1
|
Li X, Zhang C, Vail CE, Sherrill JT, Xiong J. Piezo1 expression in mature osteocytes is dispensable for the skeletal response to mechanical loading. Bone 2024; 190:117276. [PMID: 39389439 DOI: 10.1016/j.bone.2024.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Mechanical loading is essential for bone growth and homeostasis, with osteocytes considered the primary mechanosensors. Deleting the mechanosensitive ion channel Piezo1 from Dmp1-Cre-targeted cells, which include both osteoblasts and osteocytes, resulted in reduced bone mass and impaired skeletal responses to mechanical stimuli. To specifically isolate Piezo1's role in osteocytes, we used Sost-Cre mice to generate mice with Piezo1 deletion exclusively in mature osteocytes. These mice exhibited lower bone mineral density, decreased cancellous bone mass, and reduced cortical thickness with decrease periosteal expansion. However, unlike mice lacking Piezo1 in both osteoblasts and osteocytes, those with Piezo1 deletion in mature osteocytes responded normally to mechanical loading. These findings suggest that Piezo1 expression in mature osteocytes contributes to bone maintenance under normal physiological condition, but is dispensable for the skeletal response to mechanical loading.
Collapse
Affiliation(s)
- Xuehua Li
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Connie Zhang
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cameron E Vail
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John T Sherrill
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jinhu Xiong
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
2
|
Chen R, Jin Y, Lian R, Yang J, Liao Z, Jin Y, Deng Z, Feng S, Feng Z, Wei Y, Zhang Z, Zhao L. CRIP1 regulates osteogenic differentiation of bone marrow stromal cells and pre-osteoblasts via the Wnt signaling pathway. Biochem Biophys Res Commun 2024; 727:150277. [PMID: 38936225 DOI: 10.1016/j.bbrc.2024.150277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
With the aging of the global demographic, the prevention and treatment of osteoporosis are becoming crucial issues. The gradual loss of self-renewal and osteogenic differentiation capabilities in bone marrow stromal cells (BMSCs) is one of the key factors contributing to osteoporosis. To explore the regulatory mechanisms of BMSCs differentiation, we collected bone marrow cells of femoral heads from patients undergoing total hip arthroplasty for single-cell RNA sequencing analysis. Single-cell RNA sequencing revealed significantly reduced CRIP1 (Cysteine-Rich Intestinal Protein 1) expression and osteogenic capacity in the BMSCs of osteoporosis patients compared to non-osteoporosis group. CRIP1 is a gene that encodes a member of the LIM/double zinc finger protein family, which is involved in the regulation of various cellular processes including cell growth, development, and differentiation. CRIP1 knockdown resulted in decreased alkaline phosphatase activity, mineralization and expression of osteogenic markers, indicating impaired osteogenic differentiation. Conversely, CRIP1 overexpression, both in vitro and in vivo, enhanced osteogenic differentiation and rescued bone mass reduction in ovariectomy-induced osteoporosis mice model. The study further established CRIP1's modulation of osteogenesis through the Wnt signaling pathway, suggesting that targeting CRIP1 could offer a novel approach for osteoporosis treatment by promoting bone formation and preventing bone loss.
Collapse
Affiliation(s)
- Ruge Chen
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yangchen Jin
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ru Lian
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jie Yang
- Department of Chinese Medicine, Chinese People's Liberation Army Air Force Special Medical Center, Beijing, 100142, China
| | - Zheting Liao
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yu Jin
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhonghao Deng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shuhao Feng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zihang Feng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yiran Wei
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Liang Zhao
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
3
|
Hao L, Yan Y, Huang G, Li H. From gut to bone: deciphering the impact of gut microbiota on osteoporosis pathogenesis and management. Front Cell Infect Microbiol 2024; 14:1416739. [PMID: 39386168 PMCID: PMC11461468 DOI: 10.3389/fcimb.2024.1416739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Osteoporosis (OP) is characterized by decreased bone mineral density (BMD) and increased fracture risk, poses a significant global health burden. Recent research has shed light on the bidirectional relationship between gut microbiota (GM) and bone health, presenting a novel avenue for understanding OP pathogenesis and developing targeted therapeutic interventions. This review provides a comprehensive overview of the GM-bone axis, exploring the impact of GM on OP development and management. We elucidate established risk factors and pathogenesis of OP, delve into the diversity and functional changes of GM in OP. Furthermore, we examine experimental evidence and clinical observations linking alterations in GM composition or function with variations in BMD and fracture risk. Mechanistic insights into microbial mediators of bone health, such as microbial metabolites and products, are discussed. Therapeutic implications, including GM-targeted interventions and dietary strategies, are also explored. Finally, we identify future research directions and challenges in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Linjie Hao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yuzhu Yan
- Clinical Laboratory of Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Guilin Huang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
4
|
Krogh LM, Nissen A, Weischendorff S, Hartmann B, Andersen JL, Holst JJ, Sørensen K, Fridh MK, Mackey AL, Müller K. Bone remodeling in survivors of pediatric hematopoietic stem cell transplantation: Impact of heavy resistance training. Pediatr Blood Cancer 2024; 71:e31159. [PMID: 38953152 DOI: 10.1002/pbc.31159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Early-onset osteoporosis is a frequent late effect after pediatric hematopoietic stem cell transplantation (HSCT). It remains unknown if physical training can improve bone formation in these patients, as the transplantation procedure may cause sustained dysregulation of the bone-forming osteoblast progenitor cells. OBJECTIVE We aimed to explore the effect of resistance training on bone remodeling in long-term survivors of pediatric HSCT. PROCEDURE In this prospective, controlled intervention study, we included seven HSCT survivors and 15 age- and sex-matched healthy controls. The participants completed a 12-week heavy load, lower extremity resistance training intervention with three weekly sessions. We measured fasting serum levels of the bone formation marker "N-terminal propeptide of type I procollagen" (P1NP), and the bone resorption marker "C-terminal telopeptide of type I collagen" (CTX). The hypothesis was planned before data collection began. The trial was registered at Clinicaltrials.gov before including the first participant, with trial registration no. NCT04922970. RESULTS Resistance training led to significantly increased levels of fasting P1NP in both patients (from 57.62 to 114.99 ng/mL, p = .03) and controls (from 66.02 to 104.62 ng/mL, p < .001). No significant changes in fasting CTX levels were observed. CONCLUSIONS Despite previous high-dose cytotoxic therapy, long-term survivors of pediatric HSCT respond to resistance training with improvement of bone formation, comparable to that of healthy controls. This suggests that resistance training might be a promising non-pharmacological approach to prevent the early decline in bone mass, and should be considered as part of a follow-up program to counteract long-term sequela after pediatric HSCT.
Collapse
Affiliation(s)
- Lise Marie Krogh
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anne Nissen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sarah Weischendorff
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Disease, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Løvind Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg & Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaspar Sørensen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Bone Marrow Transplantation and Immunodeficiency, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Martin Kaj Fridh
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Abigail Louise Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg & Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Müller
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Disease, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Leiss L, Ramphaleng T, Bacci N, Houlton TMR, García-Donas JG. Osteon shape variation in the femoral diaphysis: A geometric-morphometric approach on human cortical bone microstructure in an elderly sample. J Forensic Sci 2024; 69:1826-1839. [PMID: 38992860 DOI: 10.1111/1556-4029.15584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Geometric morphometrics (GMM) have been applied to understand morphological variation in biological structures. However, research studying cortical bone through geometric histomorphometrics (GHMM) is scarce. This research aims to develop a landmark-based GHMM protocol to depict osteonal shape variation in the femoral diaphysis, exploring the role of age and biomechanics in bone microstructure. Proximal, midshaft, and distal anatomical segments from the femoral diaphysis of six individuals were assessed, with 864 secondary intact osteons from eight periosteal sampling areas being manually landmarked. Observer error was tested using Procrustes ANOVA. Average osteonal shape and anatomical segment-specific variation were explored using principal component analysis. Osteon shape differences between segments were examined using canonical variate analysis (CVA). Sex differences were assessed through Procrustes ANOVA and discriminant function analysis (DFA). The impact of osteonal size on osteonal shape was investigated. High repeatability and reproducibility in osteon shape landmarking were reported. The average osteon shape captured was an elliptical structure, with PC1 reflecting more circular osteons. Significant differences in osteon shape were observed between proximal and distal segments according to CVA. Osteon shape differed between males and females, with DFA showing 52% cross-validation accuracies. No effect of size on shape was reported. Osteonal shape variation observed in this study might be explained by the elderly nature of the sample as well as biomechanical and physiological mechanisms playing different roles along the femoral diaphysis. Although a larger sample is needed to corroborate these findings, this study contributes to the best of our knowledge on human microanatomy, proposing a novel GHMM approach.
Collapse
Affiliation(s)
- Luisa Leiss
- Centre for Anatomy and Human Identification, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Tshegofatso Ramphaleng
- Human Variation and Identification Research Unit, Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicholas Bacci
- Human Variation and Identification Research Unit, Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tobias M R Houlton
- Centre for Anatomy and Human Identification, School of Science and Engineering, University of Dundee, Dundee, UK
- Human Variation and Identification Research Unit, Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Julieta G García-Donas
- Centre for Anatomy and Human Identification, School of Science and Engineering, University of Dundee, Dundee, UK
- Human Variation and Identification Research Unit, Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Alikhani M, Alikhani M, Sangsuwon C, Oliveira SP, Abdullah F, Teixeira CC. Periosteum response to static forces stimulates cortical drifting: A new orthopedic target. J World Fed Orthod 2024:S2212-4438(24)00051-1. [PMID: 39209694 DOI: 10.1016/j.ejwf.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The mechanism of cortical bone adaptation to static forces is not well understood. This is an important process because static forces are applied to the cortical bone in response to the growth of soft tissues and during Orthodontic and Orthopedic corrections. The aim of this study was to investigate the cortical bone response to expanding forces applied to the maxilla. METHODS Overall, 375 adult Sprague-Dawley rats were divided into three groups: 1) static force group, 2) static force plus stimulation group, and 3) sham group. In addition to static force across the maxilla, some animals were exposed to anti-inflammatory medication. Samples were collected at different time points and evaluated by micro-computed tomography, fluorescence microscopy, immunohistochemistry, and gene and protein analyses. RESULTS The application of expansion forces to the maxilla increased inflammation in the periosteum and activated osteoclasts on the surface of the cortical plate. This activation was independent of the magnitude of tooth movement but followed the pattern of skeletal displacement. Bone formation on the surface of the cortical plate occurred at a later stage and resulted in the relocation of the cortical boundary of the maxilla and cortical drifting. CONCLUSIONS This study demonstrates that cortical bone adaptation to static forces originates from the periosteum, and it is an inflammatory-based phenomenon that can be manipulated by the clinician. Our findings support a new theory for cortical adaptation to static forces and an innovative clinical approach to promote cortical drifting through periosteal stimulation. Being able to control cortical drift can have a significant impact on clinical orthodontic and dentofacial orthopedics by allowing corrections of severe deformities without the need for maxillofacial surgery.
Collapse
Affiliation(s)
- Mani Alikhani
- Advanced Education Program in Orthodontics & Dentofacial Orthopedics, CTOR Academy, Hoboken, New Jersey; Advanced Graduate Education Program in Orthodontics, Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Mona Alikhani
- Advanced Education Program in Orthodontics & Dentofacial Orthopedics, CTOR Academy, Hoboken, New Jersey
| | - Chinapa Sangsuwon
- Advanced Education Program in Orthodontics & Dentofacial Orthopedics, CTOR Academy, Hoboken, New Jersey
| | - Serafim P Oliveira
- Advanced Education Program in Orthodontics & Dentofacial Orthopedics, CTOR Academy, Hoboken, New Jersey; CISeD Research Center in Digital Services, Polytechnic University of Viseu, Viseu, Portugal
| | - Fanar Abdullah
- Advanced Education Program in Orthodontics & Dentofacial Orthopedics, CTOR Academy, Hoboken, New Jersey
| | - Cristina C Teixeira
- Department of Orthodontics, New York University College of Dentistry, New York, New York.
| |
Collapse
|
7
|
Koh NYY, Miszkiewicz JJ, Fac ML, Wee NKY, Sims NA. Preclinical Rodent Models for Human Bone Disease, Including a Focus on Cortical Bone. Endocr Rev 2024; 45:493-520. [PMID: 38315213 PMCID: PMC11244217 DOI: 10.1210/endrev/bnae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/22/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Preclinical models (typically ovariectomized rats and genetically altered mice) have underpinned much of what we know about skeletal biology. They have been pivotal for developing therapies for osteoporosis and monogenic skeletal conditions, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and craniodysplasias. Further therapeutic advances, particularly to improve cortical strength, require improved understanding and more rigorous use and reporting. We describe here how trabecular and cortical bone structure develop, are maintained, and degenerate with aging in mice, rats, and humans, and how cortical bone structure is changed in some preclinical models of endocrine conditions (eg, postmenopausal osteoporosis, chronic kidney disease, hyperparathyroidism, diabetes). We provide examples of preclinical models used to identify and test current therapies for osteoporosis, and discuss common concerns raised when comparing rodent preclinical models to the human skeleton. We focus especially on cortical bone, because it differs between small and larger mammals in its organizational structure. We discuss mechanisms common to mouse and human controlling cortical bone strength and structure, including recent examples revealing genetic contributors to cortical porosity and osteocyte network configurations during growth, maturity, and aging. We conclude with guidelines for clear reporting on mouse models with a goal for better consistency in the use and interpretation of these models.
Collapse
Affiliation(s)
- Natalie Y Y Koh
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Justyna J Miszkiewicz
- School of Social Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Vertebrate Evolution Development and Ecology, Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Mary Louise Fac
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie K Y Wee
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
8
|
Hiasa M, Endo I, Matsumoto T. Bone-fat linkage via interleukin-11 in response to mechanical loading. J Bone Miner Metab 2024; 42:447-454. [PMID: 38324177 DOI: 10.1007/s00774-023-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/10/2023] [Indexed: 02/08/2024]
Abstract
Positive regulators of bone formation, such as mechanical loading and PTH, stimulate and negative regulators, such as aging and glucocorticoid excess, suppress IL-11 gene transcription in osteoblastic cells. Signal transduction from mechanical loading and PTH stimulation involves two pathways: one is Ca2+-ERK-CREB pathway which facilitates binding of ∆FosB/JunD to the AP-1 site to enhance IL-11 gene transcription, and the other is Smad1/5 phosphorylation that promotes IL-11 gene transcription via SBE binding and complex formation with ∆FosB/JunD. The increased IL-11 suppresses Sost expression via IL-11Rα-STAT1/3-HDAC4/5 pathway and enhances Wnt signaling in the bone to stimulate bone formation. Thus, IL-11 mediates stimulatory and inhibitory signals of bone formation by affecting Wnt signaling. Physiologically important stimulation of bone formation is exercise-induced mechanical loading, but exercise simultaneously requires energy source for muscle contraction. Exercise-induced stimulation of IL-11 expression in the bone increases the secretion of IL-11 from the bone. The increased circulating IL-11 acts like a hormone to enhance adipolysis as an energy source with a reduction in adipogenic differentiation via a suppression of Dkk1/2 expression in the adipose tissue. Such bone-fat linkage can be a mechanism whereby exercise increases bone mass and, at the same time, maintains energy supply from the adipose tissue.
Collapse
Affiliation(s)
- Masahiro Hiasa
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Dentistry, Tokushima, 770-8503, Japan
| | - Itsuro Endo
- Department of Endocrinology, Metabolism and Hematology, Tokushima University Graduate School of Medical Sciences, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503,, Japan
| | - Toshio Matsumoto
- Department of Endocrinology, Metabolism and Hematology, Tokushima University Graduate School of Medical Sciences, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503,, Japan.
| |
Collapse
|
9
|
Fang L, Liu Z, Wang C, Shi M, He Y, Lu A, Li X, Li T, Zhu D, Zhang B, Guan J, Shen J. Vascular restoration through local delivery of angiogenic factors stimulates bone regeneration in critical size defects. Bioact Mater 2024; 36:580-594. [PMID: 39100886 PMCID: PMC11295624 DOI: 10.1016/j.bioactmat.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Critical size bone defects represent a significant challenge worldwide, often leading to persistent pain and physical disability that profoundly impact patients' quality of life and mental well-being. To address the intricate and complex repair processes involved in these defects, we performed single-cell RNA sequencing and revealed notable shifts in cellular populations within regenerative tissue. Specifically, we observed a decrease in progenitor lineage cells and endothelial cells, coupled with an increase in fibrotic lineage cells and pro-inflammatory cells within regenerative tissue. Furthermore, our analysis of differentially expressed genes and associated signaling pathway at the single-cell level highlighted impaired angiogenesis as a central pathway in critical size bone defects, notably influenced by reduction of Spp1 and Cxcl12 expression. This deficiency was particularly pronounced in progenitor lineage cells and myeloid lineage cells, underscoring its significance in the regeneration process. In response to these findings, we developed an innovative approach to enhance bone regeneration in critical size bone defects. Our fabrication process involves the integration of electrospun PCL fibers with electrosprayed PLGA microspheres carrying Spp1 and Cxcl12. This design allows for the gradual release of Spp1 and Cxcl12 in vitro and in vivo. To evaluate the efficacy of our approach, we locally applied PCL scaffolds loaded with Spp1 and Cxcl12 in a murine model of critical size bone defects. Our results demonstrated restored angiogenesis, accelerated bone regeneration, alleviated pain responses and improved mobility in treated mice.
Collapse
Affiliation(s)
- Liang Fang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Zhongting Liu
- Department of Mechanical Engineering & Materials Sciences, School of Engineering, Washington University, St. Louis, MO, 63110, USA
| | - Cuicui Wang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, 63110, USA
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Meng Shi
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Yonghua He
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Aiwu Lu
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Xiaofei Li
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Jianjun Guan
- Department of Mechanical Engineering & Materials Sciences, School of Engineering, Washington University, St. Louis, MO, 63110, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, 63110, USA
| |
Collapse
|
10
|
Taghvaei M, Taheri M, Sadighi A, Zegarski R, Schaer TP, Palmese GR, Najafi AR, Siegler S. Fixation strength of swelling copolymeric anchors in artificial bone. J Orthop Res 2024; 42:1223-1230. [PMID: 38111190 DOI: 10.1002/jor.25770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Fixation with suture anchors and metallic hardware for osteosynthesis is common in orthopedic surgeries. Most metallic commercial bone anchors achieve their fixation to bone through shear of the bone located between the threads. They have several deficiencies, including stress-shielding due to mechanical properties mismatch, generation of acidic by-products, poor osteointegration, low mechanical strength and catastrophic failure often associated with large bone defects that may be difficult to repair. To overcome these deficiencies, a swelling porous copolymeric material, to be used as bone anchors with osteointegration potential, was introduced. The purpose of this study was to investigate the fixation strength of these porous, swelling copolymeric bone anchors in artificial bone of various densities. The pull-out and subsidence studies indicate an effective fixation mechanism based on friction including re-fixation capabilities, and minimization of damage following complete failure. The study suggests that this swelling porous structure may provide an effective alternative to conventional bone anchors, particularly in low-density bone.
Collapse
Affiliation(s)
- Moein Taghvaei
- School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Mehrangiz Taheri
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Amirreza Sadighi
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Ryan Zegarski
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Thomas P Schaer
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Ahmad R Najafi
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Sorin Siegler
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Liang C, Landi F, Çetin IE, Profico A, Buzi C, Dutel H, Khonsari RH, O'Higgins P, Moazen M. Functional adaptation of the infant craniofacial system to mechanical loadings arising from masticatory forces. Proc Biol Sci 2024; 291:20240654. [PMID: 38889789 DOI: 10.1098/rspb.2024.0654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 06/20/2024] Open
Abstract
The morphology and biomechanics of infant crania undergo significant changes between the pre- and post-weaning phases due to increasing loading of the masticatory system. The aims of this study were to characterize the changes in muscle forces, bite forces and the pattern of mechanical strain and stress arising from the aforementioned forces across crania in the first 48 months of life using imaging and finite element methods. A total of 51 head computed tomography scans of normal individuals were collected and analysed from a larger database of 217 individuals. The estimated mean muscle forces of temporalis, masseter and medial pterygoid increase from 30.9 to 87.0 N, 25.6 to 69.6 N and 23.1 to 58.9 N, respectively (0-48 months). Maximum bite force increases from 90.5 to 184.2 N (3-48 months). There is a change in the pattern of strain and stress from the calvaria to the face during postnatal development. Overall, this study highlights the changes in the mechanics of the craniofacial system during normal development. It further raises questions as to how and what level of changes in the mechanical forces during the development can alter the morphology of the craniofacial system.
Collapse
Affiliation(s)
- Ce Liang
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Federica Landi
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona 43007, Spain
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, Tarragona 43002, Spain
| | - Izel Ezgi Çetin
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Centre, Rotterdam 3015, The Netherlands
- Craniofacial Growth and Form Laboratory, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Faculté de Médecine, Université Paris Cité, Paris 75015, France
| | - Antonio Profico
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | - Costantino Buzi
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona 43007, Spain
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, Tarragona 43002, Spain
| | - Hugo Dutel
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol S8 1TQ, UK
- Université de Bordeaux, CNRS, MCC, PACEA, UMR 5199, Pessac 33600, France
| | - Roman Hossein Khonsari
- Craniofacial Growth and Form Laboratory, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Faculté de Médecine, Université Paris Cité, Paris 75015, France
| | - Paul O'Higgins
- Department of Archaeology and Hull York Medical School, University of York, York YO10 5DD, UK
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| |
Collapse
|
12
|
Barak MM. Cortical and Trabecular Bone Modeling and Implications for Bone Functional Adaptation in the Mammalian Tibia. Bioengineering (Basel) 2024; 11:514. [PMID: 38790379 PMCID: PMC11118124 DOI: 10.3390/bioengineering11050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Bone modeling involves the addition of bone material through osteoblast-mediated deposition or the removal of bone material via osteoclast-mediated resorption in response to perceived changes in loads by osteocytes. This process is characterized by the independent occurrence of deposition and resorption, which can take place simultaneously at different locations within the bone due to variations in stress levels across its different regions. The principle of bone functional adaptation states that cortical and trabecular bone tissues will respond to mechanical stimuli by adjusting (i.e., bone modeling) their morphology and architecture to mechanically improve their mechanical function in line with the habitual in vivo loading direction. This principle is relevant to various research areas, such as the development of improved orthopedic implants, preventative medicine for osteopenic elderly patients, and the investigation of locomotion behavior in extinct species. In the present review, the mammalian tibia is used as an example to explore cortical and trabecular bone modeling and to examine its implications for the functional adaptation of bones. Following a short introduction and an exposition on characteristics of mechanical stimuli that influence bone modeling, a detailed critical appraisal of the literature on cortical and trabecular bone modeling and bone functional adaptation is given. By synthesizing key findings from studies involving small mammals (rodents), large mammals, and humans, it is shown that examining both cortical and trabecular bone structures is essential for understanding bone functional adaptation. A combined approach can provide a more comprehensive understanding of this significant physiological phenomenon, as each structure contributes uniquely to the phenomenon.
Collapse
Affiliation(s)
- Meir M Barak
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| |
Collapse
|
13
|
Zhang Y, Zhao X, Ge D, Huang Y, Yao Q. The impact and mechanism of nerve injury on bone metabolism. Biochem Biophys Res Commun 2024; 704:149699. [PMID: 38412668 DOI: 10.1016/j.bbrc.2024.149699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
With an increasing understanding of the mechanisms of fracture healing, it has been found that nerve injury plays a crucial role in the process, but the specific mechanism is yet to be completely revealed. To address this issue and provide novel insights for fracture treatment, we compiled this review. This review aims to study the impact of nerve injury on fracture healing, exploring the role of neurotrophic factors in the healing process. We first revisited the effects of the central nervous system (CNS) and the peripheral nervous system (PNS) on the skeletal system, and further explained the phenomenon of significantly accelerated fracture healing under nerve injury conditions. Then, from the perspective of neurotrophic factors, we delved into the physiological functions and mechanisms of neurotrophic factors, such as nerve growth factor (NGF), Neuropeptides (NPs), and Brain-derived neurotrophic factor (BDNF), in bone metabolism. These effects include direct actions on bone cells, improvement of local blood supply, regulation of bone growth factors, control of cellular signaling pathways, promotion of callus formation and bone regeneration, and synergistic or antagonistic effects with other endocrine factors, such as Sema3A and Transforming Growth Factor β (TGF-β). Finally, we discussed the treatments of fractures with nerve injuries and the future research directions in this review, suggesting that the relationship between nerve injury and fracture healing, as well as the role of nerve injury in other skeletal diseases.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Xiao Zhao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Dawei Ge
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Yang Huang
- International Innovation Center for Forest Chemicals & Materials and Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China.
| |
Collapse
|
14
|
Sauer K, Silveira A, Schoeppler V, Rack A, Zizak I, Pacureanu A, Nassif N, Mantouvalou I, de Nolf W, Fleck C, Shahar R, Zaslansky P. Nanocrystal residual strains and density layers enhance failure resistance in the cleithrum bone of evolutionary advanced pike fish. Acta Biomater 2024; 179:164-179. [PMID: 38513725 DOI: 10.1016/j.actbio.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Failure-resistant designs are particularly crucial for bones subjected to rapid loading, as is the case for the ambush-hunting northern pike (Esox lucius). These fish have slim and low-density osteocyte-lacking bones. As part of the swallowing mechanism, the cleithrum bone opens and closes the jaw. The cleithrum needs sufficient strength and damage tolerance, to withstand years of repetitive rapid gape-and-suck cycles of feeding. The thin wing-shaped bone comprises anisotropic layers of mineralized collagen fibers that exhibit periodic variations in mineral density on the mm and micrometer length scales. Wavy collagen fibrils interconnect these layers yielding a highly anisotropic structure. Hydrated cleithra exhibit Young's moduli spanning 3-9 GPa where the yield stress of ∼40 MPa increases markedly to exceed ∼180 MPa upon drying. This 5x observation of increased strength corresponds to a change to brittle fracture patterns. It matches the emergence of compressive residual strains of ∼0.15% within the mineral crystals due to forces from shrinking collagen layers. Compressive stresses on the nanoscale, combined with the layered anisotropic microstructure on the mm length scale, jointly confer structural stability in the slender and lightweight bones. By employing a range of X-ray, electron and optical imaging and mechanical characterization techniques, we reveal the structure and properties that make the cleithra impressively damage resistant composites. STATEMENT OF SIGNIFICANCE: By combining structural and mechanical characterization techniques spanning the mm to the sub-nanometer length scales, this work provides insights into the structural organization and properties of a resilient bone found in pike fish. Our observations show how the anosteocytic bone within the pectoral gridle of these fish, lacking any biological (remodeling) repair mechanisms, is adapted to sustain natural repeated loading cycles of abrupt jaw-gaping and swallowing. We find residual strains within the mineral apatite nanocrystals that contribute to forming a remarkably resilient composite material. Such information gleaned from bony structures that are different from the usual bones of mammals showcases how nature incorporates smart features that induce damage tolerance in bone material, an adaptation acquired through natural evolutionary processes.
Collapse
Affiliation(s)
- Katrein Sauer
- Department for Operative, Preventive and Pediatric Dentistry, Charité - Universitätsmedizin Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany.
| | - Andreia Silveira
- Department for Operative, Preventive and Pediatric Dentistry, Charité - Universitätsmedizin Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany
| | - Vanessa Schoeppler
- ESRF- The European Synchrotron, 71 Av. des Martyrs, Grenoble 38000, France
| | - Alexander Rack
- ESRF- The European Synchrotron, 71 Av. des Martyrs, Grenoble 38000, France
| | - Ivo Zizak
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, Berlin 12489, Germany
| | | | - Nadine Nassif
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP), Paris F-75005, France
| | - Ioanna Mantouvalou
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, Berlin 12489, Germany
| | - Wout de Nolf
- ESRF- The European Synchrotron, 71 Av. des Martyrs, Grenoble 38000, France
| | - Claudia Fleck
- Materials Science & Engineering, University of Technology Berlin, Str. des 17. Juni 135 - Sekr. EB 13, Berlin 10623, Germany
| | - Ron Shahar
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Paul Zaslansky
- Department for Operative, Preventive and Pediatric Dentistry, Charité - Universitätsmedizin Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany.
| |
Collapse
|
15
|
Buck HV, Stains JP. Osteocyte-mediated mechanical response controls osteoblast differentiation and function. Front Physiol 2024; 15:1364694. [PMID: 38529481 PMCID: PMC10961341 DOI: 10.3389/fphys.2024.1364694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Low bone mass is a pervasive global health concern, with implications for osteoporosis, frailty, disability, and mortality. Lifestyle factors, including sedentary habits, metabolic dysfunction, and an aging population, contribute to the escalating prevalence of osteopenia and osteoporosis. The application of mechanical load to bone through physical activity and exercise prevents bone loss, while sufficient mechanical load stimulates new bone mass acquisition. Osteocytes, cells embedded within the bone, receive mechanical signals and translate these mechanical cues into biological signals, termed mechano-transduction. Mechano-transduction signals regulate other bone resident cells, such as osteoblasts and osteoclasts, to orchestrate changes in bone mass. This review explores the mechanisms through which osteocyte-mediated response to mechanical loading regulates osteoblast differentiation and bone formation. An overview of bone cell biology and the impact of mechanical load will be provided, with emphasis on the mechanical cues, mechano-transduction pathways, and factors that direct progenitor cells toward the osteoblast lineage. While there are a wide range of clinically available treatments for osteoporosis, the majority act through manipulation of the osteoclast and may have significant disadvantages. Despite the central role of osteoblasts to the deposition of new bone, few therapies directly target osteoblasts for the preservation of bone mass. Improved understanding of the mechanisms leading to osteoblastogenesis may reveal novel targets for translational investigation.
Collapse
Affiliation(s)
| | - Joseph Paul Stains
- School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
16
|
Smit A, Meijer O, Winter E. The multi-faceted nature of age-associated osteoporosis. Bone Rep 2024; 20:101750. [PMID: 38566930 PMCID: PMC10985042 DOI: 10.1016/j.bonr.2024.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Age-associated osteoporosis (AAOP) poses a significant health burden, characterized by increased fracture risk due to declining bone mass and strength. Effective prevention and early treatment strategies are crucial to mitigate the disease burden and the associated healthcare costs. Current therapeutic approaches effectively target the individual contributing factors to AAOP. Nonetheless, the management of AAOP is complicated by the multitude of variables that affect its development. Main intrinsic and extrinsic factors contributing to AAOP risk are reviewed here, including mechanical unloading, nutrient deficiency, hormonal disbalance, disrupted metabolism, cognitive decline, inflammation and circadian disruption. Furthermore, it is discussed how these can be targeted for prevention and treatment. Although valuable as individual targets for intervention, the interconnectedness of these risk factors result in a unique etiology for every patient. Acknowledgement of the multifaceted nature of AAOP will enable the development of more effective and sustainable management strategies, based on a holistic, patient-centered approach.
Collapse
Affiliation(s)
- A.E. Smit
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| | - O.C. Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| | - E.M. Winter
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
- Department of Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
17
|
Ahmad M, Haffner-Luntzer M, Schoppa A, Najafova Z, Lukic T, Yorgan TA, Amling M, Schinke T, Ignatius A. Mechanical induction of osteoanabolic Wnt1 promotes osteoblast differentiation via Plat. FASEB J 2024; 38:e23489. [PMID: 38407813 DOI: 10.1096/fj.202301424rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Physical activity-induced mechanical stimuli play a crucial role in preserving bone mass and structure by promoting bone formation. While the Wnt pathway is pivotal for mediating the osteoblast response to loading, the exact mechanisms are not fully understood. Here, we found that mechanical stimulation induces osteoblastic Wnt1 expression, resulting in an upregulation of key osteogenic marker genes, including Runx2 and Sp7, while Wnt1 knockdown using siRNA prevented these effects. RNAseq analysis identified Plat as a major target through which Wnt1 exerts its osteogenic influence. This was corroborated by Plat depletion using siRNA, confirming its positive role in osteogenic differentiation. Moreover, we demonstrated that mechanical stimulation enhances Plat expression, which, in turn leads to increased expression of osteogenic markers like Runx2 and Sp7. Notably, Plat depletion by siRNA prevented this effect. We have established that Wnt1 regulates Plat expression by activating β-Catenin. Silencing Wnt1 impairs mechanically induced β-Catenin activation, subsequently reducing Plat expression. Furthermore, our findings showed that Wnt1 is essential for osteoblasts to respond to mechanical stimulation and induce Runx2 and Sp7 expression, in part through the Wnt1/β-Catenin/Plat signaling pathway. Additionally, we observed significantly reduced Wnt1 and Plat expression in bones from ovariectomy (OVX)-induced and age-related osteoporotic mouse models compared with non-OVX and young mice, respectively. Overall, our data suggested that Wnt1 and Plat play significant roles in mechanically induced osteogenesis. Their decreased expression in bones from OVX and aged mice highlights their potential involvement in post-menopausal and age-related osteoporosis, respectively.
Collapse
Affiliation(s)
- Mubashir Ahmad
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | | | - Teodora Lukic
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
18
|
Chen G, Li Y, Zhang H, Xie H. [Role of Piezo mechanosensitive ion channels in the osteoarticular system]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:240-248. [PMID: 38385239 PMCID: PMC10882244 DOI: 10.7507/1002-1892.202310092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Objective To summarize the role of Piezo mechanosensitive ion channels in the osteoarticular system, in order to provide reference for subsequent research. Methods Extensive literature review was conducted to summarize the structural characteristics, gating mechanisms, activators and blockers of Piezo ion channels, as well as their roles in the osteoarticular systems. Results The osteoarticular system is the main load-bearing and motor tissue of the body, and its ability to perceive and respond to mechanical stimuli is one of the guarantees for maintaining normal physiological functions of bones and joints. The occurrence and development of many osteoarticular diseases are closely related to abnormal mechanical loads. At present, research shows that Piezo mechanosensitive ion channels differentiate towards osteogenesis by responding to stretching stimuli and regulating cellular Ca 2+ influx signals; and it affects the proliferation and migration of osteoblasts, maintaining bone homeostasis through cellular communication between osteoblasts-osteoclasts. Meanwhile, Piezo1 protein can indirectly participate in regulating the formation and activity of osteoclasts through its host cells, thereby regulating the process of bone remodeling. During mechanical stimulation, the Piezo1 ion channel maintains bone homeostasis by regulating the expressions of Akt and Wnt1 signaling pathways. The sensitivity of Piezo1/2 ion channels to high strain mechanical signals, as well as the increased sensitivity of Piezo1 ion channels to mechanical transduction mediated by Ca 2+ influx and inflammatory signals in chondrocytes, is expected to become a new entry point for targeted prevention and treatment of osteoarthritis. But the specific way mechanical stimuli regulate the physiological/pathological processes of bones and joints still needs to be clarified. Conclusion Piezo mechanosensitive ion channels give the osteoarticular system with important abilities to perceive and respond to mechanical stress, playing a crucial mechanical sensing role in its cellular fate, bone development, and maintenance of bone and cartilage homeostasis.
Collapse
Affiliation(s)
- Guohui Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Yaxing Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Hui Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Huiqi Xie
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| |
Collapse
|
19
|
Dsouza C, Komarova SV. Mechanosensitivity and mechanotransductive properties of osteoclasts. Am J Physiol Cell Physiol 2024; 326:C95-C106. [PMID: 37982175 DOI: 10.1152/ajpcell.00347.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Mechanical loading is essential for maintaining bone health. Here, we aimed to investigate the role of ATP and ADP in the mechanotransduction of bone-resorptive osteoclasts. Single osteoclast in primary cultures from 10 to 12-wk-old mice was mechanically stimulated by a gentle touch with a micropipette. Changes in cytosolic free calcium [Ca2+]i were analyzed in Fura-2 loaded osteoclasts. The cell injury was assessed by analyzing the cellular Fura-2 loss and classified as severe or mild using k-means. Osteoclasts responded to mechanical stimuli with transient calcium elevation (primary responders) and transduced these signals to neighboring cells, which responded with delayed calcium elevations (secondary responders). Severely injured osteoclasts had higher calcium transients than mildly injured cells. Fluid shear stress similarly induced reversible cell injury in osteoclasts. Secondary responses were abolished by treatment with A-804598, a specific inhibitor of P2X7, but not suramin, a broad P2 receptor blocker. Osteoclasts responded to ATP and ADP with concentration-dependent changes in [Ca2+]i. We performed osteoclast micropipette stimulation in the presence of phosphoenolpyruvate and pyruvate kinase which converted all ADP in solution to ATP, or with hexokinase converting all ATP to ADP. Osteoclasts with mild membrane injury demonstrated similar calcium responses in ATP and ADP-rich environments. However, when the mechanotransductive signal to severe osteoclast injury was converted to ADP, the fraction of secondary responders and their [Ca2+]i amplitude was higher. This study suggests the importance of osteoclast mechanobiology and the role of ADP-mediated signaling in conditions of altered mechanical loading associated with bone loss.NEW & NOTEWORTHY Osteoclasts are rarely considered as cells that participate in mechanical signaling in bone. We show that osteoclasts are capable of sensing and transmitting mechanical signals to neighboring cells. Mechanical stimulation commonly induces minor repairable membrane injury in osteoclasts. ATP and especially ADP were found to play important roles in the mechanoresponsiveness of osteoclasts. This study highlights the importance of osteoclast mechanobiology especially in conditions of altered mechanical loading associated with bone loss, such as in microgravity.
Collapse
Affiliation(s)
- Chrisanne Dsouza
- Department of Experimental Surgery, McGill University, Montreal, Quebec, Canada
- Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada
| | - Svetlana V Komarova
- Department of Experimental Surgery, McGill University, Montreal, Quebec, Canada
- Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Guan H, Wang W, Jiang Z, Zhang B, Ye Z, Zheng J, Chen W, Liao Y, Zhang Y. Magnetic Aggregation-Induced Bone-Targeting Nanocarrier with Effects of Piezo1 Activation and Osteogenic-Angiogenic Coupling for Osteoporotic Bone Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2312081. [PMID: 38102981 DOI: 10.1002/adma.202312081] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Osteoporosis, characterized by an imbalance in bone homeostasis, is a global health concern. Bone defects are difficult to heal in patients with osteoporosis. Classical drug treatments for osteoporotic bone defects have unsatisfactory efficacy owing to side effects and imprecise delivery problems. In this study, a magnetic aggregation-induced bone-targeting poly(lactic-co-glycolic acid, PLGA)-based nanocarrier (ZOL-PLGA@Yoda1/SPIO) is synthesized to realize dual-targeted delivery and precise Piezo1-activated therapy for osteoporotic bone defects. Piezo1 is an important mechanotransducer that plays a key role in regulating bone homeostasis. To achieve dual-targeting properties, ZOL-PLGA@Yoda1/SPIO is fabricated using zoledronate (ZOL)-decorated PLGA, superparamagnetic iron oxide (SPIO), and Piezo1-activated molecule Yoda1 via the emulsion solvent diffusion method. Bone-targeting molecular mediation and magnetic aggregation-induced properties can jointly and effectively achieve precise delivery to localized bone defects. Moreover, Yoda1 loading enables targeted and efficient mimicking of mechanical signals and activation of Piezo1. Experiments in vivo and in vitro demonstrate that ZOL-PLGA@Yoda1/SPIO can activate Piezo1 in bone defect areas of osteoporotic mice, improve osteogenesis through YAP/β-catenin signaling axis, promote a well-coordinated osteogenesis-angiogenesis coupling, and significantly accelerate bone reconstruction within the defects without noticeable side effects. Overall, this novel dual-targeting nanocarrier provides a potentially effective strategy for the clinical treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Haitao Guan
- The School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Wei Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Zichao Jiang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Boyu Zhang
- The School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Zhipeng Ye
- The School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
- Orthopaedic Research Institute of Hebei Province, Shijiazhuang, 050051, China
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Yingze Zhang
- The School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
- Orthopaedic Research Institute of Hebei Province, Shijiazhuang, 050051, China
| |
Collapse
|
21
|
Faienza MF, Urbano F, Chiarito M, Lassandro G, Giordano P. Musculoskeletal health in children and adolescents. Front Pediatr 2023; 11:1226524. [PMID: 38161439 PMCID: PMC10754974 DOI: 10.3389/fped.2023.1226524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
The purpose of this narrative review was to investigate the key determinants of musculoskeletal health in childhood and adolescence, with particular attention to the role of physical activity. First, we examined the importance of bone modeling and remodeling in maintaining the bone health and the integrity and mechanical characteristic of the skeleton. In addition, we reported the evidence on an appropriate calcium and vitamin D intake, as well as local load variation in achieving proper peak bone mass. Proteomic and transcriptomic studies identified the skeletal muscle "secretoma", consisting of several myokines involved in endocrine and paracrine functions. Among these, we explored the role of irisin, a myokine involved in the muscle-bone crosstalk, and in the regulation of metabolic pathways. It is known that physical activity during growing positively impacts on skeleton and can protect by bone loss in adulthood. However, there are still concerns about the optimal interval duration and exercise intensity, particularly at the pubertal growth spurt which represents a window of opportunity to increase skeletal strength. We reported data from clinical trials performed in the last 5 years analyzing the impact of the type and timing of physical activity during childhood on skeletal development. Finally, we reported recent data on the significance of physical activity in some rare diseases.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Mariangela Chiarito
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Paola Giordano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
22
|
Seddiqi H, Klein-Nulend J, Jin J. Osteocyte Mechanotransduction in Orthodontic Tooth Movement. Curr Osteoporos Rep 2023; 21:731-742. [PMID: 37792246 PMCID: PMC10724326 DOI: 10.1007/s11914-023-00826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE OF REVIEW Orthodontic tooth movement is characterized by periodontal tissue responses to mechanical loading, leading to clinically relevant functional adaptation of jaw bone. Since osteocytes are significant in mechanotransduction and orchestrate osteoclast and osteoblast activity, they likely play a central role in orthodontic tooth movement. In this review, we attempt to shed light on the impact and role of osteocyte mechanotransduction during orthodontic tooth movement. RECENT FINDINGS Mechanically loaded osteocytes produce signaling molecules, e.g., bone morphogenetic proteins, Wnts, prostaglandins, osteopontin, nitric oxide, sclerostin, and RANKL, which modulate the recruitment, differentiation, and activity of osteoblasts and osteoclasts. The major signaling pathways activated by mechanical loading in osteocytes are the wingless-related integration site (Wnt)/β-catenin and RANKL pathways, which are key regulators of bone metabolism. Moreover, osteocytes are capable of orchestrating bone adaptation during orthodontic tooth movement. A better understanding of the role of osteocyte mechanotransduction is crucial to advance orthodontic treatment. The optimal force level on the periodontal tissues for orthodontic tooth movement producing an adequate biological response, is debated. This review emphasizes that both mechanoresponses and inflammation are essential for achieving tooth movement clinically. To fully comprehend the role of osteocyte mechanotransduction in orthodontic tooth movement, more knowledge is needed of the biological pathways involved. This will contribute to optimization of orthodontic treatment and enhance patient outcomes.
Collapse
Affiliation(s)
- Hadi Seddiqi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Jianfeng Jin
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Kemp TD, Besler BA, Gabel L, Boyd SK. Predicting Bone Adaptation in Astronauts during and after Spaceflight. Life (Basel) 2023; 13:2183. [PMID: 38004323 PMCID: PMC10672697 DOI: 10.3390/life13112183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
A method was previously developed to identify participant-specific parameters in a model of trabecular bone adaptation from longitudinal computed tomography (CT) imaging. In this study, we use these numerical methods to estimate changes in astronaut bone health during the distinct phases of spaceflight and recovery on Earth. Astronauts (N = 16) received high-resolution peripheral quantitative CT (HR-pQCT) scans of their distal tibia prior to launch (L), upon their return from an approximately six-month stay on the international space station (R+0), and after six (R+6) and 12 (R+12) months of recovery. To model trabecular bone adaptation, we determined participant-specific parameters at each time interval and estimated their bone structure at R+0, R+6, and R+12. To assess the fit of our model to this population, we compared static and dynamic bone morphometry as well as the Dice coefficient and symmetric distance at each measurement. In general, modeled and observed static morphometry were highly correlated (R2> 0.94) and statistically different (p < 0.0001) but with errors close to HR-pQCT precision limits. Dynamic morphometry, which captures rates of bone adaptation, was poorly estimated by our model (p < 0.0001). The Dice coefficient and symmetric distance indicated a reasonable local fit between observed and predicted bone volumes. This work applies a general and versatile computational framework to test bone adaptation models. Future work can explore and test increasingly sophisticated models (e.g., those including load or physiological factors) on a participant-specific basis.
Collapse
Affiliation(s)
- Tannis D. Kemp
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Bryce A. Besler
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Leigh Gabel
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Steven K. Boyd
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
24
|
Helmer LML, Klop C, Lobbezoo F, Lange JD, Koolstra JH, Dubois L. Changes in load distribution after unilateral condylar fracture: A finite element model study. Arch Oral Biol 2023; 155:105791. [PMID: 37598527 DOI: 10.1016/j.archoralbio.2023.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVE Premature dental contact on the fractured side and a contralateral open bite are signs of a unilaterally fractured condyle of the temporomandibular joint (TMJ). The lateral pterygoid muscle pulls the condyle inwards, causing angulation of the fractured part and shortening of the ramus. This imbalance after fracture might change the load in both TMJs and consequently induce remodeling. The present study aimed to calculate this change in load. It is hypothesized to decrease on the fractured side and increase on the non-fractured side. DESIGN For these calculations, a finite element model (FEM) was used. In the FEM, shortening of the ramus varied from 2 mm to 16 mm; angulation, from 6.25° to 50°. RESULTS After fracture, load on the non-fractured side increased, but only at maximal mouth opening (MMO). Simultaneously, load on the fractured side decreased, at both timepoints, i.e., MMO and closed mouth. When comparing all simulations at those time points, i.e., from 2 mm and 6.25° to 16 mm and 50°, the load in the fractured condyle declines steadily. However, for both timepoints, a threshold stands out around 6 mm shortening and 18.75° angulation: visualization of the fractured condyle showed, apart from load on the condylar head, a second point of load more medial in the TMJ which was most evident in the 6 mm - 18.75° simulation. CONCLUSIONS These findings could implicate that the balance between both TMJs is more difficult to restore after a fracture with more than 6 mm shortening and more than 18.75° angulation.
Collapse
Affiliation(s)
- Loreine M L Helmer
- Department of Oral and Maxillofacial Surgery, Amsterdam Academic Medical Centers and Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Cornelis Klop
- Department of Oral and Maxillofacial Surgery, Amsterdam Academic Medical Centers and Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Frank Lobbezoo
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jan de Lange
- Department of Oral and Maxillofacial Surgery, Amsterdam Academic Medical Centers and Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jan Harm Koolstra
- Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, the Netherlands
| | - Leander Dubois
- Department of Oral and Maxillofacial Surgery, Amsterdam Academic Medical Centers and Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Sekel NM, Hughes JM, Sterczala AJ, Mroz KH, Lovalekar M, Cauley J, Greeves JP, Nindl BC. Utility of HR-pQCT in detecting training-induced changes in healthy adult bone morphology and microstructure. Front Physiol 2023; 14:1266292. [PMID: 37929211 PMCID: PMC10623356 DOI: 10.3389/fphys.2023.1266292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Healthy bone adjusts its traits in an exceptionally coordinated, compensatory process. Recent advancements in skeletal imaging via High-Resolution Peripheral Quantitative Computed Tomography (HR-pQCT) allows for the in vivo 3-dimensional and longitudinal quantification of bone density, microarchitecture, geometry, and parameters of mechanical strength in response to varying strain stimuli including those resulting from exercise or military training. Further, the voxel size of 61 microns has the potential to capture subtle changes in human bone in as little as 8 weeks. Given the typical time course of bone remodeling, short-term detection of skeletal changes in bone microstructure and morphology is indicative of adaptive bone formation, the deposition of new bone formation, uncoupled from prior resorption, that can occur at mechanistically advantageous regions. This review aims to synthesize existing training-induced HR-pQCT data in three distinct populations of healthy adults excluding disease states, pharmacological intervention and nutritional supplementation. Those included are: 1) military basic or officer training 2) general population and 3) non-osteoporotic aging. This review aims to further identify similarities and contrasts with prior modalities and cumulatively interpret results within the scope of bone functional adaptation.
Collapse
Affiliation(s)
- Nicole M. Sekel
- Neuromuscular Research Laboratory, Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Julie M. Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Adam J. Sterczala
- Neuromuscular Research Laboratory, Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kelly H. Mroz
- Neuromuscular Research Laboratory, Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mita Lovalekar
- Neuromuscular Research Laboratory, Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jane Cauley
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Julie P. Greeves
- Army Health and Performance Research, UK Army, Andover, United Kingdom
| | - Bradley C. Nindl
- Neuromuscular Research Laboratory, Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
26
|
Sarazin BA, Liu B, Goldman E, Whitefield AN, Lynch ME. Bone-homing metastatic breast cancer cells impair osteocytes' mechanoresponse in a 3D loading model. Heliyon 2023; 9:e20248. [PMID: 37767467 PMCID: PMC10520780 DOI: 10.1016/j.heliyon.2023.e20248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer predominantly metastasizes to the skeleton. Mechanical loading is reliably anabolic in bone, and also inhibits bone metastatic tumor formation and bone loss in vivo. To study the underlying mechanisms, we developed a 3D culture model for osteocytes, the primary bone mechanosensor. We verified that MLO-Y4s responded to perfusion by reducing their rankl and rankl:opg gene expression. We next cultured MLO-Y4s with tumor-conditioned media (TCM) collected from human breast cancer cells (MDA-MB-231s) and a corresponding bone-homing subclone to test the impacts on osteocytes' mechanosensation. We found that TCM from the bone-homing subclone was more detrimental to MLO-Y4 growth and viability, and it abrogated loading-induced changes to rankl:opg. Our studies demonstrate that MLO-Y4s, including their mechanoresponse to perfusion, were more negatively impacted by soluble factors from bone-homing breast cancer cells compared to those from parental cells.
Collapse
Affiliation(s)
- Blayne A. Sarazin
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Boyuan Liu
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Elaine Goldman
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Ashlyn N. Whitefield
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Maureen E. Lynch
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
27
|
Michalski MN, Williams BO. The Past, Present, and Future of Genetically Engineered Mouse Models for Skeletal Biology. Biomolecules 2023; 13:1311. [PMID: 37759711 PMCID: PMC10526739 DOI: 10.3390/biom13091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The ability to create genetically engineered mouse models (GEMMs) has exponentially increased our understanding of many areas of biology. Musculoskeletal biology is no exception. In this review, we will first discuss the historical development of GEMMs and how these developments have influenced musculoskeletal disease research. This review will also update our 2008 review that appeared in BONEKey, a journal that is no longer readily available online. We will first review the historical development of GEMMs in general, followed by a particular emphasis on the ability to perform tissue-specific (conditional) knockouts focusing on musculoskeletal tissues. We will then discuss how the development of CRISPR/Cas-based technologies during the last decade has revolutionized the generation of GEMMs.
Collapse
Affiliation(s)
- Megan N. Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA;
| | - Bart O. Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA;
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
28
|
Yamada S, Ockermann PN, Schwarz T, Mustafa K, Hansmann J. Translation of biophysical environment in bone into dynamic cell culture under flow for bone tissue engineering. Comput Struct Biotechnol J 2023; 21:4395-4407. [PMID: 37711188 PMCID: PMC10498129 DOI: 10.1016/j.csbj.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Bone is a dynamic environment where osteocytes, osteoblasts, and mesenchymal stem/progenitor cells perceive mechanical cues and regulate bone metabolism accordingly. In particular, interstitial fluid flow in bone and bone marrow serves as a primary biophysical stimulus, which regulates the growth and fate of the cellular components of bone. The processes of mechano-sensory and -transduction towards bone formation have been well studied mainly in vivo as well as in two-dimensional (2D) dynamic cell culture platforms, which elucidated mechanically induced osteogenesis starting with anabolic responses, such as production of nitrogen oxide and prostaglandins followed by the activation of canonical Wnt signaling, upon mechanosensation. The knowledge has been now translated into regenerative medicine, particularly into the field of bone tissue engineering, where multipotent stem cells are combined with three-dimensional (3D) scaffolding biomaterials to produce transplantable constructs for bone regeneration. In the presence of 3D scaffolds, the importance of suitable dynamic cell culture platforms increases further not only to improve mass transfer inside the scaffolds but to provide appropriate biophysical cues to guide cell fate. In principle, the concept of dynamic cell culture platforms is rooted to bone mechanobiology. Therefore, this review primarily focuses on biophysical environment in bone and its translation into dynamic cell culture platforms commonly used for 2D and 3D cell expansion, including their advancement, challenges, and future perspectives. Additionally, it provides the literature review of recent empirical studies using 2D and 3D flow-based dynamic cell culture systems for bone tissue engineering.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Center of Translational Oral Research-Tissue Engineering, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway
| | - Philipp Niklas Ockermann
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Germany
| | - Thomas Schwarz
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Germany
| | - Kamal Mustafa
- Center of Translational Oral Research-Tissue Engineering, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway
| | - Jan Hansmann
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Germany
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Germany
- Department of Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, Germany
| |
Collapse
|
29
|
Shou Y, Teo XY, Wu KZ, Bai B, Kumar ARK, Low J, Le Z, Tay A. Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300670. [PMID: 37119518 PMCID: PMC10375194 DOI: 10.1002/advs.202300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set-up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM-mimicking hydrogels, which can be fine-tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Xin Yong Teo
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Bingyu Bai
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Arun R. K. Kumar
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jessalyn Low
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Zhicheng Le
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Andy Tay
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore117510Singapore
| |
Collapse
|
30
|
Reyes Fernandez PC, Wright CS, Farach-Carson MC, Thompson WR. Examining Mechanisms for Voltage-Sensitive Calcium Channel-Mediated Secretion Events in Bone Cells. Calcif Tissue Int 2023; 113:126-142. [PMID: 37261463 PMCID: PMC11008533 DOI: 10.1007/s00223-023-01097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
In addition to their well-described functions in cell excitability, voltage-sensitive calcium channels (VSCCs) serve a critical role in calcium (Ca2+)-mediated secretion of pleiotropic paracrine and endocrine factors, including those produced in bone. Influx of Ca2+ through VSCCs activates intracellular signaling pathways to modulate a variety of cellular processes that include cell proliferation, differentiation, and bone adaptation in response to mechanical stimuli. Less well understood is the role of VSCCs in the control of bone and calcium homeostasis mediated through secreted factors. In this review, we discuss the various functions of VSCCs in skeletal cells as regulators of Ca2+ dynamics and detail how these channels might control the release of bioactive factors from bone cells. Because VSCCs are druggable, a better understanding of the multiple functions of these channels in the skeleton offers the opportunity for developing new therapies to enhance and maintain bone and to improve systemic health.
Collapse
Affiliation(s)
- Perla C Reyes Fernandez
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Christian S Wright
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Departments of BioSciences and Bioengineering, Rice University, Houston, TX, 77005, USA
| | - William R Thompson
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA.
- Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
31
|
Nottmeier C, Lavicky J, Gonzalez Lopez M, Knauth S, Kahl-Nieke B, Amling M, Schinke T, Helms J, Krivanek J, Koehne T, Petersen J. Mechanical-induced bone remodeling does not depend on Piezo1 in dentoalveolar hard tissue. Sci Rep 2023; 13:9563. [PMID: 37308580 DOI: 10.1038/s41598-023-36699-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023] Open
Abstract
Mechanosensory ion channels are proteins that are sensitive to mechanical forces. They are found in tissues throughout the body and play an important role in bone remodeling by sensing changes in mechanical stress and transmitting signals to bone-forming cells. Orthodontic tooth movement (OTM) is a prime example of mechanically induced bone remodeling. However, the cell-specific role of the ion channels Piezo1 and Piezo2 in OTM has not been investigated yet. Here we first identify the expression of PIEZO1/2 in the dentoalveolar hard tissues. Results showed that PIEZO1 was expressed in odontoblasts, osteoblasts, and osteocytes, while PIEZO2 was localized in odontoblasts and cementoblasts. We therefore used a Piezo1floxed/floxed mouse model in combination with Dmp1cre to inactivate Piezo1 in mature osteoblasts/cementoblasts, osteocytes/cementocytes, and odontoblasts. Inactivation of Piezo1 in these cells did not affect the overall morphology of the skull but caused significant bone loss in the craniofacial skeleton. Histological analysis revealed a significantly increased number of osteoclasts in Piezo1floxed/floxed;Dmp1cre mice, while osteoblasts were not affected. Despite this increased number of osteoclasts, orthodontic tooth movement was not altered in these mice. Our results suggest that despite Piezo1 being crucial for osteoclast function, it may be dispensable for mechanical sensing of bone remodeling.
Collapse
Affiliation(s)
- Cita Nottmeier
- Department of Orthodontics, University of Leipzig Medical Center, Saxony, Germany
| | - Josef Lavicky
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcos Gonzalez Lopez
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarah Knauth
- Department of Orthodontics, University of Leipzig Medical Center, Saxony, Germany
| | - Bärbel Kahl-Nieke
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jill Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Till Koehne
- Department of Orthodontics, University of Leipzig Medical Center, Saxony, Germany.
| | - Julian Petersen
- Department of Orthodontics, University of Leipzig Medical Center, Saxony, Germany.
| |
Collapse
|
32
|
Kang MC, Kwon J, Kim IS, Park BY, Tae HJ, Jang YJ, Sim J, Ahn D. Morphological and morphometric study of the scapulae of Korean wild deer. Sci Rep 2023; 13:7620. [PMID: 37165030 PMCID: PMC10172336 DOI: 10.1038/s41598-023-33730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/18/2023] [Indexed: 05/12/2023] Open
Abstract
Korean water deer (Hydropotes inermis argyropus; Heude, 1884) and Siberian roe deer (Capreolus pygargus; Pallas, 1771) are Korean wild deer classified in the tribe Capreolini. C. pygargus in Korea were previously considered a single species; however, it was recently suggested that roe deer living on Jeju Island (Jeju roe deer; Capreolus pygargus jejuensis) is a distinct subspecies from roe deer living on the Korean peninsula (mainland roe deer; Capreolus pygargus tianschanicus) based on several studies demonstrating genetic and morphological features. In this study, we suggests that the scapular morphology and osteometric data can be used for interspecies discrmination between Korean wild deer. To compare the morphological characteristics of scapula among the three groups of deer, we analyzed the features and nine osteomorphological measurements of 31 H. i. argyropus (14 males and 17 females), 18 C. p. jejuensis (4 males and 14 females), and 23 C. p. tianschanicus (16 females and 7 males). The estimated ages of the deer were over 32-35 months. Data were analyzed by one-way repeated measures analysis of variance with post hoc Duncan test and discriminant functional analysis (DFA). H. i. argyropus and C. p. tianschanicus had the smallest and largest scapulae, respectively. The scapulae of the three Korean wild deer had a similar triangular shape, which was obscured by the tuber of the scapular spine, pointed acromion, broad infraspinous fossa, narrow supraspinous fossa, and partial ossification of scapular cartilage in older deer. H. i. argyropus had certain distinctive features, including a caudally pointed acromion, a notch between the supraglenoid tubercle and glenoid cavity (NBSG), a glenoid notch, and no sexual dimorphism, except for the longest dorsal length (Ld) and the scapular index (SI). C. p. jejuensis had a larger scapular index (SI) (61.74 ± 0.74%), compared with the SIs of H. i. argyropus and C. p. tianschanicus. The unique features of the scapula in C. p. jejuensis include its S-shaped cranial border. The C. p. jejuensis had a cranially pointed acromion, less frequent presence of glenoid notch and NBSG, short length of supraglenoid tubercle, and no sexual dimorphism. The C. p. tianschanicus had elevated cranial margin of the glenoid cavity, and frequent presence of glenoid notch and NBSG, similar to the H. i. argyropus. Similar to C. p. jejuensis, C. p. tianschanicus had a cranially pointed acromion. However, sexual dimorphism was observed in C. p. tianschanicus. DFA using osteometric data showed 97.22% of specimens were classified correctly into their species, meaning the osteometric parameters can be used for interspecies discrimination of Korean wild deer. Our findings indicate that the scapular morphologies of the three Korean wild deer have certain similarities and differences, suggesting that C. p. jejuensis are distinct from C. p. tianschanicus.
Collapse
Affiliation(s)
- Myung-Cheon Kang
- Department of Companion Animal Health, Busan Kyungsang College, 170 Gobun-ro, Yeonje-gu, Busan, 47583, Republic of Korea
| | - Jun Kwon
- Department of Veterinary Anatomy, College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - In-Shik Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Byung-Yong Park
- Department of Veterinary Anatomy, College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Hyun-Jin Tae
- Department of Veterinary Anatomy, College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Young-Jin Jang
- Department of Veterinary Anatomy, College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Jeoungha Sim
- Department of Nursing, College of Medical Science, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si, Jeollabuk-do, 55069, Republic of Korea.
| | - Dongchoon Ahn
- Department of Veterinary Anatomy, College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea.
| |
Collapse
|
33
|
Li X, Zhang C, Bowman HH, Stambough JB, Stronach BM, Mears SC, Barnes LC, Ambrogini E, Xiong J. Piezo1 opposes age-associated cortical bone loss. Aging Cell 2023:e13846. [PMID: 37147884 DOI: 10.1111/acel.13846] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 05/07/2023] Open
Abstract
As we age, our bones undergo a process of loss, often accompanied by muscle weakness and reduced physical activity. This is exacerbated by decreased responsiveness to mechanical stimulation in aged skeleton, leading to the hypothesis that decreased mechanical stimulation plays an important role in age-related bone loss. Piezo1, a mechanosensitive ion channel, is critical for bone homeostasis and mechanotransduction. Here, we observed a decrease in Piezo1 expression with age in both murine and human cortical bone. Furthermore, loss of Piezo1 in osteoblasts and osteocytes resulted in an increase in age-associated cortical bone loss compared to control mice. The loss of cortical bone was due to an expansion of the endosteal perimeter resulting from increased endocortical resorption. In addition, expression of Tnfrsf11b, encoding anti-osteoclastogenic protein OPG, decreases with Piezo1 in vitro and in vivo in bone cells, suggesting that Piezo1 suppresses osteoclast formation by promoting Tnfrsf11b expression. Our results highlight the importance of Piezo1-mediated mechanical signaling in protecting against age-associated cortical bone loss by inhibiting bone resorption in mice.
Collapse
Affiliation(s)
- Xuehua Li
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Connie Zhang
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hayden H Bowman
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jeffrey B Stambough
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Benjamin M Stronach
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Simon C Mears
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lowry C Barnes
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Elena Ambrogini
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jinhu Xiong
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
34
|
Rajpar I, Kumar G, Fortina P, Tomlinson RE. Toll-like receptor 4 signaling in osteoblasts is required for load-induced bone formation in mice. iScience 2023; 26:106304. [PMID: 36950122 PMCID: PMC10025993 DOI: 10.1016/j.isci.2023.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
In mature bone, NGF is produced by osteoblasts following mechanical loading and signals through resident sensory nerves expressing its high affinity receptor, neurotrophic tyrosine kinase receptor type 1 (TrkA), to support bone formation. Here, we investigated whether osteoblastic expression of Toll-like receptor 4 (TLR4), a key receptor in the NF-κB signaling pathway, is required to initiate NGF-TrkA signaling required for load-induced bone formation. Although Tlr4 conditional knockout mice have normal skeletal mass and strength in adulthood, the loss of TLR4 signaling significantly reduced lamellar bone formation following loading. Inhibition of TLR4 signaling reduced Ngf expression in primary osteoblasts and RNA sequencing of bones from Tlr4 conditional knockout mice and wild-type littermates revealed dysregulated inflammatory signaling three days after osteogenic mechanical loading. In total, our study reveals an important role for osteoblastic TLR4 in the skeletal adaptation of bone to mechanical forces.
Collapse
Affiliation(s)
- Ibtesam Rajpar
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gaurav Kumar
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paolo Fortina
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ryan E. Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
35
|
Takemoto F, Uchida-Fukuhara Y, Kamioka H, Okamura H, Ikegame M. Mechanical stretching determines the orientation of osteoblast migration and cell division. Anat Sci Int 2023:10.1007/s12565-023-00716-8. [PMID: 37022568 PMCID: PMC10366257 DOI: 10.1007/s12565-023-00716-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/11/2023] [Indexed: 04/07/2023]
Abstract
Osteoblasts alignment and migration are involved in the directional formation of bone matrix and bone remodeling. Many studies have demonstrated that mechanical stretching controls osteoblast morphology and alignment. However, little is known about its effects on osteoblast migration. Here, we investigated changes in the morphology and migration of preosteoblastic MC3T3-E1 cells after the removal of continuous or cyclic stretching. Actin staining and time-lapse recording were performed after stretching removal. The continuous and cyclic groups showed parallel and perpendicular alignment to the stretch direction, respectively. A more elongated cell morphology was observed in the cyclic group than in the continuous group. In both stretch groups, the cells migrated in a direction roughly consistent with the cell alignment. Compared to the other groups, the cells in the cyclic group showed an increased migration velocity and were almost divided in the same direction as the alignment. To summarize, our study showed that mechanical stretching changed cell alignment and morphology in osteoblasts, which affected the direction of migration and cell division, and velocity of migration. These results suggest that mechanical stimulation may modulate the direction of bone tissue formation by inducing the directional migration and cell division of osteoblasts.
Collapse
Affiliation(s)
- Fumiko Takemoto
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Yoko Uchida-Fukuhara
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
36
|
Micheletti C, Jolic M, Grandfield K, Shah FA, Palmquist A. Bone structure and composition in a hyperglycemic, obese, and leptin receptor-deficient rat: Microscale characterization of femur and calvarium. Bone 2023; 172:116747. [PMID: 37028238 DOI: 10.1016/j.bone.2023.116747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
Metabolic abnormalities, such as diabetes mellitus and obesity, can impact bone quantity and/or bone quality. In this work, we characterize bone material properties, in terms of structure and composition, in a novel rat model with congenic leptin receptor (LepR) deficiency, severe obesity, and hyperglycemia (type 2 diabetes-like condition). Femurs and calvaria (parietal region) from 20-week-old male rats are examined to probe bones formed both by endochondral and intramembranous ossification. Compared to the healthy controls, the LepR-deficient animals display significant alterations in femur microarchitecture and in calvarium morphology when analyzed by micro-computed X-ray tomography (micro-CT). In particular, shorter femurs with reduced bone volume, combined with thinner parietal bones and shorter sagittal suture, point towards a delay in the skeletal development of the LepR-deficient rodents. On the other hand, LepR-deficient animals and healthy controls display analogous bone matrix composition, which is assessed in terms of tissue mineral density by micro-CT, degree of mineralization by quantitative backscattered electron imaging, and various metrics extrapolated from Raman hyperspectral images. Some specific microstructural features, i.e., mineralized cartilage islands in the femurs and hyper-mineralized areas in the parietal bones, also show comparable distribution and characteristics in both groups. Overall, the altered bone microarchitecture in the LepR-deficient animals indicates compromised bone quality, despite the normal bone matrix composition. The delayed development is also consistent with observations in humans with congenic Lep/LepR deficiency, making this animal model a suitable candidate for translational research.
Collapse
Affiliation(s)
- Chiara Micheletti
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada; Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Jolic
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada
| | - Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
37
|
Hardy M, Feehan L, Savvides G, Wong J. How controlled motion alters the biophysical properties of musculoskeletal tissue architecture. J Hand Ther 2023; 36:269-279. [PMID: 37029054 DOI: 10.1016/j.jht.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 04/09/2023]
Abstract
INTRODUCTION Movement is fundamental to the normal behaviour of the hand, not only for day-to-day activity, but also for fundamental processes like development, tissue homeostasis and repair. Controlled motion is a concept that hand therapists apply to their patients daily for functional gains, yet the scientific understanding of how this works is poorly understood. PURPOSE OF THE ARTICLE To review the biology of the tissues in the hand that respond to movement and provide a basic science understanding of how it can be manipulated to facilitate better functionThe review outlines the concept of controlled motion and actions across the scales of tissue architecture, highlighting the the role of movement forces in tissue development, homeostasis and repair. The biophysical behaviour of mechanosensitve tissues of the hand such as skin, tendon, bone and cartilage are discussed. CONCLUSION Controlled motion during early healing is a form of controlled stress and can be harnessed to generate appropriate reparative tissues. Understanding the temporal and spatial biology of tissue repair allows therapists to tailor therapies that allow optimal recovery based around progressive biophysical stimuli by movement.
Collapse
Affiliation(s)
- Maureen Hardy
- Past Director Rehab Services and Hand Management Center, St. Dominic Hospital, Jackson, MS, USA
| | - Lynne Feehan
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Georgia Savvides
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jason Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
38
|
Stamos PA, Alemseged Z. Hominin locomotion and evolution in the Late Miocene to Late Pliocene. J Hum Evol 2023; 178:103332. [PMID: 36947894 DOI: 10.1016/j.jhevol.2023.103332] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/24/2023]
Abstract
In this review, we present on the evolution of the locomotor adaptation of hominins in the Late Miocene to Late Pliocene, with emphasis on some of the prominent advances and debates that have occurred over the past fifty years. We start with the challenging issue of defining hominin locomotor grades that are currently used liberally and offer our own working definitions of facultative, habitual, and obligate bipedalism. We then discuss the nature of the Pan-Homo last common ancestor and characterize the locomotor adaptation of Sahelanthropus, Orrorin, and Ardipithecus-often referred to as facultative bipeds-and examine the debates on the extent of bipedality and arboreality in these taxa. Moreover, the question of Middle Pliocene hominin locomotor diversity is addressed based on information derived from the 'Little Foot' specimen from Sterkfontein, footprints from Laetoli, and the Burtele Foot in Ethiopia. Our review suggests that the most convincing evidence for locomotor diversity comes from Burtele, whereas the evidence from Sterkfontein and Laetoli is unconvincing and equivocal, respectively. Finally, we address the decades old issue of the significance of arboreality in the otherwise habitual biped, Australopithecus, with emphasis on Australopithecus afarensis and its implications for the paleobiology of these creatures. We conclude that many of the apelike features encountered, mostly in the upper part of the Australopithecus skeleton, were retained for their significance in climbing. Approaches that have investigated character plasticity and those exploring internal bone structure have shown that the shoulder and limbs in Au. afarensis and Australopithecus africanus were involved in arboreal activities that are thought to be key for feeding, nesting, and predator avoidance. We conclude that many of the so-called retained ape-like features persisted due to stabilizing selection, that early hominins engaged in a considerable amount of arboreality even after Australopithecus had become a habitual biped, and arboreality only ceased to be an important component of hominin locomotor behavior after the emergence of Homo erectus.
Collapse
Affiliation(s)
- Peter A Stamos
- Department of Organismal Biology & Anatomy, The University of Chicago, Anatomy Bldg 201, 1027 E 57th Street, Chicago, IL 60637, USA
| | - Zeresenay Alemseged
- Department of Organismal Biology & Anatomy, The University of Chicago, Anatomy Bldg 201, 1027 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
39
|
Green ES, Williams ER, Feito Y, Jenkins NT. Physiological and Anthropometric Differences Among Endurance, Strength, and High-Intensity Functional Training Participants: A Cross-Sectional Study. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:131-142. [PMID: 35302436 DOI: 10.1080/02701367.2021.1947468] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/10/2021] [Indexed: 06/14/2023]
Abstract
Purpose: We compared aerobic capacity (V˙O2max), mitochondrial capacity (mV˙O2), anaerobic power, strength, and muscle endurance in healthy, active men from strength (STR), endurance (END) and high-intensity functional training (HIFT) backgrounds. Methods: Twenty-four men (n = 8/group) completed a cycle ergometer test to determine V˙O2max, followed by a 3-min all-out test to determine peak (PP) and end power (EP), and to estimate anaerobic [work done above EP (WEP)] and aerobic work capacity. Strength was determined by knee extensor maximal voluntary contraction at various flexion angles. The endurance index (EI) of the vastus lateralis (VL) was assessed by measuring muscle contraction acceleration during electrical twitch mechanomyography. mV˙O2max of the VL was assessed using near-infrared spectroscopy to estimate muscle oxygen consumption during transient femoral artery occlusions. Results: V˙O2max was significantly different among groups (p < .05). PP was significantly higher in HIFT and STR versus END (p < .05). EP was significantly higher in HIFT and END compared to STR (p < .05). WEP was significantly higher in STR compared to END (p < .05), whereas total work done was significantly higher in HIFT and END compared to STR (p < .05). mV˙O2max and EI were comparable between HIFT and END but significantly lower in STR versus END (p < .05). Torque production was significantly lower in END compared to STR and HIFT at all flexion angles (p < .05), with no difference between STR and HIFT. Conclusion: HIFT participants can exert similar power outputs and absolute strength compared to strength focused participants but exhibit fatigue resistance and mitochondrial capacity comparable to those who train for endurance.
Collapse
|
40
|
Schurman CA, Burton JB, Rose J, Ellerby LM, Alliston T, Schilling B. Molecular and Cellular Crosstalk between Bone and Brain: Accessing Bidirectional Neural and Musculoskeletal Signaling during Aging and Disease. J Bone Metab 2023; 30:1-29. [PMID: 36950837 PMCID: PMC10036181 DOI: 10.11005/jbm.2023.30.1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 03/24/2023] Open
Abstract
Molecular omics technologies, including proteomics, have enabled the elucidation of key signaling pathways that mediate bidirectional communication between the brain and bone tissues. Here we provide a brief summary of the clinical and molecular evidence of the need to study the bone-brain axis of cross-tissue cellular communication. Clear clinical and molecular evidence suggests biological interactions and similarities between bone and brain cells. Here we review the current mass spectrometric techniques for studying brain and bone diseases with an emphasis on neurodegenerative diseases and osteoarthritis/osteoporosis, respectively. Further study of the bone-brain axis on a molecular level and evaluation of the role of proteins, neuropeptides, osteokines, and hormones in molecular pathways linked to bone and brain diseases is critically needed. The use of mass spectrometry and other omics technologies to analyze these cross-tissue signaling events and interactions will help us better understand disease progression and comorbidities and potentially identify new pathways and targets for therapeutic interventions. Proteomic measurements are particularly favorable for investigating the role of signaling and secreted and circulating analytes and identifying molecular and metabolic pathways implicated in age-related diseases.
Collapse
Affiliation(s)
| | | | - Jacob Rose
- Buck Institute for Research on Aging, Novato, CA,
USA
| | | | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA,
USA
| | | |
Collapse
|
41
|
Matsuno H, Li B, Okawara H, Toyoshima Y, Xie C, Khan M, Murakami N, Aoki K, Wakabayashi N. Effect of tension and compression on dynamic alveolar histomorphometry. J Mech Behav Biomed Mater 2023; 138:105666. [PMID: 36634439 DOI: 10.1016/j.jmbbm.2023.105666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Here, we tested the hypothesis that tensile and compressive stresses generated in the alveolar bone proper regulate site-specific cellular and functional changes in osteoclasts and osteoblasts. Thirty-two 13-week-old male mice were randomly divided into four groups: two experimental groups with vertical loading obliquely from the palatal side to the buccal side of the maxillary molar (0.9 N) 30 min per day for 8 or 15 days and unloaded controls (n = 8). Calcein and alizarin were administered 8 and 2 days before euthanization, respectively, to detect the time of bone formation. Undecalcified sections parallel to the occlusal plane were prepared on the palatal root and the surrounding alveolar bone in the middle of the root length. The alveolar perimeter was divided into 12 equal regions for site analysis, and the bone histomorphometric parameters were obtained for each region. Data from in vivo microfocus computed tomography were used to construct animal-specific finite element models. 2D stress distribution images were overlain on histology images obtained from the same location. Significant differences in the total perimeter between groups and between loading and unloading in each region were statistically analyzed (α = 0.05). Osteoclast counts and the alizarin label ratio were significantly higher in the loaded group than in the unloaded group in regions where the maximum von Mises and principal tensile stresses were the highest along the perimeter. The label ratio of calcein was significantly lower in the 8-day loaded group than in the unloaded group, indicating that the calcein-labeled surface was resorbed by osteoclasts that appeared during the loading period. The effect of loading was mitigated by an increase in the maximum principal compressive stress. We conclude that bone resorption and bone formation are functions of site-specific tension and compression in the alveolar bone proper, confirming our hypothesis. This finding is critical for the advancement of diagnosis and treatment planning in clinical dentistry.
Collapse
Affiliation(s)
- Hitomi Matsuno
- Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Bin Li
- Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hisami Okawara
- Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Toyoshima
- Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Cangyou Xie
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masud Khan
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Natsuko Murakami
- Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Noriyuki Wakabayashi
- Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
42
|
Jung R, Zürcher SJ, Schindera C, Eser P, Meier C, Schai A, Braun J, Deng WH, Hebestreit H, Neuhaus C, Schaeff J, Rueegg CS, von der Weid NX, Kriemler S. Effect of a physical activity intervention on lower body bone health in childhood cancer survivors: A randomized controlled trial (SURfit). Int J Cancer 2023; 152:162-171. [PMID: 35913755 DOI: 10.1002/ijc.34234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 01/07/2023]
Abstract
It remains controversial whether physical activity promotes bone health in childhood cancer survivors (CCS). We aimed to assess the effect of a one-year general exercise intervention on lower body bone parameters of CCS. CCS ≥16 years at enrollment, <16 years at diagnosis and ≥5 years in remission were identified from the national Childhood Cancer Registry. Participants randomized to the intervention group were asked to perform an additional ≥2.5 hours of intense physical activity/week, controls continued exercise as usual. Bone health was assessed as a secondary trial endpoint at baseline and after 12-months. We measured tibia bone mineral density (BMD) and morphology by peripheral quantitative computed tomography and lumbar spine, hip and femoral neck BMD by dual-energy x-ray absorptiometry. We performed intention-to-treat, per protocol, and an explorative subgroup analyses looking at low BMD using multiple linear regressions. One hundred fifty-one survivors (44% females, 7.5 ± 4.9 years at diagnosis, 30.4 ± 8.6 years at baseline) were included. Intention-to-treat analysis revealed no differences in changes between the intervention and control group. Per protocol analyses showed evidence for an improvement in femoral neck and trabecular BMD between 1.5% and 1.8% more in participants being compliant with the exercise program. Trabecular BMD increased 2.8% more in survivors of the intervention group with BMD z-score ≤-1 compared to those starting at z-score >-1. A nonstandardized personalized exercise programs might not be specific enough to promote bone health in CCS, although those compliant and those most in need may benefit. Future trials should include bone stimulating exercise programs targeting risk groups with reduced bone health and motivational features to maximize compliance.
Collapse
Affiliation(s)
- Ruedi Jung
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Simeon J Zürcher
- Center for Psychiatric Rehabilitation, Universitäre Psychiatrische Dienste Bern (UPD) and University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Christina Schindera
- Department of Pediatric Hematology and Oncology, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland.,Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Prisca Eser
- University Clinic of Cardiology, Preventive Cardiology and Sports Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Christian Meier
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Anna Schai
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Julia Braun
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Wei Hai Deng
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Helge Hebestreit
- Paediatric Department, University Hospital, Julius-Maximilians University, Würzburg, Germany
| | - Cornelia Neuhaus
- Therapy Department, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| | - Jonathan Schaeff
- Paediatric Department, University Hospital Augsburg, Augsburg, Germany
| | - Corina S Rueegg
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Nicolas X von der Weid
- Department of Pediatric Hematology and Oncology, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Palmquist A, Jolic M, Hryha E, Shah FA. Complex geometry and integrated macro-porosity: Clinical applications of electron beam melting to fabricate bespoke bone-anchored implants. Acta Biomater 2023; 156:125-145. [PMID: 35675890 DOI: 10.1016/j.actbio.2022.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 01/18/2023]
Abstract
The last decade has witnessed rapid advancements in manufacturing technologies for biomedical implants. Additive manufacturing (or 3D printing) has broken down major barriers in the way of producing complex 3D geometries. Electron beam melting (EBM) is one such 3D printing process applicable to metals and alloys. EBM offers build rates up to two orders of magnitude greater than comparable laser-based technologies and a high vacuum environment to prevent accumulation of trace elements. These features make EBM particularly advantageous for materials susceptible to spontaneous oxidation and nitrogen pick-up when exposed to air (e.g., titanium and titanium-based alloys). For skeletal reconstruction(s), anatomical mimickry and integrated macro-porous architecture to facilitate bone ingrowth are undoubtedly the key features of EBM manufactured implants. Using finite element modelling of physiological loading conditions, the design of a prosthesis may be further personalised. This review looks at the many unique clinical applications of EBM in skeletal repair and the ground-breaking innovations in prosthetic rehabilitation. From a simple acetabular cup to the fifth toe, from the hand-wrist complex to the shoulder, and from vertebral replacement to cranio-maxillofacial reconstruction, EBM has experienced it all. While sternocostal reconstructions might be rare, the repair of long bones using EBM manufactured implants is becoming exceedingly frequent. Despite the various merits, several challenges remain yet untackled. Nevertheless, with the capability to produce osseointegrating implants of any conceivable shape/size, and permissive of bone ingrowth and functional loading, EBM can pave the way for numerous fascinating and novel applications in skeletal repair, regeneration, and rehabilitation. STATEMENT OF SIGNIFICANCE: Electron beam melting (EBM) offers unparalleled possibilities in producing contaminant-free, complex and intricate geometries from alloys of biomedical interest, including Ti6Al4V and CoCr. We review the diverse range of clinical applications of EBM in skeletal repair, both as mass produced off-the-shelf implants and personalised, patient-specific prostheses. From replacing large volumes of disease-affected bone to complex, multi-material reconstructions, almost every part of the human skeleton has been replaced with an EBM manufactured analog to achieve macroscopic anatomical-mimickry. However, various questions regarding long-term performance of patient-specific implants remain unaddressed. Directions for further development include designing personalised implants and prostheses based on simulated loading conditions and accounting for trabecular bone microstructure with respect to physiological factors such as patient's age and disease status.
Collapse
Affiliation(s)
- Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Martina Jolic
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eduard Hryha
- Department of Materials and Manufacturing Technologies, Chalmers University of Technology, Gothenburg, Sweden
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
44
|
Craig SEL, Michalski MN, Williams BO. Got WNTS? Insight into bone health from a WNT perspective. Curr Top Dev Biol 2023; 153:327-346. [PMID: 36967199 DOI: 10.1016/bs.ctdb.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
WNT signaling, essential for many aspects of development, is among the most commonly altered pathways associated with human disease. While initially studied in cancer, dysregulation of WNT signaling has been determined to be essential for skeletal development and the maintenance of bone health throughout life. In this review, we discuss the role of Wnt signaling in bone development and disease with a particular focus on two areas. First, we discuss the roles of WNT signaling pathways in skeletal development, with an emphasis on congenital and idiopathic skeletal syndromes and diseases that are associated with genetic variations in WNT signaling components. Next, we cover a topic that has long been an interest of our laboratory, how high and low levels of WNT signaling affects the establishment and maintenance of healthy bone mass. We conclude with a discussion of the status of WNT-based therapeutics in the treatment of skeletal disease.
Collapse
Affiliation(s)
- Sonya E L Craig
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Megan N Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
45
|
Kinkopf KM, Agarwal SC, Giuffra V, Minozzi S, Campana S, Caramella D, Riccomi G. Contextualizing bilateral asymmetry and gender: A multivariate approach to femoral cross-sectional geometry at rural Medieval Pieve di Pava, Italy. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:173-195. [PMID: 36790747 DOI: 10.1002/ajpa.24625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/26/2022] [Accepted: 09/03/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Our objective was to identify the relationship between biocultural factors of sex-gender and age and patterns of femoral cross-sectional geometry with historical evidence about labor and activity from an archeological skeletal sample excavated from the rural Medieval site Pieve di Pava. MATERIALS AND METHODS The study site, Pieve di Pava, was a rural parish cemetery in Tuscany with osteoarcheological remains from the 7th to 12th centuries. Cross-sectional geometric analysis of femora from 110 individuals dated to the 10th-12th centuries were used to examine trends in bone quantity, shape, and bending strength between age and sex groups, as well as in clusters identified through Hierarchical Cluster Analysis (HCA). RESULTS Overall, our study sample showed remarkable heterogeneity and our cluster analysis revealed a complex underlying structure, indicating that divisions of labor did not follow a strict gender binary in our sample. We found high levels of bilateral asymmetry in our sample in multiple cross-sectional areas for a significant proportion of the population. We found minimal differences between age groups or sex. DISCUSSION Our results suggest that males and females had varied experiences of labor and work during their lives that did not reflect the strict binary gender roles sometimes documented for medieval Europe. One important axis of difference is the direction and magnitude of bilateral asymmetry observed in our femur sample, which is associated with divergent trends in section moduli and bone area measures.
Collapse
Affiliation(s)
- Katherine M Kinkopf
- Department of Geography and Anthropology, California State Polytechnic University, Pomona, California, USA
| | - Sabrina C Agarwal
- Department of Anthropology, University of California Berkeley, Berkeley, California, USA
| | | | - Simona Minozzi
- Paleopathology Division, University of Pisa, Pisa, Italy
| | - Stefano Campana
- Department of History and Cultural Heritage, University of Siena, Siena, Italy
| | | | - Giulia Riccomi
- Paleopathology Division, University of Pisa, Pisa, Italy
| |
Collapse
|
46
|
Ghuloum FI, Johnson CA, Riobo-Del Galdo NA, Amer MH. From mesenchymal niches to engineered in vitro model systems: Exploring and exploiting biomechanical regulation of vertebrate hedgehog signalling. Mater Today Bio 2022; 17:100502. [PMID: 36457847 PMCID: PMC9707069 DOI: 10.1016/j.mtbio.2022.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Tissue patterning is the result of complex interactions between transcriptional programs and various mechanical cues that modulate cell behaviour and drive morphogenesis. Vertebrate Hedgehog signalling plays key roles in embryogenesis and adult tissue homeostasis, and is central to skeletal development and the osteogenic differentiation of mesenchymal stem cells. The expression of several components of the Hedgehog signalling pathway have been reported to be mechanically regulated in mesodermal tissue patterning and osteogenic differentiation in response to external stimulation. Since a number of bone developmental defects and skeletal diseases, such as osteoporosis, are directly linked to aberrant Hedgehog signalling, a better knowledge of the regulation of Hedgehog signalling in the mechanosensitive bone marrow-residing mesenchymal stromal cells will present novel avenues for modelling these diseases and uncover novel opportunities for extracellular matrix-targeted therapies. In this review, we present a brief overview of the key molecular players involved in Hedgehog signalling and the basic concepts of mechanobiology, with a focus on bone development and regeneration. We also highlight the correlation between the activation of the Hedgehog signalling pathway in response to mechanical cues and osteogenesis in bone marrow-derived mesenchymal stromal cells. Finally, we propose different tissue engineering strategies to apply the expanding knowledge of 3D material-cell interactions in the modulation of Hedgehog signalling in vitro for fundamental and translational research applications.
Collapse
Affiliation(s)
- Fatmah I. Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Colin A. Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
47
|
Bezerra A, Freitas L, Maciel L, Fonseca H. Bone Tissue Responsiveness To Mechanical Loading-Possible Long-Term Implications of Swimming on Bone Health and Bone Development. Curr Osteoporos Rep 2022; 20:453-468. [PMID: 36401774 DOI: 10.1007/s11914-022-00758-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE OF REVIEW To revisit the bone tissue mechanotransduction mechanisms behind the bone tissue response to mechanical loading and, within this context, explore the possible negative influence of regular swimming practice on bone health, particularly during the growth and development period. RECENT FINDINGS Bone is a dynamic tissue, responsive to mechanical loading and unloading, being these adaptative responses more intense during the growth and development period. Cross-sectional studies usually report a lower bone mass in swimmers compared to athletes engaged in weigh-bearing sports. However, studies with animal models show contradictory findings about the effect of swimming on bone health, highlighting the need for longitudinal studies. Due to its microgravity characteristics, swimming seems to impair bone mass, but mostly at the lower limbs. It is unkown if there is a causal relationship between swimming and low BMD or if other confounding factors, such as a natural selection whithin the sport, are the cause.
Collapse
Affiliation(s)
- Andréa Bezerra
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADE/UP), 4200-450, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal.
| | - Laura Freitas
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADE/UP), 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal
| | - Leonardo Maciel
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADE/UP), 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal
- Department of Physiotherapy, Federal University of Sergipe, Campus Lagarto, Lagarto, Brazil
| | - Hélder Fonseca
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADE/UP), 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal
| |
Collapse
|
48
|
Zeng Y, Riquelme MA, Hua R, Zhang J, Acosta FM, Gu S, Jiang JX. Mechanosensitive piezo1 calcium channel activates connexin 43 hemichannels through PI3K signaling pathway in bone. Cell Biosci 2022; 12:191. [PMID: 36457052 PMCID: PMC9716748 DOI: 10.1186/s13578-022-00929-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Mechanical loading promotes bone formation and osteocytes are a major mechanosensory cell in the bone. Both Piezo1 channels and connexin 43 hemichannels (Cx43 HCs) in osteocytes are important players in mechanotransduction and anabolic function by mechanical loading. However, the mechanism underlying mechanotransduction involving Piezo1 channels and Cx43 HCs in osteocytes and bone remains unknown. RESULTS We showed that, like mechanical loading, Piezo1 specific agonist Yoda1 was able to increase intracellular Ca2+ signaling and activate Cx43 HCs, while Yoda1 antagonist Dooku1 inhibited Ca2+ and Cx43 HC activation induced by both mechanical loading and Yoda1. Moreover, the intracellular Ca2+ signal activated by Yoda1 was reduced by the inhibition of Cx43 HCs and pannexin1 (Panx1) channels, as well as ATP-P2X receptor signaling. Piezo1 and Cx43 HCs were co-localized on the osteocyte cell surface, and Yoda1-activated PI3K-Akt signaling regulated the opening of Cx43 HCs. Furthermore, Cx43 HCs opening by mechanical loading on tibias was ablated by inhibition of Piezo1 activation in vivo. CONCLUSION We demonstrated that upon mechanical stress, increased intracellular Ca2+ activated by Piezo1 regulates the opening of HCs through PI3K-Akt and opened Cx43 HCs, along with Panx1 channels, and ATP-P2X signaling sustain the intracellular Ca2+ signal, leading to bone anabolic function.
Collapse
Affiliation(s)
- Yan Zeng
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA ,grid.452708.c0000 0004 1803 0208The Second Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Manuel A. Riquelme
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Rui Hua
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Jingruo Zhang
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Francisca M. Acosta
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Sumin Gu
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Jean X. Jiang
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| |
Collapse
|
49
|
Reyes Fernandez PC, Wright CS, Warden SJ, Hum J, Farach-Carson MC, Thompson WR. Effects of Gabapentin and Pregabalin on Calcium Homeostasis: Implications for Physical Rehabilitation of Musculoskeletal Tissues. Curr Osteoporos Rep 2022; 20:365-378. [PMID: 36149592 PMCID: PMC10108402 DOI: 10.1007/s11914-022-00750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW In this review, we discuss the mechanism of action of gabapentinoids and the potential consequences of long-term treatment with these drugs on the musculoskeletal system. RECENT FINDINGS Gabapentinoids, such as gabapentin (GBP) and pregabalin (PGB) were designed as antiepileptic reagents and are now commonly used as first-line treatment for neuropathic pain and increasingly prescribed off-label for other pain disorders such as migraines and back pain. GBP and PGB exert their analgesic actions by selectively binding the α2δ1 auxiliary subunit of voltage-sensitive calcium channels, thereby inhibiting channel function. Numerous tissues express the α2δ1 subunit where GBP and PGB can alter calcium-mediated signaling events. In tissues such as bone, muscle, and cartilage, α2δ1 has important roles in skeletal formation, mechanosensation, and normal tissue function/repair that may be affected by chronic use of gabapentinoids. Long-term use of gabapentinoids is associated with detrimental musculoskeletal outcomes, including increased fracture risk. Therefore, understanding potential complications is essential for clinicians to guide appropriate treatments.
Collapse
Affiliation(s)
- Perla C Reyes Fernandez
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Christian S Wright
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Stuart J Warden
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Julia Hum
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, 4622, USA
| | - Mary C Farach-Carson
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - William R Thompson
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA.
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, 4622, USA.
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
50
|
Czerwińska-Ledwig O, Vesole DH, Piotrowska A, Gradek J, Pilch W, Jurczyszyn A. Effect of a 6-Week Cycle of Nordic Walking Training on Vitamin 25(OH)D 3, Calcium-Phosphate Metabolism and Muscle Damage in Multiple Myeloma Patients-Randomized Controlled Trial. J Clin Med 2022; 11:jcm11216534. [PMID: 36362762 PMCID: PMC9656680 DOI: 10.3390/jcm11216534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction: Multiple myeloma (MM) is a hematological malignancy affecting older adults. One of the most common myeloma-defining events is the development of symptomatic lytic bone disease. The serum concentrations of calcium (Ca), inorganic phosphorus (P), and vitamin 25(OH)D3 in the serum reflect bone metabolism. An enzyme lactate dehydrogenase (LDH) is a marker of muscle damage, but its serum activity also has an important prognostic value in MM. Myoglobin (Mb) is a small protein present in muscles; its serum level increases when myocytes are damaged. Objectives: In this study, the impact of a 6-week Nordic walking (NW) exercise program on blood parameters related to calcium-phosphate metabolism and damage of skeletal muscles was assessed. Patients and methods: A total of 33 patients with MM in the remission stage, without cytostatic treatment, were allocated and randomly assigned to one of two groups: 17 in the training group (NW) and 16 in the control group (CG). All patients were supplemented per os with vitamin D3 and calcium carbonate daily and received zoledronic acid every 4 weeks (intravenous). Nordic walking training sessions took place 3 times a week for 6 weeks, 1 h each. Blood samples were drawn before and after the 6 weeks of training sessions to assess the serum concentrations of vitamin 25(OH)D3, P, Ca, Mb, and LDH. Results: Patients from the NW group showed a statistically significant decrease in mean serum myoglobin concentration (p = 0.018) and an increase in 25(OH)D3 (p < 0.001) and total Ca (p = 0.001) concentrations. There were no statistically significant changes in the results obtained in CG. Between groups, after 6 weeks, Mb serum concentration was significantly lower in NW (p = 0.041), and 25(OH)D3 was higher (p < 0.001) compared to CG. There was a correlation between the changes in myoglobin, phosphorus, 25(OH)D3, and Ca concentrations after 6 weeks. Conclusions: NW training is a safe and beneficial form of physical exercise for patients with MM without inducing muscle damage. NW performed outside improves serum vitamin 25(OH)D3 concentration.
Collapse
Affiliation(s)
- Olga Czerwińska-Ledwig
- Department of Chemistry and Biochemistry, Institute of Basic Sciences, Faculty of Motor Rehabilitation, University of Physical Education in Kraków, 31-571 Krakow, Poland
- Correspondence:
| | - David H. Vesole
- Myeloma Division, John Theurer Cancer, Center at Hackensack Meridian School of Medicine, Hackensack, NJ 07601, USA
| | - Anna Piotrowska
- Department of Chemistry and Biochemistry, Institute of Basic Sciences, Faculty of Motor Rehabilitation, University of Physical Education in Kraków, 31-571 Krakow, Poland
| | - Joanna Gradek
- Department of Athletics, Institute of Sports Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Krakow, Poland
| | - Wanda Pilch
- Department of Chemistry and Biochemistry, Institute of Basic Sciences, Faculty of Motor Rehabilitation, University of Physical Education in Kraków, 31-571 Krakow, Poland
| | - Artur Jurczyszyn
- Plasma Cell Dyscrasia Center, Department of Hematology, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland
| |
Collapse
|