1
|
He N, Yuan D, Luo M, Xu Q, Wen Z, Wang Z, Zhao J, Liu Y. Ferroptosis contributes to immunosuppression. Front Med 2024:10.1007/s11684-024-1080-8. [PMID: 39560919 DOI: 10.1007/s11684-024-1080-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/18/2024] [Indexed: 11/20/2024]
Abstract
As a novel form of cell death, ferroptosis is mainly regulated by the accumulation of soluble iron ions in the cytoplasm and the production of lipid peroxides and is closely associated with several diseases, including acute kidney injury, ischemic reperfusion injury, neurodegenerative diseases, and cancer. The term "immunosuppression" refers to various factors that can directly harm immune cells' structure and function and affect the synthesis, release, and biological activity of immune molecules, leading to the insufficient response of the immune system to antigen production, failure to successfully resist the invasion of foreign pathogens, and even organ damage and metabolic disorders. An immunosuppressive phase commonly occurs in the progression of many ferroptosis-related diseases, and ferroptosis can directly inhibit immune cell function. However, the relationship between ferroptosis and immunosuppression has not yet been published due to their complicated interactions in various diseases. Therefore, this review deeply discusses the contribution of ferroptosis to immunosuppression in specific cases. In addition to offering new therapeutic targets for ferroptosis-related diseases, the findings will help clarify the issues on how ferroptosis contributes to immunosuppression.
Collapse
Affiliation(s)
- Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Dun Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Minjie Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Zhongchi Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Ziqin Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China.
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China.
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China.
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China.
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China.
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China.
| |
Collapse
|
2
|
Mao C, Chen Y, Xing D, Zhang T, Lin Y, Long C, Yu J, Luo Y, Ming T, Xie W, Han Z, Mei D, Xiang D, Lu M, Shen X, Xue X. Resting natural killer cells promote the progress of colon cancer liver metastasis by elevating tumor-derived stem cell factor. eLife 2024; 13:RP97201. [PMID: 39387546 PMCID: PMC11466454 DOI: 10.7554/elife.97201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024] Open
Abstract
The abundance and biological contribution of natural killer (NK) cells in cancer are controversial. Here, we aim to uncover clinical relevance and cellular roles of NK cells in colon cancer liver metastasis (CCLM). Here, we integrated single-cell RNA-sequencing, spatial transcriptomics (ST), and bulk RNA-sequencing datasets to investigate NK cells' biological properties and functions in the microenvironment of primary and liver metastatic tumors. Results were validated through an in vitro co-culture experiment based on bioinformatics analysis. Useing single-cell RNA-sequencing and ST, we mapped the immune cellular landscape of colon cancer and well-matched liver metastatic cancer. We discovered that GZMK+ resting NK cells increased significantly in tumor tissues and were enriched in the tumor regions of both diseases. After combining bulk RNA and clinical data, we observed that these NK cell subsets contributed to a worse prognosis. Meanwhile, KIR2DL4+ activated NK cells exhibited the opposite position and relevance. Pseudotime cell trajectory analysis revealed the evolution of activated to resting NK cells. In vitro experiments further confirmed that tumor-cell-co-cultured NK cells exhibited a decidual-like status, as evidenced by remarkable increasing CD9 expression. Functional experiments finally revealed that NK cells exhibited tumor-activating characteristics by promoting the dissociation of SCF (stem cell factor) on the tumor cells membrane depending on cell-to-cell interaction, as the supernatant of the co-culture system enhanced tumor progression. In summary, our findings revealed resting NK cells exhibited a clinical relevance with CCLM, which may be exploited for novel strategies to improve therapeutic outcomes for patients with CCLM.
Collapse
Affiliation(s)
- Chenchen Mao
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Yanyu Chen
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
- Department of Pediatric Thoracic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Dong Xing
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Teming Zhang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Yangxuan Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Cong Long
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Jiaye Yu
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Yunhui Luo
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Tao Ming
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Wangkai Xie
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Zheng Han
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Dianfeng Mei
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Dan Xiang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Mingdong Lu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiangyang Xue
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
3
|
Pesini C, Artal L, Paúl Bernal J, Sánchez Martinez D, Pardo J, Ramírez-Labrada A. In-depth analysis of the interplay between oncogenic mutations and NK cell-mediated cancer surveillance in solid tumors. Oncoimmunology 2024; 13:2379062. [PMID: 39036370 PMCID: PMC11259085 DOI: 10.1080/2162402x.2024.2379062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in antitumoral and antiviral responses. Yet, cancer cells can alter themselves or the microenvironment through the secretion of cytokines or other factors, hindering NK cell activation and promoting a less cytotoxic phenotype. These resistance mechanisms, often referred to as the "hallmarks of cancer" are significantly influenced by the activation of oncogenes, impacting most, if not all, of the described hallmarks. Along with oncogenes, other types of genes, the tumor suppressor genes are frequently mutated or modified during cancer. Traditionally, these genes have been associated with uncontrollable tumor growth and apoptosis resistance. Recent evidence suggests oncogenic mutations extend beyond modulating cell death/proliferation programs, influencing cancer immunosurveillance. While T cells have been more studied, the results obtained highlight NK cells as emerging key protagonists for enhancing tumor cell elimination by modulating oncogenic activity. A few recent studies highlight the crucial role of oncogenic mutations in NK cell-mediated cancer recognition, impacting angiogenesis, stress ligands, and signaling balance within the tumor microenvironment. This review will critically examine recent discoveries correlating oncogenic mutations to NK cell-mediated cancer immunosurveillance, a relatively underexplored area, particularly in the era dominated by immune checkpoint inhibitors and CAR-T cells. Building on these insights, we will explore opportunities to improve NK cell-based immunotherapies, which are increasingly recognized as promising alternatives for treating low-antigenic tumors, offering significant advantages in terms of safety and manufacturing suitability.
Collapse
Affiliation(s)
- Cecilia Pesini
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Laura Artal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Institute of Carbochemistry (ICB-CSIC), Zaragoza, Spain
| | - Jorge Paúl Bernal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Diego Sánchez Martinez
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| |
Collapse
|
4
|
Santiso A, Heinemann A, Kargl J. Prostaglandin E2 in the Tumor Microenvironment, a Convoluted Affair Mediated by EP Receptors 2 and 4. Pharmacol Rev 2024; 76:388-413. [PMID: 38697857 DOI: 10.1124/pharmrev.123.000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/05/2024] Open
Abstract
The involvement of the prostaglandin E2 (PGE2) system in cancer progression has long been recognized. PGE2 functions as an autocrine and paracrine signaling molecule with pleiotropic effects in the human body. High levels of intratumoral PGE2 and overexpression of the key metabolic enzymes of PGE2 have been observed and suggested to contribute to tumor progression. This has been claimed for different types of solid tumors, including, but not limited to, lung, breast, and colon cancer. PGE2 has direct effects on tumor cells and angiogenesis that are known to promote tumor development. However, one of the main mechanisms behind PGE2 driving cancerogenesis is currently thought to be anchored in suppressed antitumor immunity, thus providing possible therapeutic targets to be used in cancer immunotherapies. EP2 and EP4, two receptors for PGE2, are emerging as being the most relevant for this purpose. This review aims to summarize the known roles of PGE2 in the immune system and its functions within the tumor microenvironment. SIGNIFICANCE STATEMENT: Prostaglandin E2 (PGE2) has long been known to be a signaling molecule in cancer. Its presence in tumors has been repeatedly associated with disease progression. Elucidation of its effects on immunological components of the tumor microenvironment has highlighted the potential of PGE2 receptor antagonists in cancer treatment, particularly in combination with immune checkpoint inhibitor therapeutics. Adjuvant treatment could increase the response rates and the efficacy of immune-based therapies.
Collapse
Affiliation(s)
- Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
5
|
Xu Y, Miller CP, Tykodi SS, Akilesh S, Warren EH. Signaling crosstalk between tumor endothelial cells and immune cells in the microenvironment of solid tumors. Front Cell Dev Biol 2024; 12:1387198. [PMID: 38726320 PMCID: PMC11079179 DOI: 10.3389/fcell.2024.1387198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Tumor-associated endothelial cells (TECs) are crucial mediators of immune surveillance and immune escape in the tumor microenvironment (TME). TECs driven by angiogenic growth factors form an abnormal vasculature which deploys molecular machinery to selectively promote the function and recruitment of immunosuppressive cells while simultaneously blocking the entry and function of anti-tumor immune cells. TECs also utilize a similar set of signaling regulators to promote the metastasis of tumor cells. Meanwhile, the tumor-infiltrating immune cells further induce the TEC anergy by secreting pro-angiogenic factors and prevents further immune cell penetration into the TME. Understanding the complex interactions between TECs and immune cells will be needed to successfully treat cancer patients with combined therapy to achieve vasculature normalization while augmenting antitumor immunity. In this review, we will discuss what is known about the signaling crosstalk between TECs and tumor-infiltrating immune cells to reveal insights and strategies for therapeutic targeting.
Collapse
Affiliation(s)
- Yuexin Xu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Chris P. Miller
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Scott S. Tykodi
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Kidney Research Institute, University of Washington, Seattle, WA, United States
| | - Edus H. Warren
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Verner JM, Arbuthnott HF, Ramachandran R, Bharadwaj M, Chaudhury N, Jou E. Emerging roles of type 1 innate lymphoid cells in tumour pathogenesis and cancer immunotherapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:296-315. [PMID: 38745765 PMCID: PMC11090689 DOI: 10.37349/etat.2024.00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/14/2023] [Indexed: 05/16/2024] Open
Abstract
Innate lymphoid cells (ILCs) are the most recently discovered class of innate immune cells found to have prominent roles in various human immune-related pathologies such as infection and autoimmune diseases. However, their role in cancer was largely unclear until recently, where several emerging studies over the past few years unanimously demonstrate ILCs to be critical players in tumour immunity. Being the innate counterpart of T cells, ILCs are potent cytokine producers through which they orchestrate the overall immune response upstream of adaptive immunity thereby modulating T cell function. Out of the major ILC subsets, ILC1s have gained significant traction as potential immunotherapeutic candidates due to their central involvement with the anti-tumour type 1 immune response. ILC1s are potent producers of the well-established anti-tumour cytokine interferon γ (IFNγ), and exert direct cytotoxicity against cancer cells in response to the cytokine interleukin-15 (IL-15). However, in advanced diseases, ILC1s are found to demonstrate an exhausted phenotype in the tumour microenvironment (TME) with impaired effector functions, characterised by decreased responsiveness to cytokines and reduced IFNγ production. Tumour cells produce immunomodulatory cytokines such as transforming growth factor β (TGFβ) and IL-23, and through these suppress ILC1 anti-tumour actfivities and converts ILC1s to pro-tumoural ILC3s respectively, resulting in disease progression. This review provides a comprehensive overview of ILC1s in tumour immunity, and discusses the exciting prospects of harnessing ILC1s for cancer immunotherapy, either alone or in combination with cytokine-based treatment. The exciting prospects of targeting the upstream innate immune system through ILC1s may surmount the limitations associated with adaptive immune T cell-based strategies used in the clinic currently, and overcome cancer immunotherapeutic resistance.
Collapse
Affiliation(s)
| | | | - Raghavskandhan Ramachandran
- Medical Sciences Division, Oxford University Hospitals, OX3 9DU Oxford, United Kingdom
- Balliol College, University of Oxford, OX1 3BJ Oxford, United Kingdom
| | - Manini Bharadwaj
- Wexham Park Hospital, Frimley Health NHS Foundation Trust, SL2 4HL Slough, United Kingdom
| | - Natasha Chaudhury
- Wexham Park Hospital, Frimley Health NHS Foundation Trust, SL2 4HL Slough, United Kingdom
| | - Eric Jou
- Medical Sciences Division, Oxford University Hospitals, OX3 9DU Oxford, United Kingdom
- Wexham Park Hospital, Frimley Health NHS Foundation Trust, SL2 4HL Slough, United Kingdom
- Kellogg College, University of Oxford, OX2 6PN Oxford, United Kingdom
| |
Collapse
|
7
|
Babalola KT, Arora M, Ganugula R, Agarwal SK, Mohan C, Kumar MNVR. Leveraging Lymphatic System Targeting in Systemic Lupus Erythematosus for Improved Clinical Outcomes. Pharmacol Rev 2024; 76:228-250. [PMID: 38351070 PMCID: PMC10877736 DOI: 10.1124/pharmrev.123.000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 02/16/2024] Open
Abstract
The role of advanced drug delivery strategies in drug repositioning and minimizing drug attrition rates, when applied early in drug discovery, is poised to increase the translational impact of various therapeutic strategies in disease prevention and treatment. In this context, drug delivery to the lymphatic system is gaining prominence not only to improve the systemic bioavailability of various pharmaceutical drugs but also to target certain specific diseases associated with the lymphatic system. Although the role of the lymphatic system in lupus is known, very little is done to target drugs to yield improved clinical benefits. In this review, we discuss recent advances in drug delivery strategies to treat lupus, the various routes of drug administration leading to improved lymph node bioavailability, and the available technologies applied in other areas that can be adapted to lupus treatment. Moreover, this review also presents some recent findings that demonstrate the promise of lymphatic targeting in a preclinical setting, offering renewed hope for certain pharmaceutical drugs that are limited by efficacy in their conventional dosage forms. These findings underscore the potential and feasibility of such lymphatic drug-targeting approaches to enhance therapeutic efficacy in lupus and minimize off-target effects of the pharmaceutical drugs. SIGNIFICANCE STATEMENT: The World Health Organization estimates that there are currently 5 million humans living with some form of lupus. With limited success in lupus drug discovery, turning to effective delivery strategies with existing drug molecules, as well as those in the early stage of discovery, could lead to better clinical outcomes. After all, effective delivery strategies have been proven to improve treatment outcomes.
Collapse
Affiliation(s)
- K T Babalola
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - M Arora
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - R Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - S K Agarwal
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - C Mohan
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
8
|
Saito LM, Ortiz RC, Amôr NG, Lopes NM, Buzo RF, Garlet GP, Rodini CO. NK cells and the profile of inflammatory cytokines in the peripheral blood of patients with advanced carcinomas. Cytokine 2024; 174:156455. [PMID: 38043142 DOI: 10.1016/j.cyto.2023.156455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Natural killer (NK) cells are one of the most crucial immune cells that mediate the antitumoral response due to their ability to immediately recognize and eliminate transformed cells. Because of their great cytotoxic activity, the function of NK cells must be robustly regulated to avoid tissue damage. Such regulation is mediated by a coordinated engagement of activating (NKp46) and inhibitory (CD158b) receptors, which tumor cells may use to escape from immunosurveillance. Also, NK cells are generally divided based on surface molecules, such as CD16 and CD56, and can be classified as CD56brightCD16- (regulatory) and CD56dimCD16+ (cytotoxic) NK cells. Here, we aimed to evaluate the frequency and phenotype of circulating NK cells in patients with advanced carcinomas, as well as their systemic cytokine/chemokine and growth factors production. METHODS Peripheral blood was collected from 24 patients with advanced solid cancer during or after treatment and from 10 healthy donors. The frequency and the expression of activating (NKp46) and inhibitory (CD158b) molecules of CD56brightCD16- and CD56dimCD16+ NK cells were assessed by flow cytometry and the multiplex Luminex platform was used to quantify the secreted factors in peripheral blood serum. RESULTS Cancer patients had a lower frequency of the cytotoxic CD56dim CD16+ NK cells subset in comparison with healthy controls. Also, the regulatory CD56bright CD16- NKs isolated from cancer patients exhibited a significantly lower expression of NKp46. Among 29 immunological and growth factors analyzed in the peripheral blood of oncologic patients, MCP-1, IP-10, and eotaxin, and VEGF they have presented a higher proportion. The Pearson correlation test showed that IL-12p40 positively correlates with CD56brightCD16- NK cells. We also observed a positive correlation between MCP-1 and the activating marker NKp46, as well as a negative correlation between IP-10 and TNF-α and NKp46. CD158b expression in CD56dimCD16+ was positively correlated with EGF and negatively correlated with MIP-1β. CONCLUSIONS Taken together, these results suggest that cancer patients present a shift towards a poorly cytotoxic and less activated NK profile which may contribute to tumor development and progression. The understanding of NK cell biology and soluble factors during tumor development could aid in the design of possible targeting therapeutic approaches.
Collapse
Affiliation(s)
- Luciana Mieli Saito
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Rafael Carneiro Ortiz
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil; Post-Graduation Program in Rehabilitation Sciences, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (HRAC/USP), São Paulo, Brazil.
| | - Nádia Ghinelli Amôr
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Nathália Martins Lopes
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Rodrigo Fonseca Buzo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| |
Collapse
|
9
|
Ma S, Caligiuri MA, Yu J. Harnessing Natural Killer Cells for Lung Cancer Therapy. Cancer Res 2023; 83:3327-3339. [PMID: 37531223 DOI: 10.1158/0008-5472.can-23-1097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Although natural killer (NK) cells are garnering interest as a potential anticancer therapy because they selectively recognize and eliminate cancer cells, their use in treating solid tumors, including lung cancer, has been limited due to impediments to their efficacy, such as their limited ability to reach tumor tissues, the reduced antitumor activity of tumor-infiltrating NK cells, and the suppressive tumor microenvironment (TME). This comprehensive review provides an in-depth analysis of the cross-talk between the lung cancer TME and NK cells. We highlight the various mechanisms used by the TME to modulate NK-cell phenotypes and limit infiltration, explore the role of the TME in limiting the antitumor activity of NK cells, and discuss the current challenges and obstacles that hinder the success of NK-cell-based immunotherapy for lung cancer. Potential opportunities and promising strategies to address these challenges have been implemented or are being developed to optimize NK-cell-based immunotherapy for lung cancer. Through critical evaluation of existing literature and emerging trends, this review provides a comprehensive outlook on the future of NK-cell-based immunotherapy for treating lung cancer.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, California
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, California
- Comprehensive Cancer Center, City of Hope, Los Angeles, California
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, California
- Comprehensive Cancer Center, City of Hope, Los Angeles, California
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, California
| |
Collapse
|
10
|
Lahooti B, Akwii RG, Zahra FT, Sajib MS, Lamprou M, Alobaida A, Lionakis MS, Mattheolabakis G, Mikelis CM. Targeting endothelial permeability in the EPR effect. J Control Release 2023; 361:212-235. [PMID: 37517543 DOI: 10.1016/j.jconrel.2023.07.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
The characteristics of the primary tumor blood vessels and the tumor microenvironment drive the enhanced permeability and retention (EPR) effect, which confers an advantage towards enhanced delivery of anti-cancer nanomedicine and has shown beneficial effects in preclinical models. Increased vascular permeability is a landmark feature of the tumor vessels and an important driver of the EPR. The main focus of this review is the endothelial regulation of vascular permeability. We discuss current challenges of targeting vascular permeability towards clinical translation and summarize the structural components and mechanisms of endothelial permeability, the principal mediators and signaling players, the targeted approaches that have been used and their outcomes to date. We also critically discuss the effects of the tumor-infiltrating immune cells, their interplay with the tumor vessels and the impact of immune responses on nanomedicine delivery, the impact of anti-angiogenic and tumor-stroma targeting approaches, and desirable nanoparticle design approaches for greater translational benefit.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Fatema Tuz Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Margarita Lamprou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece.
| |
Collapse
|
11
|
Liao Z, Li M, Wen G, Wang K, Yao D, Chen E, Liang Y, Xing T, Su K, Liang C, Che Z, Ning Q, Tang J, Yan W, Li Y, Huang L. Comprehensive analysis of angiogenesis pattern and related immune landscape for individual treatment in osteosarcoma. NPJ Precis Oncol 2023; 7:62. [PMID: 37386055 DOI: 10.1038/s41698-023-00415-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Postoperative recurrence and metastasis are the main reasons for the poor prognosis of osteosarcoma (OS). Currently, an ideal predictor for not only prognosis but also drug sensitivity and immunotherapy responses in OS patients is urgently needed. Angiogenesis plays a crucial role in tumour progression, which suggests its immense potential for predicting prognosis and responses to immunotherapy for OS. Angiogenesis patterns in OS were explored in depth in this study to construct a prognostic model called ANGscore and clarify the underlying mechanism involved in the immune microenvironment. The efficacy and robustness of the model were validated in multiple datasets, including bulk RNA-seq datasets (TARGET-OS, GSE21257), a single-cell RNA-seq dataset (GSE152048) and immunotherapy-related datasets (GSE91061, GSE173839). OS patients with a high ANGscore had a worse prognosis, accompanied by the immune desert phenotype. Pseudotime and cellular communication analyses in scRNA-seq data revealed that as the ANGscore increased, the malignant degree of cells increased, and IFN-γ signalling was involved in tumour progression and regulation of the tumour immune microenvironment. Furthermore, the ANGscore was associated with immune cell infiltration and the response rate to immunotherapy. OS patients with high ANGscore might be resistant to uprosertib, and be sensitive to VE821, AZD6738 and BMS.345541. In conclusion, we established a novel ANGscore system by comprehensively analysing the expression pattern of angiogenesis genes, which can accurately differentiate the prognosis and immune characteristics of OS populations. Additionally, the ANGscore can be used for patient stratification during immunotherapy, and guide individualized treatment strategies.
Collapse
Affiliation(s)
- Zhuangyao Liao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guoming Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Kun Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dengbo Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Enming Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuwei Liang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tong Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Kaihui Su
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changchun Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Zhen Che
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing Ning
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Tang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenbin Yan
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuxi Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Lin Huang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
Ye W, Li M, Luo K. Therapies Targeting Immune Cells in Tumor Microenvironment for Non-Small Cell Lung Cancer. Pharmaceutics 2023; 15:1788. [PMID: 37513975 PMCID: PMC10384189 DOI: 10.3390/pharmaceutics15071788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
The tumor microenvironment (TME) plays critical roles in immune modulation and tumor malignancies in the process of cancer development. Immune cells constitute a significant component of the TME and influence the migration and metastasis of tumor cells. Recently, a number of therapeutic approaches targeting immune cells have proven promising and have already been used to treat different types of cancer. In particular, PD-1 and PD-L1 inhibitors have been used in the first-line setting in non-small cell lung cancer (NSCLC) with PD-L1 expression ≥1%, as approved by the FDA. In this review, we provide an introduction to the immune cells in the TME and their efficacies, and then we discuss current immunotherapies in NSCLC and scientific research progress in this field.
Collapse
Affiliation(s)
- Wei Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510091, China
| | - Meiye Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510091, China
| | - Kewang Luo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510091, China
- People's Hospital of Longhua, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen 518109, China
| |
Collapse
|
13
|
Ebeling S, Kowalczyk A, Perez-Vazquez D, Mattiola I. Regulation of tumor angiogenesis by the crosstalk between innate immunity and endothelial cells. Front Oncol 2023; 13:1171794. [PMID: 37234993 PMCID: PMC10206118 DOI: 10.3389/fonc.2023.1171794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
Endothelial cells and immune cells are major regulators of cancer progression and prognosis. Endothelial cell proliferation and angiogenesis are required for providing nutrients and oxygen to the nascent tumor and infiltration of immune cells to the tumor is dependent on endothelial cell activation. Myeloid cells and innate lymphocytes have an important role in shaping the tumor microenvironment by crosstalking with cancer cells and structural cells, including endothelial cells. Innate immune cells can modulate the activation and functions of tumor endothelial cells, and, in turn, endothelial cell expression of adhesion molecules can affect immune cell extravasation. However, the mechanisms underlying this bidirectional crosstalk are not fully understood. In this review, we will provide an overview of the current knowledge on the pathways regulating the crosstalk between innate immune cells and endothelial cells during tumor progression and discuss their potential contribution to the development of novel anti-tumor therapeutic approaches.
Collapse
Affiliation(s)
- Svenja Ebeling
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Anita Kowalczyk
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Diego Perez-Vazquez
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Irene Mattiola
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
14
|
Yu Y. The Function of NK Cells in Tumor Metastasis and NK Cell-Based Immunotherapy. Cancers (Basel) 2023; 15:cancers15082323. [PMID: 37190251 DOI: 10.3390/cancers15082323] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Metastatic tumors cause the most deaths in cancer patients. Treating metastasis remains the primary goal of current cancer research. Although the immune system prevents and kills the tumor cells, the function of the immune system in metastatic cancer has been unappreciated for decades because tumors are able to develop complex signaling pathways to suppress immune responses, leading them to escape detection and elimination. Studies showed NK cell-based therapies have many advantages and promise for fighting metastatic cancers. We here review the function of the immune system in tumor progression, specifically focusing on the ability of NK cells in antimetastasis, how metastatic tumors escape the NK cell attack, as well as the recent development of effective antimetastatic immunotherapies.
Collapse
Affiliation(s)
- Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Addressing Natural Killer Cell Dysfunction and Plasticity in Cell-Based Cancer Therapeutics. Cancers (Basel) 2023; 15:cancers15061743. [PMID: 36980629 PMCID: PMC10046032 DOI: 10.3390/cancers15061743] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Natural killer (NK) cells are cytotoxic group 1 innate lymphoid cells (ILC), known for their role as killers of stressed, cancerous, and virally infected cells. Beyond this cytotoxic function, NK cell subsets can influence broader immune responses through cytokine production and have been linked to central roles in non-immune processes, such as the regulation of vascular remodeling in pregnancy and cancer. Attempts to exploit the anti-tumor functions of NK cells have driven the development of various NK cell-based therapies, which have shown promise in both pre-clinical disease models and early clinical trials. However, certain elements of the tumor microenvironment, such as elevated transforming growth factor (TGF)-β, hypoxia, and indoalemine-2,3-dioxygenase (IDO), are known to suppress NK cell function, potentially limiting the longevity and activity of these approaches. Recent studies have also identified these factors as contributors to NK cell plasticity, defined by the conversion of classical cytotoxic NK cells into poorly cytotoxic, tissue-resident, or ILC1-like phenotypes. This review summarizes the current approaches for NK cell-based cancer therapies and examines the challenges presented by tumor-linked NK cell suppression and plasticity. Ongoing efforts to overcome these challenges are discussed, along with the potential utility of NK cell therapies to applications outside cancer.
Collapse
|
16
|
Thacker G, Henry S, Nandi A, Debnath R, Singh S, Nayak A, Susnik B, Boone MM, Zhang Q, Kesmodel SB, Gumber S, Das GM, Kambayashi T, Dos Santos CO, Chakrabarti R. Immature natural killer cells promote progression of triple-negative breast cancer. Sci Transl Med 2023; 15:eabl4414. [PMID: 36888695 PMCID: PMC10875969 DOI: 10.1126/scitranslmed.abl4414] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/26/2023] [Indexed: 03/10/2023]
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that accumulate within the tumor microenvironment and are generally considered to be antitumorigenic. Using single-cell RNA sequencing and functional analysis of multiple triple-negative breast cancer (TNBC) and basal tumor samples, we observed a unique subcluster of Socs3highCD11b-CD27- immature NK cells that were present only in TNBC samples. These tumor-infiltrating NK cells expressed a reduced cytotoxic granzyme signature and, in mice, were responsible for activating cancer stem cells through Wnt signaling. NK cell-mediated activation of these cancer stem cells subsequently enhanced tumor progression in mice, whereas depletion of NK cells or Wnt ligand secretion from NK cells by LGK-974 decreased tumor progression. In addition, NK cell depletion or inhibition of their function improved anti-programmed cell death ligand 1 (PD-L1) antibody or chemotherapy response in mice with TNBC. Furthermore, tumor samples from patients with TNBC and non-TNBC revealed that increased numbers of CD56bright NK cells were present in TNBC tumors and were correlated to poor overall survival in patients with TNBC. Together, our findings identify a population of protumorigenic NK cells that may be exploited for both diagnostic and therapeutic strategies to improve outcomes for patients with TNBC.
Collapse
Affiliation(s)
- Gatha Thacker
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Samantha Henry
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Ajeya Nandi
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahul Debnath
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Snahlata Singh
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine at the Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Barbara Susnik
- Department of Pathology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Melinda M Boone
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Susan B Kesmodel
- DeWitt Daughtry Family Department of Surgery, Division of Surgical Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sanjeev Gumber
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gokul M Das
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Camila O. Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
17
|
Wang Y, Jiang Y, Guo W, Tang K, Fu Y, Liu R, Chen L. dl-THP recovered the decreased NKp44 expression level on CD56 dim CD16 + natural killer cells partially in choriocarcinoma microenvironment. Immunobiology 2023; 228:152363. [PMID: 36870142 DOI: 10.1016/j.imbio.2023.152363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/05/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Natural killer cell-based immunotherapy has become a leading-edge tool against cancer, but still faces a variety of challenges, such as phenotype shift and dysfunction of NK cells in tumor microenvironment. Thus, finding potent agents that could inhibit the phenotype shift and incapacity of NK cells in the tumor microenvironment is essential for improving antitumor effects. dl-tetrahydropalmatine (dl-THP), one of the active alkaloids of Chinese herb Corydalis Rhizoma, has been proven to possess antitumor activity. However, whether dl-THP acts on NK cells to enhance antitumor activity remains unknown. In this study, we found that the proportion of blood CD56dimCD16+ NK cells was decreased while the proportion of CD56brightCD16- NK cells was increased when the cells were cultured in conditional medium (CM, medium from the human choriocarcinoma cell lines JEG-3). dl-THP could alter the varied proportion of CD56dimCD16+ NK cells and CD56brightCD16- NK cells in CM respectively. Importantly, the expression level of NKp44 on CD56dimCD16+ NK cells was dramatically reduced when the cells were cultured in CM, which could also be reversed by dl-THP. Furthermore, dl-THP increased the decreased NK-cell cytotoxicity when cells were cultured in CM. In summary, our study demonstrated that dl-THP could recover the decreased NKp44 expression level on CD56dimCD16+ NK cells and restore the cytotoxicity of NK cells in tumor microenvironment.
Collapse
Affiliation(s)
- Yazhen Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yuan Jiang
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China; School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
| | - Wenwei Guo
- Department of Obstetrics and Gynecology, Shanghai Gongli Hospital, The Second Military Medical University. Shanghai 200135, China
| | - Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yue Fu
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Ruiyan Liu
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
18
|
Iyoda T, Shimizu K, Kawamura M, Shinga J, Watanabe T, Fukunaga K, Mushiroda T, Saka H, Kitagawa C, Shimamatsu SI, Takenoyama M, Suehiro Y, Imai T, Shintani A, Ito S, Fujii SI. Augmenting Granzyme B-Expressing NK Cells by Invariant NKT Ligand-Loaded APCs in Patients with Postoperative Early Stage Non-Small Cell Lung Cancer: Results of a Randomized Phase II Study. Immunohorizons 2023; 7:1-16. [PMID: 36637516 PMCID: PMC10563390 DOI: 10.4049/immunohorizons.2200091] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023] Open
Abstract
NK cells are major effector cells involved in the elimination of early tumors and prevent metastasis. They often have an impaired function in patients with cancer. Preclinical studies have demonstrated NK cell activation as the adjunctive effect of invariant NKT (iNKT) cells. Activation of iNKT cells after administration of the glycolipid ligand α-galactosylceramide, loaded with CD1d-expressing human PBMC-derived APCs (APC/Gal), is an attractive cancer therapy to optimize the use of NK cells. However, the subsets of NK cells that are activated following iNKT cell activation as well as the period of NK cell activation remain unclear. In this study, we report that the granzyme B-expressing NK cell response in postoperative lung cancer patients was enhanced 49 d after administration of APC/Gal in a phase II study. We found maximum IFN-γ production on day 49 in 13 out of 27 APC/Gal-treated patients. On day 49, 14 out of 27 patients (51.9%) had higher IFN-γ production by iNKT cells (>6-fold higher than the baseline level). This increment significantly correlated with granzyme B-expressing NK cells. Although IFN-γ production was lower in patients in the nontreated group, we detected maximum IFN-γ production 12 mo after the resection of lung cancer (9 out of 29 patients [31%]). These findings suggest that elimination of cancer cells leads to increased NK cell function, which can be further enhanced by APC/Gal therapy.
Collapse
Affiliation(s)
- Tomonori Iyoda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- RIKEN Drug Discovery and Medical Technology Platforms, Yokohama, Japan
| | - Masami Kawamura
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Jun Shinga
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Koya Fukunaga
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hideo Saka
- Department of Respiratory Medicine, Nagoya Medical Center, National Hospital Organization, Nagoya, Japan
| | - Chiyoe Kitagawa
- Department of Medical Oncology, Nagoya Medical Center, National Hospital Organization, Nagoya, Japan
| | - Shin-ichiro Shimamatsu
- Department of Thoracic Oncology, Kyushu Cancer Center, National Hospital Organization, Fukuoka, Japan
| | - Mitsuhiro Takenoyama
- Department of Thoracic Oncology, Kyushu Cancer Center, National Hospital Organization, Fukuoka, Japan
| | - Youko Suehiro
- Department of Hematology, Kyushu Cancer Center, National Hospital Organization, Fukuoka, Japan
| | - Takumi Imai
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan; and
| | - Ayumi Shintani
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan; and
- Department of Clinical Research, Clinical Research Center, National Hospital Organization, Tokyo, Japan
| | - Suminobu Ito
- Department of Clinical Research, Clinical Research Center, National Hospital Organization, Tokyo, Japan
| | - Shin-ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- RIKEN Drug Discovery and Medical Technology Platforms, Yokohama, Japan
| |
Collapse
|
19
|
Alfadhel SM, Abeid ST, Hadi NR. INTERLEUKIN-6 AND NKG2D AS PROGNOSTIC FACTORS IN IRAQI FEMALES WITH PITUITARY GAND ADENOMA: A LONGITUDINAL STUDY. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:26-34. [PMID: 36883486 DOI: 10.36740/wlek202301103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVE The aim: To assess the role of circulating IL-6 & NKG2D in the prognosis of pituitary adenoma. PATIENTS AND METHODS Materials and methods: Thirty female with new diagnosis of prolactinoma (pituitary gland adenoma) were enrolled in the study. ELISA test was used to evaluate the level of IL6 and NKG2D. ELISA tests were conducted before the initiation of treatment and six months later. RESULTS Results: There are significant differences in mean levels of IL-6 and NKG2D, and the anatomical type (tumor size) (-418.7 & 418.9, p<0.001) of anatomical tumor (-373.72 & -373.920, p=0.001). There is a significant difference between the two immunological markers (IL-6 & NKG2D) (-0.305; p<0.001). The IL-6 markers significantly decreased in means on follow up (-197.8; p-value≤0.0001) while the reverse occur in NKG2D, which increased in levels post-treatment compared with baseline measurement. The high expression of IL-6 positively correlated with the risk of macroadenoma (>10 microns) and poor resonse to treatment and vice versa (p<0.024). High expression of NKG2D significantly (p<0.005) correlated with good prognosis and increased chance for tumor response to medicine and shrinkage in size compared with low concentration. CONCLUSION Conclusions: The higher the level of IL-6, the larger the size of adenoma (macroadenoma) and the poorer the response to treatment. The higher the level of NKG2D indidcate a better prognosis, therefore, IL-6 and NKG2D correlate negatively in prolactinoma patients.
Collapse
Affiliation(s)
| | | | - Najah Rayish Hadi
- DEPARTMENT OF PHARMACOLOGY AND THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| |
Collapse
|
20
|
Li HX, Wang SQ, Lian ZX, Deng SL, Yu K. Relationship between Tumor Infiltrating Immune Cells and Tumor Metastasis and Its Prognostic Value in Cancer. Cells 2022; 12:cells12010064. [PMID: 36611857 PMCID: PMC9818185 DOI: 10.3390/cells12010064] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Tumor metastasis is an important reason for the difficulty of tumor treatment. Besides the tumor cells themselves, the tumor microenvironment plays an important role in the process of tumor metastasis. Tumor infiltrating immune cells (TIICs) are one of the main components of TME and plays an important role in every link of tumor metastasis. This article mainly reviews the role of tumor-infiltrating immune cells in epithelial mesenchymal transformation, extracellular matrix remodeling, tumor angiogenesis and formation of pre-metastatic niche. The value of TIICs in the prognosis of cervical cancer, lung cancer and breast cancer was also discussed. We believe that accurate prognosis of cancer treatment outcomes is conducive to further improving treatment regimens, determining personalized treatment strategies, and ultimately achieving successful cancer treatment. This paper elucidates the relationship between tumor and TIICs in order to explore the function of immune cells in different diseases and provide new ideas for the treatment of cancer.
Collapse
Affiliation(s)
- Huan-Xiang Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shu-Qi Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shou-Long Deng
- National Health Commission (NHC) of China Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.-L.D.); (K.Y.)
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (S.-L.D.); (K.Y.)
| |
Collapse
|
21
|
Samarth N, Gulhane P, Singh S. Immunoregulatory framework and the role of miRNA in the pathogenesis of NSCLC - A systematic review. Front Oncol 2022; 12:1089320. [PMID: 36620544 PMCID: PMC9811680 DOI: 10.3389/fonc.2022.1089320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
With a 5-year survival rate of only 15%, non-small cell lung cancer (NSCLC), the most common kind of lung carcinoma and the cause of millions of deaths annually, has drawn attention. Numerous variables, such as disrupted signaling caused by somatic mutations in the EGFR-mediated RAS/RAF/MAPK, PI3K/AKT, JAK/STAT signaling cascade, supports tumour survival in one way or another. Here, the tumour microenvironment significantly contributes to the development of cancer by thwarting the immune response. MicroRNAs (miRNAs) are critical regulators of gene expression that can function as oncogenes or oncosuppressors. They have a major influence on the occurrence and prognosis of NSCLC. Though, a myriad number of therapies are available and many are being clinically tested, still the drug resistance, its adverse effect and toxicity leading towards fatality cannot be ruled out. In this review, we tried to ascertain the missing links in between perturbed EGFR signaling, miRNAs favouring tumorigenesis and the autophagy mechanism. While connecting all the aforementioned points multiple associations were set, which can be targeted in order to combat NSCLC. Here, we tried illuminating designing synthetically engineered circuits with the toggle switches that might lay a prototype for better therapeutic paradigm.
Collapse
Affiliation(s)
| | | | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, India
| |
Collapse
|
22
|
Wang F, Yang M, Luo W, Zhou Q. Characteristics of tumor microenvironment and novel immunotherapeutic strategies for non-small cell lung cancer. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:243-262. [PMID: 39036549 PMCID: PMC11256730 DOI: 10.1016/j.jncc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
Immune checkpoint inhibitor-based immunotherapy has revolutionized the treatment approach of non-small cell lung cancer (NSCLC). Monoclonal antibodies against programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) are widely used in clinical practice, but other antibodies that can circumvent innate and acquired resistance are bound to undergo preclinical and clinical studies. However, tumor cells can develop and facilitate the tolerogenic nature of the tumor microenvironment (TME), resulting in tumor progression. Therefore, the immune escape mechanisms exploited by growing lung cancer involve a fine interplay between all actors in the TME. A better understanding of the molecular biology of lung cancer and the cellular/molecular mechanisms involved in the crosstalk between lung cancer cells and immune cells in the TME could identify novel therapeutic weapons in the old war against lung cancer. This article discusses the role of TME in the progression of lung cancer and pinpoints possible advances and challenges of immunotherapy for NSCLC.
Collapse
Affiliation(s)
- Fen Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Mingyi Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Weichi Luo
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
23
|
Marangio A, Biccari A, D’Angelo E, Sensi F, Spolverato G, Pucciarelli S, Agostini M. The Study of the Extracellular Matrix in Chronic Inflammation: A Way to Prevent Cancer Initiation? Cancers (Basel) 2022; 14:cancers14235903. [PMID: 36497384 PMCID: PMC9741172 DOI: 10.3390/cancers14235903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Bidirectional communication between cells and their microenvironment has a key function in normal tissue homeostasis, and in disease initiation, progression and a patient's prognosis, at the very least. The extracellular matrix (ECM), as an element of all tissues and cellular microenvironment, is a frequently overlooked component implicated in the pathogenesis and progression of several diseases. In the inflammatory microenvironment (IME), different alterations resulting from remodeling processes can affect ECM, progressively inducing cancer initiation and the passage toward a tumor microenvironment (TME). Indeed, it has been demonstrated that altered ECM components interact with a variety of surface receptors triggering intracellular signaling that affect cellular pathways in turn. This review aims to support the notion that the ECM and its alterations actively participate in the promotion of chronic inflammation and cancer initiation. In conclusion, some data obtained in cancer research with the employment of decellularized ECM (dECM) models are described. The reported results encourage the application of dECM models to investigate the short circuits contributing to the creation of distinct IME, thus representing a potential tool to avoid the progression toward a malignant lesion.
Collapse
Affiliation(s)
- Asia Marangio
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Andrea Biccari
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Edoardo D’Angelo
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Francesca Sensi
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy
| | - Gaya Spolverato
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Salvatore Pucciarelli
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Marco Agostini
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Correspondence: ; Tel.: +39-049-964-0160
| |
Collapse
|
24
|
Zalpoor H, Aziziyan F, Liaghat M, Bakhtiyari M, Akbari A, Nabi-Afjadi M, Forghaniesfidvajani R, Rezaei N. The roles of metabolic profiles and intracellular signaling pathways of tumor microenvironment cells in angiogenesis of solid tumors. Cell Commun Signal 2022; 20:186. [PMID: 36419156 PMCID: PMC9684800 DOI: 10.1186/s12964-022-00951-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022] Open
Abstract
Innate and adaptive immune cells patrol and survey throughout the human body and sometimes reside in the tumor microenvironment (TME) with a variety of cell types and nutrients that may differ from those in which they developed. The metabolic pathways and metabolites of immune cells are rooted in cell physiology, and not only provide nutrients and energy for cell growth and survival but also influencing cell differentiation and effector functions. Nowadays, there is a growing awareness that metabolic processes occurring in cancer cells can affect immune cell function and lead to tumor immune evasion and angiogenesis. In order to safely treat cancer patients and prevent immune checkpoint blockade-induced toxicities and autoimmunity, we suggest using anti-angiogenic drugs solely or combined with Immune checkpoint blockers (ICBs) to boost the safety and effectiveness of cancer therapy. As a consequence, there is significant and escalating attention to discovering techniques that target metabolism as a new method of cancer therapy. In this review, a summary of immune-metabolic processes and their potential role in the stimulation of intracellular signaling in TME cells that lead to tumor angiogenesis, and therapeutic applications is provided. Video abstract.
Collapse
Affiliation(s)
- Hamidreza Zalpoor
- grid.412571.40000 0000 8819 4698Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Fatemeh Aziziyan
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.412266.50000 0001 1781 3962Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Liaghat
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Maryam Bakhtiyari
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.412606.70000 0004 0405 433XDepartment of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Abdullatif Akbari
- grid.412571.40000 0000 8819 4698Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi-Afjadi
- grid.412266.50000 0001 1781 3962Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Razieh Forghaniesfidvajani
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.411705.60000 0001 0166 0922Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Xiao J, Zhang T, Gao F, Zhou Z, Shu G, Zou Y, Yin G. Natural Killer Cells: A Promising Kit in the Adoptive Cell Therapy Toolbox. Cancers (Basel) 2022; 14:cancers14225657. [PMID: 36428748 PMCID: PMC9688567 DOI: 10.3390/cancers14225657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
As an important component of the innate immune system, natural killer (NK) cells have gained increasing attention in adoptive cell therapy for their safety and efficacious tumor-killing effect. Unlike T cells which rely on the interaction between TCRs and specific peptide-MHC complexes, NK cells are more prone to be served as "off-the-shelf" cell therapy products due to their rapid recognition and killing of tumor cells without MHC restriction. In recent years, constantly emerging sources of therapeutic NK cells have provided flexible options for cancer immunotherapy. Advanced genetic engineering techniques, especially chimeric antigen receptor (CAR) modification, have yielded exciting effectiveness in enhancing NK cell specificity and cytotoxicity, improving in vivo persistence, and overcoming immunosuppressive factors derived from tumors. In this review, we highlight current advances in NK-based adoptive cell therapy, including alternative sources of NK cells for adoptive infusion, various CAR modifications that confer different targeting specificity to NK cells, multiple genetic engineering strategies to enhance NK cell function, as well as the latest clinical research on adoptive NK cell therapy.
Collapse
Affiliation(s)
- Jiani Xiao
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Fei Gao
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zhengwei Zhou
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Guang Shu
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Yizhou Zou
- Department of Immunology, School of Basic Medicine, Central South University, Changsha 410000, China
- Correspondence: (Y.Z.); (G.Y.)
| | - Gang Yin
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Correspondence: (Y.Z.); (G.Y.)
| |
Collapse
|
26
|
Yang Y, Cao Y. The impact of VEGF on cancer metastasis and systemic disease. Semin Cancer Biol 2022; 86:251-261. [PMID: 35307547 DOI: 10.1016/j.semcancer.2022.03.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023]
Abstract
Metastasis is the leading cause of cancer-associated mortality and the underlying mechanisms of cancer metastasis remain elusive. Both blood and lymphatic vasculatures are essential structures for mediating distal metastasis. The vasculature plays multiple functions, including accelerating tumor growth, sustaining the tumor microenvironment, supplying growth and invasive signals, promoting metastasis, and causing cancer-associated systemic disease. VEGF is one of the key angiogenic factors in tumors and participates in the initial stage of tumor development, progression and metastasis. Consequently, VEGF and its receptor-mediated signaling pathways have become one of the most important therapeutic targets for treating various cancers. Today, anti-VEGF-based antiangiogenic drugs (AADs) are widely used in the clinic for treating different types of cancer in human patients. Despite nearly 20-year clinical experience with AADs, the impact of these drugs on cancer metastasis and systemic disease remains largely unknown. In this review article, we focus our discussion on tumor VEGF in cancer metastasis and systemic disease and mechanisms underlying AADs in clinical benefits.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institute, 171 77 Stockholm, Sweden.
| |
Collapse
|
27
|
Hematian Larki M, Ashouri E, Barani S, Ghayumi SMA, Ghaderi A, Rajalingam R. KIR-HLA gene diversities and susceptibility to lung cancer. Sci Rep 2022; 12:17237. [PMID: 36241658 PMCID: PMC9568660 DOI: 10.1038/s41598-022-21062-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023] Open
Abstract
Killer-cell immunoglobulin-like receptors (KIR) are essential for acquiring natural killer (NK) cell effector function, which is modulated by a balance between the net input of signals derived from inhibitory and activating receptors through engagement by human leukocyte antigen (HLA) class I ligands. KIR and HLA loci are polygenic and polymorphic and exhibit substantial variation between individuals and populations. We attempted to investigate the contribution of KIR complex and HLA class I ligands to the genetic predisposition to lung cancer in the native population of southern Iran. We genotyped 16 KIR genes for a total of 232 patients with lung cancer and 448 healthy controls (HC), among which 85 patients and 178 HCs were taken into account for evaluating combined KIR-HLA associations. KIR2DL2 and 2DS2 were increased significantly in patients than in controls, individually (OR 1.63, and OR 1.42, respectively) and in combination with HLA-C1 ligands (OR 1.99, and OR 1.93, respectively). KIR3DS1 (OR 0.67) and 2DS1 (OR 0.69) were more likely presented in controls in the absence of their relative ligands. The incidence of CxTx subset was increased in lung cancer patients (OR 1.83), and disease risk strikingly increased by more than fivefold among genotype ID19 carriers (a CxTx genotype that carries 2DL2 in the absence of 2DS2, OR 5.92). We found that genotypes with iKIRs > aKIRs (OR 1.67) were more frequently presented in lung cancer patients. Additionally, patients with lung cancer were more likely to carry the combination of CxTx/2DS2 compared to controls (OR 2.04), and iKIRs > aKIRs genotypes in the presence of 2DL2 (OR 2.05) increased the likelihood of lung cancer development. Here we report new susceptibility factors and the contribution of KIR and HLA-I encoding genes to lung cancer risk, highlighting an array of genetic effects and disease setting which regulates NK cell responsiveness. Our results suggest that inherited KIR genes and HLA-I ligands specifying the educational state of NK cells can modify lung cancer risk.
Collapse
Affiliation(s)
- Marjan Hematian Larki
- grid.412571.40000 0000 8819 4698Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Ashouri
- grid.412571.40000 0000 8819 4698Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shaghik Barani
- grid.412571.40000 0000 8819 4698Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seiyed Mohammad Ali Ghayumi
- grid.412571.40000 0000 8819 4698Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- grid.412571.40000 0000 8819 4698Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raja Rajalingam
- grid.266102.10000 0001 2297 6811Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA USA
| |
Collapse
|
28
|
Dhandapani H, Bose M, Kesavan S. The Immune-related ceRNA Network in Prognosis of Cervical Cancer. Asian Pac J Cancer Prev 2022; 23:3347-3354. [PMID: 36308358 PMCID: PMC9924325 DOI: 10.31557/apjcp.2022.23.10.3347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Immunotherapy is gaining attention and it is being included as one of the treatment strategies for cancer patients. However, the molecular mechanisms of immune-related genes and their affinity for cervical cancer progression remain unclear. In this study, we have developed an immune-related competing endogenous RNA [ceRNA] network and assessed the tumour infiltrating immune cells towards the prognosis of cervical cancer. METHODS Differential RNA expression pattern between stages I and II-IV of cervical cancer patients from The Cancer Genome Atlas [TCGA] was analyzed. Immune-related ceRNA network based on the immune gene signatures were retrieved and their targets were predicted using miRwalk 3.0. CIBERSORT was employed to identify the immune cell types based on their respective transcripts. The prognostic significance of RNAs in the ceRNA network and immune cell subsets was analyzed. RESULTS Significant differences in 22 long non-coding RNAs [lncRNAs], 15 microRNAs [miRNAs], and 252 messenger RNAs [mRNAs] between stages I and II-IV of cervical cancer were observed. Further, we shortlisted the 49 immune-related mRNAs based on immune gene signature and predicted their target miRNAs and lncRNAs. A potential ceRNA network of 4 lncRNAs, 10 miRNAs, and 11 mRNAs had a strong correlation for prognosis. Out of 11 protein-coding immune mRNAs, IRF4 and AZGP1 had high degrees of interaction. In addition, the evaluation of immune cell subsets showed increased infiltration of M1 macrophages had better survival outcome. CONCLUSIONS We have identified an immune-related ceRNA network based on differentially expressed transcripts between stages I and II-IV which may help predict the prognosis of cervical cancer.
Collapse
|
29
|
Cober ND, VandenBroek MM, Ormiston ML, Stewart DJ. Evolving Concepts in Endothelial Pathobiology of Pulmonary Arterial Hypertension. Hypertension 2022; 79:1580-1590. [PMID: 35582968 DOI: 10.1161/hypertensionaha.122.18261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a deadly disease, characterized by increased vascular resistance, pulmonary arteriolar loss, and occlusive arterial remodeling, leading to eventual right heart failure. Evidence increasingly points to the pulmonary endothelium as a central actor in PAH. Endothelial cell apoptosis can result directly in distal lung arteriolar pruning and indirectly in the formation of complex and occlusive arterial lesions, reflecting an imbalance between endothelial injury and repair in the development and progression of PAH. Many of the mutations implicated in PAH are in genes, which are predominantly, or solely, expressed in endothelial cells, and the endothelium is a major target for therapeutic interventions to restore BMP signaling. We explore how arterial pruning can promote the emergence of occlusive arterial remodeling mediated by ongoing endothelial injury secondary to hemodynamic perturbation and pathological increases in luminal shear stress. The emerging role of endothelial cell senescence is discussed in the transition from reversible to irreversible arterial remodeling in advanced PAH, and we review the sometimes conflicting evidence that female sex hormones can both protect or promote vascular changes in disease. Finally, we explore the contribution of the endothelium to metabolic changes and the altered inflammatory and immune state in the PAH lung, focusing on the role of excessive TGFβ signaling. Given the complexity of the endothelial pathobiology of PAH, we anticipate that emerging technologies that allow the study of molecular events at a single cell level will provide answers to many of the questions raised in this review.
Collapse
Affiliation(s)
- Nicholas D Cober
- Ottawa Hospital Research Institute, ON, Canada (N.D.C., D.J.S.).,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada (N.D.C., D.J.S.)
| | - M Martin VandenBroek
- Department of Medicine, Queen's University, Kingston, ON, Canada (M.M.V., M.L.O.)
| | - Mark L Ormiston
- Department of Medicine, Queen's University, Kingston, ON, Canada (M.M.V., M.L.O.).,Departments of Surgery, and Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada (M.L.O.)
| | - Duncan J Stewart
- Ottawa Hospital Research Institute, ON, Canada (N.D.C., D.J.S.).,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada (N.D.C., D.J.S.)
| |
Collapse
|
30
|
Functional crosstalk and regulation of natural killer cells in tumor microenvironment: Significance and potential therapeutic strategies. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
PPDPF promotes lung adenocarcinoma progression via inhibiting apoptosis and NK cell-mediated cytotoxicity through STAT3. Oncogene 2022; 41:4244-4256. [PMID: 35906391 DOI: 10.1038/s41388-022-02418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/08/2022]
Abstract
Lung cancer is the most common malignancy and the leading cause of cancer death worldwide, and lung adenocarcinoma (LUAD) is the most prevalent subtype. Considering the emergence of resistance to therapies, it is urgent to develop more effective therapies to improve the prognosis. Here we reported that pancreatic progenitor cell differentiation and proliferation factor (PPDPF) deficiency inhibited LUAD development both in vitro and in vivo. Mechanistically, PPDPF induces hyperactive STAT3 by interfering STAT3-PTPN1 interaction. Activated STAT3 promoted BMPR2 transcription, which further inhibited apoptosis. Moreover, PPDPF reduced NK cell infiltration and activation to develop an immunosuppressive microenvironment, which was also mediated by STAT3. Furthermore, we identified that the expression of PPDPF was positively correlated with the malignant features of LUAD, as well as BMPR2 and p-STAT3 level in clinical samples. Therefore, our study suggests that PPDPF positively regulates BMPR2 expression and facilitates immune escape via regulating STAT3 activity, providing a potential therapy target for LUAD.
Collapse
|
32
|
Baci D, Cekani E, Imperatori A, Ribatti D, Mortara L. Host-Related Factors as Targetable Drivers of Immunotherapy Response in Non-Small Cell Lung Cancer Patients. Front Immunol 2022; 13:914890. [PMID: 35874749 PMCID: PMC9298844 DOI: 10.3389/fimmu.2022.914890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite some significant therapeutic breakthroughs leading to immunotherapy, a high percentage of patients with non-small cell lung cancer (NSCLC) do not respond to treatment on relapse, thus experiencing poor prognosis and survival. The unsatisfying results could be related to the features of the tumor immune microenvironment and the dynamic interactions between a tumor and immune infiltrate. Host-tumor interactions strongly influence the course of disease and response to therapies. Thus, targeting host-associated factors by restoring their physiologic functions altered by the presence of a tumor represents a new therapeutic approach to control tumor development and progression. In NSCLC, the immunogenic tumor balance is shifted negatively toward immunosuppression due to the release of inhibitory factors as well as the presence of immunosuppressive cells. Among these cells, there are myeloid-derived suppressor cells, regulatory T cells that can generate a tumor-permissive milieu by reprogramming the cells of the hosts such as tumor-associated macrophages, tumor-associated neutrophils, natural killer cells, dendritic cells, and mast cells that acquire tumor-supporting phenotypes and functions. This review highlights the current knowledge of the involvement of host-related factors, including innate and adaptive immunity in orchestrating the tumor cell fate and the primary resistance mechanisms to immunotherapy in NSCLC. Finally, we discuss combinational therapeutic strategies targeting different aspects of the tumor immune microenvironment (TIME) to prime the host response. Further research dissecting the characteristics and dynamic interactions within the interface host-tumor is necessary to improve a patient fitness immune response and provide answers regarding the immunotherapy efficacy, with the aim to develop more successful treatments for NSCLC.
Collapse
Affiliation(s)
- Denisa Baci
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy.,Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elona Cekani
- Medical Oncology Clinic, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Andrea Imperatori
- Center for Thoracic Surgery, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
33
|
Witalisz-Siepracka A, Klein K, Zdársky B, Stoiber D. The Multifaceted Role of STAT3 in NK-Cell Tumor Surveillance. Front Immunol 2022; 13:947568. [PMID: 35865518 PMCID: PMC9294167 DOI: 10.3389/fimmu.2022.947568] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a member of the Janus kinase (JAK)-STAT pathway, which is one of the key pathways contributing to cancer. STAT3 regulates transcription downstream of many cytokines including interleukin (IL)-6 and IL-10. In cancer, STAT3 is mainly described as a tumor promoter driving tumor cell proliferation, resistance to apoptosis, angiogenesis and metastasis and aberrant activation of STAT3 is associated with poor prognosis. STAT3 is also an important driver of immune evasion. Among many other immunosuppressive mechanisms, STAT3 aids tumor cells to escape natural killer (NK) cell-mediated immune surveillance. NK cells are innate lymphocytes, which can directly kill malignant cells but also regulate adaptive immune responses and contribute to the composition of the tumor microenvironment. The inborn ability to lyse transformed cells renders NK cells an attractive tool for cancer immunotherapy. Here, we provide an overview of the role of STAT3 in the dynamic interplay between NK cells and tumor cells. On the one hand, we summarize the current knowledge on how tumor cell-intrinsic STAT3 drives the evasion from NK cells. On the other hand, we describe the multiple functions of STAT3 in regulating NK-cell cytotoxicity, cytokine production and their anti-tumor responses in vivo. In light of the ongoing research on STAT3 inhibitors, we also discuss how targeting STAT3 would affect the two arms of STAT3-dependent regulation of NK cell-mediated anti-tumor immunity. Understanding the complexity of this interplay in the tumor microenvironment is crucial for future implementation of NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Agnieszka Witalisz-Siepracka
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Klara Klein
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Bernhard Zdársky
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Dagmar Stoiber
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
- *Correspondence: Dagmar Stoiber,
| |
Collapse
|
34
|
Franklin M, Connolly E, Hussell T. Recruited and Tissue-Resident Natural Killer Cells in the Lung During Infection and Cancer. Front Immunol 2022; 13:887503. [PMID: 35844626 PMCID: PMC9284027 DOI: 10.3389/fimmu.2022.887503] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are an important component of the innate immune system, and have a key role in host defense against infection and in tumor surveillance. Tumors and viruses employ remarkably similar strategies to avoid recognition and killing by NK cells and so much can be learnt by comparing NK cells in these disparate diseases. The lung is a unique tissue environment and immune cells in this organ, including NK cells, exist in a hypofunctional state to prevent activation against innocuous stimuli. Upon infection, rapid NK cell infiltration into the lung occurs, the amplitude of which is determined by the extent of inflammation and damage. Activated NK cells kill infected cells and produce pro-inflammatory cytokines and chemokines to recruit cells of the adaptive immune system. More recent evidence has shown that NK cells also play an additional role in resolution of inflammation. In lung cancer however, NK cell recruitment is impaired and those that are present have reduced functionality. The majority of lung NK cells are circulatory, however recently a small population of tissue-resident lung NK cells has been described. The specific role of this subset is yet to be determined, but they show similarity to resident memory T cell subsets. Whether resident or recruited, NK cells are important in the control of pulmonary infections, but equally, can drive excessive inflammation if not regulated. In this review we discuss how NK cells are recruited, controlled and retained in the specific environment of the lung in health and disease. Understanding these mechanisms in the context of infection may provide opportunities to promote NK cell recruitment and function in the lung tumor setting.
Collapse
|
35
|
Ran GH, Lin YQ, Tian L, Zhang T, Yan DM, Yu JH, Deng YC. Natural killer cell homing and trafficking in tissues and tumors: from biology to application. Signal Transduct Target Ther 2022; 7:205. [PMID: 35768424 PMCID: PMC9243142 DOI: 10.1038/s41392-022-01058-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells, a subgroup of innate lymphoid cells, act as the first line of defense against cancer. Although some evidence shows that NK cells can develop in secondary lymphoid tissues, NK cells develop mainly in the bone marrow (BM) and egress into the blood circulation when they mature. They then migrate to and settle down in peripheral tissues, though some special subsets home back into the BM or secondary lymphoid organs. Owing to its success in allogeneic adoptive transfer for cancer treatment and its "off-the-shelf" potential, NK cell-based immunotherapy is attracting increasing attention in the treatment of various cancers. However, insufficient infiltration of adoptively transferred NK cells limits clinical utility, especially for solid tumors. Expansion of NK cells or engineered chimeric antigen receptor (CAR) NK cells ex vivo prior to adoptive transfer by using various cytokines alters the profiles of chemokine receptors, which affects the infiltration of transferred NK cells into tumor tissue. Several factors control NK cell trafficking and homing, including cell-intrinsic factors (e.g., transcriptional factors), cell-extrinsic factors (e.g., integrins, selectins, chemokines and their corresponding receptors, signals induced by cytokines, sphingosine-1-phosphate (S1P), etc.), and the cellular microenvironment. Here, we summarize the profiles and mechanisms of NK cell homing and trafficking at steady state and during tumor development, aiming to improve NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Guang He Ran
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China
| | - Yu Qing Lin
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Tao Zhang
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China.
| | - Dong Mei Yan
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China.
| | - Jian Hua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
| | - You Cai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China.
- Department of Clinical Hematology, College of Pharmacy, Army Medical University, 400038, Chongqing, China.
| |
Collapse
|
36
|
He T, Zhang Y, Li X, Liu C, Zhu G, Yin X, Zhang Z, Zhao K, Wang Z, Zhao P, Wang K. Collective analysis of the expression and prognosis for LEM-domain proteins in prostate cancer. World J Surg Oncol 2022; 20:174. [PMID: 35650630 PMCID: PMC9161513 DOI: 10.1186/s12957-022-02640-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 05/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mammalian LEM-domain proteins (LEMs) are encoded by seven genes, including LAP2, EMD, LEMD1, LEMD2, LEMD3, ANKLE1, and ANKLE2. Though some LEMs were involved in various tumor progression, the expression and prognostic values of LEMs in prostate adenocarcinoma (PRAD) have yet to be analyzed. METHODS Herein, we investigated the expression, survival data, and immune infiltration levels of LEMs in PRAD patients from ATCG, TIMER, LinkedOmics, and TISIDB databases. We also further validated the mRNA and protein expression levels of ANKLE1, EMD, and LEMD2 in human prostate tumor specimens by qPCR, WB, and IHC. RESULTS We found that all LEM expressions, except for that of LAP2, were markedly altered in PRAD compared to the normal samples. Among all LEMs, only the expressions of ANKLE1, EMD, and LEMD2 were correlated with advanced tumor stage and survival prognosis in PRAD. Consistent with the predicted computational results, the mRNA and protein expression levels of these genes were markedly increased in the PRAD group. We then found that ANKLE1, EMD, and LEMD2 expressions were markedly correlated with immune cell infiltration levels. High ANKLE1, EMD, and LEMD2 expressions predicted a worse prognosis in PRAD based on immune cells. DNA methylation or/and copy number variations may contribute to the abnormal upregulation of ANKLE1, EMD, and LEMD2 in PRAD. CONCLUSIONS Taken together, this study implied that ANKLE1, EMD, and LEMD2 were promising prognosis predictors and potential immunotherapy targets for PRAD patients.
Collapse
Affiliation(s)
- Tianzhen He
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China.
| | - Yulian Zhang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong Province, China
| | - Xueyu Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong Province, China
| | - Caihong Liu
- Western Administrative Office Center, Qingdao West Coast New District Health Bureau, No. 166 Shuangzhu Road, Huangdao District, Qingdao, 266000, Shandong Province, China
| | - Guanqun Zhu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong Province, China
| | - Xinbao Yin
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong Province, China
| | - Zongliang Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong Province, China
| | - Kai Zhao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong Province, China
| | - Zhenlin Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong Province, China
| | - Peng Zhao
- Faculty of Sport Science and Coaching, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak Darul Ridzuan, Malaysia.
- Athletics Department, Duke Kunshan University, Kunshan, 215316, Jiangsu Province, China.
| | - Ke Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong Province, China.
| |
Collapse
|
37
|
Nong C, Guan P, Li L, Zhang H, Hu H. Tumor immunotherapy: Mechanisms and clinical applications. MEDCOMM – ONCOLOGY 2022. [DOI: 10.1002/mog2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cheng Nong
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Pengbo Guan
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Li
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Hongbo Hu
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- Chongqing International Institution for Immunology Chongqing China
| |
Collapse
|
38
|
Corvino D, Kumar A, Bald T. Plasticity of NK cells in Cancer. Front Immunol 2022; 13:888313. [PMID: 35619715 PMCID: PMC9127295 DOI: 10.3389/fimmu.2022.888313] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are crucial to various facets of human immunity and function through direct cytotoxicity or via orchestration of the broader immune response. NK cells exist across a wide range of functional and phenotypic identities. Murine and human studies have revealed that NK cells possess substantial plasticity and can alter their function and phenotype in response to external signals. NK cells also play a critical role in tumor immunity and form the basis for many emerging immunotherapeutic approaches. NK cells can directly target and lyse malignant cells with their inherent cytotoxic capabilities. In addition to direct targeting of malignant cells, certain subsets of NK cells can mediate antibody-dependent cellular cytotoxicity (ADCC) which is integral to some forms of immune checkpoint-blockade immunotherapy. Another important feature of various NK cell subsets is to co-ordinate anti-tumor immune responses by recruiting adaptive and innate leukocytes. However, given the diverse range of NK cell identities it is unsurprising that both pro-tumoral and anti-tumoral NK cell subsets have been described. Here, NK cell subsets have been shown to promote angiogenesis, drive inflammation and immune evasion in the tumor microenvironment. To date, the signals that drive tumor-infiltrating NK cells towards the acquisition of a pro- or anti-tumoral function are poorly understood. The notion of tumor microenvironment-driven NK cell plasticity has substantial implications for the development of NK-based immunotherapeutics. This review will highlight the current knowledge of NK cell plasticity pertaining to the tumor microenvironment. Additionally, this review will pose critical and relevant questions that need to be addressed by the field in coming years.
Collapse
Affiliation(s)
- Dillon Corvino
- Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Ananthi Kumar
- Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Tobias Bald
- Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
39
|
Gemelli M, Noonan DM, Carlini V, Pelosi G, Barberis M, Ricotta R, Albini A. Overcoming Resistance to Checkpoint Inhibitors: Natural Killer Cells in Non-Small Cell Lung Cancer. Front Oncol 2022; 12:886440. [PMID: 35712510 PMCID: PMC9194506 DOI: 10.3389/fonc.2022.886440] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 12/05/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatments over the last 10 years, with even increasing indications in many neoplasms. Non-small cell lung cancer (NSCLC) is considered highly immunogenic, and ICIs have found a wide set of applications in this area, in both early and advanced lines of treatment, significantly changing the prognosis of these patients. Unfortunately, not all patients can benefit from the treatment, and resistance to ICIs can develop at any time. In addition to T lymphocytes, which are the major target, a variety of other cells present in the tumor microenvironment (TME) act in a complex cross-talk between tumor, stromal, and immune cells. An imbalance between activating and inhibitory signals can shift TME from an “anti-” to a “pro-tumorigenic” phenotype and vice versa. Natural killer cells (NKs) are able to recognize cancer cells, based on MHC I (self and non-self) and independently from antigen presentation. They represent an important link between innate and adaptive immune responses. Little data are available about the role of pro-inflammatory NKs in NSCLC and how they can influence the response to ICIs. NKs express several ligands of the checkpoint family, such as PD-1, TIGIT, TIM-3, LAG3, CD96, IL1R8, and NKG2A. We and others have shown that TME can also shape NKs, converting them into a pro-tumoral, pro-angiogenic “nurturing” phenotype through “decidualization.” The features of these NKs include expression of CD56, CD9, CD49a, and CXCR3; low CD16; and poor cytotoxicity. During ICI therapy, tumor-infiltrating or associated NKs can respond to the inhibitors or counteract the effect by acting as pro-inflammatory. There is a growing interest in NKs as a promising therapeutic target, as a basis for adoptive therapy and chimeric antigen receptor (CAR)-NK technology. In this review, we analyzed current evidence on NK function in NSCLC, focusing on their possible influence in response to ICI treatment and resistance development, addressing their prognostic and predictive roles and the rationale for exploiting NKs as a tool to overcome resistance in NSCLC, and envisaging a way to repolarize decidual NK (dNK)-like cells in lung cancer.
Collapse
Affiliation(s)
- Maria Gemelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Douglas M. Noonan
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica Science and Technology Park, Milan, Italy
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Valentina Carlini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica Science and Technology Park, Milan, Italy
| | - Giuseppe Pelosi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica Science and Technology Park, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Massimo Barberis
- Department of Pathology, European Institute of Oncology (IEO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Riccardo Ricotta
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
- *Correspondence: Adriana Albini, ; Riccardo Ricotta,
| | - Adriana Albini
- European Institute of Oncology (IEO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- *Correspondence: Adriana Albini, ; Riccardo Ricotta,
| |
Collapse
|
40
|
Krstic J, Deutsch A, Fuchs J, Gauster M, Gorsek Sparovec T, Hiden U, Krappinger JC, Moser G, Pansy K, Szmyra M, Gold D, Feichtinger J, Huppertz B. (Dis)similarities between the Decidual and Tumor Microenvironment. Biomedicines 2022; 10:1065. [PMID: 35625802 PMCID: PMC9138511 DOI: 10.3390/biomedicines10051065] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/05/2023] Open
Abstract
Placenta-specific trophoblast and tumor cells exhibit many common characteristics. Trophoblast cells invade maternal tissues while being tolerated by the maternal immune system. Similarly, tumor cells can invade surrounding tissues and escape the immune system. Importantly, both trophoblast and tumor cells are supported by an abetting microenvironment, which influences invasion, angiogenesis, and immune tolerance/evasion, among others. However, in contrast to tumor cells, the metabolic, proliferative, migrative, and invasive states of trophoblast cells are under tight regulatory control. In this review, we provide an overview of similarities and dissimilarities in regulatory processes that drive trophoblast and tumor cell fate, particularly focusing on the role of the abetting microenvironments.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Alexander Deutsch
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Julia Fuchs
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
- Division of Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Tina Gorsek Sparovec
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Julian Christopher Krappinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Katrin Pansy
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Marta Szmyra
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Daniela Gold
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| |
Collapse
|
41
|
Bourayou E, Golub R. Signaling Pathways Tuning Innate Lymphoid Cell Response to Hepatocellular Carcinoma. Front Immunol 2022; 13:846923. [PMID: 35281021 PMCID: PMC8904901 DOI: 10.3389/fimmu.2022.846923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide and its incidence continues to rise globally. Various causes can lead to its development such as chronic viral infections causing hepatitis, cirrhosis or nonalcoholic steatohepatitis (NASH). The contribution of immune cells to HCC development and progression has been extensively studied when it comes to adaptive lymphocytes or myeloid populations. However, the role of the innate lymphoid cells (ILCs) is still not well defined. ILCs are a family of lymphocytes comprising five subsets including circulating Natural Killer (NK) cells, ILC1s, ILC2s, ILC3s and lymphocytes tissue-inducer cells (LTi). Mostly located at epithelial surfaces, tissue-resident ILCs and NK cells can rapidly react to environmental changes to mount appropriate immune responses. Here, we provide an overview of their roles and actions in HCC with an emphasis on the importance of diverse signaling pathways (Notch, TGF-β, Wnt/β-catenin…) in the tuning of their response to HCC.
Collapse
Affiliation(s)
- Elsa Bourayou
- Institut Pasteur, Université de Paris, INSERM U1223, Lymphocyte and Immunity Unit, Paris, France
| | - Rachel Golub
- Institut Pasteur, Université de Paris, INSERM U1223, Lymphocyte and Immunity Unit, Paris, France
| |
Collapse
|
42
|
Mun JY, Leem SH, Lee JH, Kim HS. Dual Relationship Between Stromal Cells and Immune Cells in the Tumor Microenvironment. Front Immunol 2022; 13:864739. [PMID: 35464435 PMCID: PMC9019709 DOI: 10.3389/fimmu.2022.864739] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) plays a critical role in tumorigenesis and is comprised of different components, including tumor cells, stromal cells, and immune cells. Among them, the relationship between each mediator involved in the construction of the TME can be understood by focusing on the secreting or expressing factors from each cells. Therefore, understanding the various interactions between each cellular component of the TME is necessary for precise therapeutic approaches. In carcinoma, stromal cells are well known to influence extracellular matrix (ECM) formation and tumor progression through multiple mediators. Immune cells respond to tumor cells by causing cytotoxicity or inflammatory responses. However, they are involved in tumor escape through immunoregulatory mechanisms. In general, anti-cancer therapy has mainly been focused on cancer cells themselves or the interactions between cancer cells and specific cell components. However, cancer cells directly or indirectly influence other TME partners, and members such as stromal cells and immune cells also participate in TME organization through their mutual communication. In this review, we summarized the relationship between stromal cells and immune cells in the TME and discussed the positive and negative relationships from the point of view of tumor development for use in research applications and therapeutic strategies.
Collapse
Affiliation(s)
- Jeong-Yeon Mun
- Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan, South Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan, South Korea.,Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| | - Jun Ho Lee
- College of Korean Medicine, Woosuk University, Jeonju, South Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan, South Korea.,Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| |
Collapse
|
43
|
Harnessing Natural Killer Cells in Non-Small Cell Lung Cancer. Cells 2022; 11:cells11040605. [PMID: 35203256 PMCID: PMC8869885 DOI: 10.3390/cells11040605] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. There are two main subtypes: small cell lung cancer (SCLC), and non-small cell lung cancer (NSCLC). NSCLC accounts for 85% of lung cancer diagnoses. Early lung cancer very often has no specific symptoms, and many patients present with late stage disease. Despite the various treatments currently available, many patients experience tumor relapse or develop therapeutic resistance, highlighting the need for more effective therapies. The development of immunotherapies has revolutionized the cancer treatment landscape by enhancing the body’s own immune system to fight cancer. Natural killer (NK) cells are crucial anti-tumor immune cells, and their exclusion from the tumor microenvironment is associated with poorer survival. It is well established that NK cell frequencies and functions are impaired in NSCLC; thus, placing NK cell-based immunotherapies as a desirable therapeutic concept for this malignancy. Immunotherapies such as checkpoint inhibitors are transforming outcomes for NSCLC. This review explores the current treatment landscape for NSCLC, the role of NK cells and their dysfunction in the cancer setting, the advancement of NK cell therapies, and their future utility in NSCLC.
Collapse
|
44
|
Palano MT, Cucchiara M, Gallazzi M, Riccio F, Mortara L, Gensini GF, Spinetti G, Ambrosio G, Bruno A. When a Friend Becomes Your Enemy: Natural Killer Cells in Atherosclerosis and Atherosclerosis-Associated Risk Factors. Front Immunol 2022; 12:798155. [PMID: 35095876 PMCID: PMC8793801 DOI: 10.3389/fimmu.2021.798155] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis (ATS), the change in structure and function of arteries with associated lesion formation and altered blood flow, is the leading cause of cardiovascular disease, the number one killer worldwide. Beyond dyslipidemia, chronic inflammation, together with aberrant phenotype and function of cells of both the innate and adaptive immune system, are now recognized as relevant contributors to atherosclerosis onset and progression. While the role of macrophages and T cells in atherosclerosis has been addressed in several studies, Natural Killer cells (NKs) represent a poorly explored immune cell type, that deserves attention, due to NKs’ emerging contribution to vascular homeostasis. Furthermore, the possibility to re-polarize the immune system has emerged as a relevant tool to design new therapies, with some succesfull exmples in the field of cancer immunotherapy. Thus, a deeper knowledge of NK cell pathophysiology in the context of atherosclerosis and atherosclerosis-associated risk factors could help developing new preventive and treatment strategies, and decipher the complex scenario/history from “the risk factors for atherosclerosis” Here, we review the current knowledge about NK cell phenotype and activities in atherosclerosis and selected atherosclerosis risk factors, namely type-2 diabetes and obesity, and discuss the related NK-cell oriented environmental signals.
Collapse
Affiliation(s)
- Maria Teresa Palano
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| | - Martina Cucchiara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Matteo Gallazzi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gian Franco Gensini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| | - Gaia Spinetti
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| | | | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| |
Collapse
|
45
|
Lan J, Zhang H, Zhao H, Liu L, Shi Q, Li D, Ju X. Cord Blood Natural Killer Cells Inhibit Sepsis Caused by Feces-Induced Acute Peritonitis via Increasing Endothelium Integrity. Cell Transplant 2022; 31:9636897221090257. [PMID: 35438589 PMCID: PMC9021520 DOI: 10.1177/09636897221090257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sepsis is associated with acute peritonitis, which can be induced by lipopolysaccharide exposure and feces. Generally, lipopolysaccharide induces mono-microbial peritonitis, whereas feces cause poly-microbial peritonitis; the latter is a more complicated and closer to the clinical diseases. Although several reports have discussed the mechanism of immune response in peritonitis-induced sepsis, however, the role of natural killer (NK) cells in sepsis, especially the relationship between NK cells and stabilization of the vascular endothelial barrier, is still unclear. Accordingly, in this study, we assessed the roles of NK cells in an acute sepsis model in mice. NK cells were injected via the tail vein into mice with acute sepsis, and nitric oxide (NO), anti-inflammatory cytokine, and angiogenic factors were tested to explore the effects of NK cells on sepsis. The survival rate of septic model mice infused with NK cells was significantly improved compared with the control group. Interestingly, the levels of NO, interleukin-10, and vascular endothelial growth factor (VEGF) decreased in NK cells therapy group. After the injection of NK cells, CD31 positive endothelial cells significantly increased in the kidneys and liver, although the expression of VEGF, ANGPT-1, and ET-1 was downregulated. Consistent with our hypothesis, the transfusion of NK cells into mice with sepsis blocked inflammation and increased endothelium integrity. Overall, these findings suggest that NK cells may block sepsis by modulating the VEGF pathway.
Collapse
Affiliation(s)
- Jing Lan
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Linghong Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.,Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| | - Qing Shi
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.,Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| | - Dong Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.,Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.,Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
46
|
Palano MT, Gallazzi M, Cucchiara M, Dehò F, Capogrosso P, Bruno A, Mortara L. The tumor innate immune microenvironment in prostate cancer: an overview of soluble factors and cellular effectors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:694-718. [PMID: 36338516 PMCID: PMC9630328 DOI: 10.37349/etat.2022.00108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 01/14/2023] Open
Abstract
Prostate cancer (PCa) accounts as the most common non-cutaneous disease affecting males, and as the first cancer, for incidence, in male. With the introduction of the concept of immunoscore, PCa has been classified as a cold tumor, thus driving the attention in the development of strategies aimed at blocking the infiltration/activation of immunosuppressive cells, while favoring the infiltration/activation of anti-tumor immune cells. Even if immunotherapy has revolutionized the approaches to cancer therapy, there is still a window failure, due to the immune cell plasticity within PCa, that can acquire pro-tumor features, subsequent to the tumor microenvironment (TME) capability to polarize them. This review discussed selected relevant soluble factors [transforming growth factor-beta (TGFβ), interleukin-6 (IL-6), IL-10, IL-23] and cellular components of the innate immunity, as drivers of tumor progression, immunosuppression, and angiogenesis within the PCa-TME.
Collapse
Affiliation(s)
- Maria Teresa Palano
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy
| | - Matteo Gallazzi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Martina Cucchiara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Federico Dehò
- Unit of Urology, ASST-Sette Laghi, Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy
| | - Paolo Capogrosso
- Unit of Urology, ASST-Sette Laghi, Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy,Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy,Correspondence: Antonino Bruno,
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy,Lorenzo Mortara, . Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
47
|
Coco G, Pozzi C, Mortara L. Biomedicine and traditional Chinese medicine: a fruitful scientific and cultural interaction. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022070. [PMID: 35315400 PMCID: PMC8972849 DOI: 10.23750/abm.v93i1.12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022]
Abstract
Over the years, the approach of traditional Chinese medicine has changed, as has the concept of the health status. Particularly in this article we will focus on the importance of some techniques that we can define millennial, as acupuncture. We will highlight the relationship between a millenary system and the principles of modernity, emphasizing the relevance of a technique that appears to be in line with the latest scientific research and numerous studies of effectiveness, proposing therapeutic integration as a usable way. We will see how acupuncture has an anti-inflammatory effect, and has a beneficial role in subjects suffering from allergic or autoimmune diseases, including an antihistamine action and downregulation of proinflammatory cytokines (e.g. IL-1β, IL-6 and TNF-α). In addition, acupuncture could also act as an immunomodulatory agent, involving the neuroimmune network, T helper and natural killer cells. Traditional Chinese medicine, acupuncture in particular, is widely used within Western health systems and there are many studies done regarding its efficacy in the clinical field. In addition to scientific validation, however, a comparison on a cultural level is also necessary. To build a constructive dialogue, indeed, it is necessary to deconstruct the preconceptions and prejudices concerning both biomedicine and traditional Chinese medicine. In fact, only through deconstruction we can understand that biomedicine and traditional Chinese medicine are both culturally connoted knowledge. In this article it will first be underlined how clinical observations can be better understood if we pay attention to analyzing the cultural context of the medical systems that here interact with each other. (www.actabiomedica.it).
Collapse
Affiliation(s)
- Grace Coco
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese (Italy), these two authors equally contributed
| | - Cristina Pozzi
- Department of Human Sciences for Education ‘Riccardo Massa’, University of Milan-Bicocca, Milan (Italy)., these two authors equally contributed
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese (Italy)
| |
Collapse
|
48
|
Zhang C, Wang L, Xiong C, Zhao R, Liang H, Luo X. The role of vascular endothelial growth factor as a prognostic and clinicopathological marker in osteosarcoma: a systematic review and meta-analysis. J Orthop Surg Res 2021; 16:738. [PMID: 34963495 PMCID: PMC8715589 DOI: 10.1186/s13018-021-02888-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In recent years, numerous investigations have been conducted to determine the clinical significance and critical functions of vascular endothelial growth factor (VEGF) in various malignant cancers. The purpose of this meta-analysis was to comprehensively evaluate the prognostic and clinicopathological value of VEGF in patients with osteosarcoma. METHODS We performed a systematic literature retrieval of available databases. Odds ratios (ORs) or standard mean difference (SMD) for clinicopathological parameters, hazard ratios (HRs) for overall survival and disease-free survival were calculated to assess the correlation between VEGF expression and prognosis in patients with osteosarcoma. RESULTS A total of 22 studies with 1144 patients were included in our study. Pooled analyses showed that VEGF overexpression predicted worse overall survival (HR, 2.42; 95% CI, 1.87-3.11, p < 0.001) and disease-free survival (HR, 2.604; 95% CI, 1.698-3.995, p < 0.001), respectively. Furthermore, investigation regarding osteosarcoma clinicopathologic characteristics suggested that high VEGF expression was significantly associated with metastasis (OR, 4.39; 95% CI, 2.77-6.95; p < 0.001), clinical stage (OR, 0.73; 95% CI, 0.62-0.87; p < 0.001), and microvessel density (SMD, 3.33, 95% CI,1.57-5.10, p < 0.001), but not associated with tumor location, gender, age, local recurrence, and chemotherapy response. CONCLUSION Our meta-analysis findings suggest that elevated VEGF expression may be a predictive biomarker for poor prognosis and adverse clinicopathological characteristics in patients with osteosarcoma.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lin Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chuang Xiong
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Runhan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hao Liang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China. .,Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
49
|
Neutrophil and Natural Killer Cell Interactions in Cancers: Dangerous Liaisons Instructing Immunosuppression and Angiogenesis. Vaccines (Basel) 2021; 9:vaccines9121488. [PMID: 34960234 PMCID: PMC8709224 DOI: 10.3390/vaccines9121488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 01/21/2023] Open
Abstract
The tumor immune microenvironment (TIME) has largely been reported to cooperate on tumor onset and progression, as a consequence of the phenotype/functional plasticity and adaptation capabilities of tumor-infiltrating and tumor-associated immune cells. Immune cells within the tumor micro (tissue-local) and macro (peripheral blood) environment closely interact by cell-to-cell contact and/or via soluble factors, also generating a tumor-permissive soil. These dangerous liaisons have been investigated for pillars of tumor immunology, such as tumor associated macrophages and T cell subsets. Here, we reviewed and discussed the contribution of selected innate immunity effector cells, namely neutrophils and natural killer cells, as "soloists" or by their "dangerous liaisons", in favoring tumor progression by dissecting the cellular and molecular mechanisms involved.
Collapse
|
50
|
Chang WA, Tsai MJ, Hung JY, Wu KL, Tsai YM, Huang YC, Chang CY, Tsai PH, Hsu YL. miR-150-5p-Containing Extracellular Vesicles Are a New Immunoregulator That Favor the Progression of Lung Cancer in Hypoxic Microenvironments by Altering the Phenotype of NK Cells. Cancers (Basel) 2021; 13:cancers13246252. [PMID: 34944871 PMCID: PMC8699319 DOI: 10.3390/cancers13246252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022] Open
Abstract
Natural killer (NKs) cells are cytotoxic effector cells, which can modulate tumor metastasis according to their function; however, the role of NK cells in lung cancer has not been extensively investigated. In this study, we determined the functional profiles of NK cells in a hypoxic tumor microenvironment (TME) of lung cancer. We revealed CD226 downregulation and functional repression of NK cells after hypoxic lung cancer priming and we then investigated their interaction with extracellular vesicles (EVs) and miR-150-5p. We also found that NK cells from lung cancer patients had lower expression of CD226 on their surface and exhibited a pro-inflammatory, pro-angiogenic and tumorigenesis phenotype by expressing VEGF, CXCL1, CXCL8, S100A8 and MMPs. Moreover, inhibition of miR-150 improved tumor surveillance by reversing CD226 expression and subsequently reinstating cytotoxic NK cell activity in an animal model. Our study introduces a new scenario for the pro-inflammatory and pro-angiogenic activities of NK cells in the hypoxic TME in lung cancer.
Collapse
Affiliation(s)
- Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - Kuan-Li Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
| | - Ying-Ming Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yung-Chi Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
| | - Chao-Yuan Chang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Hsun Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 2136-26)
| |
Collapse
|