1
|
Posadas LG, Baldin EL, Marchi-Werle L, Heng-Moss TM, Speck S, Stupar RM, Eskridge KM, Graef GL. A tritrophic plant-insect-pathogen system used to develop a closely linked Rag2 and Rsv1-h recombinant haplotype in double-resistant soybean germplasm. BMC Genomics 2025; 26:539. [PMID: 40426039 PMCID: PMC12117769 DOI: 10.1186/s12864-025-11686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND The colocalization of two resistance (R) genes on chromosome 13 of soybean (Glycine max (L.) Merrill) that confer resistance against the soybean aphid (Aphis glycines) and soybean mosaic virus (SMV) gives rise to a very unique R-avr tritrophic incompatible interaction system that goes across biological kingdoms. In this tritrophic system, the insect is the only natural vector of the virus and soybean is a host-plant for both pests/pathogen. The almost unavoidable co-evolution of pathogen-vector with that of the R-genes in soybean plants through an endless arms race to avoid each other's defense-attack mechanisms raises interesting questions. The objectives of this work were to (i) develop double-resistant recombinant inbred lines (RILs) with a Rag2-Rsv1-h gene haplotype in coupling phase using resistance alleles from two different genetic sources (PI 243540 (Rag2) and Suweon 97 (Rsv1-h)), (ii) confirm phenotypically the resistant reaction against both pests in double-resistant RILs, and (iii) dissect the Rag2-Rsv1-h region with molecular markers and investigate the potential for structural variation. RESULTS We observed a recombination event in identified double-resistant F3:5 RILs in a region of chromosome 13 ca. 21 kb long (between positions 30,297,227 and 30,318,949 in Wm82.a2.v1) that lies between the reported locations of the Rsv1-h and Rag2 genes (29,815,463--29,912,369 and 30,412,581--30,466,533 intervals, respectively, based on Wm82.a2.v1), indicating the double-resistant haplotype is in coupling phase. The tight LD estimates obtained between haplotype markers underscored the physical proximity of the two resistance genes. Only 10 recombinant haplotype classes (excluding double heterozygotes) were observed among the 51 that were possible with a four loci haplotype. The 10 recombinant classes represented 15 out of 192 screened individuals. A joint SMV-aphid phenotypic greenhouse screen allowed us to identify the best aphid biotype 1 and SMV-G1, double resistant haplotype class in recombinant progeny. Our molecular marker results agree with previous fine-mapping reports and preclude the presence of resistance genes other than Rag2 and Rsv1-h in double-resistant RILs. A comparative genomic hybridization analysis revealed no obvious structural variants in the region. CONCLUSIONS To our knowledge, this is the first report of double-resistant Rag2-Rsv1-h soybean RILs that used a plant-insect-pathogen tritrophic system for germplasm enhancement. The co-occurrence of Rag and Rsv genes in a region that clusters resistance genes on chromosome 13 may be a unique feature of domesticated soybean. The recombinant genotypes will be useful in breeding to develop soybean cultivars with resistance to both the vector and the virus. The parental and recombinant genotypes may be helpful in future studies to elucidate interesting evolutionary questions regarding vector, host, and virus tritrophic systems.
Collapse
Affiliation(s)
- Luis G Posadas
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Edson Ll Baldin
- Department of Crop Protection, College of Agronomic Sciences, São Paulo State University, Botucatu, São Paulo, 18610-307, Brazil
| | | | - Tiffany M Heng-Moss
- College of Agricultural Sciences and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Scott Speck
- Beck's Hybrids, North Platte, NE, 69101, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Kent M Eskridge
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - George L Graef
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
2
|
Banerjee A, Verma U, Lewis MT, Parshad RD. Two species competition with a "non-smooth" Allee mechanism: applications to soybean aphid population dynamics under climate change. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2025; 22:604-651. [PMID: 40083284 DOI: 10.3934/mbe.2025023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The soybean aphid (Aphis glycines) is an invasive insect pest that continues to cause large-scale damage to soybean crops in the North Central United States. Recent empirical evidence points to differential fitness in the pestiferous aphid biotypes under abiotic stresses such as flooding. As climate change predicts increased flooding in the North Central United States, mathematical models that incorporate such factors are required to better inform pest management strategies. Motivated by these empirical results, we considered the effect of non-smooth Allee type mechanisms, for the two species Lotka-Volterra competition model. We showed that this mechanism can alter classical competitive dynamics in both the ordinary differential equation (ODE) as well as the spatially explicit setting. In particular, an Allee effect present in the weaker competitor could lead to bi-stability dynamics, as well as competitive exclusion reversal. We discuss applications of our results to pest management strategies for soybean aphids in the context of a changing climate.
Collapse
Affiliation(s)
- Aniket Banerjee
- Sorbonne Université, Université Paris Cité, CNRS, Laboratoire Jacques-Louis Lions, F-75005 Paris, France
| | - Urvashi Verma
- Department of Mathematics, Iowa State University, IA 50011, USA
| | | | - Rana D Parshad
- Department of Mathematics, Iowa State University, IA 50011, USA
| |
Collapse
|
3
|
Han X, Lei J, Zhang Y, Jia Y, Wang X, Liu J, Tian Z. Feeding behavior, life-history traits, and settling preference of Aulacorthum solani (Hemiptera: Aphididae) on resistant and susceptible soybeans. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2658-2668. [PMID: 39302962 DOI: 10.1093/jee/toae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
Foxglove aphid, Aulacorthum solani Kaltenbach (Hemiptera: Aphididae), is a major pest worldwide. It can infest various crops, including soybean, and reduce yields. The use of insect-resistant cultivars can effectively manage pests. Dowling is a soybean cultivar that can control Aphis glycines through antibiosis and antixenosis. In this study, we investigated the feeding behavior of A. solani using electropenetrography (EPG), and its life-history traits using an age-stage, two-sex life table, and its settling preferences on Dowling (resistant) and Heinong 51 (HN51, susceptible) soybean cultivars. The Dowling cultivar showed strong antibiosis against A. solani. Aphids feeding on Dowling exhibited significantly reduced survival, fecundity, and longevity, and increased nymph duration. Moreover, Dowling had negative impacts on the demographic parameters of the aphids. The number of A. solani individuals was significantly less on Dowling than on HN51, indicating the antixenotic effects of Dowling. As shown using EPG, the mechanical blocking wave (F) of A. solani was significantly longer after feeding on Dowling than after feeding on HN51, indicating that Dowling has a higher mechanical resistance. In conclusion, Dowling exhibited strong resistance to A. solani. These results are beneficial for integrated pest management in soybean fields and breeding programs.
Collapse
Affiliation(s)
- Xue Han
- Key Laboratory of Crop Pests in Northern Cold Regions of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Jiahui Lei
- Key Laboratory of Crop Pests in Northern Cold Regions of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Yuhan Zhang
- Key Laboratory of Crop Pests in Northern Cold Regions of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Yulong Jia
- Key Laboratory of Crop Pests in Northern Cold Regions of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyun Wang
- Key Laboratory of Crop Pests in Northern Cold Regions of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Jian Liu
- Key Laboratory of Crop Pests in Northern Cold Regions of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Zhenqi Tian
- Key Laboratory of Crop Pests in Northern Cold Regions of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Giordano R, Weber EP, Mitacek R, Flores A, Ledesma A, De AK, Herman TK, Soto-Adames FN, Nguyen MQ, Hill CB, Hartman GL. Patterns of asexual reproduction of the soybean aphid, Aphis glycines (Matsumura), with and without the secondary symbionts Wolbachia and Arsenophonus, on susceptible and resistant soybean genotypes. Front Microbiol 2023; 14:1209595. [PMID: 37720159 PMCID: PMC10501154 DOI: 10.3389/fmicb.2023.1209595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023] Open
Abstract
Plant breeding is used to develop crops with host resistance to aphids, however, virulent biotypes often develop that overcome host resistance genes. We tested whether the symbionts, Arsenophonus (A) and Wolbachia (W), affect virulence and fecundity in soybean aphid biotypes Bt1 and Bt3 cultured on whole plants and detached leaves of three resistant, Rag1, Rag2 and Rag1 + 2, and one susceptible, W82, soybean genotypes. Whole plants and individual aphid experiments of A. glycines with and without Arsenophonus and Wolbachia did not show differences in overall fecundity. Differences were observed in peak fecundity, first day of deposition, and day of maximum nymph deposition of individual aphids on detached leaves. Bt3 had higher fecundity than Bt1 on detached leaves of all plant genotypes regardless of bacterial profile. Symbionts did not affect peak fecundity of Bt1 but increased it in Bt3 (A+W+) and all Bt3 strains began to deposit nymphs earlier than the Bt1 (A+W-). Arsenophonus in Bt1 delayed the first day of nymph deposition in comparison to aposymbiotic Bt1 except when reared on Rag1 + 2. For the Bt1 and Bt3 strains, symbionts did not result in a significant difference in the day they deposited the maximum number of nymphs nor was there a difference in survival or variability in number of nymphs deposited. Variability of number of aphids deposited was higher in aphids feeding on resistant plant genotypes. The impact of Arsenophonus on soybean aphid patterns of fecundity was dependent on the aphid biotype and plant genotype. Wolbachia alone had no detectable impact but may have contributed to the increased fecundity of Bt3 (A+W+). An individual based model, using data from the detached leaves experiment and with intraspecific competition removed, found patterns similar to those observed in the greenhouse and growth chamber experiments including a significant interaction between soybean genotype and aphid strain. Combining individual data with the individual based model of population growth isolated the impact of fecundity and host resistance from intraspecific competition and host health. Changes to patterns of fecundity, influenced by the composition and concentration of symbionts, may contribute to competitive interactions among aphid genotypes and influence selection on virulent aphid populations.
Collapse
Affiliation(s)
- Rosanna Giordano
- Institute of Environment, Florida International University, Miami, FL, United States
- Puerto Rico Science Technology and Research Trust, San Juan, Puerto Rico
| | - Everett P. Weber
- Office of Institutional Research, Dartmouth College, Hanover, NH, United States
| | - Ryan Mitacek
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Alejandra Flores
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Alonso Ledesma
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Arun K. De
- Animal Sciences Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | | | - Felipe N. Soto-Adames
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL, United States
| | - Minh Q. Nguyen
- Neochromosome, Inc., Long Island City, NY, United States
| | - Curtis B. Hill
- Neochromosome, Inc., Long Island City, NY, United States
| | - Glen L. Hartman
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
5
|
The Known and Unknowns of Aphid Biotypes, and Their Role in Mediating Host Plant Defenses. DIVERSITY 2023. [DOI: 10.3390/d15020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Insect species are subjected to disparate selection pressure due to various biotic and abiotic stresses. Management practices including the heavy use of chemical insecticides and introduction of insect-resistant plant cultivars have been found to accelerate these processes. Clearly, natural selection coupled with human intervention have led to insect adaptations that alter phenotypes and genetic structure over time, producing distinct individuals with specialized traits, within the populations, commonly defined as biotypes. Biotypes are commonly found to have better fitness in the new environment and, in the case of aphids, the most commonly studied system for biotypes, have the ability to successfully infest previously resistant host plants and new species of host plants. Although a large number of studies have explored biotypes, the concept for defining biotypes varies among scientists, as we lack a consistency in estimating biotype behavior and their variation within and between biotypes. The concept of biotypes is even more complicated in aphid species (Aphidoidea), as they undergo parthenogenetic reproduction, making it difficult to understand the source of variation or quantify gene flow. In this review, we aim to illuminate the concept of biotype and how it has been used in the study of aphids. We intend to further elaborate and document the existence of aphid biotypes using sugarcane aphid (Melanaphis sacchari) as a model to understand their differences, level of variation, evolution, and significance in pest management.
Collapse
|
6
|
Gerna D, Clara D, Antonielli L, Mitter B, Roach T. Seed Imbibition and Metabolism Contribute Differentially to Initial Assembly of the Soybean Holobiont. PHYTOBIOMES JOURNAL 2022; 8:21-33. [PMID: 38818306 PMCID: PMC7616048 DOI: 10.1094/pbiomes-03-23-0019-mf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Seed germination critically determines successful plant establishment and agricultural productivity. In the plant holobiont's life cycle, seeds are hubs for microbial communities' assembly, but what exactly shapes the holobiont during germination remains unknown. Here, 16S rRNA gene amplicon sequencing characterized the bacterial communities in embryonic compartments (cotyledons and axes) and on seed coats pre- and post-germination of four soybean (Glycine max) cultivars, in the presence or absence of exogenous abscisic acid (ABA), which prevented germination and associated metabolism of seeds that had imbibed. Embryonic compartments were metabolically profiled during germination to design minimal media mimicking the seed endosphere for bacterial growth assays. The distinction between embryonic and seed coat bacterial microbiomes of dry seeds weakened during germination, resulting in the plumule, radicle, cotyledon, and seed coat all hosting the same most abundant and structurally influential genera in germinated seeds of every cultivar. Treatment with ABA prevented the increase of bacterial microbiomes' richness, but not taxonomic homogenization across seed compartments. Growth assays on minimal media containing the most abundant metabolites that accumulated in germinated seeds revealed that seed reserve mobilization promoted enrichment of copiotrophic bacteria. Our data show that seed imbibition enabled distribution of seed-coat-derived epiphytes into embryos irrespective of germination, while germinative metabolism promoted proliferation of copiotrophic taxa, which predominated in germinated seeds.
Collapse
Affiliation(s)
- Davide Gerna
- Department of Botany and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - David Clara
- Department of Botany and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Livio Antonielli
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria Accepted for publication 17 August 2023
| | - Birgit Mitter
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria Accepted for publication 17 August 2023
| | - Thomas Roach
- Department of Botany and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Todd JC, Stewart LR, Redinbaugh MG, Wilson JR. Soybean Aphid (Hemiptera: Aphididae) Feeding Behavior is Largely Unchanged by Soybean Mosaic Virus but Significantly Altered by the Beetle-Transmitted Bean Pod Mottle Virus. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1059-1068. [PMID: 35569031 DOI: 10.1093/jee/toac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 06/15/2023]
Abstract
The soybean aphid (Aphis glycines Matsumura) is an economically important invasive pest of soybean. In addition to damage caused by soybean aphid feeding on the phloem sap, this insect also transmits many plant viruses, including soybean mosaic virus (SMV). Previous work has shown that plant viruses can change plant host phenotypes to alter the behavior of their insect vectors to promote virus spread, known as the vector manipulation hypothesis. In this study, we used electropenetography (EPG) to examine the effects of two plant viruses on soybean aphid feeding behavior: SMV, which is transmitted by many aphid species including the soybean aphid, and bean pod mottle virus (BPMV), which is transmitted by chrysomelid and some coccinellid beetles but not aphids. These two viruses often co-occur in soybean production and can act synergistically. Surprisingly, our results showed little to no effect of SMV on soybean aphid feeding behaviors measured by EPG, but profound differences were observed in aphids feeding on BPMV-infected plants. Aphids took longer to find the vascular bundle of BPMV-infected plants, and once found, spent more time entering and conditioning the phloem than ingesting phloem sap. Interestingly, these observed alterations are similar to those of aphids feeding on insect-resistant soybean plants. The cause of these changes in feeding behavior is not known, and how they impact virus transmission and soybean aphid populations in the field will require further study.
Collapse
Affiliation(s)
- Jane C Todd
- USDA-ARS Corn, Soybean & Wheat Quality Research Unit, Wooster, OH, USA
| | - Lucy R Stewart
- USDA-ARS Corn, Soybean & Wheat Quality Research Unit, Wooster, OH, USA
| | | | - Jennifer R Wilson
- USDA-ARS Corn, Soybean & Wheat Quality Research Unit, Wooster, OH, USA
| |
Collapse
|
8
|
Yang J, Liu G, Tang J, Wang X, Diao Y, Su Y, Sun D, Shang J, Guo Y, Qiu LJ. Fine Mapping and Characterization of an Aphid-Resistance Gene in the Soybean Landrace Fangzheng Moshidou. FRONTIERS IN PLANT SCIENCE 2022; 13:899212. [PMID: 35783980 PMCID: PMC9240472 DOI: 10.3389/fpls.2022.899212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The soybean aphid poses a severe threat to soybean quality and yield by sucking phloem sap and transmitting plant viruses. An early-maturing and highly resistant soybean landrace, Fangzheng Moshidou, with markedly reduced aphid colonization has been identified by screening of aphid-resistant soybean accessions. In a population derived from the cross of Fangzheng Moshidou with the susceptible cultivar Beifeng 9, resistance was conferred by a single dominant gene. Three linked markers, Satt114, Satt334, and Sct_033, on chromosome 13 were identified by bulked-segregant analysis. Additional simple-sequence repeat and single-nucleotide polymorphism (SNP) markers were developed for gene mapping. The resistance of Fangzheng Moshidou was fine-mapped to the interval between the SNP markers YCSNP20 and YCSNP80, corresponding to 152.8 kb in the Williams 82 assembly 2 genome. This region was near the reported loci Rag2 and Rag5 but did not overlap the interval containing them. A unique haplotype is described for Fangzheng Moshidou that distinguishes it from soybean accessions PI 587972, PI 594879, and PI 567301B in the interval containing Rag2 and Rag5. These results indicate that Fangzheng Moshidou harbors a novel gene at a tightly linked resistance locus, designated as RagFMD. Fourteen candidate genes were annotated in the fine-mapping region, including seven NBS-LRR genes, which are usually considered resistance genes in plant defense. Most of these candidate genes showed variations distinguishing the resistant and susceptible parents and some genes also showed differences in expression between the two parental lines and at several times after aphid infestation. Isolation of RagFMD would advance the study of molecular mechanisms of soybean aphid resistance and contribute to precise selection of resistant soybeans.
Collapse
Affiliation(s)
- Jing Yang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangyang Liu
- Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Junyong Tang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiujun Wang
- Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yanling Diao
- Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yang Su
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Sun
- Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jiawei Shang
- Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yong Guo
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Banerjee A, Valmorbida I, O’Neal ME, Parshad R. Exploring the Dynamics of Virulent and Avirulent Aphids: A Case for a 'Within Plant' Refuge. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:279-288. [PMID: 35139216 PMCID: PMC8827328 DOI: 10.1093/jee/toab218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 06/14/2023]
Abstract
The soybean aphid, Aphis glycines (Hemiptera: Aphididae), is an invasive pest that can cause severe yield loss to soybeans in the North Central United States. A tactic to counter this pest is the use of aphid-resistant soybean varieties. However, the frequency of virulent biotypes that can survive on resistant varieties is expected to increase as more farmers use these varieties. Soybean aphids can alter soybean physiology primarily by two mechanisms, feeding facilitation, and the obviation of resistance, favoring subsequent colonization by additional conspecifics. We developed a nonlocal, differential equation population model to explore the dynamics of these biological mechanisms on soybean plants coinfested with virulent and avirulent aphids. We then use demographic parameters from laboratory experiments to perform numerical simulations via the model. We used this model to determine that initial conditions are an important factor in the season-long cooccurrence of both biotypes. The initial population of both biotypes above the resistance threshold or avirulent aphid close to resistance threshold and high virulent aphid population results in coexistence of the aphids throughout the season. These simulations successfully mimicked aphid dynamics observed in the field- and laboratory-based microcosms. The model showed an increase in colonization of virulent aphids increases the likelihood that aphid resistance is suppressed, subsequently increasing the survival of avirulent aphids. This interaction produced an indirect, positive interaction between the biotypes. These results suggest the potential for a 'within plant' refuge that could contribute to the sustainable use of aphid-resistant soybeans.
Collapse
Affiliation(s)
- Aniket Banerjee
- Department of Mathematics, Iowa State University, Ames, IA, USA
| | | | | | - Rana Parshad
- Department of Mathematics, Iowa State University, Ames, IA, USA
| |
Collapse
|
10
|
Natukunda MI, Hohenstein JD, McCabe CE, Graham MA, Qi Y, Singh AK, MacIntosh GC. Interaction between Rag genes results in a unique synergistic transcriptional response that enhances soybean resistance to soybean aphids. BMC Genomics 2021; 22:887. [PMID: 34895143 PMCID: PMC8665634 DOI: 10.1186/s12864-021-08147-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pyramiding different resistance genes into one plant genotype confers enhanced resistance at the phenotypic level, but the molecular mechanisms underlying this effect are not well-understood. In soybean, aphid resistance is conferred by Rag genes. We compared the transcriptional response of four soybean genotypes to aphid feeding to assess how the combination of Rag genes enhanced the soybean resistance to aphid infestation. RESULTS A strong synergistic interaction between Rag1 and Rag2, defined as genes differentially expressed only in the pyramid genotype, was identified. This synergistic effect in the Rag1/2 phenotype was very evident early (6 h after infestation) and involved unique biological processes. However, the response of susceptible and resistant genotypes had a large overlap 12 h after aphid infestation. Transcription factor (TF) analyses identified a network of interacting TF that potentially integrates signaling from Rag1 and Rag2 to produce the unique Rag1/2 response. Pyramiding resulted in rapid induction of phytochemicals production and deposition of lignin to strengthen the secondary cell wall, while repressing photosynthesis. We also identified Glyma.07G063700 as a novel, strong candidate for the Rag1 gene. CONCLUSIONS The synergistic interaction between Rag1 and Rag2 in the Rag1/2 genotype can explain its enhanced resistance phenotype. Understanding molecular mechanisms that support enhanced resistance in pyramid genotypes could facilitate more directed approaches for crop improvement.
Collapse
Affiliation(s)
- Martha I. Natukunda
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Jessica D. Hohenstein
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Chantal E. McCabe
- Corn Insects and Crop Genetics Research, USDA-ARS, Ames, IA 50011 USA
| | - Michelle A. Graham
- Corn Insects and Crop Genetics Research, USDA-ARS, Ames, IA 50011 USA
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Yunhui Qi
- Department of Statistics, Iowa State University, Ames, IA 50011 USA
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
11
|
Bhusal SJ, Koch RL, Lorenz AJ. Variation in Soybean Aphid (Hemiptera: Aphididae) Biotypes Within Fields. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1336-1344. [PMID: 33939818 DOI: 10.1093/jee/toab058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Indexed: 06/12/2023]
Abstract
Soybean aphid (Aphis glycines Matsumura (Hemiptera: Aphididae)) has been a major pest of soybean in North America since its detection in this continent in 2000 and subsequent spread. Although several aphid resistance genes have been identified, at least four soybean aphid biotypes have been discovered, with three of them being virulent on soybean cultivars with certain soybean aphid resistance genes. These biotypes are known to vary across years and locations, but information on their variation within single fields is limited. An investigation was conducted to study the variation of soybean aphid biotypes within single townships and fields in Minnesota. Screening of 28 soybean aphid isolates collected from seven soybean fields (six soybean fields in Cairo and Wellington Townships of Renville County, MN and one field in Wilmar Township of Kandiyohi County, MN) revealed the existence of multiple known biotypes of soybean aphid within single fields of soybean. We found up to three biotypes of soybean aphid in a single field. Two biotypes were found in five fields while only one field had only a single biotype. Three isolates presented reactions on a panel of resistant and susceptible indicator lines that were different from known biotypes. These results highlight the importance of characterizing soybean aphid biotypes in small geographical areas and utilizing generated knowledge to develop soybean cultivars pyramided with multiple resistance genes. The outcome will be decreased use of insecticides, thereby improving economic and environmental sustainability of soybean production.
Collapse
Affiliation(s)
- S J Bhusal
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA
| | - R L Koch
- Department of Entomology, University of Minnesota, Saint Paul, MN, USA
| | - A J Lorenz
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
12
|
Bansal R, Mian MAR, Michel A. Characterizing Resistance to Soybean Aphid (Hemiptera: Aphididae): Antibiosis and Antixenosis Assessment. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1329-1335. [PMID: 33760061 DOI: 10.1093/jee/toab038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 06/12/2023]
Abstract
Host-plant resistance (HPR) remains a vital tool to manage soybean aphid (Aphis glycines Matsumura), a major pest of soybean in Midwestern United States and southern Canada. HPR can be overcome by virulent biotypes of A. glycines; thus, in order to increase the durability of resistant cultivars, HPR needs to be deployed strategically. To improve the strategic deployment, a complete understanding of HPR in existing resistant germplasm will help ensure HPR success. In this study, we characterized HPR soybean to determine antibiosis and antixenosis categories of resistance to different biotypes of A. glycines. No-choice and free-choice tests were performed on 11 previously reported plant introductions (PIs) possessing resistance to at least one A. glycines biotype (1, 2, and 3). Overall, we found that the PIs manifested differences of a particular resistance category in response to infestation by different biotypes. Our data from no-choice tests indicate that all tested PIs possess antibiosis-based resistance to three biotypes. However, the strength of antibiosis was variable as some PIs showed stronger antibiosis toward a given biotype than others. All tested PIs manifested antixenosis, in addition to antibiosis. Furthermore, detached leaf assays revealed that resistance to A. glycines was not retained in excised soybean leaves. Characterization of resistance in this study can contribute to develop strategies for future deployment of resistant cultivars developed from these PIs.
Collapse
Affiliation(s)
- Raman Bansal
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - M A Rouf Mian
- USDA-ARS, Soybean and Nitrogen Fixation Research Unit, Raleigh, NC, USA
| | - Andy Michel
- Department of Entomology, The Ohio State University, CFAES Wooster Campus, Wooster, OH, USA
| |
Collapse
|
13
|
Bueno AF, Panizzi AR, Hunt TE, Dourado PM, Pitta RM, Gonçalves J. Challenges for Adoption of Integrated Pest Management (IPM): the Soybean Example. NEOTROPICAL ENTOMOLOGY 2021; 50:5-20. [PMID: 32737866 DOI: 10.1007/s13744-020-00792-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/03/2020] [Indexed: 05/20/2023]
Abstract
Soybean is considered one of today's most important crops. Planted on millions of hectares worldwide, the management of soybean pests usually requires large amounts of chemicals. However, a key component to meet the increasing demand for food due to the rapidly growing global population is protecting crops from pests while maintaining environmental quality through ecologically and economically sound integrated pest management (IPM) practices. Not only can IPM result in more profitable agriculture due to the reduction of pest control costs but also assures equitable, secure, sufficient, and stable flows of both food and ecosystem services. Despite those ecological and economic benefits, the vast areas of cultivated soybean as well as the convenience of spraying insecticides are encouraging the adoption of prophylactic pest control as a relatively inexpensive safeguard compared to IPM practices. Thus, in this forum, we discuss the reasons for soybean IPM not reaching its potential. We give examples of how we can revive this once successful pest management program with a focus on experiences in Brazil and the USA. We analyze IPM case studies to illustrate the need for growers to have easy and fast access to IPM information on its medium- and long-term benefits. Overall, this forum highlights the importance of IPM for agricultural sustainability including ecological and financial benefits.
Collapse
Affiliation(s)
- A F Bueno
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Soja, Caixa Postal 231, Londrina, Paraná, 86001-979, Brasil.
| | - A R Panizzi
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Trigo, Passo Fundo, Rio Grande do Sul, Brasil
| | - T E Hunt
- Univ of Nebraska-Lincoln, Lincoln, NE, USA
| | - P M Dourado
- Bayer Crop Science - São Paulo, São Paulo, Brasil
| | - R M Pitta
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Agrossilvipastoril, Sinop, Mato Grosso, Brasil
| | - J Gonçalves
- Univ Federal do Paraná, Curitiba, Paraná, Brasil
| |
Collapse
|
14
|
Yates-Stewart AD, Pekarcik A, Michel A, Blakeslee JJ. Jasmonic Acid-Isoleucine (JA-Ile) Is Involved in the Host-Plant Resistance Mechanism Against the Soybean Aphid (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2972-2978. [PMID: 33033836 DOI: 10.1093/jee/toaa221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Host-plant resistance (HPR) is an important tool for pest management, affording both economic and environmental benefits. The mechanisms of aphid resistance in soybean are not well understood, but likely involve the induction of the jasmonic acid (JA) pathway, and possibly other phytohormone signals involved in plant defense responses. Despite the efficacy of aphid resistance in soybean, virulent aphids have overcome this resistance through mostly unknown mechanisms. Here, we have used metabolomic tools to define the role of plant phytohormones, especially the JA pathway, in regulating interactions between aphid-resistant soybean and virulent aphids. We hypothesized that virulent aphids avoid or suppress the JA pathway to overcome aphid resistance. Our results suggested that aphid-resistant soybean increased accumulation of JA-isoleucine (JA-Ile) only when infested with avirulent aphids; virulent aphids did not cause induction of JA-Ile. Further, applying JA-Ile to aphid-resistant soybean reduced subsequent virulent aphid populations. The concentrations of other phytohormones remained unchanged due to aphid feeding, highlighting the importance of JA-Ile in this interaction. These results increase our knowledge of soybean resistance mechanisms against soybean aphids and contribute to our understanding of aphid virulence mechanisms, which will in turn promote the durability of HPR.
Collapse
Affiliation(s)
- Ashley D Yates-Stewart
- Center for Applied Plant Sciences, The Ohio State University, CFAES Wooster Campus, Wooster, OH
| | - Adrian Pekarcik
- Department of Entomology, The Ohio State University, CFAES Wooster Campus, Wooster, OH
| | - Andy Michel
- Center for Applied Plant Sciences, The Ohio State University, CFAES Wooster Campus, Wooster, OH
- Department of Entomology, The Ohio State University, CFAES Wooster Campus, Wooster, OH
| | - Joshua J Blakeslee
- Center for Applied Plant Sciences, The Ohio State University, CFAES Wooster Campus, Wooster, OH
- Laboratory for the Analysis of Metabolites from Plants and Department of Horticulture and Crop Sciences, The Ohio State University, Wooster, OH
| |
Collapse
|
15
|
Coates BS, Hohenstein JD, Giordano R, Donthu RK, Michel AP, Hodgson EW, O'Neal ME. Genome scan detection of selective sweeps among biotypes of the soybean aphid, Aphis glycines, with differing virulence to resistance to A. glycines (Rag) traits in soybean, Glycine max. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 124:103364. [PMID: 32360957 DOI: 10.1016/j.ibmb.2020.103364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/22/2019] [Accepted: 03/18/2020] [Indexed: 05/12/2023]
Abstract
Multiple biotypes of soybean aphid, Aphis glycines, occur in North America adapted for survival (virulence) on soybean, Glycine max, with one or more different resistance to A. glycines (Rag) traits. The degree of genome-wide variance between biotypes and the basis of virulence remains unknown, but the latter is hypothesized to involve secreted effector proteins. Between 167,249 and 217,750 single nucleotide polymorphisms (SNPs) were predicted from whole genome re-sequencing of A. glycines avirulent biotype 1 (B1) and virulent B2, B3 and B4 colony-derived iso-female lines when compared to the draft B1 genome assembly, Ag_bt1_v6.0. Differences in nucleotide diversity indices (π) estimated within 1000 bp sliding windows demonstrated that 226 of 353 (64.0%) regions most differentiated between B1 and ≥ 2 virulent biotypes, representing < 0.1% of the 308 Mb assembled genome size, are located on 15 unordered scaffolds. Furthermore, these 226 intervals were coincident and show a significant association with 326 of 508 SNPs with significant locus-by-locus FST estimates between biotype populations (r = 0.6271; F1,70 = 45.36, P < 0.001) and genes showing evidence of directions selection (πN/πS > 2.0; r = 0.6233; F1,70 = 50.20, P < 0.001). A putative secreted effector glycoprotein is encoded in proximity to genome intervals of low estimated π (putative selective sweep) within avirulent B1 compared to all three virulent biotypes. Additionally, SNPs are clustered in or in proximity to genes putatively involved in intracellular protein cargo transport and the regulation of secretion. Results of this study indicate that factors on a small number of scaffolds of the A. glycines genome may contribute to variance in virulence towards Rag traits in G. max.
Collapse
Affiliation(s)
- Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA, 50011, USA.
| | | | - Rosanna Giordano
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, 00927, USA; Know Your Bee Inc., San Juan, PR, 00927, USA
| | - Ravi Kiran Donthu
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, 00927, USA; Know Your Bee Inc., San Juan, PR, 00927, USA
| | - Andrew P Michel
- The Ohio State University, Department of Entomology, and Center for Applied Plant Sciences Wooster, OH, 44691, USA
| | - Erin W Hodgson
- Iowa State University, Department of Entomology, Ames, IA, 50011, USA
| | - Matthew E O'Neal
- Iowa State University, Department of Entomology, Ames, IA, 50011, USA
| |
Collapse
|
16
|
Natukunda MI, MacIntosh GC. The Resistant Soybean- Aphis glycines Interaction: Current Knowledge and Prospects. FRONTIERS IN PLANT SCIENCE 2020; 11:1223. [PMID: 32849757 PMCID: PMC7431774 DOI: 10.3389/fpls.2020.01223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Soybean aphids (Aphis glycines Matsumura) are invasive insect pests of soybean, and they cause significant yield losses. Resistance to soybean aphids is conferred by Resistance to Aphis glycines (Rag) genes. Since the first discovery of aphid-resistant soybean genotypes in 2004, several studies have attempted to characterize Rag genes from aphid-resistant soybean genotypes. To date, 12 Rag genes and four quantitative trait loci for aphid resistance have been reported on soybean chromosomes 07, 08, 13, 16, and 17. Although candidate genes have been proposed for several discovered Rag loci, additional studies are needed to pinpoint, validate, and further explain the potential mechanisms of Rag gene action. A major challenge to utilizing host plant resistance is the discovery of virulent aphid biotypes that can colonize aphid-resistant soybean. This occurrence suggests the need for additional studies to devise strategies to enhance the effectiveness of aphid-resistant soybean. In this mini review, we discuss current knowledge on the resistant soybean-Aphis glycines interaction, potential mechanisms of Rag gene action, opportunities to discover new Rag genes, and prospects for utilization of host plant resistance to manage soybean aphids. A clearer understanding of host plant resistance to soybean aphids will guide researchers on strategies for developing soybean varieties with more durable aphid resistance, reducing the present challenge of virulent aphid biotypes.
Collapse
Affiliation(s)
- Martha I. Natukunda
- MacIntosh Laboratory, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Gustavo C. MacIntosh
- MacIntosh Laboratory, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
17
|
Yates-Stewart AD, Daron J, Wijeratne S, Shahid S, Edgington HA, Slotkin RK, Michel A. Soybean aphids adapted to host-plant resistance by down regulating putative effectors and up regulating transposable elements. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103363. [PMID: 32201218 DOI: 10.1016/j.ibmb.2020.103363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
In agricultural systems, crops equipped with host-plant resistance (HPR) have enhanced protection against pests, and are used as a safe and sustainable tool in pest management. In soybean, HPR can control the soybean aphid (Aphis glycines), but certain aphid populations have overcome this resistance (i.e., virulence). The molecular mechanisms underlying aphid virulence to HPR are unknown, but likely involve effector proteins that are secreted by aphids to modulate plant defenses. Another mechanism to facilitate adaptation is through the activity of transposable elements, which can become activated by stress. In this study, we performed RNA sequencing of virulent and avirulent soybean aphids fed susceptible or resistant (Rag1 + Rag2) soybean. Our goal was to better understand the molecular mechanisms underlying soybean aphid virulence. Our data showed that virulent aphids mostly down regulate putative effector genes relative to avirulent aphids, especially when aphids were fed susceptible soybean. Decreased expression of effectors may help evade HPR plant defenses. Virulent aphids also transcriptionally up regulate a diverse set of transposable elements and nearby genes, which is consistent with stress adaptation. Our work demonstrates two mechanisms of pest adaptation to resistance, and identifies effector gene targets for future functional testing.
Collapse
Affiliation(s)
| | - Josquin Daron
- CNRS, Centre National de la Recherche Scientifique, Montpellier, France
| | - Saranga Wijeratne
- The Ohio State University, Molecular and Cellular Imaging Center, OARDC, Wooster, OH, USA
| | - Saima Shahid
- Donald Danforth Plant Science Center, St, Louis, MO, USA
| | - Hilary A Edgington
- The Ohio State University, Department of Entomology, CFAES Wooster Campus, Wooster, OH, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St, Louis, MO, USA; Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Andy Michel
- The Ohio State University, Center for Applied Plant Sciences, Wooster, OH, USA; The Ohio State University, Department of Entomology, CFAES Wooster Campus, Wooster, OH, USA.
| |
Collapse
|
18
|
Giordano R, Donthu RK, Zimin AV, Julca Chavez IC, Gabaldon T, van Munster M, Hon L, Hall R, Badger JH, Nguyen M, Flores A, Potter B, Giray T, Soto-Adames FN, Weber E, Marcelino JAP, Fields CJ, Voegtlin DJ, Hill CB, Hartman GL. Soybean aphid biotype 1 genome: Insights into the invasive biology and adaptive evolution of a major agricultural pest. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 120:103334. [PMID: 32109587 DOI: 10.1016/j.ibmb.2020.103334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/07/2020] [Accepted: 02/10/2020] [Indexed: 05/12/2023]
Abstract
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae) is a serious pest of the soybean plant, Glycine max, a major world-wide agricultural crop. We assembled a de novo genome sequence of Ap. glycines Biotype 1, from a culture established shortly after this species invaded North America. 20.4% of the Ap. glycines proteome is duplicated. These in-paralogs are enriched with Gene Ontology (GO) categories mostly related to apoptosis, a possible adaptation to plant chemistry and other environmental stressors. Approximately one-third of these genes show parallel duplication in other aphids. But Ap. gossypii, its closest related species, has the lowest number of these duplicated genes. An Illumina GoldenGate assay of 2380 SNPs was used to determine the world-wide population structure of Ap. Glycines. China and South Korean aphids are the closest to those in North America. China is the likely origin of other Asian aphid populations. The most distantly related aphids to those in North America are from Australia. The diversity of Ap. glycines in North America has decreased over time since its arrival. The genetic diversity of Ap. glycines North American population sampled shortly after its first detection in 2001 up to 2012 does not appear to correlate with geography. However, aphids collected on soybean Rag experimental varieties in Minnesota (MN), Iowa (IA), and Wisconsin (WI), closer to high density Rhamnus cathartica stands, appear to have higher capacity to colonize resistant soybean plants than aphids sampled in Ohio (OH), North Dakota (ND), and South Dakota (SD). Samples from the former states have SNP alleles with high FST values and frequencies, that overlap with genes involved in iron metabolism, a crucial metabolic pathway that may be affected by the Rag-associated soybean plant response. The Ap. glycines Biotype 1 genome will provide needed information for future analyses of mechanisms of aphid virulence and pesticide resistance as well as facilitate comparative analyses between aphids with differing natural history and host plant range.
Collapse
Affiliation(s)
- Rosanna Giordano
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, USA; Know Your Bee, Inc. San Juan, PR, USA.
| | - Ravi Kiran Donthu
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, USA; Know Your Bee, Inc. San Juan, PR, USA.
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Irene Consuelo Julca Chavez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain; Institute for Research in Biomedicine, Barcelona, Spain
| | - Toni Gabaldon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain; Institute for Research in Biomedicine, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Manuella van Munster
- CIRAD-INRA-Montpellier SupAgro, TA A54/K, Campus International de Baillarguet, Montpellier, France
| | | | | | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, DHHS, Bethesda, MD, USA
| | - Minh Nguyen
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Alejandra Flores
- College of Liberal Arts and Sciences, School of Molecular and Cellular Biology, University of Illinois, Urbana, IL, USA
| | - Bruce Potter
- University of Minnesota, Southwest Research and Outreach Center, Lamberton, MN, USA
| | - Tugrul Giray
- Department of Biology, University of Puerto Rico, San Juan, PR, USA
| | - Felipe N Soto-Adames
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Entomology, Gainesville, FL, USA
| | | | - Jose A P Marcelino
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, USA; Know Your Bee, Inc. San Juan, PR, USA; Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Christopher J Fields
- HPCBio, Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL, USA
| | - David J Voegtlin
- Illinois Natural History Survey, University of Illinois, Urbana, IL, USA
| | | | - Glen L Hartman
- USDA-ARS and Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
19
|
Lagos-Kutz D, Pawlowski ML, Haudenshield J, Han J, Domier LL, Hartman GL. Evaluation of Soybean for Resistance to Neohyadatothrips variabilis (Thysanoptera: Thripidae) Noninfected and Infected With Soybean Vein Necrosis Virus. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:949-955. [PMID: 31800083 DOI: 10.1093/jee/toz318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Soybean vein necrosis virus (SVNV) was first identified in Arkansas and Tennessee in 2008 and is now known to be widespread in the United States and Canada. Multiple species of thrips transmit this and other tospoviruses with Neohydatothrips variabilis (Beach) (soybean thrips) cited as the most efficient vector for SVNV. In this study, 18 soybean, Glycine max (L.) Merr., genotypes were evaluated in four experiments by infesting plants with noninfected and SVNV-infected thrips using choice and no-choice assays. In both choice experiments with noninfected and SVNV-infected thrips, the lowest number of immature soybean thrips occurred on plant introductions (PIs) 229358 and 604464 while cultivars Williams 82 and Williamsfield Illini 3590N supported higher counts of mature thrips. The counts between the two assays (noninfected and SVNV-infected thrips) were positively correlated. In both no-choice experiments with noninfected and SVNV-infected thrips, counts of thrips did not differ by soybean genotypes. Further studies are needed to characterize the inheritance and mechanisms involved in the resistance found in the choice assay.
Collapse
Affiliation(s)
- D Lagos-Kutz
- United States Department of Agriculture-Agricultural Research Service, Urbana, IL
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - M L Pawlowski
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - J Haudenshield
- United States Department of Agriculture-Agricultural Research Service, Urbana, IL
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - J Han
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - L L Domier
- United States Department of Agriculture-Agricultural Research Service, Urbana, IL
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - G L Hartman
- United States Department of Agriculture-Agricultural Research Service, Urbana, IL
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
20
|
Marston ZPD, Cira TM, Hodgson EW, Knight JF, Macrae IV, Koch RL. Detection of Stress Induced by Soybean Aphid (Hemiptera: Aphididae) Using Multispectral Imagery from Unmanned Aerial Vehicles. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:779-786. [PMID: 31782504 DOI: 10.1093/jee/toz306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a common pest of soybean, Glycine max (L.) Merrill (Fabales: Fabaceae), in North America requiring frequent scouting as part of an integrated pest management plan. Current scouting methods are time consuming and provide incomplete coverage of soybean. Unmanned aerial vehicles (UAVs) are capable of collecting high-resolution imagery that offer more detailed coverage in agricultural fields than traditional scouting methods. Recently, it was documented that changes to the spectral reflectance of soybean canopies caused by aphid-induced stress could be detected from ground-based sensors; however, it remained unknown whether these changes could also be detected from UAV-based sensors. Small-plot trials were conducted in 2017 and 2018 where cages were used to manipulate aphid populations. Additional open-field trials were conducted in 2018 where insecticides were used to create a gradient of aphid pressure. Whole-plant soybean aphid densities were recorded along with UAV-based multispectral imagery. Simple linear regressions were used to determine whether UAV-based multispectral reflectance was associated with aphid populations. Our findings indicate that near-infrared reflectance decreased with increasing soybean aphid populations in caged trials when cumulative aphid days surpassed the economic injury level, and in open-field trials when soybean aphid populations were above the economic threshold. These findings provide the first documentation of soybean aphid-induced stress being detected from UAV-based multispectral imagery and advance the use of UAVs for remote scouting of soybean aphid and other field crop pests.
Collapse
Affiliation(s)
| | - Theresa M Cira
- Department of Entomology, University of Minnesota, Saint Paul, MN
| | - Erin W Hodgson
- Department of Entomology, Iowa State University, Ames, IA
| | - Joseph F Knight
- Department of Forest Resources, University of Minnesota, Saint Paul, MN
| | - Ian V Macrae
- Department of Entomology, University of Minnesota, Northwest Research and Outreach Center, Crookston, MN
| | - Robert L Koch
- Department of Entomology, University of Minnesota, Saint Paul, MN
| |
Collapse
|
21
|
Sun M, Voorrips RE, Vosman B. Aphid populations showing differential levels of virulence on Capsicum accessions. INSECT SCIENCE 2020; 27:336-348. [PMID: 30353689 PMCID: PMC7379501 DOI: 10.1111/1744-7917.12648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/14/2018] [Accepted: 10/09/2018] [Indexed: 05/27/2023]
Abstract
The green peach aphid, Myzus persicae, is one of the most threatening pests in pepper cultivation and growers would benefit from resistant varieties. Previously, we identified two Capsicum accessions as susceptible and three as resistant to M. persicae using an aphid population originating from the Netherlands (NL). Later on we identified an aphid population originating from a different geographical region (Switserland, SW) that was virulent on all tested Capsicum accessions. The objective of the current work is to describe in detail different aspects of the interaction between two aphid populations and two selected Capsicum accessions (one that was susceptible [PB2013046] and one that was resistant [PB2013071] to population NL), including biochemical processes involved. Electrical penetration graph (EPG) recordings showed similar feeding activities for both aphid populations on PB2013046. On accession PB2013071 the aphid population SW was able to devote significantly more time to phloem ingestion than population NL. We also studied plant defense response and found that plants of accession PB2013046 could not induce an accumulation of reactive oxygen species and callose formation after infestation with either aphid population. However, plants of PB2013071 induced a stronger defense response after infestation by population NL than after infestation by population SW. Based on these results, population SW of M. persicae seems to have overcome the resistance of PB2013071 that prevented feeding of aphids from NL population. The potential mechanism by which SW population overcomes the resistance is discussed.
Collapse
Affiliation(s)
- Mengjing Sun
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | | | - Ben Vosman
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
22
|
Sun M, Voorrips RE, van Kaauwen M, Visser RGF, Vosman B. The ability to manipulate ROS metabolism in pepper may affect aphid virulence. HORTICULTURE RESEARCH 2020; 7:6. [PMID: 31908809 PMCID: PMC6938493 DOI: 10.1038/s41438-019-0231-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/13/2019] [Accepted: 12/04/2019] [Indexed: 05/14/2023]
Abstract
Myzus persicae has severe economic impact on pepper (Capsicum) cultivation. Previously, we identified two populations of M. persicae, NL and SW, that were avirulent and virulent, respectively on C. baccatum accession PB2013071. The transcriptomics approach used in the current study, which is the first study to explore the pepper-aphid interaction at the whole genome gene expression level, revealed genes whose expression is differentially regulated in pepper accession PB2013071 upon infestation with these M. persicae populations. The NL population induced ROS production genes, while the SW population induced ROS scavenging genes and repressed ROS production genes. We also found that the SW population can induce the removal of ROS which accumulated in response to preinfestion with the NL population, and that preinfestation with the SW population significantly improved the performance of the NL population. This paper supports the hypothesis that M. persicae can overcome the resistance in accession PB2013071 probably because of its ability to manipulate plant defense response especially the ROS metabolism and such ability may benefit avirulent conspecific aphids.
Collapse
Affiliation(s)
- Mengjing Sun
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Roeland E. Voorrips
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Martijn van Kaauwen
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Richard G. F. Visser
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Ben Vosman
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| |
Collapse
|
23
|
Neupane S, Purintun JM, Mathew FM, Varenhorst AJ, Nepal MP. Molecular Basis of Soybean Resistance to Soybean Aphids and Soybean Cyst Nematodes. PLANTS 2019; 8:plants8100374. [PMID: 31561499 PMCID: PMC6843664 DOI: 10.3390/plants8100374] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/25/2023]
Abstract
Soybean aphid (SBA; Aphis glycines Matsumura) and soybean cyst nematode (SCN; Heterodera glycines Ichninohe) are major pests of the soybean (Glycine max [L.] Merr.). Substantial progress has been made in identifying the genetic basis of limiting these pests in both model and non-model plant systems. Classical linkage mapping and genome-wide association studies (GWAS) have identified major and minor quantitative trait loci (QTLs) in soybean. Studies on interactions of SBA and SCN effectors with host proteins have identified molecular cues in various signaling pathways, including those involved in plant disease resistance and phytohormone regulations. In this paper, we review the molecular basis of soybean resistance to SBA and SCN, and we provide a synthesis of recent studies of soybean QTLs/genes that could mitigate the effects of virulent SBA and SCN populations. We also review relevant studies of aphid–nematode interactions, particularly in the soybean–SBA–SCN system.
Collapse
Affiliation(s)
- Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Jordan M Purintun
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Febina M Mathew
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Adam J Varenhorst
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
24
|
Conzemius SR, Hesler LS, Varenhorst AJ, Tilmon KJ. Resistance of Soybean Plant Introductions to Three Colonies of Soybean Aphid (Hemiptera: Aphididae) Biotype 4. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2407-2417. [PMID: 31081894 DOI: 10.1093/jee/toz116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 05/12/2023]
Abstract
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), infestations of soybean, Glycine max (L.) Merr. (Fabales: Fabaceae), and the associated yield loss have led to a large dependence on insecticidal management in soybean throughout the Midwestern United States. However, several populations of pyrethroid-resistant soybean aphids have recently been found in Iowa, Minnesota, North Dakota and South Dakota, which highlights the importance of alternative management approaches. One such alternative method is host-plant resistance, which uses naturally occurring plant defenses in crop cultivars to reduce the potential for yield loss from a pest population. Current soybean aphid-resistant cultivars do not protect against all soybean aphids due to the presence of virulent biotypes. In particular, soybean aphid biotype 4 is virulent to Rag1 and Rag2 resistance genes both individually and in combination. However, we hypothesized that resistance to biotype 4 may exist in previously identified, but uncharacterized resistant soybean plant introductions (PIs). To test this, we evaluated 51 previously identified but uncharacterized soybean aphid-resistant PIs for their resistance to colonies of soybean aphid biotype 4 collected in separate site-years (Lomira, WI 2013; Volga, SD 2015, 2016). Free-choice tests identified 14 PIs with putative resistance to 'Lomira13', two to 'Volga15', and eight to 'Volga16' soybean aphid colonies. Follow-up, no-choice tests corroborated two to three resistant PIs per colony, and PI 437696, which was resistant to each of the three colonies and could aid in breeding efforts and an integrated approach to soybean aphid management.
Collapse
Affiliation(s)
- Sophia R Conzemius
- Agronomy, Horticulture, and Plant Science Department, South Dakota State University, SAG, Brookings, SD
| | - Louis S Hesler
- North Central Agricultural Research Laboratory, Agricultural Research Service, USDA, Brookings, SD
| | - Adam J Varenhorst
- Agronomy, Horticulture, and Plant Science Department, South Dakota State University, SAG, Brookings, SD
| | - Kelley J Tilmon
- Agronomy, Horticulture, and Plant Science Department, South Dakota State University, SAG, Brookings, SD
| |
Collapse
|
25
|
Neupane S, Varenhorst AJ, Nepal MP. Transcriptome profiling of induced susceptibility effects on soybean-soybean aphid (Hemiptera: Aphididae) interaction. BMC Res Notes 2019; 12:325. [PMID: 31182145 PMCID: PMC6558899 DOI: 10.1186/s13104-019-4372-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/05/2019] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES Soybean aphid (Aphis glycines Matsumura; SBA) is the most economically damaging insect of soybean (Glycine max) in the United States. One previous study demonstrated that avirulent (biotype 1) and virulent (biotype 2) biotypes could co-occur and interact on resistant (i.e., Rag1) and susceptible soybean resulting in induced susceptibility after 11 days of feeding. The main objective of this research was to employ RNA sequencing (RNA-seq) technique to compare the induced susceptibility effect of biotype 2 on susceptible and resistant soybean at day 1 and day 11 (i.e., both susceptible and resistant soybean were initially challenged by biotype 2 and the effect was monitored through biotype 1 populations). DATA DESCRIPTION We investigated susceptible and Rag1 transcriptome response to SBA feeding in soybean plants colonized by biotype 1 in the presence or absence of an inducer population (i.e., biotype 2). Ten RNA datasets are reported with 266,535,654 sequence reads (55.2 GB) obtained from pooled samples derived from the leaves collected at day 1 and day 11 post SBA infestation. A comprehensive understanding of these transcriptome data will enhance our understanding of interactions among soybean and two different biotypes of soybean aphids at the molecular level.
Collapse
Affiliation(s)
- Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007 USA
| | - Adam J. Varenhorst
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007 USA
| | - Madhav P. Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007 USA
| |
Collapse
|
26
|
Natukunda MI, Parmley KA, Hohenstein JD, Assefa T, Zhang J, MacIntosh GC, Singh AK. Identification and Genetic Characterization of Soybean Accessions Exhibiting Antibiosis and Antixenosis Resistance to Aphis glycines (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1428-1438. [PMID: 30768167 DOI: 10.1093/jee/toz017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 05/12/2023]
Abstract
Cultivation of aphid-resistant soybean varieties can reduce yield losses caused by soybean aphids. However, discovery of aphid biotypes that are virulent on resistant soybean greatly threatens sustained utilization of host plant resistance to control soybean aphids. The objective of this study was to identify and genetically characterize aphid resistant soybean accessions in a diverse collection of 308 plant introductions in maturity groups (MG) I and II. In large-scale screening experiments conducted in the greenhouse, we identified 12 soybean accessions (10 aphid-resistant and 2 moderately resistant), including nine previously not reported for resistance against soybean aphids. Three accessions (PI 578374, PI 612759C, and PI 603546A) and the Rag3 resistant check (PI 567543C) were susceptible when infested with a high initial aphid level but resistant when infested with a low initial aphid level, a phenomenon termed as density-dependent aphid resistance. Six accessions (PI 054854, PI 378663, PI 578374, PI 612759C, PI 540739, and PI 603546A) conferred antibiosis, five (PI 438031, PI 603337A, PI 612711B, PI 437950, and PI 096162) conferred both antibiosis and antixenosis, while one (PI 417513B) had neither when tested in no-choice and pairwise choice experiments. Molecular genotyping of the 12 accessions using single-nucleotide polymorphism (SNP) markers linked to known aphid resistance (Rag) genes revealed that PI 578374 and PI 540739 did not have any tested marker variants and could potentially carry unreported Rag genes. Genome-wide association analyses for MG I accessions identified genomic regions associated with aphid resistance on chromosomes 10 and 12 for each level of initial aphid colonization.
Collapse
Affiliation(s)
- Martha I Natukunda
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA
| | | | - Jessica D Hohenstein
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA
| | | | | | - Gustavo C MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA
| | | |
Collapse
|
27
|
Esquivel CJ, Ranger CM, Phelan PL, Martinez EJ, Hendrix WH, Canas LA, Michel AP. Weekly Survivorship Curves of Soybean Aphid Biotypes 1 and 4 on Insecticidal Seed-Treated Soybean. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:712-719. [PMID: 30715412 DOI: 10.1093/jee/toy410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 06/09/2023]
Abstract
Thiamethoxam, an insecticide used in soybean seed treatments, effectively suppresses soybean aphids (Aphis glycines) Matsumura (Hemiptera: Aphididae) for a short time after planting. However, exactly when and how quickly soybean aphid populations could increase is unknown. Likewise, we lack data on virulent soybean aphid biotypes (that can overcome soybean resistance) when fed on seed-treated soybean. Determining the survival of soybean aphids over time on insecticidal seed-treated soybean is critical for improving soybean aphid management and may provide insights to manage aphid virulence to aphid resistant-soybean. In greenhouse and field experiments, aphid-susceptible soybean plants (with and without an insecticidal seed treatment) were infested at 7, 14, 21, 28, 35, and 42 days after planting (DAP). We compared aphid survival among biotypes 1 (avirulent) and 4 (virulent) and insecticide treatment 72 h after infestation. We also measured thiamethoxam concentrations in plant tissue using liquid chromatography-tandem mass spectrometry. As expected, soybean aphid survival was significantly lower on seed-treated soybean up to 35 DAP for both biotypes, which correlates with the decrease of thiamethoxam in the plant over time. Moreover, we found no significant difference between avirulent and virulent biotype survivorship on insecticidal seed-treated soybean plants, although we did find significantly greater survival for the virulent biotype compared with the avirulent biotype on untreated soybean in the field. In conclusion, our study further characterized the relative short duration of seed treatment effectiveness on soybean aphid and showed that survivorship of virulent aphids on seed-treated soybean is similar to avirulent aphids.
Collapse
Affiliation(s)
- Carlos J Esquivel
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH
| | - Christopher M Ranger
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH
- Horticultural Insects Research Lab, USDA-Agricultural Research Service, Wooster, OH
| | - P Larry Phelan
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH
| | - Erick J Martinez
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH
| | | | - Luis A Canas
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH
| | - Andrew P Michel
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH
- Center of Applied Plant Sciences, The Ohio State University, Wooster, OH
| |
Collapse
|
28
|
da Silva Queiroz O, Hanson AA, Potter BD, Koch RL. Impact of Single Gene and Pyramided Aphid-Resistant Soybean on Movement and Spatial Pattern of Soybean Aphid (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2946-2955. [PMID: 30184079 DOI: 10.1093/jee/toy257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Host plant resistance may be an effective option to manage soybean aphid, Aphis glycines (Matsumura) (Hemiptera: Aphididae), an important pest on soybean (Glycine max (L.) Merr.) in the U.S. Movement of soybean aphid may be altered by the presence of resistance (i.e., Rag [Resistance to Aphis glycines]) genes in soybean and changes in movement may affect the spatial pattern of a species. This study aims to assess the effects of Rag1 and pyramided Rag1+Rag2 aphid-resistant varieties on movement of soybean aphid under laboratory conditions and to evaluate potential impacts of this movement on spatial pattern of soybean aphid under field conditions. Results from the greenhouse study showed more movement of soybean aphid on both aphid-resistant varieties than the susceptible variety when aphids were placed on unifoliate leaves and no statistically significant difference in movement between Rag1 and pyramided Rag1+Rag2 varieties. When aphids were placed on new growth, movement was greater on pyramided Rag1+Rag2 than the Rag1 and susceptible variety. However, under field conditions, the spatial patterns of soybean aphid in plots with susceptible, Rag1 or pyramided Rag1+Rag2 varieties were aggregated and did not differ among varieties in vegetative and reproductive growth stages. These results are of relevance because they suggest that aspects of soybean aphid management that may be sensitive to changes in spatial pattern of the pest (e.g., natural enemy efficacy and sampling plans) may not be impacted by implementation of varieties with these resistance genes for host plant resistance.
Collapse
Affiliation(s)
| | - Anthony A Hanson
- Department of Entomology, University of Minnesota, Saint Paul, MN
| | - Bruce D Potter
- Southwest Research and Outreach Center, University of Minnesota, Lamberton, MN
| | - Robert L Koch
- Department of Entomology, University of Minnesota, Saint Paul, MN
| |
Collapse
|
29
|
Reil JB, Doorenweerd C, San Jose M, Sim SB, Geib SM, Rubinoff D. Transpacific coalescent pathways of coconut rhinoceros beetle biotypes: Resistance to biological control catalyses resurgence of an old pest. Mol Ecol 2018; 27:4459-4474. [DOI: 10.1111/mec.14879] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/07/2018] [Accepted: 09/07/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Jonathan Bradley Reil
- Department of Plant and Environmental Protection Sciences; University of Hawaii at Manoa; Honolulu Hawaii
| | - Camiel Doorenweerd
- Department of Plant and Environmental Protection Sciences; University of Hawaii at Manoa; Honolulu Hawaii
| | - Michael San Jose
- Department of Plant and Environmental Protection Sciences; University of Hawaii at Manoa; Honolulu Hawaii
| | - Sheina B. Sim
- Department of Plant and Environmental Protection Sciences; University of Hawaii at Manoa; Honolulu Hawaii
- Tropical Crop and Commodity Protection Research Unit; Daniel K Inouye U.S. Pacific Basin Agricultural Research Center; USDA, Agricultural Research Services; Hilo Hawaii
| | - Scott M. Geib
- Tropical Crop and Commodity Protection Research Unit; Daniel K Inouye U.S. Pacific Basin Agricultural Research Center; USDA, Agricultural Research Services; Hilo Hawaii
| | - Daniel Rubinoff
- Department of Plant and Environmental Protection Sciences; University of Hawaii at Manoa; Honolulu Hawaii
| |
Collapse
|
30
|
Chapman KM, Marchi-Werle L, Hunt TE, Heng-Moss TM, Louis J. Abscisic and Jasmonic Acids Contribute to Soybean Tolerance to the Soybean Aphid (Aphis glycines Matsumura). Sci Rep 2018; 8:15148. [PMID: 30310120 PMCID: PMC6181993 DOI: 10.1038/s41598-018-33477-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/01/2018] [Indexed: 12/25/2022] Open
Abstract
Plant resistance can provide effective, economical, and sustainable pest control. Tolerance to the soybean aphid has been identified and confirmed in the soybean KS4202. Although its resistance mechanisms are not fully understood, evidence suggests that enhanced detoxification of reactive oxygen species (ROS) is an active system under high aphid infestation. We further explored tolerance by evaluating the differences in constitutive and aphid-induced defenses in KS4202 through the expression of selected defense-related transcripts and the levels of the phytohormones abscisic acid (ABA), jasmonic acid (JA), JA-isoleucine (JA-Ile), cis-(+)-12-oxo-phytodienoic acid (OPDA), and salicylic acid (SA) over several time points. Higher constitutive levels of ABA and JA, and basal expression of ABA- and JA-related transcripts were found in the tolerant genotype. Conversely, aphid-induced defenses in KS4202 were expressed as an upregulation of peroxidases under prolonged aphid infestation (>7 days). Our results point at the importance of phytohormones in constitutive defense in KS4202 tolerance to the soybean aphid. Understanding the underlying mechanisms of tolerance will assist breeding for soybean with these traits, and perhaps help extend the durability of Rag (Resistance to Aphis glycines)-mediated resistance genes.
Collapse
Affiliation(s)
- Kaitlin M Chapman
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Lia Marchi-Werle
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Thomas E Hunt
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Tiffany M Heng-Moss
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
31
|
Marchi-Werle L, Fischer HD, Graef G, Hunt TE, Heng-Moss TM. Characterization and Identification of Methods for Phenotyping Soybean Populations With Tolerance to the Soybean Aphid (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2416-2425. [PMID: 29982624 DOI: 10.1093/jee/toy177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Indexed: 06/08/2023]
Abstract
The development of soybeans tolerant to the soybean aphid [Aphis glycines Matsumura (Hemiptera: Aphididae)] remains unexplored. The objectives of this research were to determine the susceptibility of two high-yielding soybean [Glycine max (L.) Merrill (Fabales: Fabaceae)] genotypes involved in a breeding platform to develop aphid-tolerant recombinant inbred lines (RILs); characterize the peroxidase activity and relative expression of peroxidase transcripts in the parents of RILs; and identify an assay to phenotype aphid-tolerant RILs. Enzyme kinetic assays documented the total peroxidase activity for tolerant (KS4202), susceptible (SD76R), and two high-yielding (U09-105007 and U11-611112) soybeans during two vegetative stages (V1 and V3) at three sampling days (D4, D6, and D8 after aphid introduction). Enzyme kinetic assays showed that V3 infested tolerant and U11-611112 plants had significantly higher peroxidase activity than their respective control plants at D4, and infested tolerant plants were also higher than control plants at D6. There were no apparent trends when comparing the expression of peroxidase-specific transcripts in the absence of aphids (basal levels) in both V1 and V3. Relative expression analyses of two peroxidase transcripts (PRX52 and PRX2) performed to compare differences among the soybean genotypes indicated that, despite basal levels being similar for the treatments analyzed, tolerant soybeans had a tendency for a higher expression of PRX52 in the presence of aphids. Based on the different patterns observed and the feasibility of analyses performed in this study, enzyme kinetics using V3 infested plants may be a marker for screening RILs in a breeding program targeting the development of aphid-tolerant soybeans.
Collapse
Affiliation(s)
- L Marchi-Werle
- Department of Entomology, University of Nebraska - Lincoln, Lincoln, NE
| | - H D Fischer
- Department of Entomology, University of Arkansas, Fayetteville, AR
| | - G Graef
- Department of Agronomy and Horticulture, University of Nebraska - Lincoln, Lincoln, NE
| | - T E Hunt
- Department of Entomology, Haskell Agricultural Laboratory, University of Nebraska - Lincoln, Concord, NE
| | - T M Heng-Moss
- Department of Entomology, University of Nebraska - Lincoln, Lincoln, NE
| |
Collapse
|
32
|
Yates AD, Michel A. Mechanisms of aphid adaptation to host plant resistance. CURRENT OPINION IN INSECT SCIENCE 2018; 26:41-49. [PMID: 29764659 DOI: 10.1016/j.cois.2018.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 05/27/2023]
Abstract
Host-plant resistant (HPR) crops can play a major role in preventing insect damage, but their durability is limited due to insect adaptation. Research in basal plant resistance provides a framework to investigate adaptation against HPR. Resistance and adaptation are predicted to follow the gene-for-gene and zigzag models of plant defense. These models also highlight the importance of insect effectors, which are small molecules that modulate host plant defense signaling. We highlight research in insect adaptation to plant resistance, and then draw parallels to virulence adaptation. We focus on virulent biotype evolution within the Aphididae, since this group has the highest number of described virulent biotypes. Understanding how virulence occurs will lead to more durable insect management strategies and enhance food production and security.
Collapse
Affiliation(s)
- Ashley D Yates
- Center for Applied Plant Sciences, and The Ohio State Center for Soybean Research, USA
| | - Andy Michel
- Center for Applied Plant Sciences, and The Ohio State Center for Soybean Research, USA; Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave., Wooster, OH, USA.
| |
Collapse
|
33
|
Varenhorst AJ, Pritchard SR, O'Neal ME, Hodgson EW, Singh AK. Determining the Effectiveness of Three-Gene Pyramids Against Aphis glycines (Hemiptera: Aphididae) Biotypes. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2428-2435. [PMID: 29220517 DOI: 10.1093/jee/tox230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Since the discovery of Aphis glycines Matsumura (Hemiptera: Aphididae) in the United States, the primary management tactic has been foliar insecticides. Alternative management options such as host plant resistance to A. glycines have been developed and their effectiveness proved. However, the use of host plant resistance was complicated by the discovery of multiple, virulent biotypes of A. glycines in the United States that are capable of overcoming single Rag genes, Rag1 and Rag2, as well as a two-gene pyramid of Rag1+Rag2. However, current models predict that the virulent allele frequency of A. glycines decreases in response to the use of pyramided Rag genes, suggesting that pyramids represent a more sustainable use of these traits. Previous research has demonstrated that virulent biotypes can be effectively managed using a three-gene pyramid of Rag1+Rag2+Rag3. Additional Rag-genes have been discovered (Rag4 and Rag5), but whether the incorporation of these genes into novel three-gene pyramids will improve efficacy is not known. We tested single-gene (Rag1 and Rag2) and pyramid cultivars (Rag1+Rag2, Rag1+Rag2+Rag3, Rag1+Rag2+Rag4) to multiple biotypes in laboratory assays. Our results confirm that the Rag1+Rag2+Rag3 pyramid effectively manages all known A. glycines biotypes when compared with cultivars that are overcome by the associated biotype. Our results indicate that Rag1+Rag2+Rag4 would be an effective management option for biotype-1, biotype-2, and biotype-3 A. glycines, but had a negligible impact on biotype-4.
Collapse
Affiliation(s)
| | | | - M E O'Neal
- Department of Entomology, Iowa State University
| | - E W Hodgson
- Department of Entomology, Iowa State University
| | - A K Singh
- Agronomy Department, Iowa State University
| |
Collapse
|
34
|
Zhang S, Zhang Z, Wen Z, Gu C, An YQC, Bales C, DiFonzo C, Song Q, Wang D. Fine mapping of the soybean aphid-resistance genes Rag6 and Rag3c from Glycine soja 85-32. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2601-2615. [PMID: 28887657 DOI: 10.1007/s00122-017-2979-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/30/2017] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Rag6 and Rag3c were delimited to a 49-kb interval on chromosome 8 and a 150-kb interval on chromosome 16, respectively. Structural variants in the exons of candidate genes were identified. The soybean aphid, an invasive species, has significantly threatened soybean production in North America since 2000. Host-plant resistance is known as an ideal management strategy for aphids. Two novel aphid-resistance loci, Rag6 and Rag3c, from Glycine soja 85-32, were previously detected in a 10.5-cM interval on chromosome 8 and a 7.5-cM interval on chromosome 16, respectively. Defining the exact genomic position of these two genes is critical for improving the effectiveness of marker-assisted selection for aphid resistance and for identification of the functional genes. To pinpoint the locations of Rag6 and Rag3c, four populations segregating for Rag6 and Rag3c were used to fine map these two genes. The availability of the Illumina Infinium SoySNP50K/8K iSelect BeadChip, combined with single-nucleotide polymorphism (SNP) markers discovered through the whole-genome re-sequencing of E12901, facilitated the fine mapping process. Rag6 was refined to a 49-kb interval on chromosome 8 with four candidate genes, including three clustered nucleotide-binding site leucine-rich repeat (NBS-LRR) genes and an amine oxidase encoding gene. Rag3c was refined to a 150-kb interval on chromosome 16 with 11 candidate genes, two of which are a LRR gene and a lipase gene. Moreover, by sequencing the whole-genome exome-capture of the resistant source (E12901), structural variants were identified in the exons of the candidate genes of Rag6 and Rag3c. The closely linked SNP markers and the candidate gene information presented in this study will be significant resources for integrating Rag6 and Rag3c into elite cultivars and for future functional genetics studies.
Collapse
Affiliation(s)
- Shichen Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384E, East Lansing, MI, 48824-1325, USA
| | - Zhongnan Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384E, East Lansing, MI, 48824-1325, USA
| | - Zixiang Wen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384E, East Lansing, MI, 48824-1325, USA
| | - Cuihua Gu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384E, East Lansing, MI, 48824-1325, USA
| | - Yong-Qiang Charles An
- Plant Genetic Research Unit, Agricultural Research Service, United States Department of Agriculture, at Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Carmille Bales
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384E, East Lansing, MI, 48824-1325, USA
| | - Chris DiFonzo
- Department of Entomology, Michigan State University, East Lansing, MI, 48824, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384E, East Lansing, MI, 48824-1325, USA.
| |
Collapse
|
35
|
Marchi-Werle L, Baldin ELL, Fischer HD, Heng-Moss TM, Hunt TE. Economic Injury Levels for Aphis glycines Matsumura (Hemiptera: Aphididae) on the Soybean Aphid Tolerant KS4202 Soybean. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2100-2108. [PMID: 28961855 DOI: 10.1093/jee/tox225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 06/07/2023]
Abstract
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is an invasive species from Asia that has been the major economic insect pest of soybeans, Glycine max (L.) Merrill, since 2000. While use of soybeans expressing antibiosis and antixenosis is a well-studied strategy to manage this pest, aphid-tolerant soybeans remain underexplored. This study examined the relationship between cumulative aphid-days (CAD) and yield loss in the tolerant soybean KS4202 during two growing seasons to determine the economic injury levels (EILs) for soybean aphids on KS4202. Soybean aphid infestations were initiated during the soybean reproductive stages. A range of CAD treatments (3,000-45,000 CADs) were applied during the growing seasons. Aphid populations reached 45,000 CAD in 2011 and 38,000 CAD in 2013 in plots that were not treated with insecticides. It was estimated that the population doubling time was 9.4 d. In infested plots, soybean yield was reduced by 1.4-13.3%, equivalent to a 3.1% yield loss for every 10,000 CAD. Overall, most CAD treatments did not affect yield parameters, although CAD > 39,000 caused a significant reduction in most yield parameters. The EILs calculated for KS4202 ranged from 526 to 2,050 aphids/plant, which were approximately 2.5-fold higher when compared to EILs previously calculated for susceptible soybean. The adoption of soybean aphid tolerant soybean with higher EILs may help mitigate treatment delay problems by lengthening the treatment lead-time and possibly reduce the number of insecticide applications.
Collapse
Affiliation(s)
- Lia Marchi-Werle
- Department of Entomology, University of Nebraska-Lincoln, 103 Entomology Hall, Lincoln, NE 68583
| | - Edson L L Baldin
- Department of Crop Protection, Sao Paulo State University (UNESP), Botucatu, SP 18610, Brazil
| | - Hillary D Fischer
- Department of Entomology, University of Arkansas, 319 Agriculture Building, Fayetteville, AR 72701
| | - Tiffany M Heng-Moss
- College of Agricultural Sciences & Natural Resources, University of Nebraska-Lincoln, 103 Agricultural Hall, Lincoln, NE 68583
| | - Thomas E Hunt
- Department of Entomology, NEREC Haskell Agricultural Laboratory, University of Nebraska-Lincoln, 57905 866 Road, Concord, NE 68728
| |
Collapse
|
36
|
Zhang S, Zhang Z, Bales C, Gu C, DiFonzo C, Li M, Song Q, Cregan P, Yang Z, Wang D. Mapping novel aphid resistance QTL from wild soybean, Glycine soja 85-32. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1941-1952. [PMID: 28710504 DOI: 10.1007/s00122-017-2935-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/15/2017] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Two novel QTLs conferring aphid resistance were mapped and validated on soybean chromosomes 8 and 16, respectively. Closely linked markers were developed to assist breeding for aphid resistance. Soybean aphid, Aphis glycines Matsumura, is a highly destructive pest for soybean production. E08934, a soybean advanced breeding line derived from the wild soybean Glycine soja 85-32, has shown strong resistance to aphids. To dissect the genetic basis of aphid resistance in E08934, a mapping population (070020) consisting of 140 F3-derived lines was developed by crossing E08934 with an aphid-susceptible line E00003. This mapping population was evaluated for aphid resistance in a greenhouse trial in 2010 and three field trials in 2009, 2010, and 2011, respectively. The broad-sense heritability across the field trials was 0.84. In the mapping population 070020, two major quantitative trait loci (QTL) were detected as significantly associated with aphid resistance, and designated as Rag6 and Rag3c, respectively. Rag6 was mapped to a 10.5 centiMorgan (cM) interval between markers MSUSNP08-2 and Satt209 on chromosome 8, explaining 19.5-46.4% of the phenotypic variance in different trials. Rag3c was located at a 7.5 cM interval between markers MSUSNP16-10 and Sat_370 on chromosome 16, explaining 12.5-22.9% of the phenotypic variance in different trials. Rag3c had less resistance effect than Rag6 across all the trials. Furthermore, Rag6 and Rag3c were confirmed in two validation populations with different genetic backgrounds. No significant interaction was detected between Rag6 and Rag3c in either the mapping population or the validation populations. Both Rag6 and Rag3c were indicated as conferring antibiosis resistance to aphids by a no-choice test. The new aphid-resistance gene(s) derived from the wild germplasm G. soja 85-32 are valuable in improving soybeans for aphid resistance.
Collapse
Affiliation(s)
- Shichen Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384E, East Lansing, MI, 48824, USA
| | - Zhongnan Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384E, East Lansing, MI, 48824, USA
| | - Carmille Bales
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384E, East Lansing, MI, 48824, USA
| | - Cuihua Gu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384E, East Lansing, MI, 48824, USA
| | - Chris DiFonzo
- Department of Entomology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ming Li
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Perry Cregan
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Zhenyu Yang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China.
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384E, East Lansing, MI, 48824, USA.
| |
Collapse
|
37
|
Hill CB, Shiao D, Fox CM, Hartman GL. Characterization and genetics of multiple soybean aphid biotype resistance in five soybean plant introductions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1335-1348. [PMID: 28378054 DOI: 10.1007/s00122-017-2891-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/10/2017] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE Five soybean plant introductions expressed antibiosis resistance to multiple soybean aphid biotypes. Two introductions had resistance genes located in the Rag1, Rag2, and Rag3 regions; one introduction had resistance genes located in the Rag1, Rag2, and rag4 regions; one introduction had resistance genes located in the Rag1 and Rag2 regions; and one introduction had a resistance gene located in the Rag2 region. Soybean aphid (Aphis glycines Matsumura) is the most important soybean [Glycine max (L.) Merr.] insect pest in the USA. The objectives of this study were to characterize the resistance expressed in five plant introductions (PIs) to four soybean aphid biotypes, determine the mode of resistance inheritance, and identify markers associated with genes controlling resistance in these accessions. Five soybean PIs, from an initial set of 3000 PIs, were tested for resistance against soybean aphid biotypes 1, 2, 3, and 4 in choice and no-choice tests. Of these five PIs, PI 587663, PI 587677, and PI 587685 expressed antibiosis against all four biotypes, while PI 587972 and PI 594592 expressed antibiosis against biotypes 1, 2, and 3. F2 populations derived from PI 587663 and PI 587972 were evaluated for resistance against soybean aphid biotype 1, and populations derived from PIs 587677, 587685, and 594592 were tested against biotype 3. In addition, F2:3 plants were tested against biotypes 2 and 3. Genomic DNA from F2 plants was screened with markers linked to Rag1, Rag2, Rag3, and rag4 soybean aphid-resistance genes. Results showed that PI 587663 and PI 594592 each had three genes with variable gene action located in the Rag1, Rag2, and Rag3 regions. PI 587677 had three genes with variable gene action located in the Rag1, Rag2 and rag4 regions. PI 587685 had one dominant gene located in the Rag1 region and an additive gene in the Rag2 region. PI 587972 had one dominant gene located in the Rag2 region controlling antixenosis- or antibiosis-type resistance to soybean aphid biotypes 1, 2, or 3. PIs 587663, 587677, and 587685 also showed antibiosis-type resistance against biotype 4. Information on multi-biotype aphid resistance and resistance gene markers will be useful for improving soybean aphid resistance in commercial soybean cultivars.
Collapse
Affiliation(s)
- Curtis B Hill
- Department of Crop Sciences, University of Illinois, National Soybean Research Center, 1101 W. Peabody Dr., Urbana, IL, 61801, USA
- Agricen Sciences LLC, Pilot Point, TX, 76258, USA
| | - Derek Shiao
- Department of Crop Sciences, University of Illinois, National Soybean Research Center, 1101 W. Peabody Dr., Urbana, IL, 61801, USA
- Indigo Agriculture, Urbana, IL, 61801, USA
| | - Carolyn M Fox
- Department of Crop Sciences, University of Illinois, National Soybean Research Center, 1101 W. Peabody Dr., Urbana, IL, 61801, USA
- USDA-ARS, Raleigh, NC, 27607, USA
| | - Glen L Hartman
- Department of Crop Sciences, University of Illinois, National Soybean Research Center, 1101 W. Peabody Dr., Urbana, IL, 61801, USA.
- USDA-ARS, Urbana, IL, 61801, USA.
| |
Collapse
|
38
|
Gunadi A, Bansal R, Finer JJ, Michel A. Establishment of in vitro soybean aphids, Aphis glycines (Hemiptera: Aphididae): a tool to facilitate studies of aphid symbionts, plant-insect interactions and insecticide efficacy. PEST MANAGEMENT SCIENCE 2017; 73:1229-1235. [PMID: 27680689 DOI: 10.1002/ps.4448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 07/21/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Studies on plant-insect interactions of the soybean aphid, Aphis glycines (Matsumura), can be influenced by environmental fluctuations, status of the host plant and variability in microbial populations. Maintenance of aphids on in vitro-grown plants minimizes environmental fluctuations, provides uniform host materials and permits the selective elimination of aphid-associated microbes for more standardized controls in aphid research. RESULTS Aphids were reared on sterile, in vitro-grown soybean seedlings germinated on plant tissue culture media amended with a mixture of antimicrobials. For initiation and maintenance of in vitro aphid colonies, single aphids were inoculated onto single in vitro seedlings. After three rounds of transfer of 'clean' aphids to fresh in vitro seedlings, contamination was no longer observed, and aphids performed equally well when compared with those reared on detached leaves. The addition of the insecticides thiamethoxam and chlorantraniliprole to the culture medium confirmed uptake and caused significant mortality to the in vitro aphids. The use of the antimicrobial mixture removed the associated bacteria Arsenophonus but retained Buchnera and Wolbachia within the in vitro aphids. CONCLUSION The in vitro aphid system is a novel and highly useful tool to understand insecticidal efficacy and expand our knowledge of tritrophic interactions among plants, insects and symbionts. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andika Gunadi
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Raman Bansal
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - John J Finer
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Andy Michel
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
39
|
Morriss SC, Studham ME, Tylka GL, MacIntosh GC. Validation of a hairy roots system to study soybean-soybean aphid interactions. PLoS One 2017; 12:e0174914. [PMID: 28358854 PMCID: PMC5373632 DOI: 10.1371/journal.pone.0174914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/17/2017] [Indexed: 11/30/2022] Open
Abstract
The soybean aphid (Aphis glycines) is one of the main insect pests of soybean (Glycine max) worldwide. Genomics approaches have provided important data on transcriptome changes, both in the insect and in the plant, in response to the plant-aphid interaction. However, the difficulties to transform soybean and to rear soybean aphid on artificial media have hindered our ability to systematically test the function of genes identified by those analyses as mediators of plant resistance to the insect. An efficient approach to produce transgenic soybean material is the production of transformed hairy roots using Agrobacterium rhizogenes; however, soybean aphids colonize leaves or stems and thus this approach has not been utilized. Here, we developed a hairy root system that allowed effective aphid feeding. We show that this system supports aphid performance similar to that observed in leaves. The use of hairy roots to study plant resistance is validated by experiments showing that roots generated from cotyledons of resistant lines carrying the Rag1 or Rag2 resistance genes are also resistant to aphid feeding, while related susceptible lines are not. Our results demonstrate that hairy roots are a good system to study soybean aphid-soybean interactions, providing a quick and effective method that could be used for functional analysis of the resistance response to this insect.
Collapse
Affiliation(s)
- Stephanie C. Morriss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Matthew E. Studham
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Gregory L. Tylka
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
40
|
Chang HX, Hartman GL. Characterization of Insect Resistance Loci in the USDA Soybean Germplasm Collection Using Genome-Wide Association Studies. FRONTIERS IN PLANT SCIENCE 2017; 8:670. [PMID: 28555141 PMCID: PMC5430066 DOI: 10.3389/fpls.2017.00670] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/12/2017] [Indexed: 05/18/2023]
Abstract
Management of insects that cause economic damage to yields of soybean mainly rely on insecticide applications. Sources of resistance in soybean plant introductions (PIs) to different insect pests have been reported, and some of these sources, like for the soybean aphid (SBA), have been used to develop resistant soybean cultivars. With the availability of SoySNP50K and the statistical power of genome-wide association studies, we integrated phenotypic data for beet armyworm, Mexican bean beetle (MBB), potato leafhopper (PLH), SBA, soybean looper (SBL), velvetbean caterpillar (VBC), and chewing damage caused by unspecified insects for a comprehensive understanding of insect resistance in the United States Department of Agriculture Soybean Germplasm Collection. We identified significant single nucleotide (SNP) polymorphic markers for MBB, PLH, SBL, and VBC, and we highlighted several leucine-rich repeat-containing genes and myeloblastosis transcription factors within the high linkage disequilibrium region surrounding significant SNP markers. Specifically for soybean resistance to PLH, we found the PLH locus is close but distinct to a locus for soybean pubescence density on chromosome 12. The results provide genetic support that pubescence density may not directly link to PLH resistance. This study offers a novel insight of soybean resistance to four insect pests and reviews resistance mapping studies for major soybean insects.
Collapse
Affiliation(s)
- Hao-Xun Chang
- Department of Plant, Soil, and Microbial Sciences, Michigan State UniversityEast Lansing, MI, USA
| | - Glen L. Hartman
- United States Department of Agriculture - Agricultural Research Service, University of IllinoisUrbana, IL, USA
- *Correspondence: Glen L. Hartman ;
| |
Collapse
|
41
|
Kim H, Hoelmer KA, Lee S. Population genetics of the soybean aphid in North America and East Asia: test for introduction between native and introduced populations. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1299-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Ajayi-Oyetunde OO, Diers BW, Lagos-Kutz D, Hill CB, Hartman GL, Reuter-Carlson U, Bradley CA. Differential Reactions of Soybean Isolines With Combinations of Aphid Resistance Genes Rag1 , Rag2 , and Rag3 to Four Soybean Aphid Biotypes. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1431-1437. [PMID: 27018437 DOI: 10.1093/jee/tow033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/05/2016] [Indexed: 05/12/2023]
Abstract
With the discovery of the soybean aphid ( Aphis glycines Matsumura) as a devastating insect pest of soybean ( Glycine max (L.) Merr.) in the United States, host resistance was recognized as an important management option. However, the identification of soybean aphid isolates exhibiting strong virulence against aphid resistance genes ( Rag genes) has highlighted the need for pyramiding genes to help ensure the durability of host resistance as a control strategy. In this study, soybean isolines with all possible combinations of the resistance and susceptibility alleles at Rag1 , Rag2 , and Rag3 were evaluated for their effectiveness against the four characterized soybean aphid biotypes. All soybean isolines, including the susceptible check carrying none of the resistance alleles (S1/S2/S3), were infested with each biotype in no-choice greenhouse tests, and the aphid populations developed on each isoline were enumerated 14 d after infestation. All gene combinations, with the exception of Rag3 alone, provided excellent protection against biotype 1. Isolines with Rag2 alone or in combination with Rag1 and Rag3 had greater levels of resistance to biotype 2 than those with either Rag1 alone, Rag3 alone, or the Rag1/3 pyramid. For biotype 3, the Rag1/3 and Rag1/2/3 pyramided lines significantly reduced aphid populations compared with all other gene combinations, while the Rag1/2/3 pyramid provided the greatest protection against biotype 4. Overall, the Rag1/2/3 pyramided line conferred the greatest protection against all four biotypes.
Collapse
|
43
|
Todd JC, Rouf Mian MA, Backus EA, Finer JJ, Redinbaugh MG. Feeding Behavior of Soybean Aphid (Hemiptera: Aphididae) Biotype 2 on Resistant and Susceptible Soybean. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:426-33. [PMID: 26578627 DOI: 10.1093/jee/tov315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Host plant resistance to the soybean aphid, Aphis glycines Matsumura, is an effective means of controlling populations of this introduced pest species in the United States. Rag (Resistance to Aphis glycines) genes identified in soybean germplasm have been incorporated into commercial cultivars, but differential responses by soybean aphid biotypes to the Rag genes have made understanding mechanisms underlying resistance associated with Rag genes increasingly important. We compared the behavior of biotype 2 aphids on the resistant soybean line PI243540, which is a source of Rag2, and the susceptible cultivar Wyandot. Scanning electron microscopy revealed that the abaxial surface of leaves from resistant plants had a higher density of both long and glandulartrichomes, which might repel aphids, on veins. Time-lapse animation also suggested a repellent effect of resistant plants on aphids. However, electropenatography (EPG) indicated that the time to first probe did not differ between aphids feeding on the resistant and susceptible lines. EPG also indicated that fewer aphids feeding on resistant plants reached the phloem, and the time before reaching the phloem was much longer relative to susceptible soybean. For aphids that reached the phloem, there was no difference in either number of feedings or their duration in phloem. However, aphids feeding on resistant soybean had fewer prolonged phases of active salivation (E1) and many more pathway activities and non-probing intervals. Together, the feeding behavior of aphids suggested that Rag2 resistance has strong antixenosis effects, in addition to previously reported antibiosis, and was associated with epidermal and mesophyll tissues.
Collapse
|
44
|
Varenhorst AJ, O’Neal ME. The Effect of an Interspersed Refuge on Aphis glycines (Hemiptera: Aphididae), Their Natural Enemies, and Biological Control. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:406-15. [PMID: 26476557 PMCID: PMC4765486 DOI: 10.1093/jee/tov302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
Soybean production in the north central United States has relied heavily on the use of foliar and seed applied insecticides to manage Aphis glycines (Hemiptera: Aphididae). An additional management strategy is the use soybean cultivars containing A. glycines resistance genes (Rag). Previous research has demonstrated that Rag cultivars are capable of preventing yield loss equivalent to the use of foliar and seed-applied insecticides.However, the presence of virulent biotypes in North America has raised concern for the durability of Rag genes. A resistance management program that includes a refuge for avirulent biotypes could limit the frequency at which virulent biotypes increase within North America. To what extent such a refuge reduces the effectiveness of aphid-resistant soybean is not clear. We conducted an experiment to determine whether a susceptible refuge mixed into resistant soybean (i.e., interspersed refuge or refuge-in-a-bag) affects the seasonal exposure of aphids, their natural enemies, biological control, and yield protection provided by aphid resistance. We compared three ratios of interspersed refuges (resistant: susceptible; 95:5, 90:10, 75:25) to plots grown with 100%susceptible or resistant soybean. We determined that an interspersed refuge of at least 25% susceptible seed would be necessary to effectively produce avirulent individuals. Interspersed refuges had negligible effects onyield and the natural enemy community. However, there was evidence that they increased the amount of biological control that occurred within a plot. We discuss the compatibility of interspersed refuges for A. glycines management and whether resistance management can prolong the durability of Rag genes.
Collapse
Affiliation(s)
- A. J. Varenhorst
- Department of Entomology, Iowa State University, Ames, IA 50011 () and
| | - M. E. O’Neal
- Department of Entomology, Iowa State University, Ames, IA 50011 () and
| |
Collapse
|
45
|
Pawlowski M, Hill CB, Voegtlin DJ, Hartman GL. Soybean aphid intrabiotype variability based on colonization of specific soybean genotypes. INSECT SCIENCE 2015; 22:785-92. [PMID: 25183413 DOI: 10.1111/1744-7917.12169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/20/2014] [Indexed: 06/03/2023]
Abstract
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is one of the most destructive insect pests on soybeans in the United States. One method for managing this pest is through host plant resistance. Since its arrival in 2000, 4 aphid biotypes have been identified that are able to overcome soybean aphid resistance (Rag) genes. A soybean aphid isolate collected from Moline, Illinois readily colonized soybean plants with the soybean aphid resistance gene Rag2, unlike biotypes 1 and 2, but similar to soybean aphid biotype 3. Two no-choice experiments compared the virulence of the Moline isolate with biotype 3. In both experiments, differences in aphid population counts were not significant (P > 0.05) on soybean genotypes LD08-12957a (Rag2) and LD11-5413a (Rag2), but the aphid counts for the Moline isolate were significantly (P < 0.05) lower than the aphid counts for the biotype 3 isolate on the soybean genotypes Dowling (Rag1), LD05-16611 (Rag1), LD11-4576a (Rag1), and PI 567598B (rag1b and rag3). The Moline isolate was a variant of aphid biotype 3, which is the first report showing that soybean aphid isolates classified as the same biotype, based on virulence against specific Rag genes, can differ in aggressiveness or ability to colonize specific host genotypes.
Collapse
Affiliation(s)
- Michelle Pawlowski
- Department of Crop Sciences, National Soybean Research Center, University of Illinois, Urbana, Illinois, USA
| | - Curtis B Hill
- Department of Crop Sciences, National Soybean Research Center, University of Illinois, Urbana, Illinois, USA
| | - David J Voegtlin
- Center for Economic Entomology, Illinois Natural History Survey, University of Illinois, Champaign, Illinois, USA
| | - Glen L Hartman
- Department of Crop Sciences, National Soybean Research Center, University of Illinois, Urbana, Illinois, USA
- USDA Agricultural Research Service, National Soybean Research Center, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
46
|
Cassone BJ, Wenger JA, Michel AP. Whole Genome Sequence of the Soybean Aphid Endosymbiont Buchnera aphidicola and Genetic Differentiation among Biotype-Specific Strains. J Genomics 2015; 3:85-94. [PMID: 26516375 PMCID: PMC4618293 DOI: 10.7150/jgen.12975] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Endosymbiosis with microorganisms is common in insects, with more than 10% of species requiring the metabolic capabilities of intracellular bacteria for their nutrient acquisition. Aphids harbor an obligate mutualism with the vertically transferred endosymbiont, Buchnera aphidicola, which produces key nutrients lacking in the aphid's phloem-based diet that are necessary for normal development and reproduction. It is thought that, in some groups of insects, bacterial symbionts may play key roles in biotype evolution against host-plant resistance. The genome of Buchnera has been sequenced in several aphid strains but little genomic data is currently available for the soybean aphid (Aphis glycines), one of the most important pests of soybean in North America. In this study, DNA sequencing was used to assemble and annotate the genome sequence of the Buchnera A. glycines strain and to reconstruct phylogenetic relationships among different strains. In addition, we identified several fixed Buchnera SNPs between Aphis glycines biotypes that were avirulent or virulent to a soybean aphid resistance gene (Rag1). The results of this study describe the genetic and evolutionary relationships of the Buchnera A. glycines strain, and begin to define the roles of an aphid symbiont in host-plant resistance.
Collapse
Affiliation(s)
- Bryan J. Cassone
- 1. Department of Biology, Brandon University, Brandon, MB R7A 6A9, Canada
| | - Jacob A. Wenger
- 2. Department of Entomology, The Ohio State University, OARDC, Wooster, OH 44691, USA
| | - Andrew P. Michel
- 2. Department of Entomology, The Ohio State University, OARDC, Wooster, OH 44691, USA
| |
Collapse
|
47
|
Brechenmacher L, Nguyen THN, Zhang N, Jun TH, Xu D, Mian MAR, Stacey G. Identification of Soybean Proteins and Genes Differentially Regulated in Near Isogenic Lines Differing in Resistance to Aphid Infestation. J Proteome Res 2015; 14:4137-46. [PMID: 26350764 DOI: 10.1021/acs.jproteome.5b00146] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soybean aphid is an important pest causing significant yield losses. The Rag2 locus confers resistance to soybean aphid biotypes 1 and 2. Transcriptomic and proteomic analyses were done over a 48 h period after aphid infestation using near isogenic lines (NILs) differing at the Rag2 locus. Comparing the Rag2 and/or rag2 lines identified 3445 proteins, of which 396 were differentially regulated between the two lines, including proteins involved in cell wall metabolism, carbohydrate metabolism, and stress response. RNA-seq transcriptomic analysis identified 2361 genes significantly regulated between the resistant and susceptible lines. Genes upregulated in the Rag2 line were annotated as being involved in cell wall, secondary, and hormone metabolism as well as in stress, signaling, and transcriptional responses. Genes downregulated in the Rag2 line were annotated as being involved in photosynthesis and carbon metabolism. Interestingly, two genes (unknown and mitochondrial protease) located within the defined Rag2 locus were expressed significantly higher in the resistant genotype. The expression of a putative NBS-LRR resistant gene within the Rag2 locus was not different between the two soybean lines, but a second NBL-LRR gene located just at the border of the defined Rag2 locus was. Therefore, this gene may be a candidate R gene controlling aphid resistance.
Collapse
Affiliation(s)
| | | | | | - Tae-Hwan Jun
- USDA-ARS, Department of Horticulture and Crop Science, The Ohio State University , 1680 Madison Avenue, Wooster, Ohio 44691, United States
| | | | - M A Rouf Mian
- USDA-ARS, Department of Horticulture and Crop Science, The Ohio State University , 1680 Madison Avenue, Wooster, Ohio 44691, United States
| | | |
Collapse
|
48
|
Varenhorst AJ, McCarville MT, O’Neal ME. Reduced Fitness of Virulent Aphis glycines (Hemiptera: Aphididae) Biotypes May Influence the Longevity of Resistance Genes in Soybean. PLoS One 2015; 10:e0138252. [PMID: 26372106 PMCID: PMC4570816 DOI: 10.1371/journal.pone.0138252] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/27/2015] [Indexed: 11/18/2022] Open
Abstract
Sustainable use of insect resistance in crops require insect resistance management plans that may include a refuge to limit the spread of virulence to this resistance. However, without a loss of fitness associated with virulence, a refuge may not prevent virulence from becoming fixed within a population of parthenogenetically reproducing insects like aphids. Aphid-resistance in soybeans (i.e., Rag genes) prevent outbreaks of soybean aphid (Aphis glycines), yet four biotypes defined by their capacity to survive on aphid-resistant soybeans (e.g., biotype-2 survives on Rag1 soybean) are found in North America. Although fitness costs are reported for biotype-3 on aphid susceptible and Rag1 soybean, it is not clear if virulence to aphid resistance in general is associated with a decrease in fitness on aphid susceptible soybeans. In laboratory assays, we measured fitness costs for biotype 2, 3 and 4 on an aphid-susceptible soybean cultivar. In addition, we also observed negative cross-resistance for biotype-2 on Rag3, and biotype-3 on Rag1 soybean. We utilized a simple deterministic, single-locus, four compartment genetic model to account for the impact of these findings on the frequency of virulence alleles. When a refuge of aphid susceptible was included within this model, fitness costs and negative cross-resistance delayed the increase of virulence alleles when virulence was inherited recessively or additively. If virulence were inherited additively, fitness costs decreased the frequency of virulence. Combined, these results suggest that a refuge may prevent virulent A. glycines biotypes from overcoming Rag genes if this aphid-resistance were used commercially in North America.
Collapse
Affiliation(s)
- Adam J. Varenhorst
- Department of Entomology, Iowa State University, Ames, IA 50011, United States of America
| | - Michael T. McCarville
- Department of Entomology, Iowa State University, Ames, IA 50011, United States of America
| | - Matthew E. O’Neal
- Department of Entomology, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
49
|
Cassone BJ, Redinbaugh MG, Dorrance AE, Michel AP. Shifts in Buchnera aphidicola density in soybean aphids (Aphis glycines) feeding on virus-infected soybean. INSECT MOLECULAR BIOLOGY 2015; 24:422-31. [PMID: 25845267 DOI: 10.1111/imb.12170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
Vertically transmitted bacterial symbionts are common in arthropods. Aphids undergo an obligate symbiosis with Buchnera aphidicola, which provides essential amino acids to its host and contributes directly to nymph growth and reproduction. We previously found that newly adult Aphis glycines feeding on soybean infected with the beetle-transmitted Bean pod mottle virus (BPMV) had significantly reduced fecundity. We hypothesized that the reduced fecundity was attributable to detrimental impacts of the virus on the aphid microbiome, namely Buchnera. To test this, mRNA sequencing and quantitative real-time PCR were used to assay Buchnera transcript abundance and titre in A. glycines feeding on Soybean mosaic virus-infected, BPMV-infected, and healthy soybean for up to 14 days. Our results indicated that Buchnera density was lower and ultimately suppressed in aphids feeding on virus-infected soybean. While the decreased Buchnera titre may be associated with reduced aphid fecundity, additional mechanisms are probably involved. The present report begins to describe how interactions among insects, plants, and plant pathogens influence endosymbiont population dynamics.
Collapse
Affiliation(s)
- Bryan J Cassone
- Center for Applied Plant Sciences, The Ohio State University, OARDC, Wooster, OH, 44691, USA
- Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH, 44691, USA
| | - Margaret G Redinbaugh
- Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH, 44691, USA
- USDA, ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | - Anne E Dorrance
- Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH, 44691, USA
| | - Andrew P Michel
- Department of Entomology, the Ohio State University, OARDC, Wooster, OH, 44691, USA
| |
Collapse
|
50
|
Wulff JA, White JA. The Endosymbiont Arsenophonus Provides a General Benefit to Soybean Aphid (Hemiptera: Aphididae) Regardless of Host Plant Resistance (Rag). ENVIRONMENTAL ENTOMOLOGY 2015; 44:574-81. [PMID: 26313962 DOI: 10.1093/ee/nvv031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), invokes substantial chemical treatment and economic cost in North America. Resistant soybean genotypes hold promise as a low-impact control methodology, but soybean aphid "biotypes" capable of development on resistant soy cast doubt on the durability of soy resistance. We hypothesized that variation in soybean aphid ability to colonize resistant soy is partially attributable to a bacterial symbiont of soybean aphid, Arsenophonus. We used microinjection to manipulate Arsenophonus infection in both virulent and avirulent aphid biotypes, resulting in five pairs of infected versus uninfected isolines. These isolines were subjected to various population growth rate assays on resistant Rag versus susceptible soybean. We found that aphid virulence on Rag soybean was not dependent on Arsenophonus: virulent aphid biotypes performed well on Rag soybean, and avirulent aphid biotypes performed poorly on Rag soybean, regardless of whether Arsenophonus was present or not. However, we did find that Arsenophonus-infected clones on average performed significantly better than their paired uninfected isolines. This pattern was not consistently evident on every date for every clone, either in the population assays nor when we compared lifetime fecundity of individual aphids in a separate experiment. Nevertheless, this overall benefit for infected aphids may be sufficient to explain the high frequency of Arsenophonus infection in soybean aphids.
Collapse
Affiliation(s)
- Jason A Wulff
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| | - Jennifer A White
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|