentomaxillofacial area, with reference to radiobiological outcomes for other imaging modalities and fields. RESULTS There is a lot of variability in the reported radiobiological assessment methods and radiation dose measures, making comparisons of radiobiological studies challenging. Most radiological DMFR studies are focusing on genotoxicity and cytotoxicity, data for 2D dentomaxillofacial radiographs, albeit with some methodological weakness biasing the results. For CBCT, available evidence is limited and few studies include comparative data on both adults and children. CONCLUSIONS In the future, one will have to strive towards patient-specific measures by considering age, gender and other individual radiation sensitivity-related factors. Ultimately, future radioprotection strategies should build further on the concept of personalized medicine, with patient-specific optimization of the imaging protocol, based on radiobiological variables.
Collapse
Affiliation(s)
| | - Anne Caroline Oenning
- Division of Oral Radiology, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São, Leopoldo Mandic, Campinas, Sao Paulo, Brazil
| | | | - Bjorn Baselet
- Belgian Nuclear Research Centre (SCK CEN), Radiobiology Unit, Boeretang 200, Mol, Belgium
| | | | - Stéphane Lucas
- Laboratory of Analysis by Nuclear Reaction (LARN/PMR), Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - Ivo Lambrichts
- Morphology Group, Biomedical Research Institute, Hasselt University, Agoralaan Building C, Diepenbeek, Belgium
| | - Marjan Moreels
- Belgian Nuclear Research Centre (SCK CEN), Radiobiology Unit, Boeretang 200, Mol, Belgium
| | | | | |
Collapse
|
15
|
Liu C, Hirakawa H, Katsube T, Fang Y, Tanaka K, Nenoi M, Fujimori A, Wang B. Altered Induction of Reactive Oxygen Species by X-rays in Hematopoietic Cells of C57BL/6-Tg (CAG-EGFP) Mice. Int J Mol Sci 2021; 22:6929. [PMID: 34203224 PMCID: PMC8268547 DOI: 10.3390/ijms22136929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Previous work pointed to a critical role of excessive production of reactive oxygen species (ROS) in increased radiation hematopoietic death in GFP mice. Meanwhile, enhanced antioxidant capability was not demonstrated in the mouse model of radio-induced adaptive response (RAR) using rescue of radiation hematopoietic death as the endpoint. ROS induction by ex vivo X-irradiation at a dose ranging from 0.1 to 7.5 Gy in the nucleated bone marrow cells was comparatively studied using GFP and wild type (WT) mice. ROS induction was also investigated in the cells collected from mice receiving a priming dose (0.5 Gy) efficient for RAR induction in WT mice. Significantly elevated background and increased induction of ROS in the cells from GFP mice were observed compared to those from WT mice. Markedly lower background and decreased induction of ROS were observed in the cells collected from WT mice but not GFP mice, both receiving the priming dose. GFP overexpression could alter background and induction of ROS by X-irradiation in hematopoietic cells. The results provide a reasonable explanation to the previous study on the fate of cells and mice after X-irradiation and confirm enhanced antioxidant capability in RAR. Investigations involving GFP overexpression should be carefully interpreted.
Collapse
Affiliation(s)
- Cuihua Liu
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Hirokazu Hirakawa
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Takanori Katsube
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| | - Yaqun Fang
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Kaoru Tanaka
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| | - Mitsuru Nenoi
- Human Resources Development Center, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| | - Akira Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Bing Wang
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| |
Collapse
|
16
|
|
17
|
Pereira L, Ferreira MT, Lima AGF, Salata C, Ferreira-Machado SC, Lima I, Morandi V, Magalhães LAG. Biological effects induced by doses of mammographic screening. Phys Med 2021; 87:90-98. [PMID: 34130221 DOI: 10.1016/j.ejmp.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Mammography is the diagnostic imaging practice used in screening to detect early lesions suspected of malignancy. It uses a low energy X-ray beam in which a low dose in the order of 2-3 mGy is delivered to patient breast cells. However, it has been speculated that it could lead to significant cell damage, when compared to conventional X-ray. We investigated the biological effects of low doses, with mean glandular doses (MGDs) of 2.5 mGy and 2.5 + 2.5 mGy, on mammary cells in vitro. METHODS We used the non-tumorigenic cell line (MCF-10A) and two tumor cells lines (MCF-7 and MDA-MB-231). Colony formation, apoptosis, and double-strand DNA breaks (DSBs) were quantified. RESULTS The selected MGD regimens did not alter the formation of colonies by any of the cell lines. MCF-7 cells exhibited a markedly increase in apoptosis, 24 h after the single-dose protocol; MCF-10A cells underwent apoptosis only after 72 h, with both irradiation regimens, while MDA-MB-231 cells (highly invasive and metastatic) were not susceptible to apoptosis. The detection of γH2AX histone in the nuclei of irradiated cells showed that the double-dose resulted in increase of DSBs, especially in tumor cell lines. CONCLUSIONS Although the health benefits of early breast screening remain indisputable, our future perspective is to better understand the biological basis for the effects of low dose radiation on breast cells and to investigate if and under what conditions there would be a risky situation in repeated mammography screening, in both asymptomatic and symptomatic women.
Collapse
Affiliation(s)
- Leslie Pereira
- Department of Medical Physics, Institute of Radiation Protection and Dosimetry (IRD), Av. Salvador Allende, 3773, Barra da Tijuca, Rio de Janeiro, RJ CEP 22783-127, Brazil; Nuclear Engineering Department (DNC), Federal University of Rio de Janeiro (UFRJ), sala 206, Centro de Tecnologia, Av. Horácio Macedo, 2030, Bloco G, Fundão, Rio de Janeiro, RJ CEP 21941-941, Brazil.
| | - Marcella T Ferreira
- Department of Cell Biology, University of the State of Rio de Janeiro (UERJ), Pavilhão Haroldo Lisboa da Cunha, LabAngio, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ CEP 20550-900, Brazil
| | - Antonio Gilcler F Lima
- Department of Cell Biology, University of the State of Rio de Janeiro (UERJ), Pavilhão Haroldo Lisboa da Cunha, LabAngio, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ CEP 20550-900, Brazil
| | - Camila Salata
- CGMI/DRS, Brazilian National Nuclear Energy Comission (CNEN), Rua General Severiano, 90, Botafogo, Rio de Janeiro, RJ CEP 22290-901, Brazil.
| | - Samara C Ferreira-Machado
- Department of Radiological Sciences (LCR), State University of Rio de Janeiro (UERJ), Pavilhão Haroldo Lisboa da Cunha, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ CEP 20550-900, Brazil; Department of General Biology, Federal Fluminense University, Niterói, RJ CEP 21045-900, Brazil
| | - I Lima
- Nuclear Engineering Department (DNC), Federal University of Rio de Janeiro (UFRJ), sala 206, Centro de Tecnologia, Av. Horácio Macedo, 2030, Bloco G, Fundão, Rio de Janeiro, RJ CEP 21941-941, Brazil.
| | - Verônica Morandi
- Department of Cell Biology, University of the State of Rio de Janeiro (UERJ), Pavilhão Haroldo Lisboa da Cunha, LabAngio, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ CEP 20550-900, Brazil.
| | - Luís A G Magalhães
- Department of Radiological Sciences (LCR), State University of Rio de Janeiro (UERJ), Pavilhão Haroldo Lisboa da Cunha, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ CEP 20550-900, Brazil
| |
Collapse
|
18
|
Florentino PTV, Mendes D, Vitorino FNL, Martins DJ, Cunha JPC, Mortara RA, Menck CFM. DNA damage and oxidative stress in human cells infected by Trypanosoma cruzi. PLoS Pathog 2021; 17:e1009502. [PMID: 33826673 PMCID: PMC8087042 DOI: 10.1371/journal.ppat.1009502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/30/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas' disease. Infected cells with T. cruzi activate several responses that promote unbalance of reactive oxygen species (ROS) that may cause DNA damage that activate cellular responses including DNA repair processes. In this work, HeLa cells and AC16 human cardiomyocyte cell line were infected with T. cruzi to investigate host cell responses at genome level during parasites intracellular life cycle. In fact, alkaline sensitive sites and oxidized DNA bases were detected in the host cell genetic material particularly in early stages of infection. These DNA lesions were accompanied by phosphorylation of the histone H2Ax, inducing γH2Ax, a marker of genotoxic stress. Moreover, Poly [ADP-ribose] polymerase-1 (PARP1) and 8-oxoguanine glycosylase (OGG1) are recruited to host cell nuclei, indicating activation of the DNA repair process. In infected cells, chromatin-associated proteins are carbonylated, as a possible consequence of oxidative stress and the nuclear factor erythroid 2-related factor 2 (NRF2) is induced early after infection, suggesting that the host cell antioxidant defenses are activated. However, at late stages of infection, NRF2 is downregulated. Interestingly, host cells treated with glutathione precursor, N-acetyl cysteine, NRF2 activator (Sulforaphane), and also Benznidonazol (BNZ) reduce parasite burst significantly, and DNA damage. These data indicate that the balance of oxidative stress and DNA damage induction in host cells may play a role during the process of infection itself, and interference in these processes may hamper T. cruzi infection, revealing potential target pathways for the therapy support.
Collapse
Affiliation(s)
- Pilar T. V. Florentino
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Davi Mendes
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Davi J. Martins
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Julia P. C. Cunha
- Special Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
| | - Renato A. Mortara
- Department of Microbiology, Imunology & Parasitology, Escola Paulista de Medicina Federal University of São Paulo, São Paulo, Brazil
| | - Carlos F. M. Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Chakrabarti M, Mukherjee A. Investigating the underlying mechanism of cadmium-induced plant adaptive response to genotoxic stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111817. [PMID: 33383339 DOI: 10.1016/j.ecoenv.2020.111817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 05/15/2023]
Abstract
Plants as sessile organisms have developed some unique strategies to withstand environmental stress and adaptive response (AR) is one of them. In the present study Cadmium (Cd)-induced AR was evaluated to ameliorate the genotoxicity of a known chemical mutagen ethyl methanesulphonate (EMS) based on cytotoxicity, genotoxicity and oxidative stress in two model plant systems Allium cepa L. and Vicia faba L. Priming the plants with cadmium chloride (CdCl2, 25 and 50 μM) reduced the genotoxicity of EMS (0.25 mM). Cd-induced AR was evident by the magnitude of adaptive response (MAR) values calculated for cytotoxicity, genotoxicity and biochemical parameters. In addition the involvement of some major metabolic pathways and epigenetic modifications in AR was investigated. Metabolic blockers of protein kinase cascades, DNA repair, oxidative stress and de novo translation interfered with the adaptive response implying their role in AR whereas, inhibitors involved in post-replication repair and autophagy were ineffective implicating that they probably have no role in the AR studied. Moreover to find the role of DNA methylation in AR, methylation-sensitive comet assay was carried out. Simultaneously 5-methyl- 2'-deoxycytidine (5mdC) levels were quantified by HPLC (high performance liquid chromatography). AR was eliminated in cells treated with a demethylating agent, 5-aza- 2'deoxycytidine (AZA). Results implied a contribution of DNA hypermethylation. To the best of our knowledge this is a first report correlating DNA methylation to Cd-induced adaptive response in plants undergoing genotoxic stress.
Collapse
Affiliation(s)
- Manoswini Chakrabarti
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advance Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| | - Anita Mukherjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advance Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| |
Collapse
|
20
|
Mansourian M, Firoozabadi SMP, Hassan ZM. The effect of 900 MHz electromagnetic fields on biological pathways induced by electrochemotherapy. Electromagn Biol Med 2021; 40:158-168. [PMID: 33306410 DOI: 10.1080/15368378.2020.1856681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022]
Abstract
Electrochemotherapy (ECT) is a new and promising treatment strategy for cancer treatment. The aim of this work is to investigate the effect of 900 MHz radiofrequency electromagnetic fields (RF-EMFs) on the mechanisms of ECT (low voltage, high frequency) including cell permeability in vitro, and tumor hypoxia, immune system response in vivo, and on volume of tumors treated with ECT (70 V/cm, 5 kHz). The 4T1 cells were exposed to RF-EMFs at 17, 162, or 349 µW/cm2 power densities, using GSM900 simulator, 10 min. The cells were then put in individual groups, comprising of no treatment, chemotherapy, electric pulses (EPs), or ECT. The cell viability was evaluated. The mice with 4T1 tumor cells were exposed to RF field 10 min/day until the tumor volume reached about 8 mm. Then, the mice tumors were treated with ECT. Tumor hypoxia and immune system response was analyzed through immunohistochemistry (IHC) assay and ELISA technique, respectively. The volume of tumors was also calculated for 24 days following the treatment. The results showed that RF fields at 349 µW/cm2 could increase tumor hypoxia induced by ECT and cause a significant increase of Interferon-gamma (IFN-γ) in comparison with group ECT alone. However, 900 MHz radiations did not affect the volume of tumors treated to ECT (70 V/cm, 5 kHz) significantly. In this study, 900 MHz EMF could improve some biological pathways induced by ECT. Such a positive effect could utilize in some other treatments to increase efficacy, which should be investigated in further research.
Collapse
Affiliation(s)
- Mahsa Mansourian
- Department of Medical Physics, Faculty of Medical Science, Tarbiat Modares University , Tehran, Iran
| | - S M P Firoozabadi
- Department of Medical Physics, Faculty of Medical Science, Biomedical Engineering, Tarbiat Modares University , Tehran, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University , Tehran, Iran
| |
Collapse
|
21
|
|
22
|
Fox-Rabinovich G, Gershman IS, Yamamoto K, Dosbaeva J, Veldhuis S. Effect of the Adaptive Response on the Wear Behavior of PVD and CVD Coated Cutting Tools during Machining with Built Up Edge Formation. NANOMATERIALS 2020; 10:nano10122489. [PMID: 33322353 PMCID: PMC7764160 DOI: 10.3390/nano10122489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022]
Abstract
The relationship between the wear process and the adaptive response of the coated cutting tool to external stimuli is demonstrated in this review paper. The goal of the featured case studies is to achieve control over the behavior of the tool/workpiece tribo-system, using an example of severe tribological conditions present under machining with intensive built-up edge (BUE) formation. The built-ups developed during the machining process are dynamic structures with a dual role. On one hand they exhibit protective functions but, on the other hand, the process of built-up edge formation is similar to an avalanche. Periodical growth and breakage of BUE eventually leads to tooltip failure and catastrophe of the entire tribo-system. The process of BUE formation is governed by the stick-slip phenomenon occurring at the chip/tool interface which is associated with the self-organized critical process (SOC). This process could be potentially brought under control through the engineered adaptive response of the tribo-system, with the goal of reducing the scale and frequency of the occurring avalanches (built-ups). A number of multiscale frictional processes could be used to achieve this task. Such processes are associated with the strongly non-equilibrium process of self-organization during friction (nano-scale tribo-films formation) as well as physical-chemical and mechanical processes that develop on a microscopic scale inside the coating layer and the carbide substrate. Various strategies for achieving control over wear behavior are presented in this paper using specific machining case studies of several hard-to-cut materials such as stainless steels, titanium alloy (TiAl6V4), compacted graphitic iron (CGI), each of which typically undergoes strong built-up edge formation. Various categories of hard coatings deposited by different physical vapor deposition (PVD) and chemical vapor deposition (CVD) methods are applied on cutting tools and the results of their tribological and wear performance studies are presented. Future research trends are outlined as well.
Collapse
Affiliation(s)
- German Fox-Rabinovich
- Department of Mechanical Engineering, McMaster Manufacturing Research Institute (MMRI), McMaster University, Hamilton, ON L8S 4L8 Canada; (J.D.); (S.V.)
- Correspondence:
| | - Iosif S. Gershman
- Joint Stock Company Railway Research Institute, Moscow State Technological University “Stankin” (MSTU “STANKIN”), 127994 Moscow, Russia;
| | - Kenji Yamamoto
- Applied Physics Research Laboratory, Kobe Steel Ltd., 1-5-5 Takatsuda-dai, Nishi-ku, Kobe, Hyogo 651-2271, Japan;
| | - Julia Dosbaeva
- Department of Mechanical Engineering, McMaster Manufacturing Research Institute (MMRI), McMaster University, Hamilton, ON L8S 4L8 Canada; (J.D.); (S.V.)
| | - Stephen Veldhuis
- Department of Mechanical Engineering, McMaster Manufacturing Research Institute (MMRI), McMaster University, Hamilton, ON L8S 4L8 Canada; (J.D.); (S.V.)
| |
Collapse
|
23
|
Szilágyi Z, Németh Z, Bakos J, Necz PP, Sáfár A, Kubinyi G, Selmaoui B, Thuróczy G. Evaluation of Inflammation by Cytokine Production Following Combined Exposure to Ultraviolet and Radiofrequency Radiation of Mobile Phones on 3D Reconstructed Human Skin In Vitro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124401. [PMID: 32575398 PMCID: PMC7344923 DOI: 10.3390/ijerph17124401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022]
Abstract
The absorption of exposure to radiofrequency (RF) emitted by wireless devices leads to a high specific absorption rate in the skin. Ultraviolet (UV) radiation can induce several damages to the skin. The aim of this study was to examine whether combined, consecutive exposure to solar UV radiation and 1950 MHz RF exposure of third generation (3G) mobile system have any effect on inflammation processes in the skin. Under in vitro experiments, the inflammation process was examined by cytokines (IL-1α, IL-6, and IL-8) and MMP-1 enzyme secretion on 3D full thickness human skin model. The RF exposure was applied before or after UV irradiation, in order to study either the possible cooperative or protective effects of exposure to RF and UV. We did not find changes in cytokines due to exposure to RF alone. The RF exposure did not enhance the effects of UV radiation. There was a statistically not-significant decrease in cytokines when the skin tissues were pre-exposed to RF before being exposed to 4 standard erythemal dose (SED) UV compared to UV exposure alone. We found that RF exposure reduced the previously UV-treated MMP-1 enzyme concentration. This study might support the evaluation of the effects on the skin exposed to microwave radiation of 5G mobile technology.
Collapse
Affiliation(s)
- Zsófia Szilágyi
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Zsuzsanna Németh
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - József Bakos
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
- Correspondence: ; Tel.: +36-1-482-2019
| | - Péter Pál Necz
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Anna Sáfár
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Györgyi Kubinyi
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Brahim Selmaoui
- Department of Experimental Toxicology, National Institute of Industrial Environment and Risks (INERIS), 60550 Verneuilen Halate, France;
- PériTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, 80025 Amiens, France
| | - György Thuróczy
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| |
Collapse
|
24
|
Effects of Radiofrequency Exposure and Co-Exposure on Human Lymphocytes: The Influence of Signal Modulation and Bandwidth. ACTA ACUST UNITED AC 2020. [DOI: 10.1109/jerm.2019.2918023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Belmans N, Gilles L, Vermeesen R, Virag P, Hedesiu M, Salmon B, Baatout S, Lucas S, Lambrichts I, Jacobs R, Moreels M. Quantification of DNA Double Strand Breaks and Oxidation Response in Children and Adults Undergoing Dental CBCT Scan. Sci Rep 2020; 10:2113. [PMID: 32034200 PMCID: PMC7005754 DOI: 10.1038/s41598-020-58746-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/03/2020] [Indexed: 01/22/2023] Open
Abstract
Assessing the possible biological effects of exposure to low doses of ionizing radiation (IR) is one of the prime challenges in radiation protection, especially in medical imaging. Today, radiobiological data on cone beam CT (CBCT) related biological effects are scarce. In children and adults, the induction of DNA double strand breaks (DSBs) in buccal mucosa cells and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and antioxidant capacity in saliva samples after CBCT examination were examined. No DNA DSBs induction was observed in children nor adults. In children only, an increase in 8-oxo-dG levels was observed 30 minutes after CBCT. At the same time an increase in antioxidant capacity was observed in children, whereas a decrease was observed in adults. Our data indicate that children and adults react differently to IR doses associated with CBCT. Fully understanding these differences could lead to an optimal use of CBCT in different age categories as well as improved radiation protection guidelines.
Collapse
Affiliation(s)
- Niels Belmans
- Morphology Group, Biomedical Research Institute, Hasselt University, Agoralaan Building C, Diepenbeek, Belgium
- Belgian Nuclear Research Centre, Radiobiology Unit, SCK•CEN, Mol, Belgium
| | - Liese Gilles
- Morphology Group, Biomedical Research Institute, Hasselt University, Agoralaan Building C, Diepenbeek, Belgium
| | - Randy Vermeesen
- Belgian Nuclear Research Centre, Radiobiology Unit, SCK•CEN, Mol, Belgium
| | - Piroska Virag
- Institute of Oncology "Prof. dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Mihaela Hedesiu
- 'Iuliu Hatieganu' University of Medicine and Pharmacy, Department of Oral and Maxillofacial Radiology, Cluj-Napoca, Romania
| | - Benjamin Salmon
- Paris Descartes University - Sorbonne Paris Cité, EA 2496 - Orofacial Pathologies, Imaging and Biotherapies Lab and Dental Medicine Department, Bretonneau Hospital, HUPNVS, AP-HP, Paris, France
| | - Sarah Baatout
- Belgian Nuclear Research Centre, Radiobiology Unit, SCK•CEN, Mol, Belgium
| | - Stéphane Lucas
- Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - Ivo Lambrichts
- Morphology Group, Biomedical Research Institute, Hasselt University, Agoralaan Building C, Diepenbeek, Belgium
| | - Reinhilde Jacobs
- Katholieke Universiteit Leuven, Department of Imaging and Pathology, OMFS-IMPATH Research group, and University Hospitals, Oral and Maxillofacial Surgery, Dentomaxillofacial Imaging Center, Kapucijnenvoer 7, Leuven, Belgium
- Karolinska Institutet, Department Dental Medicine, Huddinge, Sweden
| | - Marjan Moreels
- Belgian Nuclear Research Centre, Radiobiology Unit, SCK•CEN, Mol, Belgium.
| |
Collapse
|
26
|
Leblanc JE, Burtt JJ. Radiation Biology and Its Role in the Canadian Radiation Protection Framework. HEALTH PHYSICS 2019; 117:319-329. [PMID: 30907783 DOI: 10.1097/hp.0000000000001060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The linear no-threshold (linear-non-threshold) model is a dose-response model that has long served as the foundation of the international radiation protection framework, which includes the Canadian regulatory framework. Its purpose is to inform the choice of appropriate dose limits and subsequent as low as reasonably achievable requirements, social and economic factors taken into account. The linear no-threshold model assumes that the risk of developing cancer increases proportionately with increasing radiation dose. The linear no-threshold model has historically been applied by extrapolating the risk of cancer at high doses (>1,000 mSv) down to low doses in a linear manner. As the health effects of radiation exposure at low doses remain ambiguous, reducing uncertainties found in cancer risk dose-response models can be achieved through in vitro and animal-based studies. The purpose of this critical review is to analyze whether the linear no-threshold model is still applicable for use by modern nuclear regulators for radiation protection purposes, or if there is sufficient scientific evidence supporting an alternate model from which to derive regulatory dose limits.
Collapse
|
27
|
Treatment with 3-Aminobenzamide Negates the Radiofrequency-Induced Adaptive Response in Two Cell Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152768. [PMID: 31382475 PMCID: PMC6696271 DOI: 10.3390/ijerph16152768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/15/2023]
Abstract
In previous investigations, we demonstrated that pre-exposure of different cell cultures to radiofrequency fields can reduce the damage induced by genotoxic agents, an effect resembling the so-called adaptive response. In this study, we pre-exposed human peripheral blood lymphocytes and Chinese hamster lung fibroblast cell line to 1950 MHz, UMTS (Universal Mobile Telecommunication System) signal, for 20 h, and then treated cultures with Mitomycin-C. After confirming the induction of an adaptive response in terms of the reduction of micronuclei formation, we observed that such a response was negated by treatments with 3-aminobenzamide. Since 3-aminobenzamide is an inhibitor of poly (ADP-ribose) polymerase enzyme, which is involved in DNA repair, these results support the possible involvement of DNA repair mechanisms in radiofrequency-induced adaptive response.
Collapse
|
28
|
Abstract
The hormesis concept demonstrates that in contrast to the toxic effect of high doses of materials, irradiation, etc., low doses of them are beneficial and, in addition, help to eliminate (prevent) the deleterious effect of high doses given after it. By this effect, it is an important factor of (human) evolution protecting man from harmful impacts, similarly to the role of immunity. However, immunity is also continuously influenced by hormetic effects of environmental [chemical (pollutions), physical (background irradiations and heat), etc.] and medical (drugs and therapeutic irradiations) and food interactions. In contrast to earlier beliefs, the no-threshold irradiation dogma is not valid in low-dose domains and here the hormesis concept is valid. Low-dose therapeutic irradiation, as well as background irradiations (by radon spas or moderately far from the epicenter of atomic bomb or nuclear facilities), is rather beneficial than destructive and the fear from them seems to be unreasonable from immunological point of view. Practically, all immune parameters are beneficially influenced by all forms of low-dose radiations.
Collapse
Affiliation(s)
- György Csaba
- 1 Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
29
|
Guéguen Y, Bontemps A, Ebrahimian TG. Adaptive responses to low doses of radiation or chemicals: their cellular and molecular mechanisms. Cell Mol Life Sci 2019; 76:1255-1273. [PMID: 30535789 PMCID: PMC11105647 DOI: 10.1007/s00018-018-2987-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/09/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022]
Abstract
This article reviews the current knowledge on the mechanisms of adaptive response to low doses of ionizing radiation or chemical exposure. A better knowledge of these mechanisms is needed to improve our understanding of health risks at low levels of environmental or occupational exposure and their involvement in cancer or non-cancer diseases. This response is orchestrated through a multifaceted cellular program involving the concerted action of diverse stress response pathways. These evolutionary highly conserved defense mechanisms determine the cellular response to chemical and physical aggression. They include DNA damage repair (p53, ATM, PARP pathways), antioxidant response (Nrf2 pathway), immune/inflammatory response (NF-κB pathway), cell survival/death pathway (apoptosis), endoplasmic response to stress (UPR response), and other cytoprotective processes including autophagy, cell cycle regulation, and the unfolded protein response. The coordinated action of these processes induced by low-dose radiation or chemicals produces biological effects that are currently estimated with the linear non-threshold model. These effects are controversial. They are difficult to detect because of their low magnitude, the scarcity of events in humans, and the difficulty of corroborating associations over the long term. Improving our understanding of these biological consequences should help humans and their environment by enabling better risk estimates, the revision of radiation protection standards, and possible therapeutic advances.
Collapse
Affiliation(s)
- Yann Guéguen
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France.
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRSI, Fontenay-aux-Roses, France.
| | - Alice Bontemps
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France
| | - Teni G Ebrahimian
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France
| |
Collapse
|
30
|
The impact of ionizing irradiation on liver detoxifying enzymes. A re-investigation. Cell Death Discov 2019; 5:66. [PMID: 30774994 PMCID: PMC6368569 DOI: 10.1038/s41420-019-0148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 11/09/2022] Open
Abstract
By looking at many studies describing the impact of ionizing irradiations in living mice on a few key detoxifying enzymes like catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase and glutathione transferase, we noted conflicting evidences: almost all papers finalized to demonstrate the protective effects of natural or synthetic drugs against the damage by irradiations, described also a relevant inactivation of these enzymes in the absence of these compounds. Conversely, no inactivation and even enhanced activity has been noted under similar irradiation modality in all studies supporting the "adaptive response". Motivated by these curious discrepancies, we performed irradiation experiments on living mice, explanted mouse livers and liver homogenates observing that, in all conditions the activity of all these enzymes remained almost unchanged except for a slight increase found in explanted livers. Our results put a question about many previous scientific reports in this field.
Collapse
|
31
|
Park G, Son B, Kang J, Lee S, Jeon J, Kim JH, Yi GR, Youn H, Moon C, Nam SY, Youn B. LDR-Induced miR-30a and miR-30b Target the PAI-1 Pathway to Control Adverse Effects of NSCLC Radiotherapy. Mol Ther 2018; 27:342-354. [PMID: 30424954 DOI: 10.1016/j.ymthe.2018.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy has been a central part in curing non-small cell lung cancer (NSCLC). However, it is possible that not all of the tumor cells are destroyed by radiation; therefore, it is important to effectively control residual tumor cells that could become aggressive and resistant to radiotherapy. In this study, we aimed to investigate the molecular mechanism of decreased NSCLC radioresistance by low-dose radiation (LDR) pretreatment. The results indicated that miR-30a and miR-30b, which effectively inhibited plasminogen activator inhibitor-1 (PAI-1), were overexpressed by treatment of LDR to NSCLC cells. Phosphorylation of Akt and ERK, the downstream survival signals of PAI-1, was decreased by PAI-1 inhibition. Reduced cell survival and epithelial-mesenchymal transition by PAI-1 inhibition were confirmed in NSCLC cells. Moreover, in vivo orthotopic xenograft mouse models with 7C1 nanoparticles to deliver miRNAs showed that tumor growth and aggressiveness were efficiently decreased by LDR treatment followed by radiotherapy. Taken together, the present study suggested that PAI-1, whose expression is regulated by LDR, was critical for controlling surviving tumor cells after radiotherapy.
Collapse
Affiliation(s)
- Gaeul Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Beomseok Son
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - JiHoon Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Jaewan Jeon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; Department of Radiation Oncology, Haeundae Paik Hospital, Inje University School of Medicine, Busan 48108, Republic of Korea
| | - Joo-Hyung Kim
- Department of Chemistry, Molecular Design Institute, New York University, New York, NY 10003, USA
| | - Gi-Ra Yi
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seon Young Nam
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co., Ltd., Seoul 01450, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
32
|
Parolini M, Possenti CD, Romano A, Caprioli M, Rubolini D, Saino N. Physiological increase of yolk testosterone level does not affect oxidative status and telomere length in gull hatchlings. PLoS One 2018; 13:e0206503. [PMID: 30365552 PMCID: PMC6203383 DOI: 10.1371/journal.pone.0206503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 10/15/2018] [Indexed: 02/01/2023] Open
Abstract
Conditions experienced during early-life can cause the onset of oxidative stress, resulting in pervasive effects on diverse life-history traits, including lifespan. In birds, maternally-transferred egg substances may exert positive or negative influence over the offspring phenotype. Among these, testosterone can upregulate the bioavailability of certain antioxidants but simultaneously promotes the production of pro-oxidants, leading to an oxidative stress situation, which is one of the main forces causing telomere attrition However, no study has investigated the role of this androgen on telomere dynamics in birds and little is known about the effects of yolk testosterone on oxidative status in early-life of these species. We physiologically increased the levels of yolk testosterone by in ovo injections in yellow-legged gull (Larus michahellis) to evaluate the effects induced by this androgen on hatchlings plasma total antioxidant capacity, amount of pro-oxidant molecules and telomere length at hatching. Testosterone supplementation did not increase hatchling body growth, did not result in the overproduction of pro-oxidant molecules nor a reduction of antioxidant capacity. Accordingly, telomere length at hatching was not affected by testosterone treatment, although hatchlings from the third-laid eggs showed shorter telomeres than their siblings from first- and second-laid eggs, independently of testosterone treatment. Our results suggest that injection of physiological levels of testosterone does not induce oxidative stress to hatchlings and, consequently do not affect telomere dynamics during early post-natal periods.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- * E-mail:
| | | | - Andrea Romano
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Manuela Caprioli
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Nicola Saino
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| |
Collapse
|
33
|
Zhao H, Di Mauro G, Lungu-Mitea S, Negrini P, Guarino AM, Frigato E, Braunbeck T, Ma H, Lamparter T, Vallone D, Bertolucci C, Foulkes NS. Modulation of DNA Repair Systems in Blind Cavefish during Evolution in Constant Darkness. Curr Biol 2018; 28:3229-3243.e4. [PMID: 30318355 DOI: 10.1016/j.cub.2018.08.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/19/2018] [Accepted: 08/16/2018] [Indexed: 11/18/2022]
Abstract
How the environment shapes the function and evolution of DNA repair systems is poorly understood. In a comparative study using zebrafish and the Somalian blind cavefish, Phreatichthys andruzzii, we reveal that during evolution for millions of years in continuous darkness, photoreactivation DNA repair function has been lost in P. andruzzii. We demonstrate that this loss results in part from loss-of-function mutations in pivotal DNA-repair genes. Specifically, C-terminal truncations in P. andruzzii DASH and 6-4 photolyase render these proteins predominantly cytoplasmic, with consequent loss in their functionality. In addition, we reveal a general absence of light-, UV-, and ROS-induced expression of P. andruzzii DNA-repair genes. This results from a loss of function of the D-box enhancer element, which coordinates and enhances DNA repair in response to sunlight. Our results point to P. andruzzii being the only species described, apart from placental mammals, that lacks the highly evolutionary conserved photoreactivation function. We predict that in the DNA repair systems of P. andruzzii, we may be witnessing the first stages in a process that previously occurred in the ancestors of placental mammals during the Mesozoic era.
Collapse
Affiliation(s)
- Haiyu Zhao
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Giuseppe Di Mauro
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Sebastian Lungu-Mitea
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld, 69120 Heidelberg, Germany; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Pietro Negrini
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Andrea Maria Guarino
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Biology, University of Naples "Federico II," 80126 Naples, Italy
| | - Elena Frigato
- Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Hongju Ma
- Botanical Institute, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Daniela Vallone
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Cristiano Bertolucci
- Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Nicholas S Foulkes
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
34
|
Protective effect of 1950 MHz electromagnetic field in human neuroblastoma cells challenged with menadione. Sci Rep 2018; 8:13234. [PMID: 30185877 PMCID: PMC6125585 DOI: 10.1038/s41598-018-31636-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/15/2018] [Indexed: 12/15/2022] Open
Abstract
This study aims to assess whether a 1950 MHz radiofrequency (RF) electromagnetic field could protect human neuroblastoma SH-SY5Y cells against a subsequent treatment with menadione, a chemical agent inducing DNA damage via reactive oxygen species formation. Cells were pre-exposed for 20 h to specific absorption rate of either 0.3 or 1.25 W/kg, and 3 h after the end of the exposure, they were treated with 10 µM menadione (MD) for 1 h. No differences were observed between sham- and RF-exposed samples. A statistically significant reduction in menadione-induced DNA damage was detected in cells pre-exposed to either 0.3 or 1.25 W/kg (P < 0.05). Moreover, our analyses of gene expression revealed that the pre-exposure to RF almost inhibited the dramatic loss of glutathione peroxidase-based antioxidant scavenging efficiency that was induced by MD, and in parallel strongly enhanced the gene expression of catalase-based antioxidant protection. In addition, RF abolished the MD-dependent down-regulation of oxoguanine DNA glycosylase, which is a critical DNA repairing enzyme. Overall, our findings suggested that RF pre-exposure reduced menadione-dependent DNA oxidative damage, most probably by enhancing antioxidant scavenging efficiency and restoring DNA repair capability. Our results provided some insights into the molecular mechanisms underlying the RF-induced adaptive response in human neuroblastoma cells challenged with menadione.
Collapse
|
35
|
Intracellular and Intercellular Signalling Mechanisms following DNA Damage Are Modulated By PINK1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1391387. [PMID: 30116473 PMCID: PMC6079383 DOI: 10.1155/2018/1391387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/04/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023]
Abstract
Impaired mitochondrial function and accumulation of DNA damage have been recognized as hallmarks of age-related diseases. Mitochondrial dysfunction initiates protective signalling mechanisms coordinated at nuclear level particularly by modulating transcription of stress signalling factors. In turn, cellular response to DNA lesions comprises a series of interconnected complex protective pathways, which require the energetic and metabolic support of the mitochondria. These are involved in intracellular as well as in extracellular signalling of damage. Here, we have initiated a study that addresses how mitochondria-nucleus communication may occur in conditions of combined mitochondrial dysfunction and genotoxic stress and what are the consequences of this interaction on the cell system. In this work, we used cells deficient for PINK1, a mitochondrial kinase involved in mitochondrial quality control whose loss of function leads to the accumulation of dysfunctional mitochondria, challenged with inducers of DNA damage, namely, ionizing radiation and the radiomimetic bleomycin. Combined stress at the level of mitochondria and the nucleus impairs both mitochondrial and nuclear functions. Our findings revealed exacerbated sensibility to genotoxic stress in PINK1-deficient cells. The same cells showed an impaired induction of bystander phenomena following stress insults. However, these cells responded adaptively when a challenge dose was applied subsequently to a low-dose treatment to the cells. The data demonstrates that PINK1 modulates intracellular and intercellular signalling pathways, particularly adaptive responses and transmission of bystander signalling, two facets of the cell-protective mechanisms against detrimental agents.
Collapse
|
36
|
He Q, Zong L, Sun Y, Vijayalaxmi, Prihoda TJ, Tong J, Cao Y. Adaptive response in mouse bone marrow stromal cells exposed to 900 MHz radiofrequency fields: Impact of poly (ADP-ribose) polymerase (PARP). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 820:19-25. [DOI: 10.1016/j.mrgentox.2017.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/18/2017] [Accepted: 05/11/2017] [Indexed: 11/28/2022]
|
37
|
Rossnerova A, Pokorna M, Svecova V, Sram RJ, Topinka J, Zölzer F, Rossner P. Adaptation of the human population to the environment: Current knowledge, clues from Czech cytogenetic and "omics" biomonitoring studies and possible mechanisms. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:188-203. [PMID: 28927528 DOI: 10.1016/j.mrrev.2017.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022]
Abstract
The human population is continually exposed to numerous harmful environmental stressors, causing negative health effects and/or deregulation of biomarker levels. However, studies reporting no or even positive impacts of some stressors on humans are also sometimes published. The main aim of this review is to provide a comprehensive overview of the last decade of Czech biomonitoring research, concerning the effect of various levels of air pollution (benzo[a]pyrene) and radiation (uranium, X-ray examination and natural radon background), on the differently exposed population groups. Because some results obtained from cytogenetic studies were opposite than hypothesized, we have searched for a meaningful interpretation in genomic/epigenetic studies. A detailed analysis of our data supported by the studies of others and current epigenetic knowledge, leads to a hypothesis of the versatile mechanism of adaptation to environmental stressors via DNA methylation settings which may even originate in prenatal development, and help to reduce the resulting DNA damage levels. This hypothesis is fully in agreement with unexpected data from our studies (e.g. lower levels of DNA damage in subjects from highly polluted regions than in controls or in subjects exposed repeatedly to a pollutant than in those without previous exposure), and is also supported by differences in DNA methylation patterns in groups from regions with various levels of pollution. In light of the adaptation hypothesis, the following points may be suggested for future research: (i) the chronic and acute exposure of study subjects should be distinguished; (ii) the exposure history should be mapped including place of residence during the life and prenatal development; (iii) changes of epigenetic markers should be monitored over time. In summary, investigation of human adaptation to the environment, one of the most important processes of survival, is a new challenge for future research in the field of human biomonitoring that may change our view on the results of biomarker analyses and potential negative health impacts of the environment.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Michaela Pokorna
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Vlasta Svecova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Radim J Sram
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Friedo Zölzer
- Institute of Radiology, Toxicology and Civil Protection, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Pavel Rossner
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague 4, Czech Republic.
| |
Collapse
|
38
|
Doukali H, Ben Salah G, Hamdaoui L, Hajjaji M, Tabebi M, Ammar-Keskes L, Masmoudi ME, Kamoun H. Oxidative stress and glutathione S-transferase genetic polymorphisms in medical staff professionally exposed to ionizing radiation. Int J Radiat Biol 2017; 93:697-704. [PMID: 28287017 DOI: 10.1080/09553002.2017.1305132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Ionizing radiation (IR) is considered as a diagnostic and therapeutic tool in medicine. However, chronic occupational exposure of medical staff to IR may affect the antioxidant status and, as a result, DNA damage and cancers as well. The objective of our study was to evaluate the oxidative stress profile caused by IR in 29 Tunisian medical staff from radiology and radiotherapy departments, and to find an association between the GSTM1 null, GSTT1 null, and GSTP1 Ile105Val polymorphisms and oxidative stress biomarkers. MATERIALS AND METHODS The oxidant biomarkers malondialdehyde (MDA) and advanced oxidation protein product (AOPP) and the activities of the antioxidant superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) enzymes were spectrophotometrically determined in erythrocytes hemolysates. The analysis of GSTT1 null, GSTM1 null, and GSTP1 Ile105Val polymorphisms was determined for each participant using PCR methods. RESULTS A significant increase of white blood cell (WBC) numbers (p < .05) and a significant decrease by 11% of hemoglobin (Hb) (p < .01) were noted in the exposed subjects in our study. Moreover, we report a significant increase of MDA level and the activities of SOD and CAT enzymes of the IR-exposed group compared to controls (p < .001). Interestingly, a close association was noted between the genotypes GSTP1 low active, GSTT1 null, GSTM1 null, and both GSTT1/GSTM1 null and oxidative stress biomarkers, especially with MDA level, SOD, and CAT activities. CONCLUSIONS Our findings indicate that the medical staff exposed to low IR levels were under risk of significant oxidative stress that was enhanced by their glutathione S-transferase (GST) polymorphisms.
Collapse
Affiliation(s)
- Hajer Doukali
- a Laboratory of Human Molecular Genetics, Faculty of Medicine , University of Sfax , Sfax , Tunisia.,b Department of Medical Genetics , Hedi Chaker Hospital , Sfax , Tunisia
| | - Ghada Ben Salah
- a Laboratory of Human Molecular Genetics, Faculty of Medicine , University of Sfax , Sfax , Tunisia.,c Unaizah College of Pharmacy , Qassim University , Alqassim , Saudi Arabia
| | - Latifa Hamdaoui
- d Histology, Embryology Laboratory, Faculty of Medicine , University of Sfax , Sfax , Tunisia
| | - Mounira Hajjaji
- d Histology, Embryology Laboratory, Faculty of Medicine , University of Sfax , Sfax , Tunisia
| | - Mouna Tabebi
- a Laboratory of Human Molecular Genetics, Faculty of Medicine , University of Sfax , Sfax , Tunisia
| | - Leila Ammar-Keskes
- a Laboratory of Human Molecular Genetics, Faculty of Medicine , University of Sfax , Sfax , Tunisia
| | | | - Hassen Kamoun
- a Laboratory of Human Molecular Genetics, Faculty of Medicine , University of Sfax , Sfax , Tunisia.,b Department of Medical Genetics , Hedi Chaker Hospital , Sfax , Tunisia
| |
Collapse
|
39
|
Deng C, Wang T, Wu J, Xu W, Li H, Liu M, Wu L, Lu J, Bian P. Effect of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana. Mutat Res 2017; 796:20-28. [PMID: 28254518 DOI: 10.1016/j.mrfmmm.2017.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 06/06/2023]
Abstract
Space particles have an inevitable impact on organisms during space missions; radio-adaptive response (RAR) is a critical radiation effect due to both low-dose background and sudden high-dose radiation exposure during solar storms. Although it is relevant to consider RAR within the context of microgravity, another major space environmental factor, there is no existing evidence as to its effects on RAR. In the present study, we established an experimental method for detecting the effects of gamma-irradiation on the primary root growth of Arabidopsis thaliana, in which RAR of root growth was significantly induced by several dose combinations. Microgravity was simulated using a two-dimensional rotation clinostat. It was shown that RAR of root growth was significantly inhibited under the modeled microgravity condition, and was absent in pgm-1 plants that had impaired gravity sensing in root tips. These results suggest that RAR could be modulated in microgravity. Time course analysis showed that microgravity affected either the development of radio-resistance induced by priming irradiation, or the responses of plants to challenging irradiation. After treatment with the modeled microgravity, attenuation in priming irradiation-induced expressions of DNA repair genes (AtKu70 and AtRAD54), and reduced DNA repair efficiency in response to challenging irradiation were observed. In plant roots, the polar transportation of the phytohormone auxin is regulated by gravity, and treatment with an exogenous auxin (indole-3-acetic acid) prevented the induction of RAR of root growth, suggesting that auxin might play a regulatory role in the interaction between microgravity and RAR of root growth.
Collapse
Affiliation(s)
- Chenguang Deng
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, PR China; Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Ting Wang
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, PR China; Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, PR China
| | - Jingjing Wu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, PR China; Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Wei Xu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, PR China; Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, PR China
| | - Huasheng Li
- China Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086, PR China
| | - Min Liu
- China Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086, PR China
| | - Lijun Wu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, PR China; Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, PR China
| | - Jinying Lu
- China Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086, PR China.
| | - Po Bian
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, PR China; Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, PR China.
| |
Collapse
|
40
|
Tang H, Chen L, Chen L, Chen B, Wang T, Yang A, Zhan F, Wu L, Bian P. Interaction between Radioadaptive Response and Radiation-Induced Bystander Effect in Caenorhabditis elegans : A Unique Role of the DNA Damage Checkpoint. Radiat Res 2016; 186:662-668. [PMID: 27874324 DOI: 10.1667/rr14548.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although radioadaptive responses (RAR) and radiation-induced bystander effects (RIBE) are two important biological effects of low-dose radiation, there are currently only limited data that directly address their interaction, particularly in the context of whole organisms. In previous studies, we separately demonstrated RAR and RIBE using an in vivo system of C. elegans . In the current study, we further investigated their interaction in C. elegans , with the ratio of protruding vulva as the biological end point for RAR. Fourteen-hour-old worms were first locally targeted with a proton microbeam, and were then challenged with a high dose of whole-body gamma radiation. Microbeam irradiation of the posterior pharynx bulbs and rectal valves of C. elegans could significantly suppress the induction of protruding vulva by subsequent gamma irradiation, suggesting a contribution of RIBE to RAR in the context of the whole organism. Moreover, C. elegans has a unique DNA damage response in which the upstream DNA damage checkpoint is not active in most of somatic cells, including vulval cells. However, its impairment in atm-1 and hus-1 mutants blocked the RIBE-initiated RAR of vulva. Similarly, mutations in the atm-1 and hus-1 genes inhibited the RAR of vulva initiated by microbeam irradiation of the vulva itself. These results further confirm that the DNA damage checkpoint participates in the induction of RAR of vulva in C. elegans in a cell nonautonomous manner.
Collapse
Affiliation(s)
- Huangqi Tang
- a Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, P. R. China.,b University of Science and Technology of China, Hefei 230026, P. R. China
| | - Liangwen Chen
- a Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, P. R. China.,b University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lianyun Chen
- a Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Bin Chen
- a Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Ting Wang
- a Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Aifeng Yang
- c School of Management of Hefei University of Technology, Hefei 23009, P. R. China
| | - Furu Zhan
- a Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Lijun Wu
- a Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Po Bian
- a Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, P. R. China
| |
Collapse
|
41
|
Mobile phone signal exposure triggers a hormesis-like effect in Atm +/+ and Atm -/- mouse embryonic fibroblasts. Sci Rep 2016; 6:37423. [PMID: 27857169 PMCID: PMC5114646 DOI: 10.1038/srep37423] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023] Open
Abstract
Radiofrequency electromagnetic fields (RF-EMFs) have been classified by the International Agency for Research on Cancer as possible carcinogens to humans; however, this conclusion is based on limited epidemiological findings and lacks solid support from experimental studies. In particular, there are no consistent data regarding the genotoxicity of RF-EMFs. Ataxia telangiectasia mutated (ATM) is recognised as a chief guardian of genomic stability. To address the debate on whether RF-EMFs are genotoxic, we compared the effects of 1,800 MHz RF-EMF exposure on genomic DNA in mouse embryonic fibroblasts (MEFs) with proficient (Atm+/+) or deficient (Atm−/−) ATM. In Atm+/+ MEFs, RF-EMF exposure for 1 h at an average special absorption rate of 4.0 W/kg induced significant DNA single-strand breaks (SSBs) and activated the SSB repair mechanism. This effect reduced the DNA damage to less than that of the background level after 36 hours of exposure. In the Atm−/− MEFs, the same RF-EMF exposure for 12 h induced both SSBs and double-strand breaks and activated the two repair processes, which also reduced the DNA damage to less than the control level after prolonged exposure. The observed phenomenon is similar to the hormesis of a toxic substance at a low dose. To the best of our knowledge, this study is the first to report a hormesis-like effect of an RF-EMF.
Collapse
|
42
|
Jovtchev G, Gateva S, Stankov A. Lilium compounds kaempferol and jatropham can modulate cytotoxic and genotoxic effects of radiomimetic zeocin in plants and human lymphocytes In vitro. ENVIRONMENTAL TOXICOLOGY 2016; 31:751-764. [PMID: 25504804 DOI: 10.1002/tox.22088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 06/04/2023]
Abstract
Organisms are constantly exposed to the detrimental effect of environmental DNA-damaging agents. The harmful effects of environmental genotoxins could be decreased in a viable way by antimutagenesis. One of the modern approaches to reduce the mutagenic burden is based on exogenous natural and synthetic compounds that possess protective and antimutagenic potential against genotoxins. The natural compounds kaempferol and jatropham isolated from Lilium candidum were tested with respect to their potential to protect cells against the radiomimetic zeocin, as well as to their cytotoxic and genotoxic activities in two types of experimental eukaryotic test systems: Hordeum vulgare and human lymphocytes in vitro. Mitotic index (MI) was used as an endpoint for cytotoxicity; the frequency of chromosome aberrations (MwA) and the number of induced micronuclei (MN), as endpoints for genotoxicity/clastogenicity. Formation of aberration "hot spots" was also used as an indicator for genotoxicity in H. vulgare. Both kaempferol and jatropham were shown to possess a potential to modulate and decrease the cytotoxic and genotoxic/clastogenic effect of zeocin depending on the experimental design and the test system. Our data could be useful for health research programs, particularly in clarifying the pharmacological potential and activity of natural plant compounds. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 751-764, 2016.
Collapse
Affiliation(s)
- Gabriele Jovtchev
- Department of Environmental Mutagenesis and Genetic Risk Assessment, Institute of Biodiversity and Ecosystem Research, BAS, 2 Gagarin Street, Sofia, 1113, Bulgaria
| | - Svetla Gateva
- Department of Environmental Mutagenesis and Genetic Risk Assessment, Institute of Biodiversity and Ecosystem Research, BAS, 2 Gagarin Street, Sofia, 1113, Bulgaria
| | - Alexander Stankov
- Department of Environmental Mutagenesis and Genetic Risk Assessment, Institute of Biodiversity and Ecosystem Research, BAS, 2 Gagarin Street, Sofia, 1113, Bulgaria
| |
Collapse
|
43
|
Induction of Poly(ADP-ribose) Polymerase in Mouse Bone Marrow Stromal Cells Exposed to 900 MHz Radiofrequency Fields: Preliminary Observations. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4918691. [PMID: 27190989 PMCID: PMC4848421 DOI: 10.1155/2016/4918691] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/15/2016] [Accepted: 03/27/2016] [Indexed: 01/17/2023]
Abstract
Background. Several investigators have reported increased levels of poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme which plays an important role in the repair of damaged DNA, in cells exposed to extremely low dose ionizing radiation which does not cause measurable DNA damage. Objective. To examine whether exposure of the cells to nonionizing radiofrequency fields (RF) is capable of increasing messenger RNA of PARP-1 and its protein levels in mouse bone marrow stromal cells (BMSCs). Methods. BMSCs were exposed to 900 MHz RF at 120 μW/cm2 power intensity for 3 hours/day for 5 days. PARP-1 mRNA and its protein levels were examined at 0, 0.5, 1, 2, 4, 6, 8, and 10 hours after exposure using RT-PCR and Western blot analyses. Sham-exposed (SH) cells and those exposed to ionizing radiation were used as unexposed and positive control cells. Results. BMSCs exposed to RF showed significantly increased expression of PARP-1 mRNA and its protein levels after exposure to RF while such changes were not observed in SH-exposed cells. Conclusion. Nonionizing RF exposure is capable of inducing PARP-1.
Collapse
|
44
|
Khalandar BD, Vasudev V. Inducible protective processes in animal systems XIV: Cytogenetic adaptive response induced by EMS or MMS in bone marrow cells of diabetic mouse. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2015.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Tang H, Chen L, Liu J, Shi J, Li Q, Wang T, Wu L, Zhan F, Bian P. Radioadaptive Response for Reproductive Cell Death Demonstrated in In Vivo Tissue Model of Caenorhabditis elegans. Radiat Res 2016; 185:402-10. [PMID: 27023260 DOI: 10.1667/rr14368.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reproductive cell death (RCD) occurs after one or more cell divisions resulting from an insult such as radiation exposure or other treatments with carcinogens or mutagens. The radioadaptive response for RCD is usually investigated by in vitro or in vivo clonogenic assay. To date, this has not been demonstrated in the vulval tissue in Caenorhabditis elegans ( C. elegans ), which is a well established in vivo model for radiation-induced RCD. In this study to determine whether radioadaptive response occurs in the vulval tissue model of C. elegans , early larval worms were gamma irradiated with lower adaptive doses, followed by higher challenge doses. The ratio of protruding vulva was used to assess the RCD of vulval cells. The results of this study showed that the radioadaptive response for RCD in this vulval tissue model could be well induced by dose combinations of 5 + 75 Gy and 5 + 100 Gy at the time point of 14-16 h in worm development. In addition, the time course analysis indicated that radioresistance in vulval cells developed within 1.75 h after an adaptive dose and persisted for only a short period of time (2-4 h). DNA damage checkpoint and non-homologous end joining were involved in the radioadaptive response, exhibiting induction of protruding vulva in worms deficient in these two pathways similar to their controls. Interestingly, the DNA damage checkpoint was not active in the somatic vulval cells, and it was therefore suggested that the DNA damage checkpoint might mediate the radioadaptive response in a cell nonautonomous manner. Here, we show evidence of the occurrence of a radioadaptive response for RCD in the vulval tissue model of C. elegans . This finding provides a potential opportunity to gain further insight into the underlying mechanisms of the radioadaptive response for RCD, in view of the abundant genetic resources of C. elegans .
Collapse
Affiliation(s)
- Huangqi Tang
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China
| | - Liangwen Chen
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China
| | - Jialu Liu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China
| | - Jue Shi
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China
| | - Qingqing Li
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China
| | - Ting Wang
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China
| | - Lijun Wu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China
| | - Furu Zhan
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China
| | - Po Bian
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China
| |
Collapse
|
46
|
Role of heme Oxygenase-1 in low dose Radioadaptive response. Redox Biol 2016; 8:333-40. [PMID: 26966892 PMCID: PMC4789341 DOI: 10.1016/j.redox.2016.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 01/19/2023] Open
Abstract
Radioadaptive response (RAR) is an important phenomenon induced by low dose radiation. However, the molecular mechanism of RAR is obscure. In this study, we focused on the possible role of heme oxygenase 1 (HO-1) in RAR. Consistent with previous studies, priming dose of X-ray radiation (1–10 cGy) induced significant RAR in normal human skin fibroblasts (AG 1522 cells). Transcription and translation of HO-1 was up-regulated more than two fold by a priming dose of radiation (5 cGy). Zinc protoporphyrin Ⅸ, a specific competitive inhibitor of HO-1, efficiently inhibited RAR whereas hemin, an inducer of HO-1, could mimic priming dose of X-rays to induce RAR. Knocking down of HO-1 by transfection of HO-1 siRNA significantly attenuated RAR. Furthermore, the expression of HO-1 gene was modulated by the nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which translocated from cytoplasm to nucleus after priming dose radiation and enhance the antioxidant level of cells. The critical role of HO-1 in low dose Radioadaptive response is proposed. Low dose irradiation activates Nrf2 Translocation and HO-1 expression. Nrf2/HO-1 pathway mediates Radioadaptive response via regulating ROS production.
Collapse
|
47
|
The influence of diet on nestling body condition of an apex predator: a multi-biomarker approach. J Comp Physiol B 2016; 186:343-62. [PMID: 26857272 DOI: 10.1007/s00360-016-0967-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 02/07/2023]
Abstract
Animal body condition refers to the health and physiological state of individuals, and multiple parameters have been proposed to quantify this key concept. Food intake is one of the main determinants of individual body condition and much debate has been generated on how diet relates to body condition. We investigated this relationship in free-living Bonelli's eagle (Aquila fasciata) nestlings sampled at two geographically distant populations in Spain. Nestlings' main prey consumption was estimated by isotopic analyses. A multi-biomarker approach, including morphometric and blood biochemical measures (i.e. hematocrit, plasma biochemistry and oxidative stress biomarkers), enabled us to integrate all the body condition measures taken. A greater consumption of a preferred prey [i.e. the European rabbit (Oryctolagus cuniculus)] improved nestling body condition, as indicated by lower levels of cholesterol in plasma, greater activity of enzymes mediating in protein catabolism, higher levels of tocopherol and glutathione, and less glutathione peroxidase activity, which also suggested lower degree of oxidative stress. On the other hand, increased diet diversity was positively correlated with higher levels of oxidized glutathione, which suggests that these nestlings had poorer body condition than those with a higher frequency of preferred prey consumption. Several factors other than diet [i.e. altitude of nesting areas, nestling sex and age, sampling time (before or after midday) and recent food ingestion] had an effect on certain body condition measures. Our study reveals a measurable effect of diet on a predator's body condition and demonstrates the importance of considering the potential influence of multiple intrinsic and extrinsic factors when assessing animal body condition.
Collapse
|
48
|
Abdollahi H, Shiri I. Radiation protection and secondary cancer prevention using biological radioprotectors in radiotherapy. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2015. [DOI: 10.14319/ijcto.33.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
49
|
Data integration reveals key homeostatic mechanisms following low dose radiation exposure. Toxicol Appl Pharmacol 2015; 285:1-11. [PMID: 25655199 DOI: 10.1016/j.taap.2015.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/21/2015] [Accepted: 01/25/2015] [Indexed: 12/25/2022]
Abstract
The goal of this study was to define pathways regulated by low dose radiation to understand how biological systems respond to subtle perturbations in their environment and prioritize pathways for human health assessment. Using an in vitro 3-D human full thickness skin model, we have examined the temporal response of dermal and epidermal layers to 10 cGy X-ray using transcriptomic, proteomic, phosphoproteomic and metabolomic platforms. Bioinformatics analysis of each dataset independently revealed potential signaling mechanisms affected by low dose radiation, and integrating data shed additional insight into the mechanisms regulating low dose responses in human tissue. We examined direct interactions among datasets (top down approach) and defined several hubs as significant regulators, including transcription factors (YY1, MYC and CREB1), kinases (CDK2, PLK1) and a protease (MMP2). These data indicate a shift in response across time - with an increase in DNA repair, tissue remodeling and repression of cell proliferation acutely (24-72h). Pathway-based integration (bottom up approach) identified common molecular and pathway responses to low dose radiation, including oxidative stress, nitric oxide signaling and transcriptional regulation through the SP1 factor that would not have been identified by the individual data sets. Significant regulation of key downstream metabolites of nitrative stress was measured within these pathways. Among the features identified in our study, the regulation of MMP2 and SP1 was experimentally validated. Our results demonstrate the advantage of data integration to broadly define the pathways and networks that represent the mechanisms by which complex biological systems respond to perturbation.
Collapse
|
50
|
Zong C, Ji Y, He Q, Zhu S, Qin F, Tong J, Cao Y. Adaptive response in mice exposed to 900 MHZ radiofrequency fields: bleomycin-induced DNA and oxidative damage/repair. Int J Radiat Biol 2015; 91:270-6. [PMID: 25347145 DOI: 10.3109/09553002.2014.980465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE To determine whether mice exposed to radiofrequency fields (RF) and then injected with a radiomimetic drug, bleomycin (BLM), exhibit adaptive response and provide some mechanistic evidence for such response. MATERIALS AND METHODS Adult mice were exposed to 900 MHz RF at 120 μW/cm(2) power density for 4 hours/day for 7 days. Immediately after the last exposure, some mice were sacrificed while the others were injected with BLM 4 h later. In each animal: (i) The primary DNA damage and BLM-induced damage as well as its repair kinetics were determined in blood leukocytes; and (ii) the oxidative damage was determined from malondialdehyde (MDA) levels and the antioxidant status was assessed from superoxide dismutase (SOD) levels in plasma, liver and lung tissues. RESULTS There were no indications for increased DNA and oxidative damages in mice exposed to RF alone in contrast to those treated with BLM alone. Mice exposed to RF+ BLM showed significantly: (a) reduced BLM-induced DNA damage and that remained after each 30, 60, 90, 120 and 150 min repair time, and (b) decreased levels of MDA in plasma and liver, and increased SOD level in the lung. CONCLUSIONS The overall data suggested that RF exposure was capable of inducing adaptive response and mitigated BLM- induced DNA and oxidative damages by activating certain cellular processes.
Collapse
Affiliation(s)
- Chunyan Zong
- School of Public Health, Medical College of Soochow University , Suzhou, Jiangsu
| | | | | | | | | | | | | |
Collapse
|