1
|
Jennings MR, Min S, Xu GS, Homayuni K, Suresh B, Haikal YA, Blazeck J. Optimized expression and purification of a human adenosine deaminase in E. coli and characterization of its Asp8Asn variant. Protein Expr Purif 2024; 213:106362. [PMID: 37683902 PMCID: PMC10664833 DOI: 10.1016/j.pep.2023.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Homo sapiens adenosine deaminase isoform 1 (HsADA1) hydrolyzes adenosine and 2-deoxyadenosine as a key step in the purine nucleoside salvage pathway. Some HsADA1 mutations have severe deleterious effects, as is the case in a severe combined immunodeficiency resulting from loss of enzyme activity (ADA-SCID). Other mutations that reduce enzyme activity, for instance the Asp8Asn (D8N) variant, do not cause ADA-SCID but are correlated with other consequences to health. To ease further study of HsADA1 and its variants, we optimized an inexpensive, recombinant expression process in an Escherichia coli host through multiplexed parameter testing enabled by a lysate-based microtiter plate assay. We demonstrate the importance of gene codon usage, induction time and temperature, and alcohol supplementation towards improving enzyme yield to a final titer of 5 mg per liter of culture. We further show that use of a double-histidine-tag (his-tag) system greatly improves purity. We then utilize our expression and purification framework to produce the HsADA1 D8N variant, which had previously not been purified to homogeneity. We confirm that the D8N variant is ∼30% less active than the wildtype HsADA1 and show that it better retains its activity in human serum. Additionally, we show that both HsADA1 and the D8N variant have heightened activity in serum, driven in part by a previously undescribed phenomenon involving albumin. Therefore, this work presents a valuable process to produce HsADA1 that allows for insights into it and its variants' behavior. We also confirm the utility of lysate-based activity assays towards finding optimal E. coli expression conditions for enzymes and show how fusing his-tags in tandem can enhance product purity.
Collapse
Affiliation(s)
- Maria Rain Jennings
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Soohyon Min
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Grace S Xu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kassandra Homayuni
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Bhavana Suresh
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yusef Amir Haikal
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - John Blazeck
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Singer P, Yee BK. The adenosine hypothesis of schizophrenia into its third decade: From neurochemical imbalance to early life etiological risks. Front Cell Neurosci 2023; 17:1120532. [PMID: 36998267 PMCID: PMC10043328 DOI: 10.3389/fncel.2023.1120532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/15/2023] [Indexed: 03/17/2023] Open
Abstract
The adenosine hypothesis of schizophrenia was conceptualized about two decades ago in an attempt to integrate two prominent theories of neurochemical imbalance that attribute the pathogenesis of schizophrenia to hyperfunction of the mesocorticolimbic dopamine neurotransmission and hypofunction of cortical glutamate neurotransmission. Given its unique position as an endogenous modulator of both dopamine and glutamate signaling in the brain, adenosine was postulated as a potential new drug target to achieve multiple antipsychotic actions. This new strategy may offer hope for improving treatment, especially in alleviating negative symptoms and cognitive deficits of schizophrenia that do not respond to current medications. To date, however, the adenosine hypothesis has yet led to any significant therapeutic breakthroughs. Here, we address two possible reasons for the impasse. First, neither the presence of adenosine functional deficiency in people with schizophrenia nor its causal relationship to symptom production has been satisfactorily examined. Second, the lack of novel adenosine-based drugs also impedes progress. This review updates the latest preclinical and clinical data pertinent to the construct validity of the adenosine hypothesis and explores novel molecular processes whereby dysregulation of adenosine signaling could be linked to the etiology of schizophrenia. It is intended to stimulate and revitalize research into the adenosine hypothesis towards the development of a new and improved generation of antipsychotic drugs that has eluded us for decades.
Collapse
Affiliation(s)
- Philipp Singer
- Roche Diagnostics International AG, Rotkreuz, Switzerland
- *Correspondence: Philipp Singer Benjamin K. Yee
| | - Benjamin K. Yee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Philipp Singer Benjamin K. Yee
| |
Collapse
|
3
|
Alnafisah R, Lundh A, Asah SM, Hoeflinger J, Wolfinger A, Hamoud AR, McCullumsmith RE, O'Donovan SM. Altered purinergic receptor expression in the frontal cortex in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:96. [PMID: 36376358 PMCID: PMC9663420 DOI: 10.1038/s41537-022-00312-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/03/2022] [Indexed: 04/27/2023]
Abstract
ATP functions as a neurotransmitter, acting on the ubiquitously expressed family of purinergic P2 receptors. In schizophrenia (SCZ), the pathways that modulate extracellular ATP and its catabolism to adenosine are dysregulated. However, the effects of altered ATP availability on P2 receptor expression in the brain in SCZ have not been assessed. We assayed P2 receptor mRNA and protein expression in the DLPFC and ACC in subjects diagnosed with SCZ and matched, non-psychiatrically ill controls (n = 20-22/group). P2RX7, P2RX4 and male P2RX5 mRNA expression were significantly increased (p < 0.05) in the DLPFC in SCZ. Expression of P2RX7 protein isoform was also significantly increased (p < 0.05) in the DLPFC in SCZ. Significant increases in P2RX4 and male P2RX5 mRNA expression may be associated with antipsychotic medication effects. We found that P2RX4 and P2RX7 mRNA are significantly correlated with the inflammatory marker SERPINA3, and may suggest an association between upregulated P2XR and neuroinflammation in SCZ. These findings lend support for brain-region dependent dysregulation of the purinergic system in SCZ.
Collapse
Affiliation(s)
- Rawan Alnafisah
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Anna Lundh
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Sophie M Asah
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Julie Hoeflinger
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Alyssa Wolfinger
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | | | - Robert E McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
- Neurosciences Institute, Promedica, Toledo, OH, USA
| | | |
Collapse
|
4
|
Büki A, Kekesi G, Horvath G, Vécsei L. A Potential Interface between the Kynurenine Pathway and Autonomic Imbalance in Schizophrenia. Int J Mol Sci 2021; 22:10016. [PMID: 34576179 PMCID: PMC8467675 DOI: 10.3390/ijms221810016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by various symptoms including autonomic imbalance. These disturbances involve almost all autonomic functions and might contribute to poor medication compliance, worsened quality of life and increased mortality. Therefore, it has a great importance to find a potential therapeutic solution to improve the autonomic disturbances. The altered level of kynurenines (e.g., kynurenic acid), as tryptophan metabolites, is almost the most consistently found biochemical abnormality in schizophrenia. Kynurenic acid influences different types of receptors, most of them involved in the pathophysiology of schizophrenia. Only few data suggest that kynurenines might have effects on multiple autonomic functions. Publications so far have discussed the implication of kynurenines and the alteration of the autonomic nervous system in schizophrenia independently from each other. Thus, the coupling between them has not yet been addressed in schizophrenia, although their direct common points, potential interfaces indicate the consideration of their interaction. The present review gathers autonomic disturbances, the impaired kynurenine pathway in schizophrenia, and the effects of kynurenine pathway on autonomic functions. In the last part of the review, the potential interaction between the two systems in schizophrenia, and the possible therapeutic options are discussed.
Collapse
Affiliation(s)
- Alexandra Büki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - Gabriella Kekesi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - Gyongyi Horvath
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
| |
Collapse
|
5
|
Nascimento FP, Macedo-Júnior SJ, Lapa-Costa FR, Cezar-Dos-Santos F, Santos ARS. Inosine as a Tool to Understand and Treat Central Nervous System Disorders: A Neglected Actor? Front Neurosci 2021; 15:703783. [PMID: 34504414 PMCID: PMC8421806 DOI: 10.3389/fnins.2021.703783] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Since the 1970s, when ATP was identified as a co-transmitter in sympathetic and parasympathetic nerves, it and its active metabolite adenosine have been considered relevant signaling molecules in biological and pathological processes in the central nervous system (CNS). Meanwhile, inosine, a naturally occurring purine nucleoside formed by adenosine breakdown, was considered an inert adenosine metabolite and remained a neglected actor on the purinergic signaling scene in the CNS. However, this scenario began to change in the 1980s. In the last four decades, an extensive group of shreds of evidence has supported the importance of mediated effects by inosine in the CNS. Also, inosine was identified as a natural trigger of adenosine receptors. This evidence has shed light on the therapeutic potential of inosine on disease processes involved in neurological and psychiatric disorders. Here, we highlight the clinical and preclinical studies investigating the involvement of inosine in chronic pain, schizophrenia, epilepsy, depression, anxiety, and in neural regeneration and neurodegenerative diseases, such as Parkinson and Alzheimer. Thus, we hope that this review will strengthen the knowledge and stimulate more studies about the effects promoted by inosine in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Francisney Pinto Nascimento
- Programa de Pós-Graduação em Biociências, Laboratório de Neurofarmacologia Clínica, Faculdade de Medicina, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | | | | | - Fernando Cezar-Dos-Santos
- Programa de Pós-Graduação em Biociências, Laboratório de Neurofarmacologia Clínica, Faculdade de Medicina, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | - Adair R S Santos
- Programa de Pós-Graduação em Neurociências, Laboratório de Neurobiologia da Dor e Inflamação, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
6
|
Verdoia M, Tonon F, Gioscia R, Nardin M, Fierro N, Sagazio E, Negro F, Pergolini P, Rolla R, De Luca G. Impact of the rs73598374 polymorphism of the adenosine deaminase gene on platelet reactivity and long-term outcomes among patients with acute coronary syndrome treated with ticagrelor. Thromb Res 2020; 196:231-237. [PMID: 32916566 DOI: 10.1016/j.thromres.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/07/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The positive interaction of ticagrelor with the metabolism of adenosine has been claimed for the large antithrombotic and antiischemic benefits of this antiplatelet agent in acute coronary syndromes (ACS). Adenosine catabolism is regulated by the activity of the adenosine deaminase enzyme (ADA), for which several polymorphisms have been identified. Therefore, the aim of our study was to explore the impact of the rs73598374 polymorphism of ADA gene on platelet reactivity in ACS patients treated with ticagrelor. METHODS We included consecutive patients receiving ASA and ticagrelor after an ACS and coronary intervention. Platelet reactivity was evaluated by impedance aggregometry at 30-90 days post-discharge. The genetic analysis was carried out by PCR and RFLP. Clinical endpoints were mortality, cardiovascular death, recurrent myocardial infarction or coronary revascularization at the maximum available follow-up. RESULTS Our population is represented by 464 patients, of whom 33.4% were A-heterozygotes and 6 homozygotes. A-allele carriers showed a greater prevalence of renal failure (p = 0.02) and a lower rate of previous coronary artery bypass graft (p = 0.03) and statin treatment (p = 0.02). No differences in the mean values of platelet reactivity or HRPR on ticagrelor were found according to the ADA genotype (11.3%vs13.9%, p = 0.45; adjusted OR[95% CI] = 1.17[0.64-2.14], p = 0.61). At follow up, patients carrying the A-allele showed a non-significantly lower incidence of ACS and repeated unplanned revascularization, although with no effect on mortality. CONCLUSIONS In the present study the rs73598374 polymorphism of the ADA gene did not affect platelet reactivity or the long-term prognosis in patients with ACS receiving dual antiplatelet therapy with ASA and ticagrelor.
Collapse
Affiliation(s)
- Monica Verdoia
- Department of Translational Medicine Eastern Piedmont University, Novara, Italy; Division of Cardiology, Ospedale degli Infermi, ASL, Biella, Italy
| | - Francesco Tonon
- Department of Translational Medicine Eastern Piedmont University, Novara, Italy
| | - Rocco Gioscia
- Department of Translational Medicine Eastern Piedmont University, Novara, Italy; Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Matteo Nardin
- Internal Medicine, ASST Spedali Civili, Brescia, Italy
| | - Nicolai Fierro
- Department of Translational Medicine Eastern Piedmont University, Novara, Italy; Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Emanuele Sagazio
- Department of Translational Medicine Eastern Piedmont University, Novara, Italy; Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Federica Negro
- Department of Translational Medicine Eastern Piedmont University, Novara, Italy
| | - Patrizia Pergolini
- Division of Clinical Chemistry, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Roberta Rolla
- Division of Clinical Chemistry, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Giuseppe De Luca
- Department of Translational Medicine Eastern Piedmont University, Novara, Italy; Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy.
| | | |
Collapse
|
7
|
Moody CL, Funk AJ, Devine E, Devore Homan RC, Boison D, McCullumsmith RE, O’Donovan SM. Adenosine Kinase Expression in the Frontal Cortex in Schizophrenia. Schizophr Bull 2020; 46:690-698. [PMID: 32275755 PMCID: PMC7147579 DOI: 10.1093/schbul/sbz086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The adenosine hypothesis of schizophrenia posits that reduced availability of the neuromodulator adenosine contributes to dysregulation of dopamine and glutamate transmission and the symptoms associated with schizophrenia. It has been proposed that increased expression of the enzyme adenosine kinase (ADK) may drive hypofunction of the adenosine system. While animal models of ADK overexpression support such a role for altered ADK, the expression of ADK in schizophrenia has yet to be examined. In this study, we assayed ADK gene and protein expression in frontocortical tissue from schizophrenia subjects. In the dorsolateral prefrontal cortex (DLPFC), ADK-long and -short splice variant expression was not significantly altered in schizophrenia compared to controls. There was also no significant difference in ADK splice variant expression in the frontal cortex of rats treated chronically with haloperidol-decanoate, in a study to identify the effect of antipsychotics on ADK gene expression. ADK protein expression was not significantly altered in the DLPFC or anterior cingulate cortex (ACC). There was no significant effect of antipsychotic medication on ADK protein expression in the DLPFC or ACC. Overall, our results suggest that increased ADK expression does not contribute to hypofunction of the adenosine system in schizophrenia and that alternative mechanisms are involved in dysregulation of this system in schizophrenia.
Collapse
Affiliation(s)
- Cassidy L Moody
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| | - Adam J Funk
- Department of Neuroscience, University of Toledo, Toledo, OH
| | - Emily Devine
- Department of Neuroscience, University of Toledo, Toledo, OH
| | | | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | | | | |
Collapse
|
8
|
Adenosine A2A receptor as potential therapeutic target in neuropsychiatric disorders. Pharmacol Res 2019; 147:104338. [DOI: 10.1016/j.phrs.2019.104338] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 01/20/2023]
|
9
|
Cell-subtype-specific changes in adenosine pathways in schizophrenia. Neuropsychopharmacology 2018; 43:1667-1674. [PMID: 29483661 PMCID: PMC6006250 DOI: 10.1038/s41386-018-0028-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
Abstract
Prior work in animal models implicates abnormalities of adenosine metabolism in astrocytes as a possible pathophysiological mechanism underlying the symptoms of schizophrenia. In the present study, we sought to reverse-translate these findings back to the human brain in schizophrenia, focusing on the following questions: (1) Which components of the adenosine system are dysregulated in schizophrenia, and (2) are these changes limited to astrocytes? To address these questions, we captured enriched populations of DLPFC pyramidal neurons and astrocytes from schizophrenia and control subjects using laser capture microdissection and assessed expression of adenosine system components using qPCR. Interestingly, we found changes in enriched populations of astrocytes and neurons spanning metabolic and catabolic pathways. Ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1) and ENTPD2 mRNA levels were significantly decreased (p < 0.05, n = 16 per group) in enriched populations of astrocytes; in pyramidal neurons equilibrative nucleoside transporter 1 (ENT1) and adenosine A1 receptor mRNA levels were significantly decreased, with an increase in adenosine deaminase (ADA) (p < 0.05, n = 16 per group). Rodent studies suggest that some of our findings (A1R and ENTPD2) may be due to treatment with antipsychotics. Our findings suggest changes in expression of genes involved in regulating metabolism of ATP in enriched populations of astrocytes, leading to lower availability of substrates needed to generate adenosine. In pyramidal neurons, changes in ENT1 and ADA mRNA may suggest increased catabolism of adenosine. These results offer new insights into the cell-subtype-specific pathophysiology of the adenosine system in this illness.
Collapse
|
10
|
Purinergic system in psychiatric diseases. Mol Psychiatry 2018; 23:94-106. [PMID: 28948971 DOI: 10.1038/mp.2017.188] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/15/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
Psychiatric disorders are debilitating diseases, affecting >80 million people worldwide. There are no causal cures for psychiatric disorders and available therapies only treat the symptoms. The etiology of psychiatric disorders is unknown, although it has been speculated to be a combination of environmental, stress and genetic factors. One of the neurotransmitter systems implicated in the biology of psychiatric disorders is the purinergic system. In this review, we performed a comprehensive search of the literature about the role and function of the purinergic system in the development and predisposition to psychiatric disorders, with a focus on depression, schizophrenia, bipolar disorder, autism, anxiety and attention deficit/hyperactivity disorder. We also describe how therapeutics used for psychiatric disorders act on the purinergic system.
Collapse
|
11
|
Sasidharan A, Kumar S, John JP, Philip M, Subramanian S, Jain S, Kutty BM. Elevated serum adenosine deaminase levels in neuroleptic-naïve patients with recent-onset schizophrenia. Asian J Psychiatr 2017; 29:13-15. [PMID: 29061410 DOI: 10.1016/j.ajp.2017.03.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 12/18/2022]
Abstract
The present study examined serum levels of adenosine deaminase (ADA), an adenosine metabolizing enzyme, in neuroleptic-naive patients with recent-onset schizophrenia and age-matched healthy comparison subjects. ADA levels were found to be higher among patients, and revealed a possible link between evening rise and severity of auditory hallucinations as well as morning rise and severity of avolition-apathy in patients with schizophrenia. These findings suggest the potential utility of serum ADA as a peripheral biomarker of schizophrenia.
Collapse
Affiliation(s)
- Arun Sasidharan
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India; Multimodal Brain Image Analysis Laboratory (MBIAL), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Sunil Kumar
- Multimodal Brain Image Analysis Laboratory (MBIAL), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India; Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - John P John
- Multimodal Brain Image Analysis Laboratory (MBIAL), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India; Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India; Department of Clinical Neuroscience, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India.
| | - Mariamma Philip
- Department of Biostatistics, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Sarada Subramanian
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India; Molecular Genetics Laboratory, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| |
Collapse
|
12
|
da Silva DGH, Belini-Junior E, de Souza Torres L, Okumura JV, Barberino WM, de Oliveira RG, Teixeira VU, de Castro Lobo CL, de Almeida EA, Bonini-Domingos CR. Relationship between adenosine deaminase polymorphism (c.22G > A) and oxidative stress in sickle cell anemia. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
13
|
Salehabadi M, Farimani M, Tavilani H, Ghorbani M, Poormonsefi F, Poorolajal J, Shafiei G, Ghasemkhani N, Khodadadi I. Association of G22A and A4223C ADA1 gene polymorphisms and ADA activity with PCOS. Syst Biol Reprod Med 2016; 62:213-22. [DOI: 10.3109/19396368.2016.1143055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Krügel U. Purinergic receptors in psychiatric disorders. Neuropharmacology 2015; 104:212-25. [PMID: 26518371 DOI: 10.1016/j.neuropharm.2015.10.032] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
Psychiatric disorders describe different mental or behavioral patterns, causing suffering or poor coping of ordinary life with manifold presentations. Multifactorial processes can contribute to their development and progression. Purinergic neurotransmission and neuromodulation in the brain have attracted increasing therapeutic interest in the field of psychiatry. Purine nucleotides and nucleosides are well recognized as signaling molecules mediating cell to cell communication. The actions of ATP are mediated by ionotropic P2X and metabotropic P2Y receptor subfamilies, whilst the actions of adenosine are mediated by P1 (A1 or A2) adenosine receptors. Purinergic mechanisms and specific receptor subtypes have been shown to be linked to the regulation of many aspects of behavior and mood and to dysregulation in pathological processes of brain function. In this review the recent knowledge on the role of purinergic receptors in the two most frequent psychiatric diseases, major depression and schizophrenia, as well as on related animal models is summarized. At present the most promising data for therapeutic strategies derive from investigations of the adenosine system emphasizing a unique function of A2A receptors at neurons and astrocytes in these disorders. Among the P2 receptor family, in particular P2X7 and P2Y1 receptors were related to disturbances in major depression and schizophrenia, respectively. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
15
|
Boison D, Aronica E. Comorbidities in Neurology: Is adenosine the common link? Neuropharmacology 2015; 97:18-34. [PMID: 25979489 PMCID: PMC4537378 DOI: 10.1016/j.neuropharm.2015.04.031] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Abstract
Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the 'adenosine hypothesis of comorbidities' implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic 'comorbidity model', in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain co-morbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions.
Collapse
Affiliation(s)
- Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA.
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands; Stichting Epilepsie Instellingen (SEIN) Nederland, Heemstede, The Netherlands
| |
Collapse
|
16
|
Khodadadi I. Mini Review From the Molecular Base to the Diagnostic Value of Adenosine Deaminase. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2014. [DOI: 10.17795/ajmb-24310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
17
|
The adenosine deaminase gene polymorphism is associated with chronic heart failure risk in Chinese. Int J Mol Sci 2014; 15:15259-71. [PMID: 25170811 PMCID: PMC4200810 DOI: 10.3390/ijms150915259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 11/17/2022] Open
Abstract
Adenosine (Ado) is an important cardioprotective agent. Since endogenous Ado levels are affected by the enzyme Ado deaminase (ADA), polymorphisms within the ADA gene may exert some effect on chronic heart failure (CHF). This study applied a case-control investigation to 300 northern Chinese Han CHF patients and 400 ethnicity-matched healthy controls in which nine single-nucleotide polymorphisms (SNPs) of ADA were genotyped and association analyses were performed. Odds ratios (ORs) with 95% confidence intervals (CI) were used to assess the association. Overall, rs452159 polymorphism in ADA gene was significantly associated with susceptibility to CHF under the dominant model (p = 0.013, OR = 1.537, 95% CI = 1.10–2.16), after adjustment for age, sex, and traditional cardiovascular risk factors. No difference in genotype distribution and allele frequency for the rs452159 according to the functional New York Heart Association class was found. Furthermore, the values of left ventricular ejection fraction, left-ventricle end-diastolic diameter or left-ventricle end-systolic diameter did not differ significantly among the different rs452159 genotype CHF patients. Although further studies with larger cohorts and other ethnicities are required to validate the conclusions, the findings of this study potentially provide novel insight into the pathogenesis of CHF.
Collapse
|
18
|
Reduced striatal ecto-nucleotidase activity in schizophrenia patients supports the "adenosine hypothesis". Purinergic Signal 2013; 9:599-608. [PMID: 23771238 DOI: 10.1007/s11302-013-9370-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/31/2013] [Indexed: 01/12/2023] Open
Abstract
Schizophrenia (SZ) is a major chronic neuropsychiatric disorder characterized by a hyperdopaminergic state. The hypoadenosinergic hypothesis proposes that reduced extracellular adenosine levels contribute to dopamine D2 receptor hyperactivity. ATP, through the action of ecto-nucleotidases, constitutes a main source of extracellular adenosine. In the present study, we examined the activity of ecto-nucleotidases (NTPDases, ecto-5'-nucleotidase, and alkaline phosphatase) in the postmortem putamen of SZ patients (n = 13) compared with aged-matched controls (n = 10). We firstly demonstrated, by means of artificial postmortem delay experiments, that ecto-nucleotidase activity in human brains was stable up to 24 h, indicating the reliability of this tissue for these enzyme determinations. Remarkably, NTPDase-attributable activity (both ATPase and ADPase) was found to be reduced in SZ patients, while ecto-5'-nucleotidase and alkaline phosphatase activity remained unchanged. In the present study, we also describe the localization of these ecto-enzymes in human putamen control samples, showing differential expression in blood vessels, neurons, and glial cells. In conclusion, reduced striatal NTPDase activity may contribute to the pathophysiology of SZ, and it represents a potential mechanism of adenosine signalling impairment in this illness.
Collapse
|
19
|
Shen HY, Singer P, Lytle N, Wei CJ, Lan JQ, Williams-Karnesky RL, Chen JF, Yee BK, Boison D. Adenosine augmentation ameliorates psychotic and cognitive endophenotypes of schizophrenia. J Clin Invest 2012; 122:2567-77. [PMID: 22706302 DOI: 10.1172/jci62378] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/09/2012] [Indexed: 02/01/2023] Open
Abstract
An emerging theory of schizophrenia postulates that hypofunction of adenosine signaling may contribute to its pathophysiology. This study was designed to test the "adenosine hypothesis" of schizophrenia and to evaluate focal adenosine-based strategies for therapy. We found that augmentation of adenosine by pharmacologic inhibition of adenosine kinase (ADK), the key enzyme of adenosine clearance, exerted antipsychotic-like activity in mice. Further, overexpression of ADK in transgenic mice was associated with attentional impairments linked to schizophrenia. We observed that the striatal adenosine A2A receptor links adenosine tone and psychomotor response to amphetamine, an indicator of dopaminergic signaling. Finally, intrastriatal implants of engineered adenosine-releasing cells restored the locomotor response to amphetamine in mice overexpressing ADK, whereas the same grafts placed proximal to the hippocampus of transgenic mice reversed their working memory deficit. This functional double dissociation between striatal and hippocampal adenosine demonstrated in Adk transgenic mice highlights the independent contributions of these two interconnected brain regions in the pathophysiology of schizophrenia and thus provides the rationale for developing local adenosine augmentation therapies for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Hai-Ying Shen
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Qi Y, Li P, Zhang Y, Cui L, Guo Z, Xie G, Su M, Li X, Zheng X, Qiu Y, Liu Y, Zhao A, Jia W, Jia W. Urinary metabolite markers of precocious puberty. Mol Cell Proteomics 2011; 11:M111.011072. [PMID: 22027199 DOI: 10.1074/mcp.m111.011072] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The incidence of precocious puberty (PP, the appearance of signs of pubertal development at an abnormally early age), is rapidly rising, concurrent with changes of diet, lifestyles, and social environment. The current diagnostic methods are based on a hormone (gonadotropin-releasing hormone) stimulation test, which is costly, time-consuming, and uncomfortable for patients. The lack of molecular biomarkers to support simple laboratory tests, such as a blood or urine test, has been a long standing bottleneck in the clinical diagnosis and evaluation of PP. Here we report a metabolomic study using an ultra performance liquid chromatography-quadrupole time of flight mass spectrometry and gas chromatography-time of flight mass spectrometry. Urine metabolites from 163 individuals were profiled, and the metabolic alterations were analyzed after treatment of central precocious puberty (CPP) with triptorelin depot. A panel of biomarkers selected from >70 differentially expressed urinary metabolites by receiver operating characteristic and logistic regression analysis provided excellent predictive power with high sensitivity and specificity for PP. The altered metabolic profile of the PP patients was characterized by three major perturbed metabolic pathways: catecholamine, serotonin metabolism, and tricarboxylic acid cycle, presumably resulting from activation of the sympathetic nervous system and the hypothalamic-pituitary-gonadal axis. Treatment with triptorelin depot was able to normalize these three altered pathways. Additionally, significant changes in the urine levels of 4-hydroxyphenylacetic acid, 5-hydroxyindoleacetic acid, indoleacetic acid, 5-hydroxytryptophan, and 5-hydroxykynurenamine in the CPP group suggest that the development of CPP condition may involve an alteration in symbiotic gut microbial composition.
Collapse
Affiliation(s)
- Ying Qi
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pin Li
- Children's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Yongyu Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Lulu Cui
- Children's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Zi Guo
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guoxiang Xie
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081.
| | - Mingming Su
- David H. Murdock Research Institute, North Carolina Research Campus, Kannapolis, North Carolina 28081
| | - Xin Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojiao Zheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunping Qiu
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081
| | - Yumin Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aihua Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wei Jia
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081.
| |
Collapse
|
21
|
Burnstock G, Krügel U, Abbracchio MP, Illes P. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 2011; 95:229-74. [PMID: 21907261 DOI: 10.1016/j.pneurobio.2011.08.006] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023]
Abstract
Purinergic neurotransmission, involving release of ATP as an efferent neurotransmitter was first proposed in 1972. Later, ATP was recognised as a cotransmitter in peripheral nerves and more recently as a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the CNS. Both ATP, together with some of its enzymatic breakdown products (ADP and adenosine) and uracil nucleotides are now recognised to act via P2X ion channels and P1 and P2Y G protein-coupled receptors, which are widely expressed in the brain. They mediate both fast signalling in neurotransmission and neuromodulation and long-term (trophic) signalling in cell proliferation, differentiation and death. Purinergic signalling is prominent in neurone-glial cell interactions. In this review we discuss first the evidence implicating purinergic signalling in normal behaviour, including learning and memory, sleep and arousal, locomotor activity and exploration, feeding behaviour and mood and motivation. Then we turn to the involvement of P1 and P2 receptors in pathological brain function; firstly in trauma, ischemia and stroke, then in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's, as well as multiple sclerosis and amyotrophic lateral sclerosis. Finally, the role of purinergic signalling in neuropsychiatric diseases (including schizophrenia), epilepsy, migraine, cognitive impairment and neuropathic pain will be considered.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | |
Collapse
|
22
|
Adenosine hypothesis of schizophrenia--opportunities for pharmacotherapy. Neuropharmacology 2011; 62:1527-43. [PMID: 21315743 DOI: 10.1016/j.neuropharm.2011.01.048] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/21/2011] [Accepted: 01/28/2011] [Indexed: 12/19/2022]
Abstract
Pharmacotherapy of schizophrenia based on the dopamine hypothesis remains unsatisfactory for the negative and cognitive symptoms of the disease. Enhancing N-methyl-D-aspartate receptors (NMDAR) function is expected to alleviate such persistent symptoms, but successful development of novel clinically effective compounds remains challenging. Adenosine is a homeostatic bioenergetic network modulator that is able to affect complex networks synergistically at different levels (receptor-dependent pathways, biochemistry, bioenergetics, and epigenetics). By affecting brain dopamine and glutamate activities, it represents a promising candidate for reversing the functional imbalance in these neurotransmitter systems believed to underlie the genesis of schizophrenia symptoms, as well as restoring homeostasis of bioenergetics. Suggestion of an adenosine hypothesis of schizophrenia further posits that adenosinergic dysfunction might contribute to the emergence of multiple neurotransmitter dysfunctions characteristic of schizophrenia via diverse mechanisms. Given the importance of adenosine in early brain development and regulation of brain immune response, it also bears direct relevance to the aetiology of schizophrenia. Here, we provide an overview of the rationale and evidence in support of the therapeutic potential of multiple adenosinergic targets, including the high-affinity adenosine receptors (A(1)R and A(2A)R), and the regulatory enzyme adenosine kinase (ADK). Key preliminary clinical data and preclinical findings are reviewed.
Collapse
|
23
|
Nunes DPT, Spegiorin LCJF, Mattos CCBD, Oliani AH, Vaz-Oliani DCM, Mattos LCD. The ADA*2 allele of the adenosine deaminase gene (20q13.11) and recurrent spontaneous abortions: an age-dependent association. Clinics (Sao Paulo) 2011; 66:1929-33. [PMID: 22086524 PMCID: PMC3203966 DOI: 10.1590/s1807-59322011001100013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 07/22/2011] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Adenosine deaminase acts on adenosine and deoxyadenosine metabolism and modulates the immune response. The adenosine deaminase G22A polymorphism (20q.11.33) influences the level of adenosine deaminase enzyme expression, which seems to play a key role in maintaining pregnancy. The adenosine deaminase 2 phenotype has been associated with a protective effect against recurrent spontaneous abortions in European Caucasian women. The aim of this study was to investigate whether the G22A polymorphism of the adenosine deaminase gene is associated with recurrent spontaneous abortions in Brazilian women. METHODS A total of 311 women were recruited to form two groups: G1, with a history of recurrent spontaneous abortions (N = 129), and G2, without a history of abortions (N = 182). Genomic DNA was extracted from peripheral blood with a commercial kit and PCR-RFLP analysis was used to identify the G22A genetic polymorphism. Fisher's exact test and odds ratio values were used to compare the proportions of adenosine deaminase genotypes and alleles between women with and without a history of recurrent spontaneous abortion (p<0.05). The differences between mean values for categorical data were calculated using unpaired t tests. The Hardy-Weinberg equilibrium was assessed with a chi-square test. RESULTS Statistically significant differences were identified for the frequencies of adenosine deaminase genotypes and alleles between the G1 and G2 groups when adjusted for maternal age. CONCLUSIONS The results suggest that the adenosine deaminase *2 allele is associated with a low risk for recurrent spontaneous abortions, but this association is dependent on older age.
Collapse
Affiliation(s)
- Daniela Prudente Teixeira Nunes
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1380-99. [PMID: 21145878 DOI: 10.1016/j.bbamem.2010.12.001] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 02/06/2023]
Abstract
Adenosine acts in parallel as a neuromodulator and as a homeostatic modulator in the central nervous system. Its neuromodulatory role relies on a balanced activation of inhibitory A(1) receptors (A1R) and facilitatory A(2A) receptors (A2AR), mostly controlling excitatory glutamatergic synapses: A1R impose a tonic brake on excitatory transmission, whereas A2AR are selectively engaged to promote synaptic plasticity phenomena. This neuromodulatory role of adenosine is strikingly similar to the role of adenosine in the control of brain disorders; thus, A1R mostly act as a hurdle that needs to be overcame to begin neurodegeneration and, accordingly, A1R only effectively control neurodegeneration if activated in the temporal vicinity of brain insults; in contrast, the blockade of A2AR alleviates the long-term burden of brain disorders in different neurodegenerative conditions such as ischemia, epilepsy, Parkinson's or Alzheimer's disease and also seem to afford benefits in some psychiatric conditions. In spite of this qualitative agreement between neuromodulation and neuroprotection by A1R and A2AR, it is still unclear if the role of A1R and A2AR in the control of neuroprotection is mostly due to the control of glutamatergic transmission, or if it is instead due to the different homeostatic roles of these receptors related with the control of metabolism, of neuron-glia communication, of neuroinflammation, of neurogenesis or of the control of action of growth factors. In spite of this current mechanistic uncertainty, it seems evident that targeting adenosine receptors might indeed constitute a novel strategy to control the demise of different neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Catarina V Gomes
- Center for Neurosciences of Coimbra, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|