1
|
Zhang N, Zhang H, Lv Z, Bai B, Ren J, Shi X, Kang S, Zhao X, Yu H, Zhao T. Integrative multi-omics analysis reveals the crucial biological pathways involved in the adaptive response to NaCl stress in peanut seedlings. PHYSIOLOGIA PLANTARUM 2024; 176:e14266. [PMID: 38558467 DOI: 10.1111/ppl.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Plant growth is restricted by salt stress, which is a significant abiotic factor, particularly during the seedling stage. The aim of this study was to investigate the mechanisms underlying peanut adaptation to salt stress by transcriptomic and metabolomic analysis during the seedling stage. In this study, phenotypic variations of FH23 and NH5, two peanut varieties with contrasting tolerance to salt, changed obviously, with the strongest differences observed at 24 h. FH23 leaves wilted and the membrane system was seriously damaged. A total of 1470 metabolites were identified, with flavonoids being the most common (21.22%). Multi-omics analyses demonstrated that flavonoid biosynthesis (ko00941), isoflavones biosynthesis (ko00943), and plant hormone signal transduction (ko04075) were key metabolic pathways. The comparison of metabolites in isoflavone biosynthesis pathways of peanut varieties with different salt tolerant levels demonstrated that the accumulation of naringenin and formononetin may be the key metabolite leading to their different tolerance. Using our transcriptomic data, we identified three possible reasons for the difference in salt tolerance between the two varieties: (1) differential expression of LOC112715558 (HIDH) and LOC112709716 (HCT), (2) differential expression of LOC112719763 (PYR/PYL) and LOC112764051 (ABF) in the abscisic acid (ABA) signal transduction pathway, then (3) differential expression of genes encoding JAZ proteins (LOC112696383 and LOC112790545). Key metabolites and candidate genes related to improving the salt tolerance in peanuts were screened to promote the study of the responses of peanuts to NaCl stress and guide their genetic improvement.
Collapse
Affiliation(s)
- Nan Zhang
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - He Zhang
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhenghao Lv
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Baiyi Bai
- School of Agriculture and Horticulture, Liaoning Agriculture Vocational and Technical College, Yingkou, Liaoning, China
| | - Jingyao Ren
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaolong Shi
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shuli Kang
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xinhua Zhao
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Haiqiu Yu
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning, China
- School of Agriculture and Horticulture, Liaoning Agriculture Vocational and Technical College, Yingkou, Liaoning, China
| | - Tianhong Zhao
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Lu J, Wang Z, Li J, Zhao Q, Qi F, Wang F, Xiaoyang C, Tan G, Wu H, Deyholos MK, Wang N, Liu Y, Zhang J. Genome-Wide Analysis of Flax ( Linum usitatissimum L.) Growth-Regulating Factor (GRF) Transcription Factors. Int J Mol Sci 2023; 24:17107. [PMID: 38069430 PMCID: PMC10707037 DOI: 10.3390/ijms242317107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Flax is an important cash crop globally with a variety of commercial uses. It has been widely used for fiber, oil, nutrition, feed and in composite materials. Growth regulatory factor (GRF) is a transcription factor family unique to plants, and is involved in regulating many processes of growth and development. Bioinformatics analysis of the GRF family in flax predicted 17 LuGRF genes, which all contained the characteristic QLQ and WRC domains. Equally, 15 of 17 LuGRFs (88%) are predicted to be regulated by lus-miR396 miRNA. Phylogenetic analysis of GRFs from flax and several other well-characterized species defined five clades; LuGRF genes were found in four clades. Most LuGRF gene promoters contained cis-regulatory elements known to be responsive to hormones and stress. The chromosomal locations and collinearity of LuGRF genes were also analyzed. The three-dimensional structure of LuGRF proteins was predicted using homology modeling. The transcript expression data indicated that most LuGRF family members were highly expressed in flax fruit and embryos, whereas LuGRF3, LuGRF12 and LuGRF16 were enriched in response to salt stress. Real-time quantitative fluorescent PCR (qRT-PCR) showed that both LuGRF1 and LuGRF11 were up-regulated under ABA and MeJA stimuli, indicating that these genes were involved in defense. LuGRF1 was demonstrated to be localized to the nucleus as expected for a transcription factor. These results provide a basis for further exploration of the molecular mechanism of LuGRF gene function and obtaining improved flax breeding lines.
Collapse
Affiliation(s)
- Jianyu Lu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (J.L.); (Z.W.); (J.L.); (Q.Z.); (F.Q.); (F.W.); (C.X.); (G.T.); wuhan (H.W.); (N.W.)
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (J.L.); (Z.W.); (J.L.); (Q.Z.); (F.Q.); (F.W.); (C.X.); (G.T.); wuhan (H.W.); (N.W.)
| | - Jinxi Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (J.L.); (Z.W.); (J.L.); (Q.Z.); (F.Q.); (F.W.); (C.X.); (G.T.); wuhan (H.W.); (N.W.)
| | - Qian Zhao
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (J.L.); (Z.W.); (J.L.); (Q.Z.); (F.Q.); (F.W.); (C.X.); (G.T.); wuhan (H.W.); (N.W.)
| | - Fan Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (J.L.); (Z.W.); (J.L.); (Q.Z.); (F.Q.); (F.W.); (C.X.); (G.T.); wuhan (H.W.); (N.W.)
| | - Fu Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (J.L.); (Z.W.); (J.L.); (Q.Z.); (F.Q.); (F.W.); (C.X.); (G.T.); wuhan (H.W.); (N.W.)
| | - Chunxiao Xiaoyang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (J.L.); (Z.W.); (J.L.); (Q.Z.); (F.Q.); (F.W.); (C.X.); (G.T.); wuhan (H.W.); (N.W.)
| | - Guofei Tan
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (J.L.); (Z.W.); (J.L.); (Q.Z.); (F.Q.); (F.W.); (C.X.); (G.T.); wuhan (H.W.); (N.W.)
| | - Hanlu Wu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (J.L.); (Z.W.); (J.L.); (Q.Z.); (F.Q.); (F.W.); (C.X.); (G.T.); wuhan (H.W.); (N.W.)
| | - Michael K. Deyholos
- Department of Biology, University of British Columbia, Okanagan, Kelowna, BC V5K1K5, Canada;
| | - Ningning Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (J.L.); (Z.W.); (J.L.); (Q.Z.); (F.Q.); (F.W.); (C.X.); (G.T.); wuhan (H.W.); (N.W.)
| | - Yingnan Liu
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Science, Harbin 150040, China
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (J.L.); (Z.W.); (J.L.); (Q.Z.); (F.Q.); (F.W.); (C.X.); (G.T.); wuhan (H.W.); (N.W.)
- Department of Biology, University of British Columbia, Okanagan, Kelowna, BC V5K1K5, Canada;
| |
Collapse
|
3
|
Zboińska M, Romero LC, Gotor C, Kabała K. Regulation of V-ATPase by Jasmonic Acid: Possible Role of Persulfidation. Int J Mol Sci 2023; 24:13896. [PMID: 37762199 PMCID: PMC10531226 DOI: 10.3390/ijms241813896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Vacuolar H+-translocating ATPase (V-ATPase) is a proton pump crucial for plant growth and survival. For this reason, its activity is tightly regulated, and various factors, such as signaling molecules and phytohormones, may be involved in this process. The aim of this study was to explain the role of jasmonic acid (JA) in the signaling pathways responsible for the regulation of V-ATPase in cucumber roots and its relationship with other regulators of this pump, i.e., H2S and H2O2. We analyzed several aspects of the JA action on the enzyme, including transcriptional regulation, modulation of protein levels, and persulfidation of selected V-ATPase subunits as an oxidative posttranslational modification induced by H2S. Our results indicated that JA functions as a repressor of V-ATPase, and its action is related to a decrease in the protein amount of the A and B subunits, the induction of oxidative stress, and the downregulation of the E subunit persulfidation. We suggest that both H2S and H2O2 may be downstream components of JA-dependent negative proton pump regulation. The comparison of signaling pathways induced by two negative regulators of the pump, JA and cadmium, revealed that multiple pathways are involved in the V-ATPase downregulation in cucumber roots.
Collapse
Affiliation(s)
- Magdalena Zboińska
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, C. Américo Vespucio, 49, 41092 Sevilla, Spain; (L.C.R.); (C.G.)
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, C. Américo Vespucio, 49, 41092 Sevilla, Spain; (L.C.R.); (C.G.)
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, C. Américo Vespucio, 49, 41092 Sevilla, Spain; (L.C.R.); (C.G.)
| | - Katarzyna Kabała
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
| |
Collapse
|
4
|
Chen J, Yao Y, Zeng H, Zhang X. Integrated Metabolome and Transcriptome Analysis Reveals a Potential Mechanism for Water Accumulation Mediated Translucency in Pineapple ( Ananas comosus (L.) Merr.) Fruit. Int J Mol Sci 2023; 24:ijms24087199. [PMID: 37108358 PMCID: PMC10139408 DOI: 10.3390/ijms24087199] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
A physiological disease of the pineapple fruit called pineapple translucency causes the pulp to become water-soaked, which affects the fruit's taste, flavor, shelf life, and integrity. In the present study, we analyzed seven pineapple varieties, of which three were watery and four were non-watery. There were no apparent macronutritional (K, P, or N) differences in their pulp, but the non-watery pineapple varieties had higher dry matter and soluble sugar content. The metabolomic analysis found 641 metabolites and revealed differential expression of alkaloids, phenolic acids, nucleotide derivatives, lipids, and other metabolites among the seven species. Transcriptome analysis and further KEGG enrichment showed downregulation of 'flavonoid biosynthesis' pathways, differential expression of metabolic pathways, secondary metabolites biosynthesis, plant-pathogen interaction, and plant hormone signal transduction. We believe this study will provide critical molecular data supporting a deeper understanding of pineapple translucency formation and greatly benefit future research on this commercially important crop.
Collapse
Affiliation(s)
- Jing Chen
- The South Subtropical Crops Research Institute of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Tropical Fruit Tree Biology, Ministry of Agriculture, Zhanjiang 524091, China
| | - Yanli Yao
- The South Subtropical Crops Research Institute of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Hui Zeng
- The South Subtropical Crops Research Institute of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Xiumei Zhang
- The South Subtropical Crops Research Institute of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| |
Collapse
|
5
|
Wang Z, Luo Y, Yu J, Kou X, Xie L, Deng P, Li T, Chen C, Ji W, Liu X. Genome-wide identification and characterization of lipoxygenase genes related to the English grain aphid infestation response in wheat. PLANTA 2023; 257:84. [PMID: 36943494 DOI: 10.1007/s00425-023-04114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
44 wheat LOX genes were identified by silico genome-wide search method. TaLOX5, 7, 10, 24, 29, 33 were specifically expressed post aphid infestation, indicating their participation in wheat-aphid interaction. In plants, LOX genes play important roles in various biological progresses including seed germination, tuber development, plant vegetative growth and most crucially in plant signal transduction, stress response and plant defense against plant diseases and insects. Although LOX genes have been characterized in many species, the importance of the LOX family in wheat has still not been well understood, hampering further improvement of wheat under stress conditions. Here, we identified 44 LOX genes (TaLOXs) in the whole wheat genome and classified into three subfamilies (9-LOXs, Type I 13-LOXs and Type II 13-LOXs) according to phylogenetic relationships. The TaLOXs belonging to the same subgroup shared similar gene structures and motif organizations. Synteny analysis demonstrated that segmental duplication events mainly contributed to the expansion of the LOX gene family in wheat. The results of protein-protein interaction network (PPI) and miRNA-TaLOXs predictions revealed that three TaLOXs (TaLOX20, 22 and 37) interacted mostly with proteins related to methyl jasmonate (MeJA) signaling pathway. The expression patterns of TaLOXs in different tissues (root, stem, leaf, spike and grain) under diverse abiotic stresses (heat, cold, drought, drought and heat combined treatment, and salt) as well as under diverse biotic stresses (powdery mildew pathogen, Fusarium graminearum and stripe rust pathogen) were systematically analyzed using RNA-seq data. We obtained aphid-responsive candidate genes by RNA-seq data of wheat after the English grain aphid infestation. Aphid-responsive candidate genes, including TaLOX5, 7, 10, 24, 29 and 33, were up-regulated in the wheat aphid-resistant genotype (Lunxuan144), while they were little expressed in the susceptible genotype (Jimai22) during late response (48 h and 72 h) to the English grain aphid infestation. Meanwhile, qRT-PCR analysis was used to validate these aphid-responsive candidate genes. The genetic divergence and diversity of all the TaLOXs in bread wheat and its relative species were investigated by available resequencing data. Finally, the 3D structure of the TaLOX proteins was predicted based on the homology modeling method. This study not only systematically investigated the characteristics and evolutionary relationships of TaLOXs, but also provided potential candidate genes in response to the English grain aphid infestation and laid the foundation to further study the regulatory roles in the English grain aphid infestation of LOX family in wheat and beyond.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yufeng Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jiuyang Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xudan Kou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lincai Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
| | - Tingdong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Wang F, Zhang B, Wen D, Liu R, Yao X, Chen Z, Mu R, Pei H, Liu M, Song B, Lu L. Chromosome-scale genome assembly of Camellia sinensis combined with multi-omics provides insights into its responses to infestation with green leafhoppers. FRONTIERS IN PLANT SCIENCE 2022; 13:1004387. [PMID: 36212364 PMCID: PMC9539759 DOI: 10.3389/fpls.2022.1004387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The tea plant (Camellia sinensis) is an important economic crop, which is becoming increasingly popular worldwide, and is now planted in more than 50 countries. Tea green leafhopper is one of the major pests in tea plantations, which can significantly reduce the yield and quality of tea during the growth of plant. In this study, we report a genome assembly for DuyunMaojian tea plants using a combination of Oxford Nanopore Technology PromethION™ with high-throughput chromosome conformation capture technology and used multi-omics to study how the tea plant responds to infestation with tea green leafhoppers. The final genome was 3.08 Gb. A total of 2.97 Gb of the genome was mapped to 15 pseudo-chromosomes, and 2.79 Gb of them could confirm the order and direction. The contig N50, scaffold N50 and GC content were 723.7 kb, 207.72 Mb and 38.54%, respectively. There were 2.67 Gb (86.77%) repetitive sequences, 34,896 protein-coding genes, 104 miRNAs, 261 rRNA, 669 tRNA, and 6,502 pseudogenes. A comparative genomics analysis showed that DuyunMaojian was the most closely related to Shuchazao and Yunkang 10, followed by DASZ and tea-oil tree. The multi-omics results indicated that phenylpropanoid biosynthesis, α-linolenic acid metabolism, flavonoid biosynthesis and 50 differentially expressed genes, particularly peroxidase, played important roles in response to infestation with tea green leafhoppers (Empoasca vitis Göthe). This study on the tea tree is highly significant for its role in illustrating the evolution of its genome and discovering how the tea plant responds to infestation with tea green leafhoppers will contribute to a theoretical foundation to breed tea plants resistant to insects that will ultimately result in an increase in the yield and quality of tea.
Collapse
Affiliation(s)
- Fen Wang
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
| | - Baohui Zhang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Center), Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Di Wen
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Rong Liu
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Xinzhuan Yao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
- College of Tea Science, Guizhou University, Guiyang, China
| | - Zhi Chen
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Ren Mu
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Huimin Pei
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Baoxing Song
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Litang Lu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
- College of Tea Science, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
Elicitation of Medicinal Plants In Vivo—Is It a Realistic Tool? The Effect of Methyl Jasmonate and Salicylic Acid on Lamiaceae Species. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Salicylic acid (SA) and methyl jasmonate (MeJa) are prominent phytohormones that are involved in stress reactions. Both compounds may influence the biosynthesis of secondary compounds; however, scientific experiments in vivo are rare and contradictive. This paper reports on a study on the elicitation of volatiles and total phenolics (TPC) by MeJa and SA. The subjects were four Lamiaceae species studied in open field conditions in Budapest (Hungary). According to the results, both elicitors provoked specific responses in each plant species depending on the dosage applied and the parameter studied; 2 mM of SA stimulated essential oil (EO) accumulation in marjoram and peppermint, while in hyssop 0.1 mM was optimal. MeJa proved to be effective only in marjoram and in basil. In marjoram, cis-sabinene hydrate was decreased and in hyssop, isopinocamphone was increased by both dosages of SA. In peppermint, pulegone content was reduced by 2 mM SA, but no significant change of the major components of basil EO was detected. SA was successful in increasing TPC and antioxidant activity (AC) in three of the experimental species, but not in hyssop. In marjoram, only 0.1 mM induced TPC and eventually AC, while in peppermint and basil both dosages of SA were effective. Optimalisation of the treatments is suggested in further in vivo experiments.
Collapse
|
8
|
Exogenous Application of Methyl Jasmonate and Salicylic Acid Mitigates Drought-Induced Oxidative Damages in French Bean ( Phaseolus vulgaris L.). PLANTS 2021; 10:plants10102066. [PMID: 34685876 PMCID: PMC8538183 DOI: 10.3390/plants10102066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/02/2022]
Abstract
Drought stress impairs the normal growth and development of plants through various mechanisms including the induction of cellular oxidative stresses. The aim of this study was to evaluate the effect of the exogenous application of methyl jasmonate (MeJA) and salicylic acid (SA) on the growth, physiology, and antioxidant defense system of drought-stressed French bean plants. Application of MeJA (20 μM) or SA (2 mM) alone caused modest reductions in the harmful effects of drought. However, combined application substantially enhanced drought tolerance by improving the physiological activities and antioxidant defense system. The drought-induced generation of O2●− and H2O2, the MDA content, and the LOX activity were significantly lower in leaves when seeds or leaves were pre-treated with a combination of MeJA (10 μM) and SA (1 mM) than with either hormone alone. The combined application of MeJA and SA to drought-stressed plants also significantly increased the activities of the major antioxidant enzymes superoxide dismutase, catalase, peroxidase, glutathione peroxidase, and glutathione-S-transferase as well as the enzymes of the ascorbate–glutathione cycle. Taken together, our results suggest that seed or foliar application of a combination of MeJA and SA restore growth and normal physiological processes by triggering the antioxidant defense system in drought-stressed plants.
Collapse
|
9
|
Raza A, Charagh S, Zahid Z, Mubarik MS, Javed R, Siddiqui MH, Hasanuzzaman M. Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants. PLANT CELL REPORTS 2021; 40:1513-1541. [PMID: 33034676 DOI: 10.1007/s00299-020-02614-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 05/18/2023]
Abstract
Abiotic stresses are the primary sources of crop losses globally. The identification of key mechanisms deployed and established by plants in response to abiotic stresses is necessary for the maintenance of their growth and persistence. Recent discoveries have revealed that phytohormones or plant growth regulators (PGRs), mainly jasmonic acid (JA), have increased our knowledge of hormonal signaling of plants under stressful environments. Jasmonic acid is involved in various physiological and biochemical processes associated with plant growth and development as well as plant defense mechanism against wounding by pathogen and insect attacks. Recent findings suggest that JA can mediate the effect of abiotic stresses and help plants to acclimatize under unfavorable conditions. As a vital PGR, JA contributes in many signal transduction pathways, i.e., gene network, regulatory protein, signaling intermediates and enzymes, proteins, and other molecules that act to defend cells from the harmful effects of various environmental stresses. However, JA does not work as an independent regulator, but acts in a complex signaling pathway along other PGRs. Further, JA can protect and maintain the integrity of plant cells under several stresses by up-regulating the antioxidant defense. In this review, we have documented the biosynthesis and metabolism of JA and its protective role against different abiotic stresses. Further, JA-mediated antioxidant potential and its crosstalk with other PGRs have also been discussed.
Collapse
Affiliation(s)
- Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China.
| | - Sidra Charagh
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zainab Zahid
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Muhammad Salman Mubarik
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Rida Javed
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh.
| |
Collapse
|
10
|
Wang Y, Duan G, Li C, Ma X, Yang J. Application of jasmonic acid at the stage of visible brown necrotic spots in Magnaporthe oryzae infection as a novel and environment-friendly control strategy for rice blast disease. PROTOPLASMA 2021; 258:743-752. [PMID: 33417037 DOI: 10.1007/s00709-020-01591-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Rice blast disease is one of the most common rice diseases worldwide. It is essential to improve disease resistance through environment-friendly methods, while maintaining yield and quality parameters. In this study, jasmonic acid (JA), a plant hormone with anti-fungal activity, was obtained, at both low (100 μmol/L) and high (400 μmol/L) concentrations in rice leaves, before, during, and after infection, respectively. JA could inhibit germination and appressorium formation of rice blast spores in a dose-dependent manner. A total of 400-μmol/L JA treatment significantly enhanced cell viability and endogenous JA level in rice leaves. Furthermore, rice leaves inoculated with Magnaporthe oryzae and sprayed with JA 72 h post-inoculation showed the maximum symptom relief and the highest endogenous JA production among all treatment approaches. The expressions of defense-related genes, OsPR10a and OsAOS2, were highly up-regulated in response to JA, whereas OsEDS1 was down-regulated. Hence, we revealed that exogenous JA could activate JA signaling to effectively control the symptoms of rice blast.
Collapse
Affiliation(s)
- Yunfeng Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Heilongtan, Northern suburb, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Guihua Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Heilongtan, Northern suburb, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Chunqin Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Heilongtan, Northern suburb, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Xiaoqing Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Heilongtan, Northern suburb, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Heilongtan, Northern suburb, Kunming, 650201, Yunnan, People's Republic of China.
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
11
|
Złotek U, Szymanowska U, Rybczyńska-Tkaczyk K, Jakubczyk A. Effect of Jasmonic Acid, Yeast Extract Elicitation, and Drying Methods on the Main Bioactive Compounds and Consumer Quality of Lovage ( Levisticum Officinale Koch). Foods 2020; 9:E323. [PMID: 32168779 PMCID: PMC7143783 DOI: 10.3390/foods9030323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to evaluate changes in the activities of some enzymes (polyphenol oxidase-PPO and peroxidase-POD), the content of some bioactive compounds, and the organoleptic quality and color parameters of fresh lovage and its herb dried with various methods and elicited with jasmonic acid (JA) and yeast extract (YE). Elicitation only slightly affected the sensory quality of the fresh herbs, but consumer responses in terms of acceptability of the dried lovage color showed that lovage from microwave drying was least acceptable. The largest increase in the value of parameter a* was observed in microwave dried samples. Elicitation positively influenced the content of bioactive compounds (especially chlorophylls, vitamin C, and phenolic compounds), but unfortunately drying caused significant loss of bioactive compounds (except phenolic compounds) in both control and elicited samples. Drying also resulted in a decrease in the activity of PPO and POD.
Collapse
Affiliation(s)
- Urszula Złotek
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna Str. 8, 20-704 Lublin, Poland; (U.S.); (A.J.)
| | - Urszula Szymanowska
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna Str. 8, 20-704 Lublin, Poland; (U.S.); (A.J.)
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, Laboratory of Mycology, The University of Life Sciences in Lublin, Leszczyńskiego Street 7, 20-069 Lublin, Poland;
| | - Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna Str. 8, 20-704 Lublin, Poland; (U.S.); (A.J.)
| |
Collapse
|
12
|
Cappellari LDR, Santoro MV, Schmidt A, Gershenzon J, Banchio E. Improving Phenolic Total Content and Monoterpene in Mentha x piperita by Using Salicylic Acid or Methyl Jasmonate Combined with Rhizobacteria Inoculation. Int J Mol Sci 2019; 21:E50. [PMID: 31861733 PMCID: PMC6981552 DOI: 10.3390/ijms21010050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/23/2023] Open
Abstract
The effects of plant inoculation with plant growth-promoting rhizobacteria (PGPR) and those resulting from the exogenous application of salicylic acid (SA) or methyl jasmonte (MeJA) on total phenolic content (TPC) and monoterpenes in Mentha x piperita plants were investigated. Although the PGPR inoculation response has been studied for many plant species, the combination of PGPR and exogenous phytohormones has not been investigated in aromatic plant species. The exogenous application of SA produced an increase in TPC that, in general, was of a similar level when applied alone as when combined with PGPR. This increase in TPC was correlated with an increase in the activity of the enzyme phenylalanine ammonia lyase (PAL). Also, the application of MeJA at different concentrations in combination with inoculation with PGPR produced an increase in TPC, which was more relevant at 4 mM, with a synergism effect being observed. With respect to the main monoterpene concentrations present in peppermint essential oil (EO), it was observed that SA or MeJA application produced a significant increase similar to that of the combination with rhizobacteria. However, when plants were exposed to 2 mM MeJA and inoculated, an important increase was produced in the concentration on menthol, pulegone, linalool, limonene, and menthone concentrations. Rhizobacteria inoculation, the treatment with SA and MeJA, and the combination of both were found to affect the amount of the main monoterpenes present in the EO of M. piperita. For this reason, the expressions of genes related to the biosynthesis of monoterpene were evaluated, with this expression being positively affected by MeJA application and PGPR inoculation, but was not modified by SA application. Our results demonstrate that MeJA or SA application combined with inoculation with PGPR constitutes an advantageous management practice for improving the production of secondary metabolites from M. piperita.
Collapse
Affiliation(s)
| | - Maricel Valeria Santoro
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany; (M.V.S.); (A.S.)
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany; (M.V.S.); (A.S.)
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany; (M.V.S.); (A.S.)
| | - Erika Banchio
- INBIAS (CONICET-Universidad Nacional de Río Cuarto), Campus Universitario, 5800 Río Cuarto, Argentina;
| |
Collapse
|
13
|
Zhang Y, Gao X, Li J, Gong X, Yang P, Gao J, Wang P, Feng B. Comparative analysis of proso millet (Panicum miliaceum L.) leaf transcriptomes for insight into drought tolerance mechanisms. BMC PLANT BIOLOGY 2019; 19:397. [PMID: 31510928 PMCID: PMC6737659 DOI: 10.1186/s12870-019-2001-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/30/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Drought stress is a major abiotic stress that causes huge losses in agricultural production. Proso millet (Panicum miliaceum L.) can efficiently adapt to drought stress and provides important information and gene resources to improve drought tolerance. However, its complex drought-responsive mechanisms remain unclear. RESULTS Among 37 core Chinese proso millet cultivars, Jinshu 6 (JS6) was selected as the drought-sensitive test material, whereas Neimi 5 (NM5) was selected as the drought-tolerant test material under PEG-induced water stress. After sequencing, 1695 differentially expressed genes (DEGs) were observed in JS6 and NM5 without PEG-induced water stress (JS6CK and NM5CK). A total of 833 and 2166 DEGs were found in the two cultivars under simulated drought by using 20% PEG-6000 for 6 (JS6T6 and NM5T6) and 24 h (JS6T24 and NM5T24), respectively. The DEGs in JS6T6 and JS6T24 treatments were approximately 0.298- and 0.754-fold higher than those in NM5T6 and NM5T24, respectively. Compared with the respective controls, more DEGs were found in T6 treatments than in T24 treatments. A delay in the transcriptional responses of the ROS scavenging system to simulated drought treatment and relatively easy recovery of the expression of photosynthesis-associated genes were observed in NM5. Compared with JS6, different regulation strategies were observed in the jasmonic acid (JA) signal transduction pathway of NM5. CONCLUSION Under PEG-induced water stress, NM5 maintained highly stable gene expression levels. Compared with drought-sensitive cultivars, the different regulation strategies in the JA signal transduction pathway in drought-tolerant cultivars may be one of the driving forces underlying drought stress tolerance.
Collapse
Affiliation(s)
- Yuyu Zhang
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Xiaoli Gao
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Jing Li
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Xiangwei Gong
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Pu Yang
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Jinfeng Gao
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Pengke Wang
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Baili Feng
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| |
Collapse
|
14
|
Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Ali E, Fahad S. Phytohormones enhanced drought tolerance in plants: a coping strategy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33103-33118. [PMID: 30284160 DOI: 10.1007/s11356-018-3364-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/27/2018] [Indexed: 05/20/2023]
Abstract
Drought stress is a severe environmental constraint among the emerging problems. Plants are highly vulnerable to drought stress and a severe decrease in yield was recorded in the last few decades. So, it is highly desirable to understand the mechanism of drought tolerance in plants and consequently enhance the tolerance against drought stress. Phytohormones are known to play vital roles in regulating various phenomenons in plants to acclimatize to varying drought environment. Abscisic acid (ABA) is considered the main hormone which intensifies drought tolerance in plants through various morpho-physiological and molecular processes including stomata regulation, root development, and initiation of ABA-dependent pathway. In addition, jasmonic acid (JA), salicylic acid (SA) ethylene (ET), auxins (IAA), gibberellins (GAs), cytokinins (CKs), and brassinosteroids (BRs) are also very important phytohormones to congregate the challenges of drought stress. However, these hormones are usually cross talk with each other to increase the survival of plants in drought conditions. On the other hand, the transgenic approach is currently the most accepted technique to engineer the genes responsible for the synthesis of phytohormones in drought stress response. Our present review highlights the regulatory circuits of phytohormones in drought tolerance mechanism.
Collapse
Affiliation(s)
- Abid Ullah
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
- Department of Botany, University of Malakand, Chakdara Dir Lower, Khyber Pakhtunkhwa, 18550, Pakistan.
| | - Hakim Manghwar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Muhammad Shaban
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Adnan Akbar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Ehsan Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shah Fahad
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Department of Agriculture, University of Swabi, Swabi, KPK, Pakistan
| |
Collapse
|
15
|
Kapoor S, Sharma A, Bhardwaj P, Sood H, Saxena S, Chaurasia OP. Enhanced Production of Phenolic Compounds in Compact Callus Aggregate Suspension Cultures of Rhodiola imbricata Edgew. Appl Biochem Biotechnol 2018; 187:817-837. [PMID: 30090988 DOI: 10.1007/s12010-018-2851-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 01/23/2023]
Abstract
Rhodiola imbricata is a rare medicinal plant of the trans-Himalayan region of Ladakh. It is used for the treatment of numerous health ailments. Compact callus aggregate (CCA) suspension cultures of Rhodiola imbricata were established to counter extinction threats and for production of therapeutically valuable phenolic compounds to meet their increasing industrial demands. The present study also investigated the effect of jasmonic acid (JA) on production of phenolic compounds and bioactivities in CCA suspension cultures. CCA suspension cultures established in an optimized Murashige and Skoog medium supplemented with 30 g/l sucrose, 3 mg/l NAA, and 3 mg/l BAP showed maximum biomass accumulation (8.43 g/l DW) and highest salidroside production (3.37 mg/g DW). Upon 100 μM JA treatment, salidroside production (5.25 mg/g DW), total phenolic content (14.69 mg CHA/g DW), total flavonoid content (4.95 mg RE/g DW), and ascorbic acid content (17.93 mg/g DW) were significantly increased in cultures. In addition, DPPH-scavenging activity (56.32%) and total antioxidant capacity (60.45 mg QE/g DW) were significantly enhanced upon JA treatment, and this was positively correlated with increased accumulation of phenolic compounds. JA-elicited cultures exhibited highest antimicrobial activity against Escherichia coli. This is the first report describing the enhanced production of phenolic compounds and bioactivities from JA-elicited CCA suspension cultures of Rhodiola imbricata.
Collapse
Affiliation(s)
- Sahil Kapoor
- Defence Institute of High Altitude Research (DRDO), C/O 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Ankita Sharma
- Defence Institute of High Altitude Research (DRDO), C/O 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Pushpender Bhardwaj
- Defence Institute of High Altitude Research (DRDO), C/O 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Hemant Sood
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat (Solan), Himachal Pradesh, 173215, India.
| | - Shweta Saxena
- Defence Institute of High Altitude Research (DRDO), C/O 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Om Prakash Chaurasia
- Defence Institute of High Altitude Research (DRDO), C/O 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| |
Collapse
|
16
|
Shaban M, Ahmed MM, Sun H, Ullah A, Zhu L. Genome-wide identification of lipoxygenase gene family in cotton and functional characterization in response to abiotic stresses. BMC Genomics 2018; 19:599. [PMID: 30092779 PMCID: PMC6085620 DOI: 10.1186/s12864-018-4985-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/31/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Plant lipoxygenase (LOX) genes are members of the non-haeme iron-containing dioxygenase family that catalyze the oxidation of polyunsaturated fatty acids into functionally diverse oxylipins. The LOX family genes have been extensively studied under biotic and abiotic stresses, both in model and non-model plant species; however, information on their roles in cotton is still limited. RESULTS A total of 64 putative LOX genes were identified in four cotton species (Gossypium (G. hirsutum, G. barbadense, G. arboreum, and G. raimondii)). In the phylogenetic tree, these genes were clustered into three categories (9-LOX, 13-LOX type I, and 13-LOX type II). Segmental duplication of putative LOX genes was observed between homologues from A2 to At and D5 to Dt hinting at allopolyploidy in cultivated tetraploid species (G. hirsutum and G. barbadense). The structure and motif composition of GhLOX genes appears to be relatively conserved among the subfamilies. Moreover, many cis-acting elements related to growth, stresses, and phytohormone signaling were found in the promoter regions of GhLOX genes. Gene expression analysis revealed that all GhLOX genes were induced in at least two tissues and the majority of GhLOX genes were up-regulated in response to heat and salinity stress. Specific expressions of some genes in response to exogenous phytohormones suggest their potential roles in regulating growth and stress responses. In addition, functional characterization of two candidate genes (GhLOX12 and GhLOX13) using virus induced gene silencing (VIGS) approach revealed their increased sensitivity to salinity stress in target gene-silenced cotton. Compared with controls, target gene-silenced plants showed significantly higher chlorophyll degradation, higher H2O2, malondialdehyde (MDA) and proline accumulation but significantly reduced superoxide dismutase (SOD) activity, suggesting their reduced ability to effectively degrade accumulated reactive oxygen species (ROS). CONCLUSION This genome-wide study provides a systematic analysis of the cotton LOX gene family using bioinformatics tools. Differential expression patterns of cotton LOX genes in different tissues and under various abiotic stress conditions provide insights towards understanding the potential functions of candidate genes. Beyond the findings reported here, our study provides a basis for further uncovering the biological roles of LOX genes in cotton development and adaptation to stress conditions.
Collapse
Affiliation(s)
- Muhammad Shaban
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Muhammad Mahmood Ahmed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Heng Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Abid Ullah
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| |
Collapse
|
17
|
Asaf S, Khan AL, Khan MA, Imran QM, Yun BW, Lee IJ. Osmoprotective functions conferred to soybean plants via inoculation with Sphingomonas sp. LK11 and exogenous trehalose. Microbiol Res 2017; 205:135-145. [PMID: 28942839 DOI: 10.1016/j.micres.2017.08.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 01/07/2023]
Abstract
Osmotic stress induced by drought can hinder the growth and yield of crop plants. To understand the eco-physiological role of osmoprotectants, the combined utilization of endophytes and osmolytes (trehalose) can be an ideal strategy used to overcome the adverse effects of drought. Hence, in the present study, we aimed to investigate the role of Sphingomonas sp. LK11, which produces phytohormones and synthesizes trehalose, in improving soybean plant growth under drought-induced osmotic stress (-0.4, -0.9, and -1.2MPa). The results showed that the inoculation of soybean plants with Sphingomonas sp. LK11 significantly increased plant length, dry biomass, photosynthetic pigments, glutathione, amino acids (proline, glycine, and glutamate), and primary sugars as compared to control plants under varying drought stresses. Trehalose applied to the plant with or without endophyte-inoculation also showed similar plant growth-promoting attributes under stress. Stress exposure significantly enhanced endogenous jasmonic (JA) and abscisic (ABA) acid contents in control plants. In contrast, Sphingomonas sp. LK11-inoculation significantly lowered ABA and JA levels in soybean plants, but these phytohormones increased in response to combined treatments during stress. The drought-induced osmotic stress resistance associated with Sphingomonas sp. LK11 and trehalose was also evidenced by increased mRNA gene expression of soybean dehydration responsive element binding protein (DREB)-type transcription factors (GmDREBa and GmDREB2) and the MYB (myeloblastosis) transcription factor (GmMYBJ1) as compared to the control. In conclusion, our findings demonstrated that inoculation with this endophyte and trehalose improved the negative effects of drought-induced osmotic stress, and it enhanced soybean plant growth and tolerance.
Collapse
Affiliation(s)
- Sajjad Asaf
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Abdul Latif Khan
- UoN Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Qari Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
18
|
Zehra A, Meena M, Dubey MK, Aamir M, Upadhyay RS. Activation of defense response in tomato against Fusarium wilt disease triggered by Trichoderma harzianum supplemented with exogenous chemical inducers (SA and MeJA). BRAZILIAN JOURNAL OF BOTANY 2017; 40:651-664. [DOI: 10.1007/s40415-017-0382-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
19
|
Sarwat M, Tuteja N. Hormonal signaling to control stomatal movement during drought stress. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Khatun K, Robin AHK, Park JI, Nath UK, Kim CK, Lim KB, Nou IS, Chung MY. Molecular Characterization and Expression Profiling of Tomato GRF Transcription Factor Family Genes in Response to Abiotic Stresses and Phytohormones. Int J Mol Sci 2017; 18:ijms18051056. [PMID: 28505092 PMCID: PMC5454968 DOI: 10.3390/ijms18051056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 12/22/2022] Open
Abstract
Growth regulating factors (GRFs) are plant-specific transcription factors that are involved in diverse biological and physiological processes, such as growth, development and stress and hormone responses. However, the roles of GRFs in vegetative and reproductive growth, development and stress responses in tomato (Solanum lycopersicum) have not been extensively explored. In this study, we characterized the 13 SlGRF genes. In silico analysis of protein motif organization, intron–exon distribution, and phylogenetic classification confirmed the presence of GRF proteins in tomato. The tissue-specific expression analysis revealed that most of the SlGRF genes were preferentially expressed in young and growing tissues such as flower buds and meristems, suggesting that SlGRFs are important during growth and development of these tissues. Some of the SlGRF genes were preferentially expressed in fruits at distinct developmental stages suggesting their involvement in fruit development and the ripening process. The strong and differential expression of different SlGRFs under NaCl, drought, heat, cold, abscisic acid (ABA), and jasmonic acid (JA) treatment, predict possible functions for these genes in stress responses in addition to their growth regulatory functions. Further, differential expression of SlGRF genes upon gibberellic acid (GA3) treatment indicates their probable function in flower development and stress responses through a gibberellic acid (GA)-mediated pathway. The results of this study provide a basis for further functional analysis and characterization of this important gene family in tomato.
Collapse
Affiliation(s)
- Khadiza Khatun
- Department of Agricultural Industry Economy and Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950, Korea.
| | - Arif Hasan Khan Robin
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950, Korea.
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950, Korea.
| | - Ujjal Kumar Nath
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950, Korea.
| | - Chang Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu 702-701, Korea.
| | - Ki-Byung Lim
- Department of Horticultural Science, Kyungpook National University, Daegu 702-701, Korea.
| | - Ill Sup Nou
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950, Korea.
| | - Mi-Young Chung
- Department of Agricultural Industry Economy and Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950, Korea.
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950, Korea.
| |
Collapse
|
21
|
Elicitation of Phenylpropanoids and Expression Analysis of PAL Gene in Suspension Cell Culture of Ocimum tenuiflorum L. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40011-017-0858-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S. Jasmonates: Multifunctional Roles in Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:813. [PMID: 27379115 PMCID: PMC4908892 DOI: 10.3389/fpls.2016.00813] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/25/2016] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) [Jasmonic acid (JA) and methyl jasmonates (MeJAs)] are known to take part in various physiological processes. Exogenous application of JAs so far tested on different plants under abiotic stresses particularly salinity, drought, and temperature (low/high) conditions have proved effective in improving plant stress tolerance. However, its extent of effectiveness entirely depends on the type of plant species tested or its concentration. The effects of introgression or silencing of different JA- and Me-JA-related genes have been summarized in this review, which have shown a substantial role in improving crop yield and quality in different plants under stress or non-stress conditions. Regulation of JAs synthesis is impaired in stressed as well as unstressed plant cells/tissues, which is believed to be associated with a variety of metabolic events including signal transduction. Although, mitogen activated protein kinases (MAPKs) are important components of JA signaling and biosynthesis pathways, nitric oxide, ROS, calcium, ABA, ethylene, and salicylic acid are also important mediators of plant growth and development during JA signal transduction and synthesis. The exploration of other signaling molecules can be beneficial to examine the details of underlying molecular mechanisms of JA signal transduction. Much work is to be done in near future to find the proper answers of the questions like action of JA related metabolites, and identification of universal JA receptors etc. Complete signaling pathways involving MAPKs, CDPK, TGA, SIPK, WIPK, and WRKY transcription factors are yet to be investigated to understand the complete mechanism of action of JAs.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, S.P. CollegeSrinagar, India
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Management, Faculty of Forestry, Universiti Putra MalaysiaSelangor, Malaysia
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and TechnologyIslamabad, Pakistan
| | - Subzar A. Sheikh
- Department of Botany, Govt. Degree College (Boys), AnantnagAnantnag, India
| | - Nudrat A. Akram
- Department of Botany, GC University FaisalabadFaisalabad, Pakistan
| | - Muhammad Ashraf
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
- Pakistan Science FoundationIslamabad, Pakistan
| | - A. M. Kazi
- Department of Botany, University of SargodhaSargodha, Pakistan
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
23
|
Riemann M, Dhakarey R, Hazman M, Miro B, Kohli A, Nick P. Exploring Jasmonates in the Hormonal Network of Drought and Salinity Responses. FRONTIERS IN PLANT SCIENCE 2015; 6:1077. [PMID: 26648959 PMCID: PMC4665137 DOI: 10.3389/fpls.2015.01077] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/17/2015] [Indexed: 05/18/2023]
Abstract
Present and future food security is a critical issue compounded by the consequences of climate change on agriculture. Stress perception and signal transduction in plants causes changes in gene or protein expression which lead to metabolic and physiological responses. Phytohormones play a central role in the integration of different upstream signals into different adaptive outputs such as changes in the activity of ion-channels, protein modifications, protein degradation, and gene expression. Phytohormone biosynthesis and signaling, and recently also phytohormone crosstalk have been investigated intensively, but the function of jasmonates under abiotic stress is still only partially understood. Although most aspects of jasmonate biosynthesis, crosstalk and signal transduction appear to be similar for biotic and abiotic stress, novel aspects have emerged that seem to be unique for the abiotic stress response. Here, we review the knowledge on the role of jasmonates under drought and salinity. The crosstalk of jasmonate biosynthesis and signal transduction pathways with those of abscisic acid (ABA) is particularly taken into account due to the well-established, central role of ABA under abiotic stress. Likewise, the accumulating evidence of crosstalk of jasmonate signaling with other phytohormones is considered as important element of an integrated phytohormonal response. Finally, protein post-translational modification, which can also occur without de novo transcription, is treated with respect to its implications for phytohormone biosynthesis, signaling and crosstalk. To breed climate-resilient crop varieties, integrated understanding of the molecular processes is required to modulate and tailor particular nodes of the network to positively affect stress tolerance.
Collapse
Affiliation(s)
- Michael Riemann
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Rohit Dhakarey
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Mohamed Hazman
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Berta Miro
- Plant Breeding Genetics and Biotechnology Division, International Rice Research Institute, Makati, Philippines
| | - Ajay Kohli
- Plant Breeding Genetics and Biotechnology Division, International Rice Research Institute, Makati, Philippines
| | - Peter Nick
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
24
|
Złotek U, Świeca M, Jakubczyk A. Effect of abiotic elicitation on main health-promoting compounds, antioxidant activity and commercial quality of butter lettuce (Lactuca sativa L.). Food Chem 2014; 148:253-60. [PMID: 24262554 DOI: 10.1016/j.foodchem.2013.10.031] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 11/15/2022]
Abstract
The study presents changes in the phytochemical levels, antiradical activity and quality of lettuce caused by different chemical elicitors: arachidonic acid (AA), jasmonic acid (JA), and abscisic acid (ABA). The application of 1 μM and 100 μM JA induced an increase in the concentration of phenolic compounds, including flavonoids and phenolic acids. Flavonoid levels were also increased after treatment with 100 μM AA and ABA. Some of the elicitor concentrations used also caused an increase in the levels of other phytochemicals, such as chlorophyll a (1 μM and 100 μM AA, 50 μM ABA); chlorophyll b (100 μM AA); carotenoids (100 μM AA, 1 μM JA and 100 μM ABA) and vitamin C (100 μM AA, 100 μM JA). The highest antiradical activity was noted after treatment with 100 μM AA, 100 μM JA. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging ability was positively and significantly correlated with flavonoid, chlorophyll and carotenoid levels. These results may suggest that the antiradical activity of lettuce was determined not only by phenolics, but also by other bioactive compounds. Elicitation did not change the sensory quality of lettuce. Therefore, treatment with elicitors could be a useful tool for improving the health-promoting qualities of lettuce without the loss of sensory quality.
Collapse
Affiliation(s)
- Urszula Złotek
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Ul. Skromna 8, 20-704 Lublin, Poland.
| | | | | |
Collapse
|
25
|
Puthusseri B, Divya P, Lokesh V, Neelwarne B. Enhancement of folate content and its stability using food grade elicitors in coriander (Coriandrum sativum L.). PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2012; 67:162-170. [PMID: 22492274 DOI: 10.1007/s11130-012-0285-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Folate (vitamin B₉) content was evaluated in 10 varieties of coriander with the aim of enhancing its concentration and stability, because of three reasons: 1) coriander is among a few widely used greens in the world and suits many cuisines, 2) folate deficiency is prevalent in developing countries causing anaemia, infant mortality and neural tube closure defects, and 3) natural folate is preferred due to doubts about health risks associated with the synthetic form. In C. sativum, the highest folate content of 1,577 μg/100 g DW was found in var. GS4 Multicut foliage of mature plants (marketable stage) with an insignificantly higher content (1,599.74 μg/100 g DW) at flowering, which is a stage not preferred in markets. In callus cultures treated with plant growth regulators (GRs) (6-benzylaminopurine, kinetin and abscisic acid) substantial increase in folate occurred after 6 h, whereas elicitors (methyl jasmonate and salicylic acid) caused rapid 2-fold increase of folate, particularly in response to salicylic acid. Based on these observations, foliar applications were done for in vivo plants, where salicylic acid (250 μM, 24 h) also enhanced folate level by 2-folds (3,112.33 μg/100 g DW), although the content varied with diurnal rhythms. Stability of folates in treated coriander foliage was 10 % higher than in untreated foliage when stored at 25 °C and 4 °C. This study has established for the first time that coriander foliage is rich in folates, which can be doubled by elicitation and impart 10 % more stability than control during processing and storage.
Collapse
Affiliation(s)
- Bijesh Puthusseri
- Plant Cell Biotechnology Department, Central Food Technological Research Institute-Laboratory of the Council of Scientific and Industrial Research-New Delhi, Mysore 570020, India
| | | | | | | |
Collapse
|