1
|
Lin X, Zhou W, Liu Z, Cao W, Lin C. Targeting cellular metabolism in head and neck cancer precision medicine era: A promising strategy to overcome therapy resistance. Oral Dis 2023; 29:3101-3120. [PMID: 36263514 DOI: 10.1111/odi.14411] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most prevalent cancer worldwide, with the most severe impact on quality of life of patients. Despite the development of multimodal therapeutic approaches, the clinical outcomes of HNSCC are still unsatisfactory, mainly caused by relatively low responsiveness to treatment and severe drug resistance. Metabolic reprogramming is currently considered to play a pivotal role in anticancer therapeutic resistance. This review aimed to define the specific metabolic programs and adaptations in HNSCC therapy resistance. An extensive literature review of HNSCC was conducted via the PubMed including metabolic reprogramming, chemo- or immune-therapy resistance. Glucose metabolism, fatty acid metabolism, and amino acid metabolism are closely related to the malignant biological characteristics of cancer, anti-tumor drug resistance, and adverse clinical results. For HNSCC, pyruvate, lactate and almost all lipid categories are related to the occurrence and maintenance of drug resistance, and targeting amino acid metabolism can prevent tumor development and enhance the response of drug-resistant tumors to anticancer therapy. This review will provide a better understanding of the altered metabolism in therapy resistance of HNSCC and promote the development of new therapeutic strategies against HNSCC, thereby contribute to a more efficacious precision medicine.
Collapse
Affiliation(s)
- Xiaohu Lin
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wenkai Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zheqi Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Jiao Tong University School of Nursing, Shanghai, China
| | - Chengzhong Lin
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- The 2nd Dental Center, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Ma T, Montaner S, Schneider A. Glucose upregulates amphiregulin in oral dysplastic keratinocytes: A potential role in diabetes-associated oral carcinogenesis. J Oral Pathol Med 2023; 52:1004-1012. [PMID: 37817274 PMCID: PMC10841538 DOI: 10.1111/jop.13493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Compelling evidence implicates diabetes-associated hyperglycemia as a promoter of tumor progression in oral potentially malignant disorders (OPMD). Yet, information on hyperglycemia-induced cell signaling networks in oral oncology remains limited. Our group recently reported that glucose-rich conditions significantly enhance oral dysplastic keratinocyte viability and migration through epidermal growth factor receptor (EGFR) activation, a pathway strongly linked to oral carcinogenesis. Here, we investigated the basal metabolic phenotype in these cells and whether specific glucose-responsive EGFR ligands mediate these responses. METHODS Cell energy phenotype and lactate concentration were evaluated via commercially available assays. EGFR ligands in response to normal (5 mM) or high (20 mM) glucose were analyzed by quantitative real-time PCR, ELISA, and western blotting. Cell viability and migration assays were performed in the presence of pharmacological inhibitors or RNA interference. RESULTS When compared to normal keratinocytes, basal glycolysis in oral dysplastic keratinocytes was significantly elevated. In highly glycolytic cells, high glucose-activated EGFR increasing viability and migration. Notably, we identified amphiregulin (AREG) as the predominant glucose-induced EGFR ligand. Indeed, enhanced cell migration in response to high glucose was blunted by EGFR inhibitor cetuximab and AREG siRNA. Conversely, AREG treatment under normal glucose conditions significantly increased cell viability, migration, lactate levels, and expression of glycolytic marker pyruvate kinase M2. CONCLUSION These novel findings point to AREG as a potential high glucose-induced EGFR activating ligand in highly glycolytic oral dysplastic keratinocytes. Future studies are warranted to gain more insight into the role of AREG in hyperglycemia-associated OPMD tumor progression.
Collapse
Affiliation(s)
- Tao Ma
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
- Greenebaum Comprehensive Cancer Center, Program in Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
- Greenebaum Comprehensive Cancer Center, Program in Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
- Greenebaum Comprehensive Cancer Center, Program in Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Chen Z, Lai X, Ding H, Zhang A, Sun Y, Ling J, Chiao PJ, Chen Z, Xia X. ATF4/TXNIP/REDD1/mTOR signaling mediates the antitumor activities of liver X receptor in pancreatic cancers. CANCER INNOVATION 2022; 1:55-69. [PMID: 38089448 PMCID: PMC10686145 DOI: 10.1002/cai2.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/16/2022] [Indexed: 10/15/2024]
Abstract
Background Limited by difficulties in early detection and availabilities of effective treatments, pancreatic cancer is a highly malignant disease with poor prognosis. Nuclear receptors are a family of ligand-dependent transcription factors that are highly druggable therapeutic targets playing critical roles in human physiological and pathological development, including cancer. In this study, we explored the therapeutic potential as well as the molecular mechanisms of liver X receptor (LXR) agonist GW3965 in pancreatic cancer. Methods Soft-agar colony formation assay, xenograft tumors, Oligonucleotide microarray, Reverse transcription real-time polymerase chain reaction, Western immunoblotting and Immunohistochemistry were used in this study. Results We demonstrated pleotropic in vitro activities of GW3965 in pancreatic cell lines MIA PaCa-2 and BXPC3 including reduction of cell viability, inhibition of cell proliferation, stimulation of cell death, and suppression of colony formation, which translated to significant inhibition of xenograft tumor growth in vitro. By mapping the gene expression profiles, we identified the up-regulations of 188 and the down-regulations of 92 genes common to both cell lines following GW3965 treatment. Genes responsive to GW3965 represent a variety of biological pathways vital for multiple cellular functions. Specifically, we identified that the activating transcription factor 4/thioredoxin-interacting protein/regulated in development and DNA damage responses 1/mechanistic target of rapamycin (ATF4/TXNIP/REDD1/mTOR) signaling critically controls GW3965-mediated regulation of cell proliferation/death. The significance of the ATF4/TXNIP/REDD1/mTOR pathway was further supported by associated expressions in xenograft tumors as well as human pancreatic cancer samples. Conclusions This study provides the pre-clinical evidence that LXR agonist is a promising therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Zhikang Chen
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal TumorChangshaHunanChina
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & StandardizationChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunanChina
| | - Xiaobo Lai
- Guangzhou First People's HospitalThe Second Affiliated Hospital of South China University of TechnologyGuangzhouGuangdongChina
| | - Hui Ding
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen UniversityHaikouHainanChina
| | - Aijun Zhang
- Houston Methodist Research InstituteHoustonTexasUSA
| | - Yufei Sun
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal TumorChangshaHunanChina
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & StandardizationChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunanChina
| | - Jianhua Ling
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Paul J. Chiao
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Zihua Chen
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal TumorChangshaHunanChina
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & StandardizationChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunanChina
| | | |
Collapse
|
4
|
Oleksak P, Nepovimova E, Chrienova Z, Musilek K, Patocka J, Kuca K. Contemporary mTOR inhibitor scaffolds to diseases breakdown: A patent review (2015–2021). Eur J Med Chem 2022; 238:114498. [DOI: 10.1016/j.ejmech.2022.114498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
|
5
|
Ravichandran R, PriyaDharshini LC, Sakthivel KM, Rasmi RR. Role and regulation of autophagy in cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166400. [PMID: 35341960 DOI: 10.1016/j.bbadis.2022.166400] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Autophagy is an intracellular self-degradative mechanism which responds to cellular conditions like stress or starvation and plays a key role in regulating cell metabolism, energy homeostasis, starvation adaptation, development and cell death. Numerous studies have stipulated the participation of autophagy in cancer, but the role of autophagy either as tumor suppressor or tumor promoter is not clearly understood. However, mechanisms by which autophagy promotes cancer involves a diverse range of modifications of autophagy associated proteins such as ATGs, Beclin-1, mTOR, p53, KRAS etc. and autophagy pathways like mTOR, PI3K, MAPK, EGFR, HIF and NFκB. Furthermore, several researches have highlighted a context-dependent, cell type and stage-dependent regulation of autophagy in cancer. Alongside this, the interaction between tumor cells and their microenvironment including hypoxia has a great potential in modulating autophagy response in favour to substantiate cancer cell metabolism, self-proliferation and metastasis. In this review article, we highlight the mechanism of autophagy and their contribution to cancer cell proliferation and development. In addition, we discuss about tumor microenvironment interaction and their consequence on selective autophagy pathways and the involvement of autophagy in various tumor types and their therapeutic interventions concentrated on exploiting autophagy as a potential target to improve cancer therapy.
Collapse
Affiliation(s)
- Rakesh Ravichandran
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | | | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India.
| |
Collapse
|
6
|
Fang X, Xie M, Liu X, He Y. REDD1 gene knockout alleviates vascular smooth muscle cell remodeling in pulmonary hypertension. Am J Transl Res 2022; 14:1578-1591. [PMID: 35422917 PMCID: PMC8991113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Regulated in development and DNA damage responses 1 (REDD1) is an important transcription factor regulating mitochondria homeostasis, which is the important pathological alteration of pulmonary hypertension (PH). However, it is unclear whether REDD1 regulates the PASMCs mitochondria homeostasis by the similar mechanism in pulmonary arterial remodeling induced by hypoxia. METHODS The global REDD1-knockout rats (REDD1-KO) on Sprague-Dawley background were used to generate a chronic hypoxia model of PH. Right ventricular hypertrophy and vascular remodeling were detected after exposure to hypoxia. Additionally, proliferation, apoptosis, migration, mitochondria homeostasis, and autophagy were performed in vivo and in vitro. RESULTS The current research found that in human and experimental rats of PH, REDD1 expression is upregulated in the PASMCs. REDD1 gene knockout alleviated hypoxia PH and hemodynamic changes effectively and reversed hypoxic pulmonary vascular remodeling. In addition, REDD1 knockdown reduces the impairment of mitochondrial function caused by hypoxia in HPASMCs via autophagy inhibition, and this process may be regulated through the Parkin gene. Moreover, REDD1 knockdown can effectively inhibit the proliferation and migration of hypoxic PASMCs, and induce their apoptosis in vivo and in vitro. CONCLUSIONS Our results suggested that REDD1 might be a potential target for improved pulmonary vascular remodeling in PH.
Collapse
Affiliation(s)
- Xiaoyu Fang
- Department of Respiratory Diseases, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Min Xie
- Department of Respiratory Diseases, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Xiansheng Liu
- Department of Respiratory Diseases, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Yuanzhou He
- Department of Respiratory Diseases, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| |
Collapse
|
7
|
Bensaid S, Fabre C, Pawlak-Chaouch M, Cieniewski-Bernard C. Oxygen supplementation to limit hypoxia-induced muscle atrophy in C2C12 myotubes: comparison with amino acid supplement and electrical stimulation. Cell Tissue Res 2022; 387:287-301. [PMID: 35001209 DOI: 10.1007/s00441-021-03492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/21/2021] [Indexed: 11/28/2022]
Abstract
In skeletal muscle, chronic oxygen depletion induces a disturbance leading to muscle atrophy. Mechanical stress (physical exercise) and nutritional supplement therapy are commonly used against loss of muscle mass and undernutrition in hypoxia, while oxygenation therapy is preferentially used to counteract muscle fatigue and exercise intolerance. However, the impact of oxygenation on skeletal muscle cells remains poorly understood, in particular on signalling pathways regulating protein balance. Thus, we investigated the effects of each separated treatment (mechanical stress, nutritional supplementation and oxygenation therapy) on intracellular pathways involved in protein synthesis and degradation that are imbalanced in skeletal muscle cells atrophy resulting from hypoxia. Myotubes under hypoxia were treated by electrical stimulation, amino acids supplement or oxygenation period. Signalling pathways involved in protein synthesis (PI3K-Akt-mTOR) and degradation (FoxO1 and FoxO3a) were investigated, so as autophagy, ubiquitin-proteasome system and myotube morphology. Electrical stimulation and oxygenation treatment resulted in higher myotube diameter, myogenic fusion index and myotubes density until 48 h post-treatment compared to untreated hypoxic myotubes. Both treatments also induced inhibition of FoxO3a and decreased activity of ubiquitin-proteasome system; however, their impact on protein synthesis pathway was specific for each one. Indeed, electrical stimulation impacted upstream proteins to mTOR (i.e., Akt) while oxygenation treatment activated downstream targets of mTOR (i.e., 4E-BP1 and P70S6K). In contrast, amino acid supplementation had very few effects on myotube morphology nor on protein homeostasis. This study demonstrated that electrical stimulation or oxygenation period are two effective treatments to fight against hypoxia-induced muscle atrophy, acting through different molecular adaptations.
Collapse
Affiliation(s)
- Samir Bensaid
- Univ. Lille, Univ. Artois, Univ. Littoral Côte D'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France.,CHU Lille, Université de Lille, F-59000, Lille, France
| | - Claudine Fabre
- Univ. Lille, Univ. Artois, Univ. Littoral Côte D'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
| | - Mehdi Pawlak-Chaouch
- Univ. Lille, Univ. Artois, Univ. Littoral Côte D'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
| | - Caroline Cieniewski-Bernard
- Univ. Lille, Univ. Artois, Univ. Littoral Côte D'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France.
| |
Collapse
|
8
|
Głuszko A, Szczepański MJ, Whiteside TL, Reichert TE, Siewiera J, Ludwig N. Small Extracellular Vesicles from Head and Neck Squamous Cell Carcinoma Cells Carry a Proteomic Signature for Tumor Hypoxia. Cancers (Basel) 2021; 13:cancers13164176. [PMID: 34439329 PMCID: PMC8393921 DOI: 10.3390/cancers13164176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
Tissue hypoxia is commonly observed in head and neck squamous cell carcinomas (HNSCCs), resulting in molecular and functional alterations of the tumor cells. The aim of this study was to characterize tumor-derived small extracellular vesicles (sEVs) released under hypoxic vs. normoxic conditions and analyze their proteomic content. HNSCC cells (FaDu, PCI-30, SCC-25) and HaCaT keratinocytes were cultured in 21, 10, 5, and 1% O2. sEVs were isolated from supernatants using size exclusion chromatography (SEC) and characterized by nanoparticle tracking analysis, electron microscopy, immunoblotting, and high-resolution mass spectrometry. Isolated sEVs ranged in size from 125-135 nm and contained CD63 and CD9 but not Grp94. sEVs reflected the hypoxic profile of HNSCC parent cells: about 15% of the total detected proteins were unique for hypoxic cells. Hypoxic sEVs expressed a common signature of seven hypoxia-related proteins (KT33B, DYSF, STON2, MLX, LIPA3, NEK5, P12L1) and were enriched in pro-angiogenic proteins. Protein profiles of sEVs reflected the degree of tumor hypoxia and could serve as potential sEV-based biomarkers for hypoxic conditions. Adaptation of HNSCC cells to hypoxia is associated with increased release of sEVs, which are enriched in a unique protein profile. Thus, tumor-derived sEVs can potentially be useful for evaluating levels of hypoxia in HNSCC.
Collapse
Affiliation(s)
- Alicja Głuszko
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland;
| | - Mirosław J. Szczepański
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland;
- Department of Otolaryngology, Centre of Postgraduate Medical Education, 03-242 Warsaw, Poland
- Correspondence:
| | - Theresa L. Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Department of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Pathology, UPMC Hillman Cancer Centre, Pittsburgh, PA 15213, USA
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (T.E.R.); (N.L.)
| | - Jacek Siewiera
- Department of Hyperbaric Medicine, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (T.E.R.); (N.L.)
| |
Collapse
|
9
|
Comparison of Osteosarcoma Aggregated Tumour Models with Human Tissue by Multimodal Mass Spectrometry Imaging. Metabolites 2021; 11:metabo11080506. [PMID: 34436447 PMCID: PMC8401535 DOI: 10.3390/metabo11080506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy and largely effects adolescents and young adults, with 60% of patients under the age of 25. There are multiple cell models of OS described in vitro that express the specific genetic alterations of the sarcoma. In the work reported here, multiple mass spectrometry imaging (MSI) modalities were employed to characterise two aggregated cellular models of OS models formed using the MG63 and SAOS-2 cell lines. Phenotyping of the metabolite activity within the two OS aggregoid models was achieved and a comparison of the metabolite data with OS human tissue samples revealed relevant fatty acid and phospholipid markers. Although, annotations of these species require MS/MS analysis for confident identification of the metabolites. From the putative assignments however, it was suggested that the MG63 aggregoids are an aggressive tumour model that exhibited metastatic-like potential. Alternatively, the SAOS-2 aggregoids are more mature osteoblast-like phenotype that expressed characteristics of cellular differentiation and bone development. It was determined the two OS aggregoid models shared similarities of metabolic behaviour with different regions of OS human tissues, specifically of the higher metastatic grade.
Collapse
|
10
|
Discovery of a new molecule inducing melanoma cell death: dual AMPK/MELK targeting for novel melanoma therapies. Cell Death Dis 2021; 12:64. [PMID: 33431809 PMCID: PMC7801734 DOI: 10.1038/s41419-020-03344-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
In the search of biguanide-derived molecules against melanoma, we have discovered and developed a series of bioactive products and identified the promising new compound CRO15. This molecule exerted anti-melanoma effects on cells lines and cells isolated from patients including the ones derived from tumors resistant to BRAF inhibitors. Moreover, CRO15 was able to decrease viability of cells lines from a broad range of cancer types. This compound acts by two distinct mechanisms. First by activating the AMPK pathway induced by a mitochondrial disorder. Second by inhibition of MELK kinase activity, which induces cell cycle arrest and activation of DNA damage repair pathways by p53 and REDD1 activation. All of these mechanisms activate autophagic and apoptotic processes resulting in melanoma cell death. The strong efficacy of CRO15 to reduce the growth of melanoma xenograft sensitive or resistant to BRAF inhibitors opens interesting perspective.
Collapse
|
11
|
Senbanjo LT, AlJohani H, AlQranei M, Majumdar S, Ma T, Chellaiah MA. Identification of sequence-specific interactions of the CD44-intracellular domain with RUNX2 in the transcription of matrix metalloprotease-9 in human prostate cancer cells. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:586-602. [PMID: 33062960 PMCID: PMC7556329 DOI: 10.20517/cdr.2020.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aim The Cluster of differentiation 44 (CD44) transmembrane protein is cleaved by γ-secretase, the inhibition of which blocks CD44 cleavage. This study aimed to determine the biological consequence of CD44 cleavage and its potential interaction with Runt-related transcription factor (RUNX2) in a sequence-specific manner in PC3 prostate cancer cells. Methods Using full-length and C-terminal deletion constructs of CD44-ICD (D1-D5) expressed as stable green fluorescent protein-fusion proteins in PC3 cells, we located possible RUNX2-binding sequences. Results Chromatin immunoprecipitation assays demonstrated that the C-terminal amino acid residues between amino acids 671 and 706 in D1 to D3 constructs were indispensable for sequence-specific binding of RUNX2. This binding was minimal for sequences in the D4 and D5 constructs. Correspondingly, an increase in matrix metalloprotease-9 (MMP-9) expression was observed at the mRNA and protein levels in PC3 cells stably expressing D1-D3 constructs. Conclusion These results provide biochemical evidence for the possible sequence-specific CD44-ICD/RUNX2 interaction and its functional relationship to MMP-9 transcription in the promoter region.
Collapse
Affiliation(s)
- Linda T Senbanjo
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Hanan AlJohani
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mohammed AlQranei
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Sunipa Majumdar
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Flint LE, Hamm G, Ready JD, Ling S, Duckett CJ, Cross NA, Cole LM, Smith DP, Goodwin RJA, Clench MR. Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging. Anal Chem 2020; 92:12538-12547. [PMID: 32786495 PMCID: PMC7497704 DOI: 10.1021/acs.analchem.0c02389] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Mass
spectrometry imaging (MSI) is an established analytical tool
capable of defining and understanding complex tissues by determining
the spatial distribution of biological molecules. Three-dimensional
(3D) cell culture models mimic the pathophysiological environment
of in vivo tumors and are rapidly emerging as a valuable
research tool. Here, multimodal MSI techniques were employed to characterize
a novel aggregated 3D lung adenocarcinoma model, developed by the
group to mimic the in vivo tissue. Regions of tumor
heterogeneity and the hypoxic microenvironment were observed based
on the spatial distribution of a variety of endogenous molecules.
Desorption electrospray ionization (DESI)-MSI defined regions of a
hypoxic core and a proliferative outer layer from metabolite distribution.
Targeted metabolites (e.g., lactate, glutamine, and citrate) were
mapped to pathways of glycolysis and the TCA cycle demonstrating tumor
metabolic behavior. The first application of imaging mass cytometry
(IMC) with 3D cell culture enabled single-cell phenotyping at 1 μm
spatial resolution. Protein markers of proliferation (Ki-67) and hypoxia (glucose transporter 1) defined metabolic
signaling in the aggregoid model, which complemented the metabolite
data. Laser ablation inductively coupled plasma (LA-ICP)-MSI analysis
localized endogenous elements including magnesium and copper, further
differentiating the hypoxia gradient and validating the protein expression.
Obtaining a large amount of molecular information on a complementary
nature enabled an in-depth understanding of the biological processes
within the novel tumor model. Combining powerful imaging techniques
to characterize the aggregated 3D culture highlighted a future methodology
with potential applications in cancer research and drug development.
Collapse
Affiliation(s)
- Lucy E Flint
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom
| | - Gregory Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 0WG, United Kingdom
| | - Joseph D Ready
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom
| | - Stephanie Ling
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 0WG, United Kingdom
| | - Catherine J Duckett
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom
| | - Neil A Cross
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom
| | - Laura M Cole
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom
| | - David P Smith
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom
| | - Richard J A Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 0WG, United Kingdom.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Malcolm R Clench
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom
| |
Collapse
|
13
|
Woźniak M, Makuch S, Winograd K, Wiśniewski J, Ziółkowski P, Agrawal S. 6-Shogaol enhances the anticancer effect of 5-fluorouracil, oxaliplatin, and irinotecan via increase of apoptosis and autophagy in colon cancer cells in hypoxic/aglycemic conditions. BMC Complement Med Ther 2020; 20:141. [PMID: 32393373 PMCID: PMC7216385 DOI: 10.1186/s12906-020-02913-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The development and growth of colorectal cancer based on constitutive activation of numerous signaling pathways that stimulate proliferation and metastasis. Plant-derived agents excel by targeting multiple aspects of tumor progression. Previous investigations have shown that ginger derivatives- shogaols possess anti-cancer and anti-inflammatory effects. In the present study, we have examined the anti-cancer effects of 6-shogaol alongside with the most widely used chemotherapeutic agents/regimens in the tumor-like microenvironment conditions. METHODS Cytotoxicity on two colon cancer cell lines (SW480 and SW620) was measured by MTT test. Apoptosisassay, immunocytochemical and Western blotting analysis for autophagy and apoptosis detection were performed. RESULTS Here, we report that 6-shogaol by itself or in combination with chemotherapeutic agents/regimens exerted a cytotoxic effect on CRC cells. Cell death might be linked with the activation of autophagy and apoptosis-related pathways. In the tumor-like microenvironment, which is characterized by hypoxia and glucose starvation, 6-shogaol with chemotherapeutics is significantly more potent than conventional chemotherapy alone. CONCLUSIONS Collectively, our data suggest that the addition of 6-shogaol to established chemotherapeutic regimens could potentially be a remarkable therapeutic strategy for colorectal cancer.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Pathology, Wroclaw Medical University, ul. K. Marcinkowskiego, 150-368, Wrocław, Poland.
| | - Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, ul. K. Marcinkowskiego, 150-368, Wrocław, Poland
| | - Kinga Winograd
- Department of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Jerzy Wiśniewski
- Department of Biochemistry, Wroclaw Medical University, Wrocław, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wroclaw Medical University, ul. K. Marcinkowskiego, 150-368, Wrocław, Poland
| | - Siddarth Agrawal
- Department of Pathology, Wroclaw Medical University, ul. K. Marcinkowskiego, 150-368, Wrocław, Poland
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
14
|
Turovskaya MV, Gaidin SG, Vedunova MV, Babaev AA, Turovsky EA. BDNF Overexpression Enhances the Preconditioning Effect of Brief Episodes of Hypoxia, Promoting Survival of GABAergic Neurons. Neurosci Bull 2020; 36:733-760. [PMID: 32219700 PMCID: PMC7340710 DOI: 10.1007/s12264-020-00480-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
Hypoxia causes depression of synaptic plasticity, hyperexcitation of neuronal networks, and the death of specific populations of neurons. However, brief episodes of hypoxia can promote the adaptation of cells. Hypoxic preconditioning is well manifested in glutamatergic neurons, while this adaptive mechanism is virtually suppressed in GABAergic neurons. Here, we show that brain-derived neurotrophic factor (BDNF) overexpression in neurons enhances the preconditioning effect of brief episodes of hypoxia. The amplitudes of the NMDAR- and AMPAR-mediated Ca2+ responses of glutamatergic and GABAergic neurons gradually decreased after repetitive brief hypoxia/reoxygenation cycles in cell cultures transduced with the (AAV)-Syn-BDNF-EGFP virus construct. In contrast, the amplitudes of the responses of GABAergic neurons increased in non-transduced cultures after preconditioning. The decrease of the amplitudes in GABAergic neurons indicated the activation of mechanisms of hypoxic preconditioning. Preconditioning suppressed apoptotic or necrotic cell death. This effect was most pronounced in cultures with BDNF overexpression. Knockdown of BDNF abolished the effect of preconditioning and promoted the death of GABAergic neurons. Moreover, the expression of the anti-apoptotic genes Stat3, Socs3, and Bcl-xl substantially increased 24 h after hypoxic episodes in the transduced cultures compared to controls. The expression of genes encoding the pro-inflammatory cytokines IL-10 and IL-6 also increased. In turn, the expression of pro-apoptotic (Bax, Casp-3, and Fas) and pro-inflammatory (IL-1β and TNFα) genes decreased after hypoxic episodes in cultures with BDNF overexpression. Inhibition of vesicular BDNF release abolished its protective action targeting inhibition of the oxygen-glucose deprivation (OGD)-induced [Ca2+]i increase in GABAergic and glutamatergic neurons, thus promoting their death. Bafilomycin A1, Brefeldin A, and tetanus toxin suppressed vesicular release (including BDNF) and shifted the gene expression profile towards excitotoxicity, inflammation, and apoptosis. These inhibitors of vesicular release abolished the protective effects of hypoxic preconditioning in glutamatergic neurons 24 h after hypoxia/reoxygenation cycles. This finding indicates a significant contribution of vesicular BDNF release to the development of the mechanisms of hypoxic preconditioning. Thus, our results demonstrate that BDNF plays a pivotal role in the activation and enhancement of the preconditioning effect of brief episodes of hypoxia and promotes tolerance of the most vulnerable populations of GABAergic neurons to hypoxia/ischemia.
Collapse
Affiliation(s)
- M V Turovskaya
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - S G Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - M V Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - E A Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| |
Collapse
|
15
|
Cui J, Wang L, Ren X, Zhang Y, Zhang H. LRPPRC: A Multifunctional Protein Involved in Energy Metabolism and Human Disease. Front Physiol 2019; 10:595. [PMID: 31178748 PMCID: PMC6543908 DOI: 10.3389/fphys.2019.00595] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
The pentatricopeptide repeat (PPR) family plays a major role in RNA stability, regulation, processing, splicing, translation, and editing. Leucine-rich PPR-motif-containing protein (LRPPRC), a member of the PPR family, is a known gene mutation that causes Leigh syndrome French-Canadian. Recently, growing evidence has pointed out that LRPPRC dysregulation is related to various diseases ranging from tumors to viral infections. This review presents available published data on the LRPPRC protein function and its role in tumors and other diseases. As a multi-functional protein, LRPPRC regulates a myriad of biological processes, including energy metabolism and maturation and the export of nuclear mRNA. Overexpression of LRPPRC has been observed in various human tumors and is associated with poor prognosis. Downregulation of LRPPRC inhibits growth and invasion, induces apoptosis, and overcomes drug resistance in tumor cells. In addition, LRPPRC plays a potential role in Parkinson's disease, neurofibromatosis 1, viral infections, and venous thromboembolism. Further investigating these new functions of LRPPRC should provide novel opportunities for a better understanding of its pathological role in diseases from tumors to viral infections and as a potential biomarker and molecular target for disease treatment.
Collapse
Affiliation(s)
- Jie Cui
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,College of General Practitioners, Xi'an Medical University, Xi'an, China
| | - Li Wang
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,College of General Practitioners, Xi'an Medical University, Xi'an, China
| | - Xiaoyue Ren
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,College of General Practitioners, Xi'an Medical University, Xi'an, China
| | - Yamin Zhang
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,College of General Practitioners, Xi'an Medical University, Xi'an, China
| | - Hongyi Zhang
- College of General Practitioners, Xi'an Medical University, Xi'an, China.,Department of Urology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China
| |
Collapse
|
16
|
Abstract
Cells respond to hypoxia by shifting cellular processes from general housekeeping functions to activating specialized hypoxia-response pathways. Oxygen plays an important role in generating ATP to maintain a productive rate of protein synthesis in normoxia. In hypoxia, the rate of the canonical protein synthesis pathway is significantly slowed and impaired due to limited ATP availability, necessitating an alternative mechanism to mediate protein synthesis and facilitate adaptation. Hypoxia adaptation is largely mediated by hypoxia-inducible factors (HIFs). While HIFs are well known for their transcriptional functions, they also play imperative roles in translation to mediate hypoxic protein synthesis. Such adaptations to hypoxia are often hyperactive in solid tumors, contributing to the expression of cancer hallmarks, including treatment resistance. The current literature on protein synthesis in hypoxia is reviewed here, inclusive of hypoxia-specific mRNA selection to translation termination. Current HIF targeting therapies are also discussed as are the opportunities involved with targeting hypoxia specific protein synthesis pathways.
Collapse
Affiliation(s)
- Nancy T Chee
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL, 33136, USA
| | - Ines Lohse
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL, 33136, USA
| | - Shaun P Brothers
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL, 33136, USA.
| |
Collapse
|
17
|
Bai S, Zhang P, Zhang JC, Shen J, Xiang X, Yan YB, Xu ZQ, Zhang J, Long L, Wang C, Shi P, Yang L, Chen W, Liu H. A gene signature associated with prognosis and immune processes in head and neck squamous cell carcinoma. Head Neck 2019; 41:2581-2590. [PMID: 30839132 DOI: 10.1002/hed.25731] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/07/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) has a poor prognosis that has not significantly improved in the past several decades. A prognostic-related signature was needed. METHODS The Cancer Genome Atlas and GSE41613 databases were downloaded as a training and validation set, respectively. We identified 12 genes that demonstrated progression and prognostic value, and then, a gene signature was constructed. RESULTS This classification could reflect distinct characteristics, phenotypically and molecularly, among HNSCC tumors. It could stratify patients with significantly different survival rates (median survival: 2083 days vs 927 days; P = 3.85E-08) in the training cohort and validation cohort (P = 0.007) and was significantly involved in immune/inflammatory response and tumor progression processes. CONCLUSIONS This bioinformatics-based signature suggested the presence of two distinct populations of patients with HNSCC with distinguishable phenotypic characteristics and clinical outcomes and might provide insight for new types of immune therapy.
Collapse
Affiliation(s)
- Shuang Bai
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Jian-Cheng Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Jun Shen
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Xu Xiang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Ying-Bin Yan
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Zhen-Qi Xu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Jun Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Li Long
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Chao Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Ping Shi
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Li Yang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Wei Chen
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Hao Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| |
Collapse
|
18
|
Boutouja F, Stiehm CM, Platta HW. mTOR: A Cellular Regulator Interface in Health and Disease. Cells 2019; 8:cells8010018. [PMID: 30609721 PMCID: PMC6356367 DOI: 10.3390/cells8010018] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/25/2018] [Accepted: 01/01/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanistic target of Rapamycin (mTOR) is a ubiquitously-conserved serine/threonine kinase, which has a central function in integrating growth signals and orchestrating their physiologic effects on cellular level. mTOR is the core component of differently composed signaling complexes that differ in protein composition and molecular targets. Newly identified classes of mTOR inhibitors are being developed to block autoimmune diseases and transplant rejections but also to treat obesity, diabetes, and different types of cancer. Therefore, the selective and context-dependent inhibition of mTOR activity itself might come into the focus as molecular target to prevent severe diseases and possibly to extend life span. This review provides a general introduction to the molecular composition and physiologic function of mTOR complexes as part of the Special Issue “2018 Select Papers by Cells’ Editorial Board Members”.
Collapse
Affiliation(s)
- Fahd Boutouja
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Christian M Stiehm
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| |
Collapse
|
19
|
Hypoxia impairs adaptation of skeletal muscle protein turnover- and AMPK signaling during fasting-induced muscle atrophy. PLoS One 2018; 13:e0203630. [PMID: 30212583 PMCID: PMC6136752 DOI: 10.1371/journal.pone.0203630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/23/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Hypoxemia in humans may occur during high altitude mountaineering and in patients suffering from ventilatory insufficiencies such as cardiovascular- or respiratory disease including Chronic Obstructive Pulmonary Disease (COPD). In these conditions, hypoxemia has been correlated to reduced appetite and decreased food intake. Since hypoxemia and reduced food intake intersect in various physiological and pathological conditions and both induce loss of muscle mass, we investigated whether hypoxia aggravates fasting-induced skeletal muscle atrophy and evaluated underlying protein turnover signaling. METHODS Mice were kept under hypoxic (8% oxygen) or normoxic conditions (21% oxygen), or were pair-fed to the hypoxia group for 12 days. Following an additional 24 hours of fasting, muscle weight and protein turnover signaling were assessed in the gastrocnemius muscle by RT-qPCR and Western blotting. RESULTS Loss of gastrocnemius muscle mass in response to fasting in the hypoxic group was increased compared to the normoxic group, but not to the pair-fed normoxic control group. Conversely, the fasting-induced increase in poly-ubiquitin conjugation, and expression of the ubiquitin 26S-proteasome E3 ligases, autophagy-lysosomal degradation-related mRNA transcripts and proteins, and markers of the integrated stress response (ISR), were attenuated in the hypoxia group compared to the pair-fed group. Mammalian target of rapamycin complex 1 (mTORC1) downstream signaling was reduced by fasting under normoxic conditions, but sustained under hypoxic conditions. Activation of AMP-activated protein kinase (AMPK) / tuberous sclerosis complex 2 (TSC2) signaling by fasting was absent, in line with retained mTORC1 activity under hypoxic conditions. Similarly, hypoxia suppressed AMPK-mediated glucocorticoid receptor (GR) signaling following fasting, which corresponded with blunted proteolytic signaling responses. CONCLUSIONS Hypoxia aggravates fasting-induced muscle wasting, and suppresses AMPK and ISR activation. Altered AMPK-mediated regulation of mTORC1 and GR may underlie aberrant protein turnover signaling and affect muscle atrophy responses in hypoxic skeletal muscle.
Collapse
|
20
|
NGAL is Downregulated in Oral Squamous Cell Carcinoma and Leads to Increased Survival, Proliferation, Migration and Chemoresistance. Cancers (Basel) 2018; 10:cancers10070228. [PMID: 29996471 PMCID: PMC6071146 DOI: 10.3390/cancers10070228] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 01/04/2023] Open
Abstract
Oral cancer is a major public health burden worldwide. The lack of biomarkers for early diagnosis has increased the difficulty in managing this disease. Recent studies have reported that neutrophil gelatinase-associated lipocalin (NGAL), a secreted glycoprotein, is upregulated in various tumors. In our study, we found that NGAL was significantly downregulated in primary malignant and metastatic tissues of oral cancer in comparison to normal tissues. The downregulation of NGAL was strongly correlated with both degree of differentiation and stage (I–IV); it can also serve as a prognostic biomarker for oral cancer. Additionally, tobacco carcinogens were found to be involved in the downregulation of NGAL. Mechanistic studies revealed that knockdown of NGAL increased oral cancer cell proliferation, survival, and migration; it also induced resistance against cisplatin. Silencing of NGAL activated mammalian target of rapamycin (mTOR)signaling and reduced autophagy by the liver kinase B1 (LKB1)-activated protein kinase (AMPK)-p53-Redd1 signaling axis. Moreover, cyclin-D1, Bcl-2, and matrix metalloproteinase-9 (MMP-9) were upregulated, and caspase-9 was downregulated, suggesting that silencing of NGAL increases oral cancer cell proliferation, survival, and migration. Thus, from our study, it is evident that downregulation of NGAL activates the mTOR pathway and helps in the progression of oral cancer.
Collapse
|
21
|
Ramakrishnan SK, Shah YM. A central role for hypoxia-inducible factor (HIF)-2α in hepatic glucose homeostasis. ACTA ACUST UNITED AC 2017; 4:207-216. [PMID: 29276790 PMCID: PMC5734117 DOI: 10.3233/nha-170022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatic glucose production is regulated by hormonal and dietary factors. At fasting, 80% of glucose released into the circulation is derived from the liver, among which gluconeogenesis accounts for 55% and the rest by glycogenolysis. Studies suggest a complex mechanism involved in the regulation of hepatic glucose metabolism during fasting and post-absorptive phase. Oxygen plays a key role in numerous metabolic pathways such as TCA cycle, gluconeogenesis, glycolysis and fatty acid oxidation. Oxygenation of the gastrointestinal tract including liver and intestine is dynamically regulated by changes in the blood flow and metabolic activity. Cellular adaptation to low oxygen is mediated by the transcription factors HIF-1α and HIF-2α. HIF-1α regulates glycolytic genes whereas HIF-2α is known to primarily regulate genes involved in cell proliferation and iron metabolism. This review focuses on the role of the oxygen sensing signaling in the regulation of hepatic glucose output with an emphasis on hypoxia inducible factor (HIF)-2α. Recent studies have established a metabolic role of HIF-2α in systemic glucose homeostasis. Understanding the HIF-2α dependent mechanism in hepatic metabolism will greatly enhance our potential to utilize the oxygen sensing mechanisms to treat metabolic diseases.
Collapse
Affiliation(s)
- Sadeesh K Ramakrishnan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Zhang JJ, Jo JO, Huynh DL, Ghosh M, Kim N, Lee SB, Lee HK, Mok YS, Kwon T, Jeong DK. Lethality of inappropriate plasma exposure on chicken embryonic development. Oncotarget 2017; 8:85642-85654. [PMID: 29156747 PMCID: PMC5689637 DOI: 10.18632/oncotarget.21105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/03/2017] [Indexed: 12/22/2022] Open
Abstract
In this study, we examined the effects of non-thermal dielectric barrier discharge plasma on embryonic development in chicken eggs in order to determine the optimal level of plasma exposure for the promotion of embryonic growth. We exposed developing chicken embryos at either Hamburger-Hamilton (HH) stage 04 or HH 20 to plasma at voltages of 11.7 kV to 27.6 kV. Our results show exposure at 11.7 kV for 1 min promoted chicken embryonic development, but exposure to more duration and intensity of plasma resulted in dose-dependent embryonic death and HH 20 stage embryos survive longer than those at stage HH 04. Furthermore, plasma exposure for 4 min increased the production of reactive oxygen species (ROS) and inactivated the nuclear factor erythroid 2-related factor 2 (NRF2)-antioxidant response signaling pathway, resulting in suppression of antioxidant enzymes in the skeletal muscle tissue of the dead embryos. We also found decreased levels of adenosine triphosphate production and reductions in the expression levels of several growth-related genes and proteins. These findings indicate that inappropriate plasma exposure causes dose-dependent embryonic death via excessive accumulation of ROS, NRF2-antioxidant signaling pathway disruption, and decreased growth factor expression.
Collapse
Affiliation(s)
- Jiao Jiao Zhang
- Department of Animal Biotechnology and Advance Next Generation Convergence Technology, Jeju National University, Jeju, Republic of Korea
| | - Jin Oh Jo
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, Republic of Korea
| | - Do Luong Huynh
- Department of Animal Biotechnology and Advance Next Generation Convergence Technology, Jeju National University, Jeju, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology and Advance Next Generation Convergence Technology, Jeju National University, Jeju, Republic of Korea
| | - Nameun Kim
- Department of Animal Biotechnology and Advance Next Generation Convergence Technology, Jeju National University, Jeju, Republic of Korea
| | - Sang Baek Lee
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, Republic of Korea
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, Republic of Korea
| | - Young Sun Mok
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, Republic of Korea
| | - Taeho Kwon
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Republic of Korea
| | - Dong Kee Jeong
- Department of Animal Biotechnology and Advance Next Generation Convergence Technology, Jeju National University, Jeju, Republic of Korea.,Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
23
|
Wang P, Ma T, Guo D, Hu K, Shu Y, Xu HHK, Schneider A. Metformin induces osteoblastic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells. J Tissue Eng Regen Med 2017; 12:437-446. [PMID: 28494141 DOI: 10.1002/term.2470] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/12/2017] [Accepted: 05/04/2017] [Indexed: 12/14/2022]
Abstract
Metformin, a first-line antidiabetic drug used by millions of patients, has been shown to have potential osteogenic properties. The present study was performed to test the hypothesis that clinically relevant doses of metformin promote the osteogenic differentiation and mineralization of induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs). iPSC-MSCs were treated with metformin (10 μm) to assess cell viability, osteogenic differentiation, mineralization and activation of the LKB1/AMP-activated protein kinase (AMPK) signalling pathway, a surrogate marker of metformin action. To determine its potential application in MSC-based bone and periodontal tissue engineering, iPSC-MSCs were also treated with metformin when seeded on to calcium phosphate cement (CPC) scaffolds. Immunoblotting and cellular uptake assays showed that iPSC-MSCs express functional organic cation transporter-1 (OCT-1), a transmembrane protein that mediates the intracellular uptake of metformin. Although metformin treatment did not impair iPSC-MSC viability, it significantly stimulated alkaline phosphatase activity, enhanced mineralized nodule formation and increased expression of osteogenic markers, including Runt-related transcription factor 2 (RUNX2) and osterix. Inhibition of LKB1 activity, a common upstream AMPK kinase, markedly reversed metformin-induced AMPK activation, RUNX2 expression and nuclear localization. Moreover, metformin substantially increased mineralized nodule formation of iPSC-MSC seeded on CPC scaffolds. Collectively, functional OCT-expressing iPSC-MSCs responded to metformin by inducing an osteogenic effect in part mediated by the LKB1/AMPK pathway. Considering the widespread use of metformin in diabetics, this work may lead to novel tissue-engineering platforms where autogenous OCT-expressing iPSC-MSCs might be used to enhance bone and periodontal regeneration in diabetic patients prescribed with daily doses of metformin.
Collapse
Affiliation(s)
- Ping Wang
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Dong Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Kevin Hu
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Hockin H K Xu
- Department of Endodontics, Periodontics and Prosthodontics, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
24
|
Recent Advances and Challenges of mTOR Inhibitors Use in the Treatment of Patients with Tuberous Sclerosis Complex. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9820181. [PMID: 28386314 PMCID: PMC5366202 DOI: 10.1155/2017/9820181] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/11/2017] [Accepted: 02/21/2017] [Indexed: 11/18/2022]
Abstract
Tuberous sclerosis complex (TSC) is a genetic condition characterized by the presence of benign, noninvasive, and tumor-like lesions called hamartomas that can affect multiple organ systems and are responsible for the clinical features of the disease. In the majority of cases, TSC results from mutations in the TSC1 and TSC2 genes, leading to the overactivation of the mammalian target of rapamycin (mTOR) signalling pathway, which controls several cell functions, including cell growth, proliferation, and survival. The establishment of a connection between TSC and mTOR led to the clinical use of drugs known as mTOR inhibitors (like rapamycin, also known as sirolimus and everolimus), which are becoming an increasingly interesting tool in the management of TSC-associated features, such as subependymal giant cell astrocytomas, renal angiomyolipomas, and also epilepsy. However, the intrinsic characteristics of these drugs and their systemic effects in such a heterogeneous condition pose many challenges in clinical practice, so that some questions remain unanswered. This article provides an overview of the pharmacological aspects of mTOR inhibitors about the clinical trials leading to their approval in TSC-related conditions and exposes current challenges and future directions associated with this promising therapeutic line.
Collapse
|
25
|
Resistance to mTORC1 Inhibitors in Cancer Therapy: From Kinase Mutations to Intratumoral Heterogeneity of Kinase Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1726078. [PMID: 28280521 PMCID: PMC5322438 DOI: 10.1155/2017/1726078] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/22/2017] [Indexed: 01/19/2023]
Abstract
Targeting mTORC1 has been thoroughly explored in cancer therapy. Following encouraging preclinical studies, mTORC1 inhibitors however failed to provide substantial benefits in cancer patients. Several resistance mechanisms have been identified including mutations of mTOR and activation of alternate proliferation pathways. Moreover, emerging evidence discloses intratumoral heterogeneity of mTORC1 activity that further contributes to a reduced anticancer efficacy of mTORC1 inhibitors. Genetic heterogeneity as well as heterogeneous conditions of the tumor environment such as hypoxia profoundly modifies mTORC1 activity in tumors and hence influences the response of tumors to mTORC1 inhibitors. Intriguingly, the heterogeneity of mTORC1 activity also occurs towards its substrates at the single cell level, as mutually exclusive pattern of activation of mTORC1 downstream effectors has been reported in tumors. After briefly describing mTORC1 biology and the use of mTORC1 inhibitors in patients, this review will give an overview on concepts of resistance to mTORC1 inhibition in cancer with a particular focus on intratumoral heterogeneity of mTORC1 activity.
Collapse
|
26
|
Liu H, Qiu H, Xiao Q, Le W. Chronic Hypoxia-Induced Autophagy Aggravates the Neuropathology of Alzheimer's Disease through AMPK-mTOR Signaling in the APPSwe/PS1dE9 Mouse Model. J Alzheimers Dis 2016; 48:1019-32. [PMID: 26444766 DOI: 10.3233/jad-150303] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with the accumulation of senile plaques and neurofibrillary tangles in the brain. Autophagy is the key machinery for mammalian cells to degrade damaged organelles and abnormal proteins. Enormous evidence suggests that the autophagy pathway is impaired in AD. Our previous study revealed that hypoxia induced autophagic activation leading to more amyloid-β production in vitro. In this study, we investigated whether autophagic dysfunction is involved in the hypoxia mediated-pathogenesis of AD. We used APPSwe/PS1dE9 transgenic (Tg) mice and wildtype (Wt) littermates. We documented that chronic hypoxia caused more and larger senile plaques in the brains of Tg mice. In addition, chronic hypoxia induced activation of autophagy in the brains of both Wt and Tg mice, and compared to the normal autophagic flux in Wt mice, the autophagic flux was impaired in the brains of H-Tg mice with a large amount of autophagic vacuole accumulation and significant high level of P62. In an in vitro study, we showed that hypoxia-induced autophagy significantly elevated the level of hAβ42. Furthermore, we found that chronic hypoxia activated AMPK and further inhibited the mTOR signaling pathway, while inhibition of AMPK attenuated autophagy induction through the enhancement of mTOR phosphorylation. In short, our study provides new insight into the mechanism underlying chronic hypoxia-mediated AD pathogenesis.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Qiu
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Xiao
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weidong Le
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Translational Research on Neurological Diseases, the 1st Affiliated Hospital, Dalian Medical University, Dalian, China.,Collaborative Innovation Center for Brain Science, the 1st Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
27
|
Zhou H, Shang C, Wang M, Shen T, Kong L, Yu C, Ye Z, Luo Y, Liu L, Li Y, Huang S. Ciclopirox olamine inhibits mTORC1 signaling by activation of AMPK. Biochem Pharmacol 2016; 116:39-50. [PMID: 27396756 DOI: 10.1016/j.bcp.2016.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/06/2016] [Indexed: 01/22/2023]
Abstract
Ciclopirox olamine (CPX), an off-patent antifungal agent, has recently been identified as a potential anticancer agent. The mammalian target of rapamycin (mTOR) is a central controller of cell growth, proliferation and survival. Little is known about whether and how CPX executes its anticancer action by inhibiting mTOR. Here we show that CPX inhibited the phosphorylation of p70 S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1), two downstream effector molecules of mTOR complex 1 (mTORC1), in a spectrum of human tumor cells, indicating that CPX inhibits mTORC1 signaling. Using rhabdomyosarcoma cells as an experimental model, we found that expression of constitutively active mTOR (E2419K) conferred resistance to CPX inhibition of cell proliferation, suggesting that CPX inhibition of mTORC1 contributed to its anticancer effect. In line with this, treatment with CPX inhibited tumor growth and concurrently suppressed mTORC1 signaling in RD xenografts. Mechanistically, CPX inhibition of mTORC1 was neither via inhibition of IGF-I receptor or phosphoinositide 3-kinase (PI3K), nor by activation of phosphatase and tensin homolog (PTEN). Instead, CPX inhibition of mTORC1 was attributed to activation of AMP-activated protein kinase (AMPK)-tuberous sclerosis complexes (TSC)/raptor pathways. This is supported by the findings that CPX activated AMPK; inhibition of AMPK with Compound C or ectopic expression of dominant negative AMPKα partially prevented CPX from inhibiting mTORC1; silencing TSC2 attenuated CPX inhibition of mTORC1; and CPX also increased AMPK-mediated phosphorylation of raptor (S792). Therefore, the results indicate that CPX exerts the anticancer effect by activating AMPK, resulting in inhibition of mTORC1 signaling.
Collapse
Affiliation(s)
- Hongyu Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Chaowei Shang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Min Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Tao Shen
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Lingmei Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Chunlei Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhennan Ye
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Lei Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| |
Collapse
|
28
|
miR-429 regulates the transition between Hypoxia-Inducible Factor (HIF)1A and HIF3A expression in human endothelial cells. Sci Rep 2016; 6:22775. [PMID: 26954587 PMCID: PMC4782134 DOI: 10.1038/srep22775] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/23/2016] [Indexed: 12/22/2022] Open
Abstract
Hypoxia-inducible factors (HIF) are heterodimeric transcription factors that allow cells to adapt and survive during hypoxia. Regulation of HIF1A and HIF2A mRNA is well characterized, whereas HIF3A mRNA regulation and function are less clear. Using RNA-Seq analysis of primary human umbilical vein endothelial cells, we found two isoforms of HIF3A were expressed, HIF3A2 and HIF3A3. Comparing HIF3A expression profiles to HIF1A mRNA during 48 hours of hypoxia revealed that HIF1A message peaked at 4 hours, whereas HIF3A expression increased while HIF1A was decreasing. Given that HIF1A mRNA is regulated by miR-429, we tested miR-429 effects on both HIF3A isoforms and found that they too were regulated by miR-429. Analysis of a HIF-3 target, DNA-damage-inducible transcript 4, a key survival gene, indicated that DDIT4 mRNA is induced by HIF-3 and negatively regulated by miR-429 through miR-429’s actions on HIF3A message. This provides a compelling model for how hypoxia-induced miR-429 regulates the switch between HIF-1 adaptive responses to HIF-3 survival responses by rapidly decreasing HIF1A levels while simultaneously slowing the progression of HIF3A expression until the miR-429 levels drop below normoxic levels. Since HIF-1 drives HIF3A and miR-429 expression, this establishes a regulatory network in which miR-429 plays a pivotal role.
Collapse
|
29
|
Bhattacharya B, Mohd Omar MF, Soong R. The Warburg effect and drug resistance. Br J Pharmacol 2016; 173:970-9. [PMID: 26750865 PMCID: PMC4793921 DOI: 10.1111/bph.13422] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022] Open
Abstract
: The Warburg effect describes the increased utilization of glycolysis rather than oxidative phosphorylation by tumour cells for their energy requirements under physiological oxygen conditions. This effect has been the basis for much speculation on the survival advantage of tumour cells, tumourigenesis and the microenvironment of tumours. More recently, studies have begun to reveal how the Warburg effect could influence drug efficacy and how our understanding of tumour energetics could be exploited to improve drug development. In particular, evidence is emerging demonstrating how better modelling of the tumour metabolic microenvironment could lead to a better prediction of drug efficacy and the identification of new combination strategies. This review will provide details of the current understanding of the complex interplay between glucose metabolism and pharmacology and discuss opportunities for utilizing the Warburg effect in future drug development.
Collapse
Affiliation(s)
| | | | - Richie Soong
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- Department of PathologyNational University of SingaporeSingapore
| |
Collapse
|
30
|
Hao Z, Ma Y, Wang J, Fan D, Han C, Wang Y, Ji Y, Wen S. Hypoxia promotes AMP-activated protein kinase (AMPK) and induces apoptosis in mouse osteoblasts. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:4892-4902. [PMID: 26191182 PMCID: PMC4503054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/26/2015] [Indexed: 06/04/2023]
Abstract
The hypoxic environment around the fracture site develops post the blood flow disruption and leads to osteoblast cell death and further impairs fracture healing. Hypoxia usually leads to the mitochondrial dysfunction and then results in apoptotic cell death. AMPK is ubiquitously expressed and functions as an intracellular fuel sensor by maintaining energy balance, as is potentially activated by hypoxia, ischemia, and ROS, however, the regulatory role of AMPK in hypoxia-induced apoptosis in osteoblasts and in the fracture healing has not been identified. In present study, we firstly determined the apoptosis induction by hypoxia in mouse osteoblastic MC3T3-E1 cells via examining the apoptotic cells and the activation of apoptosis-related molecules, then investigated the activation of AMPK signaling by hypoxia via analyzing the phosphorylation of AMPKα and ACC1, finally we explored the association of the AMPK activation with the hypoxia-induced apoptosis using loss-of-function strategy. Results demonstrated that hypoxia induced apoptosis in MC3T3-E1 cells and activated the AMPK signaling. And the knockdown of AMPK via chemical treatment or RNA interfering significantly decreased the hypoxia-induced apoptosis in MC3T3-E1 cells. Taken together, present study unveiled the regulatory role of AMPK signaling in the hypoxia-induced osteoblast apoptosis.
Collapse
Affiliation(s)
- Zengtao Hao
- Department of Hand Microsurgery, The Second Affiliated Hospital of Inner Mongolia Medical University Inner Mongolia, Hohhot 010030, China
| | - Yuxia Ma
- Department of Hand Microsurgery, The Second Affiliated Hospital of Inner Mongolia Medical University Inner Mongolia, Hohhot 010030, China
| | - Jihong Wang
- Department of Hand Microsurgery, The Second Affiliated Hospital of Inner Mongolia Medical University Inner Mongolia, Hohhot 010030, China
| | - Dongsheng Fan
- Department of Hand Microsurgery, The Second Affiliated Hospital of Inner Mongolia Medical University Inner Mongolia, Hohhot 010030, China
| | - Chaoqian Han
- Department of Hand Microsurgery, The Second Affiliated Hospital of Inner Mongolia Medical University Inner Mongolia, Hohhot 010030, China
| | - Yongfei Wang
- Department of Hand Microsurgery, The Second Affiliated Hospital of Inner Mongolia Medical University Inner Mongolia, Hohhot 010030, China
| | - Yuntao Ji
- Department of Hand Microsurgery, The Second Affiliated Hospital of Inner Mongolia Medical University Inner Mongolia, Hohhot 010030, China
| | - Shuzheng Wen
- Department of Hand Microsurgery, The Second Affiliated Hospital of Inner Mongolia Medical University Inner Mongolia, Hohhot 010030, China
| |
Collapse
|
31
|
Rheb Inhibits Protein Synthesis by Activating the PERK-eIF2α Signaling Cascade. Cell Rep 2015; 10:684-693. [PMID: 25660019 DOI: 10.1016/j.celrep.2015.01.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 12/04/2014] [Accepted: 12/31/2014] [Indexed: 11/20/2022] Open
Abstract
Rheb, a ubiquitous small GTPase, is well known to bind and activate mTOR, which augments protein synthesis. Inhibition of protein synthesis is also physiologically regulated. Thus, with cell stress, the unfolded protein response system leads to phosphorylation of the initiation factor eIF2α and arrest of protein synthesis. We now demonstrate a major role for Rheb in inhibiting protein synthesis by enhancing the phosphorylation of eIF2α by protein kinase-like ER kinase (PERK). Interplay between the stimulatory and inhibitory roles of Rheb may enable cells to modulate protein synthesis in response to varying environmental stresses.
Collapse
|
32
|
Ramachandiran S, Adon A, Guo X, Wang Y, Wang H, Chen Z, Kowalski J, Sunay UR, Young AN, Brown T, Mar JC, Du Y, Fu H, Mann KP, Natkunam Y, Boise LH, Saavedra HI, Lossos IS, Bernal-Mizrachi L. Chromosome instability in diffuse large B cell lymphomas is suppressed by activation of the noncanonical NF-κB pathway. Int J Cancer 2014; 136:2341-51. [PMID: 25359525 DOI: 10.1002/ijc.29301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/16/2014] [Indexed: 12/12/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common form of lymphoma in the United States. DLBCL comprises biologically distinct subtypes including germinal center-like (GCB) and activated-B-cell-like DLBCL (ABC). The most aggressive type, ABC-DLBCL, displays dysregulation of both canonical and noncanonical NF-κB pathway as well as genomic instability. Although, much is known about the tumorigenic roles of the canonical NF-kB pathway, the precise role of the noncanonical NF-kB pathway remains unknown. Here we show that activation of the noncanonical NF-κB pathway regulates chromosome stability, DNA damage response and centrosome duplication in DLBCL. Analysis of 92 DLBCL samples revealed that activation of the noncanonical NF-κB pathway is associated with low levels of DNA damage and centrosome amplification. Inhibiting the noncanonical pathway in lymphoma cells uncovered baseline DNA damage and prevented doxorubicin-induced DNA damage repair. In addition, it triggered centrosome amplification and chromosome instability, indicated by anaphase bridges, multipolar spindles and chromosome missegregation. We determined that the noncanonical NF-κB pathway execute these functions through the regulation of GADD45α and REDD1 in a p53-independent manner, while it collaborates with p53 to regulate cyclin G2 expression. Furthermore, this pathway regulates GADD45α, REDD1 and cyclin G2 through direct binding of NF-κB sites to their promoter region. Overall, these results indicate that the noncanonical NF-κB pathway plays a central role in maintaining genome integrity in DLBCL. Our data suggests that inhibition of the noncanonical NF-kB pathway should be considered as an important component in DLBCL therapeutic approach.
Collapse
Affiliation(s)
- Sampath Ramachandiran
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Leprivier G, Rotblat B, Khan D, Jan E, Sorensen PH. Stress-mediated translational control in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:845-60. [PMID: 25464034 DOI: 10.1016/j.bbagrm.2014.11.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 12/22/2022]
Abstract
Tumor cells are continually subjected to diverse stress conditions of the tumor microenvironment, including hypoxia, nutrient deprivation, and oxidative or genotoxic stress. Tumor cells must evolve adaptive mechanisms to survive these conditions to ultimately drive tumor progression. Tight control of mRNA translation is critical for this response and the adaptation of tumor cells to such stress forms. This proceeds though a translational reprogramming process which restrains overall translation activity to preserve energy and nutrients, but which also stimulates the selective synthesis of major stress adaptor proteins. Here we present the different regulatory signaling pathways which coordinate mRNA translation in the response to different stress forms, including those regulating eIF2α, mTORC1 and eEF2K, and we explain how tumor cells hijack these pathways for survival under stress. Finally, mechanisms for selective mRNA translation under stress, including the utilization of upstream open reading frames (uORFs) and internal ribosome entry sites (IRESes) are discussed in the context of cell stress. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Gabriel Leprivier
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L4, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Barak Rotblat
- Department of Life Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Debjit Khan
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L4, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L4, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada.
| |
Collapse
|
34
|
Ma Y, Yang HZ, Dong BJ, Zou HB, Zhou Y, Kong XM, Huang YR. Biphasic regulation of autophagy by miR-96 in prostate cancer cells under hypoxia. Oncotarget 2014; 5:9169-82. [PMID: 25333253 PMCID: PMC4253426 DOI: 10.18632/oncotarget.2396] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/26/2014] [Indexed: 12/13/2022] Open
Abstract
Autophagy favors cell survival under hypoxia, and increasing evidence revealed that microRNAs regulate autophagy. We report here hypoxia increased the expression of miR-96 in prostate cancer cells, and miR-96 stimulated autophagy by suppressing MTOR. We found that inhibition of miR-96 abolished hypoxia-induced autophagy. Paradoxically, ectopic over-expression of miR-96 to a certain threshold, also abolished the hypoxia-induced autophagy. Further studies have shown that high levels of miR-96 inhibited autophagy through suppressing ATG7, a key autophagy-associated gene. Importantly, the miR-96 expression level threshold was determined, and the effects of miR-96 on autophagy on either side of the threshold were opposite. These data demonstrate hypoxia-induced autophagy is at least partially regulated by miR-96; miR-96 can promote or inhibit autophagy by principally inhibiting MTOR or ATG7 depending on the expression levels of miR-96. Our observation might reveal a novel regulatory mode of autophagy by microRNAs under hypoxia.
Collapse
Affiliation(s)
- Yi Ma
- Department of urology, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
- Department of biobank, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Hao-Zheng Yang
- Department of central laboratory, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Bai-Jun Dong
- Department of urology, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Han-Bing Zou
- Department of central laboratory, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yan Zhou
- Department of central laboratory, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Xian-Ming Kong
- Department of biobank, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yi-Ran Huang
- Department of urology, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
35
|
Ras transformation uncouples the kinesin-coordinated cellular nutrient response. Proc Natl Acad Sci U S A 2014; 111:10568-73. [PMID: 25002494 DOI: 10.1073/pnas.1411016111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The kinesin family members (KIFs) KIF2A and KIF2C depolymerize microtubules, unlike the majority of other kinesins, which transport cargo along microtubules. KIF2A regulates the localization of lysosomes in the cytoplasm, which assists in activation of the mechanistic target of rapamycin complex 1 (mTORC1) on the lysosomal surface. We find that the closely related kinesin KIF2C also influences lysosomal organization in immortalized human bronchial epithelial cells (HBECs). Expression of KIF2C and, to a lesser extent, KIF2A in untransformed and mutant K-Ras-transformed cells is regulated by ERK1/2. Prolonged inhibition of ERK1/2 activation with PD0325901 mimics nutrient deprivation by disrupting lysosome organization and decreasing mTORC1 activity in HBEC, suggesting a long-term mechanism for optimization of mTORC1 activity by ERK1/2. We tested the hypothesis that up-regulation of KIF2C and KIF2A by ERK1/2 caused aberrant lysosomal positioning and mTORC1 activity in a mutant K-Ras-dependent cancer and cancer model. In Ras-transformed cells, however, mTORC1 activity and lysosome organization appear independent of ERK1/2 and these kinesins although ERK1/2 activity and the kinesins are required for Ras-dependent proliferation and migration. We conclude that mutant K-Ras repurposes these signaling and regulatory proteins to support the transformed phenotype.
Collapse
|
36
|
Berger NA. Obesity-associated gastrointestinal tract cancer: from beginning to end. Cancer 2014; 120:935-9. [PMID: 24448723 DOI: 10.1002/cncr.28534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Nathan A Berger
- Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, Ohio
| |
Collapse
|
37
|
Shin DM, Zhang H, Saba NF, Chen AY, Nannapaneni S, Amin ARMR, Müller S, Lewis M, Sica G, Kono S, Brandes JC, Grist WJ, Moreno-Williams R, Beitler JJ, Thomas SM, Chen Z, Shin HJC, Grandis JR, Khuri FR, Chen ZG. Chemoprevention of head and neck cancer by simultaneous blocking of epidermal growth factor receptor and cyclooxygenase-2 signaling pathways: preclinical and clinical studies. Clin Cancer Res 2013; 19:1244-56. [PMID: 23422093 DOI: 10.1158/1078-0432.ccr-12-3149] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We investigated the efficacy and underlying molecular mechanism of a novel chemopreventive strategy combining EGF receptor (EGFR) tyrosine kinase inhibitor (TKI) with cyclooxygenase-2 inhibitor (COX-2I). EXPERIMENTAL DESIGN We examined the inhibition of tumor cell growth by combined EGFR-TKI (erlotinib) and COX-2I (celecoxib) treatment using head and neck cancer cell lines and a preventive xenograft model. We studied the antiangiogenic activity of these agents and examined the affected signaling pathways by immunoblotting analysis in tumor cell lysates and immunohistochemistry (IHC) and enzyme immunoassay (EIA) analyses on the mouse xenograft tissues and blood, respectively. Biomarkers in these signaling pathways were studied by IHC, EIA, and an antibody array analysis in samples collected from participants in a phase I chemoprevention trial of erlotinib and celecoxib. RESULTS The combined treatment inhibited head and neck cancer cell growth significantly more potently than either single agent alone in cell line and xenograft models, and resulted in greater inhibition of cell-cycle progression at G1 phase than either single drug. The combined treatment modulated the EGFR and mTOR signaling pathways. A phase I chemoprevention trial of combined erlotinib and celecoxib revealed an overall pathologic response rate of 71% at time of data analysis. Analysis of tissue samples from participants consistently showed downregulation of EGFR, pERK, and pS6 levels after treatment, which correlated with clinical response. CONCLUSION Treatment with erlotinib combined with celecoxib offers an effective chemopreventive approach through inhibition of EGFR and mTOR pathways, which may serve as potential biomarkers to monitor the intervention of this combination in the clinic. Clin Cancer Res; 19(5); 1244-56. ©2013 AACR.
Collapse
Affiliation(s)
- Dong M Shin
- Department of Hematology and Medical Oncology, Emory University School of Medicine Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Goncharova EA. mTOR and vascular remodeling in lung diseases: current challenges and therapeutic prospects. FASEB J 2013; 27:1796-807. [PMID: 23355268 DOI: 10.1096/fj.12-222224] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a major regulator of cellular metabolism, proliferation, and survival that is implicated in various proliferative and metabolic diseases, including obesity, type 2 diabetes, hamartoma syndromes, and cancer. Emerging evidence suggests a potential critical role of mTOR signaling in pulmonary vascular remodeling. Remodeling of small pulmonary arteries due to increased proliferation, resistance to apoptosis, and altered metabolism of cells forming the pulmonary vascular wall is a key currently irreversible pathological feature of pulmonary hypertension, a progressive pulmonary vascular disorder with high morbidity and mortality. In addition to rare familial and idiopathic forms, pulmonary hypertension is also a life-threatening complication of several lung diseases associated with hypoxia. This review aims to summarize our current knowledge and recent advances in understanding the role of the mTOR pathway in pulmonary vascular remodeling, with a specific focus on the hypoxia component, a confirmed shared trigger of pulmonary hypertension in lung diseases. We also discuss the emerging role of mTOR as a promising therapeutic target and mTOR inhibitors as potential pharmacological approaches to treat pulmonary vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Elena A Goncharova
- University of Pennsylvania Perelman School of Medicine, Translational Research Laboratories, Rm. 1214, 125 South 31st St., Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Heikamp EB, Powell JD. Sensing the immune microenvironment to coordinate T cell metabolism, differentiation & function. Semin Immunol 2013; 24:414-20. [PMID: 23332779 DOI: 10.1016/j.smim.2012.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/11/2012] [Indexed: 12/14/2022]
Abstract
Mounting an adaptive immune response is bioenergetically demanding. As a result, T cell activation coincides with profound changes in cellular metabolism that must be coordinated with instructive signals from cytokine and costimulatory receptors to generate an immune response. Studies examining the intimate link between metabolism and immune function have revealed that different types of T cells have distinct metabolic profiles. Data is emerging that place mTOR, an evolutionarily conserved serine-threonine kinase, as a central integrator of these processes. In this review, we will discuss the role of mTOR in determining both CD4 and CD8 T cell metabolism, differentiation, and trafficking.
Collapse
Affiliation(s)
- Emily B Heikamp
- Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | | |
Collapse
|
40
|
Gupta A, Cao W, Sadashivaiah K, Chen W, Schneider A, Chellaiah MA. Promising noninvasive cellular phenotype in prostate cancer cells knockdown of matrix metalloproteinase 9. ScientificWorldJournal 2013; 2013:493689. [PMID: 23476138 PMCID: PMC3580924 DOI: 10.1155/2013/493689] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/23/2012] [Indexed: 02/08/2023] Open
Abstract
Cell surface interaction of CD44 and MMP9 increases migration and invasion of PC3 cells. We show here that stable knockdown of MMP9 in PC3 cells switches CD44 isoform expression from CD44s to CD44v6 which is more glycosylated. These cells showed highly adhesive morphology with extensive cell spreading which is due to the formation of focal adhesions and well organized actin-stress fibers. MMP9 knockdown blocks invadopodia formation and matrix degradation activity as well. However, CD44 knockdown PC3 cells failed to develop focal adhesions and stress fibers; hence these cells make unstable adhesions. A part of the reason for these changes could be caused by silencing of CD44v6 as well. Immunostaining of prostate tissue microarray sections illustrated significantly lower levels of CD44v6 in adenocarcinoma than normal tissue. Our results suggest that interaction between CD44 and MMP9 is a potential mechanism of invadopodia formation. CD44v6 expression may be essential for the protection of non-invasive cellular phenotype. CD44v6 decrease may be a potential marker for prognosis and therapeutics.
Collapse
Affiliation(s)
- Aditi Gupta
- 1Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Wei Cao
- 2Laboratory of Oral Tumor Biology, Department of Oral and Maxillofacial Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kavitha Sadashivaiah
- 1Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Wantao Chen
- 2Laboratory of Oral Tumor Biology, Department of Oral and Maxillofacial Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Abraham Schneider
- 1Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Meenakshi A. Chellaiah
- 1Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
- *Meenakshi A. Chellaiah:
| |
Collapse
|
41
|
Chang HW, Lee YS, Nam HY, Han MW, Kim HJ, Moon SY, Jeon H, Park JJ, Carey TE, Chang SE, Kim SW, Kim SY. Knockdown of β-catenin controls both apoptotic and autophagic cell death through LKB1/AMPK signaling in head and neck squamous cell carcinoma cell lines. Cell Signal 2012; 25:839-47. [PMID: 23280187 DOI: 10.1016/j.cellsig.2012.12.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 12/06/2012] [Accepted: 12/24/2012] [Indexed: 11/24/2022]
Abstract
The Wnt/β-catenin pathway regulates the viability and radiosensitivity of head and neck squamous cancer cells (HNSCC). Increased β-catenin predisposes HNSCC patients to poor prognosis and survival. This study was conducted to determine the mechanism by which β-catenin regulates the viability of HNSCC. AMC-HN-3, -HN-8, UM-SCC-38, and -SCC-47 cells, which were established from human head and neck cancer specimens, and underwent cell death following β-catenin silencing. β-Catenin silencing significantly induced G1 arrest and increased the expression of Bax and active caspase-3, which demonstrates the sequential activation of apoptotic cascades following treatment of HNSCC with targeted siRNA. Intriguingly, β-catenin silencing also induced autophagy. Here, we confirm that the number of autophagic vacuoles and the expression of type II light chain 3 were increased in cells that were treated with β-catenin siRNA. These cell death modes are most likely due to the activation of LKB1-dependent AMPK following β-catenin silencing. The activated LKB1/AMPK pathway in AMC-HN-3 cells caused G1 arrest by phosphorylating p53 and suppressing mTOR signaling. In addition, treating AMC-HN-3 cells with LKB1 siRNA preserved cell viability against β-catenin silencing-induced cytotoxicity. Taken together, these results imply that following β-catenin silencing, HNSCC undergo both apoptotic and autophagic cell death that are under the control of LKB1/AMPK. To the best of our knowledge, these results suggest for the first time that novel crosstalk between β-catenin and the LKB1/AMPK pathway regulates the viability of HNSCC. This study thus presents new insights into our understanding of the cellular and molecular mechanisms involved in β-catenin silencing-induced cell death.
Collapse
Affiliation(s)
- Hyo Won Chang
- Department of Otolaryngology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Feng Q, Zou X, Lu L, Li Y, Liu Y, Zhou J, Duan C. The stress-response gene redd1 regulates dorsoventral patterning by antagonizing Wnt/β-catenin activity in zebrafish. PLoS One 2012; 7:e52674. [PMID: 23300740 PMCID: PMC3530439 DOI: 10.1371/journal.pone.0052674] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 11/19/2012] [Indexed: 11/25/2022] Open
Abstract
REDD1/redd1 is a stress-response gene that is induced under various stressful conditions such as hypoxia, DNA damage, and energy stress. The increased REDD1 inhibits mTOR signaling and cell growth. Here we report an unexpected role of Redd1 in regulating dorsoventral patterning in zebrafish embryos and the underlying mechanisms. Zebrafish redd1 mRNA is maternally deposited. Although it is ubiquitously detected in many adult tissues, its expression is highly tissue-specific and dynamic during early development. Hypoxia and heat shock strongly induce redd1 expression in zebrafish embryos. Knockdown of Redd1 using two independent morpholinos results in dorsalized embryos and this effect can be rescued by injecting redd1 mRNA. Forced expression of Redd1 ventralizes embryos. Co-expression of Redd1 with Wnt3a or a constitutively active form of β-catenin suggests that Redd1 alters dorsoventral patterning by antagonizing the Wnt/β-catenin signaling pathway. These findings have unraveled a novel role of Redd1 in early development by antagonizing Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Qiang Feng
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Xia Zou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Ling Lu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yun Li
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
- * E-mail: (JZ); (CD)
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (JZ); (CD)
| |
Collapse
|
43
|
Regazzetti C, Dumas K, Le Marchand-Brustel Y, Peraldi P, Tanti JF, Giorgetti-Peraldi S. Regulated in development and DNA damage responses -1 (REDD1) protein contributes to insulin signaling pathway in adipocytes. PLoS One 2012; 7:e52154. [PMID: 23272222 PMCID: PMC3525563 DOI: 10.1371/journal.pone.0052154] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/08/2012] [Indexed: 01/17/2023] Open
Abstract
REDD1 (Regulated in development and DNA damage response 1) is a hypoxia and stress response gene and is a negative regulator of mTORC1. Since mTORC1 is involved in the negative feedback loop of insulin signaling, we have studied the role of REDD1 on insulin signaling pathway and its regulation by insulin. In human and murine adipocytes, insulin transiently stimulates REDD1 expression through a MEK dependent pathway. In HEK-293 cells, expression of a constitutive active form of MEK stabilizes REDD1 and protects REDD1 from proteasomal degradation mediated by CUL4A-DDB1 ubiquitin ligase complex. In 3T3-L1 adipocytes, silencing of REDD1 with siRNA induces an increase of mTORC1 activity as well as an inhibition of insulin signaling pathway and lipogenesis. Rapamycin, a mTORC1 inhibitor, restores the insulin signaling after downregulation of REDD1 expression. This observation suggests that REDD1 positively regulates insulin signaling through the inhibition of mTORC1 activity. In conclusion, our results demonstrate that insulin increases REDD1 expression, and that REDD1 participates in the biological response to insulin.
Collapse
Affiliation(s)
- Claire Regazzetti
- INSERM U 1065, Mediterranean Research Centre for Molecular Medicine, Team: Cellular and Molecular Physiopathology of obesity and diabetes, Nice, France
- University of Nice Sophia Antipolis, UFR Medicine, Nice, France
| | - Karine Dumas
- INSERM U 1065, Mediterranean Research Centre for Molecular Medicine, Team: Cellular and Molecular Physiopathology of obesity and diabetes, Nice, France
- University of Nice Sophia Antipolis, UFR Medicine, Nice, France
| | - Yannick Le Marchand-Brustel
- INSERM U 1065, Mediterranean Research Centre for Molecular Medicine, Team: Cellular and Molecular Physiopathology of obesity and diabetes, Nice, France
- University of Nice Sophia Antipolis, UFR Medicine, Nice, France
| | - Pascal Peraldi
- University of Nice Sophia Antipolis, UFR Medicine, Nice, France
- UMR CNRS 7277, UMR INSERM 1091, Faculty of Medicine, Nice, France
| | - Jean-François Tanti
- INSERM U 1065, Mediterranean Research Centre for Molecular Medicine, Team: Cellular and Molecular Physiopathology of obesity and diabetes, Nice, France
- University of Nice Sophia Antipolis, UFR Medicine, Nice, France
| | - Sophie Giorgetti-Peraldi
- INSERM U 1065, Mediterranean Research Centre for Molecular Medicine, Team: Cellular and Molecular Physiopathology of obesity and diabetes, Nice, France
- University of Nice Sophia Antipolis, UFR Medicine, Nice, France
- * E-mail:
| |
Collapse
|
44
|
Masuda M, Toh S, Wakasaki T, Suzui M, Joe AK. Somatic evolution of head and neck cancer - biological robustness and latent vulnerability. Mol Oncol 2012; 7:14-28. [PMID: 23168041 PMCID: PMC5528403 DOI: 10.1016/j.molonc.2012.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 01/05/2023] Open
Abstract
Despite recent advancements in multidisciplinary treatments, the overall survival and quality of life of patients with advanced head and neck squamous cell carcinoma (HNSCC) have not improved significantly over the past decade. Molecular targeted therapies, which have been addressed and advanced by the concept of “oncogene addiction”, have demonstrated only limited successes so far. To explore a novel clue for clinically effective targeted therapies, we analyzed the molecular circuitry of HNSCC through the lens that HNSCC is an evolving system. In the trajectory of this somatic evolution, HNSCC acquires biological robustness under a variety of selective pressures including genetic, epigenetic, micro‐environmental and metabolic stressors, which well explains the major mechanism of “escaping from oncogene addiction”. On the other hand, this systemic view appears to instruct us approaches to target latent vulnerability of HNSCC that is masked behind the plasticity and evolvability of this complex adaptive system. There is an urgent need to develop a novel conceptual framework for the treatment of HNSCC. The biological robustness of HNSCC was analyzed through a somatic evolution model. This model well explains the mechanism of “escaping from oncogene addiction”. We discuss about the possible approaches to target vulnerability of evolving HNSCC.
Collapse
Affiliation(s)
- Muneyuki Masuda
- Department of Head & Neck Surgery, National Kyushu Cancer Center, 3-1-1, Notame, Minamiku, Fukuoka 811-1395, Japan.
| | | | | | | | | |
Collapse
|
45
|
Chong ZZ, Shang YC, Wang S, Maiese K. Shedding new light on neurodegenerative diseases through the mammalian target of rapamycin. Prog Neurobiol 2012; 99:128-48. [PMID: 22980037 PMCID: PMC3479314 DOI: 10.1016/j.pneurobio.2012.08.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders affect a significant portion of the world's population leading to either disability or death for almost 30 million individuals worldwide. One novel therapeutic target that may offer promise for multiple disease entities that involve Alzheimer's disease, Parkinson's disease, epilepsy, trauma, stroke, and tumors of the nervous system is the mammalian target of rapamycin (mTOR). mTOR signaling is dependent upon the mTORC1 and mTORC2 complexes that are composed of mTOR and several regulatory proteins including the tuberous sclerosis complex (TSC1, hamartin/TSC2, tuberin). Through a number of integrated cell signaling pathways that involve those of mTORC1 and mTORC2 as well as more novel signaling tied to cytokines, Wnt, and forkhead, mTOR can foster stem cellular proliferation, tissue repair and longevity, and synaptic growth by modulating mechanisms that foster both apoptosis and autophagy. Yet, mTOR through its proliferative capacity may sometimes be detrimental to central nervous system recovery and even promote tumorigenesis. Further knowledge of mTOR and the critical pathways governed by this serine/threonine protein kinase can bring new light for neurodegeneration and other related diseases that currently require new and robust treatments.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| | - Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- Cancer Institute of New Jersey, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| |
Collapse
|
46
|
Leontieva OV, Blagosklonny MV. Hypoxia and gerosuppression: the mTOR saga continues. Cell Cycle 2012; 11:3926-31. [PMID: 22987149 DOI: 10.4161/cc.21908] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Growth-promoting and nutrient/mitogen-sensing pathways such as mTOR convert p21- and p16-induced arrest into senescence (geroconversion). We have recently demonstrated that hypoxia, especially near-anoxia, suppresses geroconversion. This gerosuppressive effect of hypoxia correlated with inhibition of the mTOR/S6K pathway but not with modulation of the LKB1/AMPK/eEF2 pathway. Here we further show that mTOR inhibition is required for gerosuppression by hypoxia, at least in some cellular models, because depletion of TSC2 abolished mTOR inhibition and gerosupression by hypoxia. Also, in two cancer cell lines resistant to inhibition of mTOR by both p53 and hypoxia, hypoxia did not suppress geroconversion. Therefore, the effects of hypoxia on the oxygen-sensing mTOR pathway and geroconversion are cell type-specific. We also briefly discuss replicative senescence, organismal aging and free radical theory.
Collapse
Affiliation(s)
- Olga V Leontieva
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | |
Collapse
|
47
|
Gupta A, Cao W, Chellaiah MA. Integrin αvβ3 and CD44 pathways in metastatic prostate cancer cells support osteoclastogenesis via a Runx2/Smad 5/receptor activator of NF-κB ligand signaling axis. Mol Cancer 2012; 11:66. [PMID: 22966907 PMCID: PMC3499378 DOI: 10.1186/1476-4598-11-66] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 08/14/2012] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Bone loss and pathological fractures are common skeletal complications associated with androgen deprivation therapy and bone metastases in prostate cancer patients. We have previously demonstrated that prostate cancer cells secrete receptor activator of NF-kB ligand (RANKL), a protein essential for osteoclast differentiation and activation. However, the mechanism(s) by which RANKL is produced remains to be determined. The objective of this study is to gain insight into the molecular mechanisms controlling RANKL expression in metastatic prostate cancer cells. RESULTS We show here that phosphorylation of Smad 5 by integrin αvβ3 and RUNX2 by CD44 signaling, respectively, regulates RANKL expression in human-derived PC3 prostate cancer cells isolated from bone metastasis. We found that RUNX2 intranuclear targeting is mediated by phosphorylation of Smad 5. Indeed, Smad5 knock-down via RNA interference and inhibition of Smad 5 phosphorylation by an αv inhibitor reduced RUNX2 nuclear localization and RANKL expression. Similarly, knockdown of CD44 or RUNX2 attenuated the expression of RANKL. As a result, conditioned media from these cells failed to support osteoclast differentiation in vitro. Immunohistochemistry analysis of tissue microarray sections containing primary prostatic tumor (grade2-4) detected predominant localization of RUNX2 and phosphorylated Smad 5 in the nuclei. Immunoblotting analyses of nuclear lysates from prostate tumor tissue corroborate these observations. CONCLUSIONS Collectively, we show that CD44 signaling regulates phosphorylation of RUNX2. Localization of RUNX2 in the nucleus requires phosphorylation of Smad-5 by integrin αvβ3 signaling. Our results suggest possible integration of two different pathways in the expression of RANKL. These observations imply a novel mechanistic insight into the role of these proteins in bone loss associated with bone metastases in patients with prostate cancer.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, MD, 21201, USA
| | - Wei Cao
- Department of Oral and Maxillofacial Surgery, Ninth People’s hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, MD, 21201, USA
| |
Collapse
|
48
|
Patel H, Younis RH, Ord RA, Basile JR, Schneider A. Differential expression of organic cation transporter OCT-3 in oral premalignant and malignant lesions: potential implications in the antineoplastic effects of metformin. J Oral Pathol Med 2012; 42:250-6. [PMID: 22861817 DOI: 10.1111/j.1600-0714.2012.01196.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Recent evidence indicates that metformin, a biguanide used as first-line treatment for type 2 diabetes, prevents the conversion of carcinogen-induced oral dysplasias into head and neck squamous cell carcinomas (HNSCC), most likely by inhibiting mammalian target of rapamycin complex 1 (mTORC1) oncogenic signaling. Whether metformin acts directly at the primary tumor site or indirectly by modulating hormonal secretion from extratumoral organs remains unknown. As organic cation transporters (OCT) belonging to the solute carrier 22A gene family, including OCT-1, OCT-2, and OCT-3, mediate metformin uptake and activity, it is critical to define what role they play in the antineoplastic activity of metformin. METHODS Immunohistochemical and immunoblotting techniques were used in normal, dysplastic and HNSCC tissues, and HNSCC cell lines, respectively, to determine OCTs expression levels. RESULTS We report that only OCT-3 was highly expressed in a number of HNSCC cell lines, oral epithelial dysplasias, and well to moderately differentiated HNSCC. Indeed, inhibition of OCT-3 expression and activity in HNSCC cells prevented metformin-induced AMP-activated protein kinase activation and mTORC1 pathway inhibition. Moreover, in oral dysplasias, high OCT-3 expression localized to epithelial compartments where mTORC1 signaling was also upregulated suggestive of a potential local effect of metformin. CONCLUSIONS The concept of using metformin as a chemopreventive agent to control head and neck carcinogenesis is promising. Further work is warranted to elucidate largely unexplored mechanisms of metformin uptake and pharmacologic action that may ultimately influence the selection of the most suitable patients who can benefit from metformin in head and neck cancer chemoprevention.
Collapse
Affiliation(s)
- Harsh Patel
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
49
|
Hypoxia suppresses conversion from proliferative arrest to cellular senescence. Proc Natl Acad Sci U S A 2012; 109:13314-8. [PMID: 22847439 DOI: 10.1073/pnas.1205690109] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Unlike reversible quiescence, cellular senescence is characterized by a large flat cell morphology, β-gal staining and irreversible loss of regenerative (i.e., replicative) potential. Conversion from proliferative arrest to irreversible senescence, a process named geroconversion, is driven in part by growth-promoting pathways such as mammalian target of rapamycin (mTOR). During cell cycle arrest, mTOR converts reversible arrest into senescence. Inhibitors of mTOR can suppress geroconversion, maintaining quiescence instead. It was shown that hypoxia inhibits mTOR. Therefore, we suggest that hypoxia may suppress geroconversion. Here we tested this hypothesis. In HT-p21-9 cells, expression of inducible p21 caused cell cycle arrest without inhibiting mTOR, leading to senescence. Hypoxia did not prevent p21 induction and proliferative arrest, but instead inhibited the mTOR pathway and geroconversion. Exposure to hypoxia during p21 induction prevented senescent morphology and loss of regenerative potential, thus maintaining reversible quiescence so cells could restart proliferation after switching p21 off. Suppression of geroconversion was p53- and HIF-1-independent, as hypoxia also suppressed geroconversion in cells lacking functional p53 and HIF-1α. Also, in normal fibroblasts and retinal cells, hypoxia inhibited the mTOR pathway and suppressed senescence caused by etoposide without affecting DNA damage response, p53/p21 induction and cell cycle arrest. Also hypoxia suppressed geroconversion in cells treated with nutlin-3a, a nongenotoxic inducer of p53, in cell lines susceptible to nutlin-3a-induced senescence (MEL-10, A172, and NKE). Thus, in normal and cancer cell lines, hypoxia suppresses geroconversion caused by diverse stimuli. Physiological and clinical implications of the present findings are discussed.
Collapse
|
50
|
Russo E, Citraro R, Constanti A, De Sarro G. The mTOR Signaling Pathway in the Brain: Focus on Epilepsy and Epileptogenesis. Mol Neurobiol 2012; 46:662-81. [DOI: 10.1007/s12035-012-8314-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/13/2012] [Indexed: 01/09/2023]
|