1
|
Meshko B, Volatier TLA, Mann J, Kluth MA, Ganss C, Frank MH, Frank NY, Ksander BR, Cursiefen C, Notara M. Anti-Inflammatory and Anti-(Lymph)angiogenic Properties of an ABCB5+ Limbal Mesenchymal Stem Cell Population. Int J Mol Sci 2024; 25:9702. [PMID: 39273646 PMCID: PMC11395824 DOI: 10.3390/ijms25179702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Corneal transparency and avascularity are essential for vision. The avascular cornea transitions into the vascularized conjunctiva at the limbus. Here, we explore a limbal stromal cell sub-population that expresses ABCB5 and has mesenchymal stem cell characteristics. Human primary corneal stromal cells were enriched for ABCB5 by using FACS sorting. ABCB5+ cells expressed the MSC markers CD90, CD73, and CD105. ABCB5+ but not ABCB5- cells from the same donor displayed evidence of pluripotency with a significantly higher colony-forming efficiency and the ability of trilineage differentiation (osteogenic, adipogenic, and chondrogenic). The ABCB5+ cell secretome demonstrated lower levels of the pro-inflammatory protein MIF (macrophage migration inhibitory factor) as well as of the pro-(lymph)angiogenic growth factors VEGFA and VEGFC, which correlated with reduced proliferation of Jurkat cells co-cultured with ABCB5+ cells and decreased proliferation of blood and lymphatic endothelial cells cultured in ABCB5+ cell-conditioned media. These data support the hypothesis that ABCB5+ limbal stromal cells are a putative MSC population with potential anti-inflammatory and anti-(lymph)angiogenic effects. The therapeutic modulation of ABCB5+ limbal stromal cells may prevent cornea neovascularization and inflammation and, if transplanted to other sites in the body, provide similar protective properties to other tissues.
Collapse
Affiliation(s)
- Berbang Meshko
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Thomas L A Volatier
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Johanna Mann
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Mark A Kluth
- RHEACELL GmbH & Co. KG, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany
| | - Christoph Ganss
- RHEACELL GmbH & Co. KG, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany
| | - Markus H Frank
- Transplant Research Program, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Natasha Y Frank
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bruce R Ksander
- Massachusetts Eye & Ear Infirmary, Schepens Eye Research Institute, Boston, MA 02114, USA
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
2
|
Volatier T, Cursiefen C, Notara M. Current Advances in Corneal Stromal Stem Cell Biology and Therapeutic Applications. Cells 2024; 13:163. [PMID: 38247854 PMCID: PMC10814767 DOI: 10.3390/cells13020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Corneal stromal stem cells (CSSCs) are of particular interest in regenerative ophthalmology, offering a new therapeutic target for corneal injuries and diseases. This review provides a comprehensive examination of CSSCs, exploring their anatomy, functions, and role in maintaining corneal integrity. Molecular markers, wound healing mechanisms, and potential therapeutic applications are discussed. Global corneal blindness, especially in more resource-limited regions, underscores the need for innovative solutions. Challenges posed by corneal defects, emphasizing the urgent need for advanced therapeutic interventions, are discussed. The review places a spotlight on exosome therapy as a potential therapy. CSSC-derived exosomes exhibit significant potential for modulating inflammation, promoting tissue repair, and addressing corneal transparency. Additionally, the rejuvenation potential of CSSCs through epigenetic reprogramming adds to the evolving regenerative landscape. The imperative for clinical trials and human studies to seamlessly integrate these strategies into practice is emphasized. This points towards a future where CSSC-based therapies, particularly leveraging exosomes, play a central role in diversifying ophthalmic regenerative medicine.
Collapse
Affiliation(s)
- Thomas Volatier
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
3
|
Zhang N, Barrell WB, Liu KJ. Identification of distinct subpopulations of Gli1-lineage cells in the mouse mandible. J Anat 2023; 243:90-99. [PMID: 36899483 PMCID: PMC10273353 DOI: 10.1111/joa.13858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
The Hedgehog pathway gene Gli1 has been proposed to mark a subpopulation of skeletal stem cells (SSCs) in craniofacial bone. Skeletal stem cells (SSCs) are multi-potent cells crucial for the development and homeostasis of bone. Recent studies on long bones have suggested that skeletal stem cells in endochondral or intramembranous ossification sites have different differentiation capacities. However, this has not been well-defined in neural crest derived bones. Generally, the long bones are derived from mesoderm and follow an endochondral ossification model, while most of the cranial bones are neural crest (NC) in origin and follow an intramembranous ossification model. The mandible is unique: It is derived from the neural crest lineage but makes use of both modes of ossification. Early in fetal development, the mandibular body is generated by intramembranous ossification with subsequent endochondral ossification forming the condyle. The identities and properties for SSCs in these two sites remain unknown. Here, we use genetic lineage tracing in mouse to identify cells expressing the Hedgehog responsive gene Gli1, which is thought to mark the tissue resident SSCs. We track the Gli1+ cells, comparing cells within the perichondrium to those in the periosteum covering the mandibular body. In juvenile mice, these have distinct differentiation and proliferative potential. We also assess the presence of Sox10+ cells, thought to mark neural crest stem cells, but find no substantial population associated with the mandibular skeleton, suggesting that Sox10+ cells have limited contribution to maintaining postnatal mandibular bone. All together, our study indicates that the Gli1+ cells display distinct and limited differentiation capacity dependent on their regional associations.
Collapse
Affiliation(s)
- Nian Zhang
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial SciencesKing's College LondonLondonUK
- State Key Laboratory of Oral Disease, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatogy, Sichuan UniversityChengduChina
| | - William B. Barrell
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial SciencesKing's College LondonLondonUK
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial SciencesKing's College LondonLondonUK
| |
Collapse
|
4
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
5
|
Song Z, Tsai CH, Mei H. Comparison of different methods to isolate mouse limbal epithelial cells. Exp Eye Res 2021; 212:108767. [PMID: 34534542 DOI: 10.1016/j.exer.2021.108767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 01/18/2023]
Abstract
Limbal stem cells (LSCs) are the stem cell reservoir for corneal epithelium. The protocol to isolate LSCs from human cornea has been examined and optimized. However, the isolation protocol has not been optimized for mouse cornea, which is crucial for the downstream cell analysis. Here we compared four different isolation methods evolved from the previous reports to obtain mouse limbal epithelial cells which are heterogeneous and contain LSCs in a single-cell suspension: (1) the dissected limbal rim was cut into pieces and digested by 10-cycle incubation in trypsin; (2) after the removal of corneal epithelium by a rotating bur, the remaining eyeball was incubated in dispase at 4 °C for overnight to obtain limbal epithelial sheet, followed by trypsin digestion into a single-cell suspension; (3) same as method 2 except that the incubation was in dispase at 37 °C for 2h and an additional collagenase incubation at 37 °C for 20 min; (4) same as method 3 except that the corneal epithelium was punctured by a 1.5 mm trephine instead of being removed by a rotating bur. Method 1 showed the lowest cell yield, the lowest percentage of single cells, and the lowest number of limbal epithelial stem/progenitor cells in the harvested cells among the four methods, thus not a recommended protocol. Method 2, 3, and 4 isolated a comparable number of K14+ and p63α-bright stem/progenitor cells per eye. The remaining eye globe after cell collection in the three methods showed a complete removal of limbal epithelium albeit different extent of corneal and limbal stromal digestion. Among the three methods, method 2 showed a higher cell viability than method 4; method 3 yielded the lowest cell number; method 4 led to the highest percentage of single cells in cell suspension. Results suggest that method 2, 3, and 4 are preferred methods to isolate heterogeneous-LSCs from mouse corneas.
Collapse
Affiliation(s)
- Zhenwei Song
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; School of Medicine, Hunan Normal University, 371 Tongzipo Road, Chang Sha, 410003, China.
| | - Chi-Hao Tsai
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Hua Mei
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Latta L, Figueiredo FC, Ashery-Padan R, Collinson JM, Daniels J, Ferrari S, Szentmáry N, Solá S, Shalom-Feuerstein R, Lako M, Xapelli S, Aberdam D, Lagali N. Pathophysiology of aniridia-associated keratopathy: Developmental aspects and unanswered questions. Ocul Surf 2021; 22:245-266. [PMID: 34520870 DOI: 10.1016/j.jtos.2021.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Aniridia, a rare congenital disease, is often characterized by a progressive, pronounced limbal insufficiency and ocular surface pathology termed aniridia-associated keratopathy (AAK). Due to the characteristics of AAK and its bilateral nature, clinical management is challenging and complicated by the multiple coexisting ocular and systemic morbidities in aniridia. Although it is primarily assumed that AAK originates from a congenital limbal stem cell deficiency, in recent years AAK and its pathogenesis has been questioned in the light of new evidence and a refined understanding of ocular development and the biology of limbal stem cells (LSCs) and their niche. Here, by consolidating and comparing the latest clinical and preclinical evidence, we discuss key unanswered questions regarding ocular developmental aspects crucial to AAK. We also highlight hypotheses on the potential role of LSCs and the ocular surface microenvironment in AAK. The insights thus gained lead to a greater appreciation for the role of developmental and cellular processes in the emergence of AAK. They also highlight areas for future research to enable a deeper understanding of aniridia, and thereby the potential to develop new treatments for this rare but blinding ocular surface disease.
Collapse
Affiliation(s)
- L Latta
- Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany; Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany.
| | - F C Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - R Ashery-Padan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - J M Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - J Daniels
- Cells for Sight, UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - S Ferrari
- The Veneto Eye Bank Foundation, Venice, Italy
| | - N Szentmáry
- Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - S Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - R Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - M Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - S Xapelli
- Instituto Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - D Aberdam
- Centre de Recherche des Cordeliers, INSERM U1138, Team 17, France; Université de Paris, 75006, Paris, France.
| | - N Lagali
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| |
Collapse
|
7
|
Lim JY, In Park S, Park SA, Jeon JH, Jung HY, Yon JM, Jeun SS, Lim HK, Kim SW. Potential application of human neural crest-derived nasal turbinate stem cells for the treatment of neuropathology and impaired cognition in models of Alzheimer's disease. Stem Cell Res Ther 2021; 12:402. [PMID: 34256823 PMCID: PMC8278635 DOI: 10.1186/s13287-021-02489-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
Background Stem cell transplantation is a fascinating therapeutic approach for the treatment of many neurodegenerative disorders; however, clinical trials using stem cells have not been as effective as expected based on preclinical studies. The aim of this study is to validate the hypothesis that human neural crest-derived nasal turbinate stem cells (hNTSCs) are a clinically promising therapeutic source of adult stem cells for the treatment of Alzheimer’s disease (AD). Methods hNTSCs were evaluated in comparison with human bone marrow-derived mesenchymal stem cells (hBM-MSCs) according to the effect of transplantation on AD pathology, including PET/CT neuroimaging, immune status indicated by microglial numbers and autophagic capacity, neuronal survival, and cognition, in a 5 × FAD transgenic mouse model of AD. Results We demonstrated that hNTSCs showed a high proliferative capacity and great neurogenic properties in vitro. Compared with hBM-MSC transplantation, hNTSC transplantation markedly reduced Aβ42 levels and plaque formation in the brains of the 5 × FAD transgenic AD mice on neuroimaging, concomitant with increased survival of hippocampal and cortex neurons. Moreover, hNTSCs strongly modulated immune status by reducing the number of microglia and the expression of the inflammatory cytokine IL-6 and upregulating autophagic capacity at 7 weeks after transplantation in AD models. Notably, compared with transplantation of hBM-MSCs, transplantation of hNTSCs significantly enhanced performance on the Morris water maze, with an increased level of TIMP2, which is necessary for spatial memory in young mice and neurons; this difference could be explained by the high engraftment of hNTSCs after transplantation. Conclusion The reliable evidence provided by these findings reveals a promising therapeutic effect of hNTSCs and indicates a step forward the clinical application of hNTSCs in patients with AD.
Collapse
Affiliation(s)
- Jung Yeon Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Sang In Park
- Institute of Catholic Integrative Medicine (ICIM), Incheon St. Mary's Hospital, The Catholic University of Korea, 56 Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea
| | - Soon A Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jung Ho Jeon
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Ho Yong Jung
- Institute of Catholic Integrative Medicine (ICIM), Incheon St. Mary's Hospital, The Catholic University of Korea, 56 Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea
| | - Jung-Min Yon
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, The Catholic University of Korea, 63-ro 10, Yeoungdeungpo-gu, Seoul, 07345, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
8
|
Lee HL, Yeum CE, Lee H, Oh J, Kim JT, Lee WJ, Ha Y, Yang YI, Kim KN. Peripheral Nerve-Derived Stem Cell Spheroids Induce Functional Recovery and Repair after Spinal Cord Injury in Rodents. Int J Mol Sci 2021; 22:ijms22084141. [PMID: 33923671 PMCID: PMC8072978 DOI: 10.3390/ijms22084141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
Stem cell therapy is one of the most promising candidate treatments for spinal cord injury. Research has shown optimistic results for this therapy, but clinical limitations remain, including poor viability, engraftment, and differentiation. Here, we isolated novel peripheral nerve-derived stem cells (PNSCs) from adult peripheral nerves with similar characteristics to neural-crest stem cells. These PNSCs expressed neural-crest specific markers and showed multilineage differentiation potential into Schwann cells, neuroglia, neurons, and mesodermal cells. In addition, PNSCs showed therapeutic potential by releasing the neurotrophic factors, including glial cell-line-derived neurotrophic factor, insulin-like growth factor, nerve growth factor, and neurotrophin-3. PNSC abilities were also enhanced by their development into spheroids which secreted neurotrophic factors several times more than non-spheroid PNSCs and expressed several types of extra cellular matrix. These features suggest that the potential for these PNSC spheroids can overcome their limitations. In an animal spinal cord injury (SCI) model, these PNSC spheroids induced functional recovery and neuronal regeneration. These PNSC spheroids also reduced the neuropathic pain which accompanies SCI after remyelination. These PNSC spheroids may represent a new therapeutic approach for patients suffering from SCI.
Collapse
Affiliation(s)
- Hye-Lan Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Korea; (H.-L.L.); (H.L.); (J.O.); (Y.H.)
| | - Chung-Eun Yeum
- Paik Inje Memorial Institute for Clinical Research, Inje University College of Medicine, Busan 47392, Korea; (C.-E.Y.); (J.-T.K.); (W.-J.L.)
| | - HyeYeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Korea; (H.-L.L.); (H.L.); (J.O.); (Y.H.)
| | - Jinsoo Oh
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Korea; (H.-L.L.); (H.L.); (J.O.); (Y.H.)
| | - Jong-Tae Kim
- Paik Inje Memorial Institute for Clinical Research, Inje University College of Medicine, Busan 47392, Korea; (C.-E.Y.); (J.-T.K.); (W.-J.L.)
| | - Won-Jin Lee
- Paik Inje Memorial Institute for Clinical Research, Inje University College of Medicine, Busan 47392, Korea; (C.-E.Y.); (J.-T.K.); (W.-J.L.)
| | - Yoon Ha
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Korea; (H.-L.L.); (H.L.); (J.O.); (Y.H.)
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
| | - Young-Il Yang
- Paik Inje Memorial Institute for Clinical Research, Inje University College of Medicine, Busan 47392, Korea; (C.-E.Y.); (J.-T.K.); (W.-J.L.)
- Correspondence: (Y.-I.Y.); (K.-N.K.)
| | - Keung-Nyun Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Korea; (H.-L.L.); (H.L.); (J.O.); (Y.H.)
- Correspondence: (Y.-I.Y.); (K.-N.K.)
| |
Collapse
|
9
|
Höving AL, Windmöller BA, Knabbe C, Kaltschmidt B, Kaltschmidt C, Greiner JFW. Between Fate Choice and Self-Renewal-Heterogeneity of Adult Neural Crest-Derived Stem Cells. Front Cell Dev Biol 2021; 9:662754. [PMID: 33898464 PMCID: PMC8060484 DOI: 10.3389/fcell.2021.662754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Stem cells of the neural crest (NC) vitally participate to embryonic development, but also remain in distinct niches as quiescent neural crest-derived stem cell (NCSC) pools into adulthood. Although NCSC-populations share a high capacity for self-renewal and differentiation resulting in promising preclinical applications within the last two decades, inter- and intrapopulational differences exist in terms of their expression signatures and regenerative capability. Differentiation and self-renewal of stem cells in developmental and regenerative contexts are partially regulated by the niche or culture condition and further influenced by single cell decision processes, making cell-to-cell variation and heterogeneity critical for understanding adult stem cell populations. The present review summarizes current knowledge of the cellular heterogeneity within NCSC-populations located in distinct craniofacial and trunk niches including the nasal cavity, olfactory bulb, oral tissues or skin. We shed light on the impact of intrapopulational heterogeneity on fate specifications and plasticity of NCSCs in their niches in vivo as well as during in vitro culture. We further discuss underlying molecular regulators determining fate specifications of NCSCs, suggesting a regulatory network including NF-κB and NC-related transcription factors like SLUG and SOX9 accompanied by Wnt- and MAPK-signaling to orchestrate NCSC stemness and differentiation. In summary, adult NCSCs show a broad heterogeneity on the level of the donor and the donors' sex, the cell population and the single stem cell directly impacting their differentiation capability and fate choices in vivo and in vitro. The findings discussed here emphasize heterogeneity of NCSCs as a crucial parameter for understanding their role in tissue homeostasis and regeneration and for improving their applicability in regenerative medicine.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre North Rhine-Westphalia (NRW), Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Beatrice A. Windmöller
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Cornelius Knabbe
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre North Rhine-Westphalia (NRW), Ruhr University Bochum, Bad Oeynhausen, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| |
Collapse
|
10
|
Yoshida H, Suzawa T, Shibata Y, Takahashi M, Kawai R, Takami M, Maki K, Kamijo R. Neural crest-derived cells in nasal conchae of adult mice contribute to bone regeneration. Biochem Biophys Res Commun 2021; 554:173-178. [PMID: 33798944 DOI: 10.1016/j.bbrc.2021.03.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/02/2023]
Abstract
Neural crest-derived cells (NCDCs), a class of adult stem cells not restricted to embryonic tissues, are attractive tissue regenerative therapy candidates because of their ease of isolation, self-renewing properties, and multipotency. Although adult NCDCs can undergo osteogenic differentiation in vitro, whether they induce bone formation in vivo remains unclear. Previously, our group reported findings showing high amounts of NCDCs scattered throughout nasal concha tissues of adult mice. In the present study, NCDCs in nasal conchae labeled with enhanced green fluorescent protein (EGFP) were collected from adult P0-Cre/CAG-CAT-EGFP double transgenic mice, then cultured in serum-free medium to increase the number. Subsequently, NCDCs were harvested and suspended in type I atelocollagen gel, then an atelocollagen sponge was used as a scaffold for the cell suspension. Atelocollagen scaffolds with NCDCs were placed on bone defects created in a mouse calvarial bone defect model. Over the ensuing 12 weeks, micro-CT and histological analysis findings showed that mice with scaffolds containing NCDCs had slightly greater bone formation as compared to those with a scaffold alone. Furthermore, Raman spectroscopy revealed spectral properties of bone in mice that received scaffolds with NCDCs similar to those of native calvarial bone. Bone regeneration is important not only for gaining bone mass but also chemical properties. These results are the first to show the validity of biomolecule-free adult nasal concha-derived NCDCs for bone regeneration, including the chemical properties of regenerated bone tissue.
Collapse
Affiliation(s)
- Hiroshi Yoshida
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan; Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Tetsuo Suzawa
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan.
| | - Yo Shibata
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, School of Dentistry, Showa University, Tokyo, Japan
| | - Masahiro Takahashi
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Ryota Kawai
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Masamichi Takami
- Department of Pharmacology, School of Dentistry, Showa University, Tokyo, Japan
| | - Koutaro Maki
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
11
|
Liu XN, Mi SL, Chen Y, Wang Y. Corneal stromal mesenchymal stem cells: reconstructing a bioactive cornea and repairing the corneal limbus and stromal microenvironment. Int J Ophthalmol 2021; 14:448-455. [PMID: 33747824 DOI: 10.18240/ijo.2021.03.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Corneal stroma-derived mesenchymal stem cells (CS-MSCs) are mainly distributed in the anterior part of the corneal stroma near the corneal limbal stem cells (LSCs). CS-MSCs are stem cells with self-renewal and multidirectional differentiation potential. A large amount of data confirmed that CS-MSCs can be induced to differentiate into functional keratocytes in vitro, which is the motive force for maintaining corneal transparency and producing a normal corneal stroma. CS-MSCs are also an important component of the limbal microenvironment. Furthermore, they are of great significance in the reconstruction of ocular surface tissue and tissue engineering for active biocornea construction. In this paper, the localization and biological characteristics of CS-MSCs, the use of CS-MSCs to reconstruct a tissue-engineered active biocornea, and the repair of the limbal and matrix microenvironment by CS-MSCs are reviewed, and their application prospects are discussed.
Collapse
Affiliation(s)
- Xian-Ning Liu
- Department of Ophthalmology, First Hospital of Xi'an; Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, the First Affiliated Hospital of Northwest University, Xi'an 710002, Shaanxi Province, China
| | - Sheng-Li Mi
- Open FIESTA Center, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong Province, China.,Biomanufacturing Engineering Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong Province, China
| | - Yun Chen
- Open FIESTA Center, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong Province, China
| | - Yao Wang
- Department of Ophthalmology, First Hospital of Xi'an; Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, the First Affiliated Hospital of Northwest University, Xi'an 710002, Shaanxi Province, China
| |
Collapse
|
12
|
Pilon N. Treatment and Prevention of Neurocristopathies. Trends Mol Med 2021; 27:451-468. [PMID: 33627291 DOI: 10.1016/j.molmed.2021.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Neurocristopathies form a heterogeneous group of rare diseases caused by abnormal development of neural crest cells. Heterogeneity of neurocristopathies directly relates to the nature of these migratory and multipotent cells, which generate dozens of specialized cell types throughout the body. Neurocristopathies are thus characterized by congenital malformations of tissues/organs that otherwise appear to have very little in common, such as the craniofacial skeleton and enteric nervous system. Treatment options are currently very limited, mainly consisting of corrective surgeries. Yet, as reviewed here, analyses of normal and pathological neural crest development in model organisms have opened up the possibility for better treatment options involving cellular and molecular approaches. These approaches provide hope that some neurocristopathies might soon be curable or preventable.
Collapse
Affiliation(s)
- Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal H3C 3P8, Québec, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Québec, Canada; Département de Pédiatrie, Université de Montréal, Montréal H3T 1C5, Québec, Canada.
| |
Collapse
|
13
|
Soto J, Ding X, Wang A, Li S. Neural crest-like stem cells for tissue regeneration. Stem Cells Transl Med 2021; 10:681-693. [PMID: 33533168 PMCID: PMC8046096 DOI: 10.1002/sctm.20-0361] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Neural crest stem cells (NCSCs) are a transient population of cells that arise during early vertebrate development and harbor stem cell properties, such as self‐renewal and multipotency. These cells form at the interface of non‐neuronal ectoderm and neural tube and undergo extensive migration whereupon they contribute to a diverse array of cell and tissue derivatives, ranging from craniofacial tissues to cells of the peripheral nervous system. Neural crest‐like stem cells (NCLSCs) can be derived from pluripotent stem cells, placental tissues, adult tissues, and somatic cell reprogramming. NCLSCs have a differentiation capability similar to NCSCs, and possess great potential for regenerative medicine applications. In this review, we present recent developments on the various approaches to derive NCLSCs and the therapeutic application of these cells for tissue regeneration.
Collapse
Affiliation(s)
- Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| | - Xili Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, People's Republic of China
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA.,Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
14
|
Perera SN, Kerosuo L. On the road again: Establishment and maintenance of stemness in the neural crest from embryo to adulthood. STEM CELLS (DAYTON, OHIO) 2020; 39:7-25. [PMID: 33017496 PMCID: PMC7821161 DOI: 10.1002/stem.3283] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
Unique to vertebrates, the neural crest (NC) is an embryonic stem cell population that contributes to a greatly expanding list of derivatives ranging from neurons and glia of the peripheral nervous system, facial cartilage and bone, pigment cells of the skin to secretory cells of the endocrine system. Here, we focus on what is specifically known about establishment and maintenance of NC stemness and ultimate fate commitment mechanisms, which could help explain its exceptionally high stem cell potential that exceeds the "rules set during gastrulation." In fact, recent discoveries have shed light on the existence of NC cells that coexpress commonly accepted pluripotency factors like Nanog, Oct4/PouV, and Klf4. The coexpression of pluripotency factors together with the exceptional array of diverse NC derivatives encouraged us to propose a new term "pleistopotent" (Greek for abundant, a substantial amount) to be used to reflect the uniqueness of the NC as compared to other post-gastrulation stem cell populations in the vertebrate body, and to differentiate them from multipotent lineage restricted stem cells. We also discuss studies related to the maintenance of NC stemness within the challenging context of being a transient and thus a constantly changing population of stem cells without a permanent niche. The discovery of the stem cell potential of Schwann cell precursors as well as multiple adult NC-derived stem cell reservoirs during the past decade has greatly increased our understanding of how NC cells contribute to tissues formed after its initial migration stage in young embryos.
Collapse
Affiliation(s)
- Surangi N Perera
- Neural Crest Development and Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura Kerosuo
- Neural Crest Development and Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Liu L, Yu Y, Peng Q, Porsborg SR, Nielsen FM, Jørgensen A, Grove A, Bath C, Hjortdal J, Christiansen OB, Fink T, Zachar V. Distribution of Stromal Cell Subsets in Cultures from Distinct Ocular Surface Compartments. J Ophthalmic Vis Res 2020; 15:493-501. [PMID: 33133440 PMCID: PMC7591840 DOI: 10.18502/jovr.v15i4.7780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/26/2020] [Indexed: 11/27/2022] Open
Abstract
Purpose To reveal the phenotypic differences between human ocular surface stromal cells (hOSSCs) cultured from the corneal, limbal, and scleral compartments. Methods A comparative analysis of cultured hOSSCs derived from four unrelated donors was conducted by multichromatic flow cytometry for six distinct CD antigens, including the CD73, CD90, CD105, CD166, CD146, and CD34. Results The hOSSCs, as well as the reference cells, displayed phenotypical profiles that were similar in high expression of the hallmark mesenchymal stem cell markers CD73, CD90, and CD105, and also the cancer stem cell marker CD166. Notably, there was considerable variation regarding the expression of CD34, where the highest levels were found in the corneal and scleral compartments. The multi-differentiation potential marker CD146 was also expressed highly variably, ranging from 9% to 89%, but the limbal stromal and endometrial mesenchymal stem cells significantly surpassed their counterparts within the ocular and reference groups, respectively. The use of six markers enabled investigation of 64 possible variants, however, just four variants accounted for almost 90% of all hOSSCs, with the co-expression of CD73, CD90, CD105, and CD166 and a combination of CD146 and CD34. The limbal compartment appeared unique in that it displayed greatest immunophenotype diversity and harbored the highest proportion of the CD146+CD34- pericyte-like forms, but, interestingly, the pericyte-like cells were also found in the avascular cornea. Conclusion Our findings confirm that the hOSSCs exhibit an immunophenotype consistent with that of MSCs, further highlight the phenotypical heterogeneity in stroma from distinct ocular surface compartments, and finally underscore the uniqueness of the limbal region.
Collapse
Affiliation(s)
- Lei Liu
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ying Yu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Qiuyue Peng
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Simone R Porsborg
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Frederik M Nielsen
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Annemette Jørgensen
- Department of Gynecology and Obstetrics, Aalborg University Hospital, Denmark
| | - Anni Grove
- Department of Pathology, Aalborg University Hospital, Denmark
| | - Chris Bath
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Jesper Hjortdal
- Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark
| | - Ole B Christiansen
- Department of Gynecology and Obstetrics, Aalborg University Hospital, Denmark
| | - Trine Fink
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Vladimir Zachar
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
16
|
Morsczeck C. Effects of Cellular Senescence on Dental Follicle Cells. Pharmacology 2020; 106:137-142. [PMID: 32980839 DOI: 10.1159/000510014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
The dental follicle is part of the tooth germ, and isolated stem cells from this tissue (dental follicle cells; DFCs) are considered, for example, for regenerative medicine and immunotherapies. However somatic stem cells can also improve pharmaceutical research. Cell proliferation is limited by the induction of senescence, which, while reducing the therapeutic potential of DFCs for cell therapy, can also be used to study aging processes at the cellular level that can be used to test anti-aging pharmaceuticals. Unfortunately, very little is known about cellular senescence in DFCs. This review presents current knowledge about cellular senescence in DFCs.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany,
| |
Collapse
|
17
|
Dos Santos A, Balayan A, Funderburgh ML, Ngo J, Funderburgh JL, Deng SX. Differentiation Capacity of Human Mesenchymal Stem Cells into Keratocyte Lineage. Invest Ophthalmol Vis Sci 2019; 60:3013-3023. [PMID: 31310658 PMCID: PMC6636549 DOI: 10.1167/iovs.19-27008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Mesenchymal stem cells (MSCs) have been extensively studied for their capacity to enhance wound healing and represent a promising research field for generating cell therapies for corneal scars. In the present study, we investigated MSCs from different tissues and their potential to differentiate toward corneal keratocytes. Methods Adipose-derived stem cells, bone marrow MSCs, umbilical cord stem cells, and corneal stromal stem cells (CSSCs) were characterized by their expression of surface markers CD105, CD90, and CD73, and their multilineage differentiation capacity into adipocytes, osteoblasts, and chondrocytes. MSCs were also evaluated for their potential to differentiate toward keratocytes, and for upregulation of the anti-inflammatory protein TNFα-stimulated gene-6 (TNFAIP6) after simulation by IFN-γ and TNF-α. Results Keratocyte lineage induction was achieved in all MSCs as indicated by the upregulated expression of keratocyte markers, including keratocan, lumican, and carbohydrate sulfotransferase. TNFAIP6 response to inflammatory stimulation was observed only in CSSCs; increasing by 3-fold compared with the control (P < 0.05). Conclusions Based on our findings, CSSCs appeared to have the greatest differentiation potential toward the keratocyte lineage and the greatest anti-inflammatory properties in vitro.
Collapse
Affiliation(s)
- Aurelie Dos Santos
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Alis Balayan
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Martha L Funderburgh
- Eye and Ear Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - John Ngo
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - James L Funderburgh
- Eye and Ear Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Sophie X Deng
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
18
|
Zhang K, Cui X, Zhang B, Song X, Liu Q, Yang S. Multipotent stem cells with neural crest stem cells characteristics exist in bovine adipose tissue. Biochem Biophys Res Commun 2019; 522:819-825. [PMID: 31791582 DOI: 10.1016/j.bbrc.2019.11.176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 01/12/2023]
Abstract
Neural crest stem cells (NCSCs) often referred to as the fourth germ layer, comprise a migratory, stem and progenitor cell population and are synonymous with vertebrate evolution and development. The cells follow specific paths to migrate to different locations of the body where they generate a diverse array of cell types and tissues. There are NCSCs which are maintained in an undifferentiated state throughout the life in the animal tissues. Based on some cells migratory property, we successfully developed a separation strategy to isolate and identify a population of adipose-derived stem cells with neural crest stem cell features in adult bovine adipose tissues within minimally-invasive surgical procedures. The cells have a high degree of multi-potency and self-renewal capabilities, can be cultured and maintained in feeder-free adhesion conditions as monolayer cells, and also be able to grow in the suspension condition in the form of neurosphere. For the purpose of simple description, we name this type cell as bovine adipose-derived neural crest stem cell (baNCSC). Taken together our study describes a readily accessible source of multipotent baNCSC for autologous tissue engineer and cell-based therapeutic researches.
Collapse
Affiliation(s)
- Kai Zhang
- College of Animal Sciences and Veterinary Medicines, Shanxi Agricultural University, 030801, Taigu, Shanxi Province, PR China; Feed and Veterinary Medicine Research Institute, Shanxi Academy of Agriculture Sciences, 030036, Taiyuan, Shanxi Province, PR China
| | - Xiaozhen Cui
- Feed and Veterinary Medicine Research Institute, Shanxi Academy of Agriculture Sciences, 030036, Taiyuan, Shanxi Province, PR China
| | - Bochi Zhang
- Feed and Veterinary Medicine Research Institute, Shanxi Academy of Agriculture Sciences, 030036, Taiyuan, Shanxi Province, PR China
| | - Xianyi Song
- Feed and Veterinary Medicine Research Institute, Shanxi Academy of Agriculture Sciences, 030036, Taiyuan, Shanxi Province, PR China
| | - Qiang Liu
- College of Animal Sciences and Veterinary Medicines, Shanxi Agricultural University, 030801, Taigu, Shanxi Province, PR China.
| | - Shiyu Yang
- Department of Clinical Neurosciences, UCL Institute of Neurology, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
19
|
Higa K, Higuchi J, Kimoto R, Satake Y, Yamaguchi T, Tomida D, Shimazaki J. Effects of Amniotic Membrane–Derived Fibroblast Supernatant on Corneal Epithelium. ACTA ACUST UNITED AC 2019; 60:3718-3726. [DOI: 10.1167/iovs.19-27041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Kazunari Higa
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| | - Junko Higuchi
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| | - Reona Kimoto
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| | - Yoshiyuki Satake
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| | - Takefumi Yamaguchi
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| | - Daisuke Tomida
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| | - Jun Shimazaki
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| |
Collapse
|
20
|
The Neural Differentiation Potential of Limbal Stem Cells: A Model for Studying the Multipotency of Limbal Stem Cells. Cornea 2019; 38 Suppl 1:S4-S10. [PMID: 31397733 DOI: 10.1097/ico.0000000000002084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To investigate the multipotency, especially the neural differentiation potential, of limbal stem cells (LSCs) using a coculture system and to provide a relevant literature review. METHODS Limbal tissue was harvested from adult New Zealand white rabbits and treated with collagenase A. Small pieces of the resulting limbal epithelial sheets were cocultured with a neuroblastoma cell line (Neuro-2A) in transwells. Morphological observation of the growing epithelial sheets was accomplished by microscopy, and marker expression was detected by immunocytochemistry for ßIII-tubulin and microtubule-associated protein 2. A literature review of associated studies was performed. RESULTS In the coculture group, directly adherent colonies of neuron-like (DACN) cells were observed among the growing limbal epithelial sheets from day 3. The DACN cells exhibited neuron-like morphology. The control group comprising limbal cell sheets cultured alone showed a very small number of DACN cells at the end of the culture period (day 14). Immunocytochemical staining revealed that the DACN cells were positive for ßIII-tubulin and microtubule-associated protein 2, confirming the neuronal phenotype of the neuron-like cells. By contrast, the DACN cells in the control group produced negative results. In previous reports, LSCs and niches exhibited neural potential, but most differentiated neural cells were observed as floating spheres, in contrast to the DACN cells observed in the present study. CONCLUSIONS We developed a coculture system of LSCs and Neuro-2A neuroblastoma cells and obtained DACN cells with neural differentiation potential. Our findings confirm the neural potential of LSCs, consistent with previous reports, but in a form other than floating spheres.
Collapse
|
21
|
Neural crest stem cells from human epidermis of aged donors maintain their multipotency in vitro and in vivo. Sci Rep 2019; 9:9750. [PMID: 31278326 PMCID: PMC6611768 DOI: 10.1038/s41598-019-46140-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/24/2019] [Indexed: 11/08/2022] Open
Abstract
Neural crest (NC) cells are multipotent stem cells that arise from the embryonic ectoderm, delaminate from the neural tube in early vertebrate development and migrate throughout the developing embryo, where they differentiate into various cell lineages. Here we show that multipotent and functional NC cells can be derived by induction with a growth factor cocktail containing FGF2 and IGF1 from cultures of human inter-follicular keratinocytes (KC) isolated from elderly donors. Adult NC cells exhibited longer doubling times as compared to neonatal NC cells, but showed limited signs of cellular senescence despite the advanced age of the donors and exhibited significantly younger epigenetic age as compared to KC. They also maintained their multipotency, as evidenced by their ability to differentiate into all NC-specific lineages including neurons, Schwann cells, melanocytes, and smooth muscle cells (SMC). Notably, upon implantation into chick embryos, adult NC cells behaved similar to their embryonic counterparts, migrated along stereotypical pathways and contributed to multiple NC derivatives in ovo. These results suggest that KC-derived NC cells may provide an easily accessible, autologous source of stem cells that can be used for treatment of neurodegenerative diseases or as a model system for studying disease pathophysiology and drug development.
Collapse
|
22
|
Chen SY, Cheng AMS, Zhang Y, Zhu YT, He H, Mahabole M, Tseng SCG. Pax 6 Controls Neural Crest Potential of Limbal Niche Cells to Support Self-Renewal of Limbal Epithelial Stem Cells. Sci Rep 2019; 9:9763. [PMID: 31278274 PMCID: PMC6611810 DOI: 10.1038/s41598-019-45100-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 05/23/2019] [Indexed: 12/31/2022] Open
Abstract
On ocular surface, corneal epithelial stem cells (SC) reside in limbus between cornea and conjunctiva. Pax6, an evolutionally conserved transcription factor essential for eye development, is expressed in post-natal corneal and limbal epithelia progenitors (LEPC) but not in underlying stroma. Because Pax6 is transiently expressed in developing corneal stroma and a subset of limbal and corneal stromal progenitors, we examined the role of Pax6 in limbal niche cells (LNC) in maintaining the phenotype of neural crest (NC) progenitors to support LEPC. Our results showed that nuclear Pax6 staining was found in freshly isolated LNC but not corneal stromal cells. Serial passaged LNC resulted in gradual loss of nuclear Pax6 (46 kDa) staining and neural crest progenitor status defined by the expression of embryonic SCs and NC markers, neurosphere formation, and differentiation into neurons, oligodendrocytes and astrocytes. Gain of function of 46 kDa Pax6 in late-passaged LNC resulted in nuclear Pax6 staining and promotion of the aforementioned NC progenitor status. In an in vitro reunion assay, early passaged LNC and late passaged LNC with overexpression of Pax6 inhibited the expression of corneal epithelial differentiation marker and promoted holoclone by LEPC. Therefore, expression of nuclear 46 kDa Pax6 in LNC plays an important developmental role in maintaining NC progenitor status to support self-renewal of corneal epithelial SCs in the limbal niche.
Collapse
Affiliation(s)
- Szu-Yu Chen
- R&D Department, Tissue Tech, Inc., Miami, FL, 33126, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL33136, USA
| | - Anny M S Cheng
- Department of Ophthalmology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL33199, USA.,Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33126, USA
| | - Yuan Zhang
- R&D Department, Tissue Tech, Inc., Miami, FL, 33126, USA
| | - Ying-Ting Zhu
- R&D Department, Tissue Tech, Inc., Miami, FL, 33126, USA
| | - Hua He
- R&D Department, Tissue Tech, Inc., Miami, FL, 33126, USA
| | - Megha Mahabole
- R&D Department, Tissue Tech, Inc., Miami, FL, 33126, USA
| | - Scheffer C G Tseng
- R&D Department, Tissue Tech, Inc., Miami, FL, 33126, USA. .,Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33126, USA.
| |
Collapse
|
23
|
Zhu S, Liu W, Ding HF, Cui H, Yang L. BMP4 and Neuregulin regulate the direction of mouse neural crest cell differentiation. Exp Ther Med 2019; 17:3883-3890. [PMID: 31007733 PMCID: PMC6468403 DOI: 10.3892/etm.2019.7439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
The neural crest is a transient embryonic tissue that initially generates neural crest stem cells, which then migrate throughout the body to give rise to a variety of mature tissues. It was proposed that the fate of neural crest cells is gradually determined via environmental cues from the surrounding tissues. In the present study, neural crest cells were isolated and identified from mouse embryos. Bone morphogenetic protein 4 (BMP4) and Neuregulin (NRG) were employed to induce the differentiation of neural crest cells. Treatment with BMP4 revealed neuron-associated differentiation; cells treated with NRG exhibited differentiation into the Schwann cell lineage, a type of glia. Soft agar clonogenic and neurosphere formation assays were conducted to investigate the effects of N-Myc (MYCN) overexpression in neural crest cells; the number of colonies and neurospheres notably increased after 14 days. These findings demonstrated that the direction of cell differentiation may be affected by altering the factors present in the surrounding environment. In addition, MYCN may serve a key role in regulating neural crest cell differentiation.
Collapse
Affiliation(s)
- Shunqin Zhu
- School of Life Sciences, Southwest University, Chongqing 400715, P.R. China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| | - Wanhong Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P.R. China
| | - Han-Fei Ding
- Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
24
|
Sobrino V, Annese V, Navarro-Guerrero E, Platero-Luengo A, Pardal R. The carotid body: a physiologically relevant germinal niche in the adult peripheral nervous system. Cell Mol Life Sci 2019; 76:1027-1039. [PMID: 30498994 PMCID: PMC11105339 DOI: 10.1007/s00018-018-2975-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 12/26/2022]
Abstract
Oxygen constitutes a vital element for the survival of every single cell in multicellular aerobic organisms like mammals. A complex homeostatic oxygen-sensing system has evolved in these organisms, including detectors and effectors, to guarantee a proper supply of the element to every cell. The carotid body represents the most important peripheral arterial chemoreceptor organ in mammals and informs about hypoxemic situations to the effectors at the brainstem cardiorespiratory centers. To optimize organismal adaptation to maintained hypoxemic situations, the carotid body has evolved containing a niche of adult tissue-specific stem cells with the capacity to differentiate into both neuronal and vascular cell types in response to hypoxia. These neurogenic and angiogenic processes are finely regulated by the niche and by hypoxia itself. Our recent data on the cellular and molecular mechanisms underlying the functioning of this niche might help to comprehend a variety of different diseases coursing with carotid body failure, and might also improve our capacity to use these stem cells for the treatment of neurological disease. Herein, we review those data about the recent characterization of the carotid body niche, focusing on the study of the phenotype and behavior of multipotent stem cells within the organ, comparing them with other well-documented neural stem cells within the adult nervous system.
Collapse
Affiliation(s)
- Verónica Sobrino
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Valentina Annese
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Elena Navarro-Guerrero
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Aida Platero-Luengo
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain.
| |
Collapse
|
25
|
Comparative Analysis of Biological Properties of Large-Scale Expanded Adult Neural Crest-Derived Stem Cells Isolated from Human Hair Follicle and Skin Dermis. Stem Cells Int 2019; 2019:9640790. [PMID: 30915126 PMCID: PMC6399535 DOI: 10.1155/2019/9640790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/14/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022] Open
Abstract
Introduction The adult neural crest-derived stem cells (NCSCs) have significant perspectives for use in regenerative medicine. The most attractive sources for adult NCSC isolation are the hair follicles (HF) and skin dermis (SD) because of easy access and minimally invasive biopsy. The aim of this study was to compare the biological properties of HF- and SD-derived NCSCs after their large-scale expansion. Methods The conventional explant method was used to obtain HF NCSCs. For the isolation of SD NCSCs, a new combined technique consisting of preplating and subsequent culturing in 3D blood plasma-derived fibrin hydrogel was applied. The studied cells were characterized by flow cytometry, ICC, qPCR, Bio-Plex multiplex assay, and directed multilineage differentiation assays. Results We have obtained both adult SD and HF NCSCs from each skin sample (n = 5). Adult SD and HF NCSCs were positive for key neural crest markers: SOX10, P75 (CD271), NESTIN, SOX2, and CD349. SD NCSCs showed a higher growth rate during the large-scale expansion compared to HF NCSCs (p < 0.01). Final population of SD NCSCs also contained more clonogenic cells (p < 0.01) and SOX10+, CD271+, CD105+, CD140a+, CD146+, CD349+ cells (p < 0.01). Both HF and SD NCSCs had similar gene expression profiling and produced growth factors, but some quantitative differences were detected. Adult HF and SD NCSCs were able to undergo directed differentiation into neurons, Schwann cells, adipocytes, and osteoblasts. Conclusion The HF and SD are suitable sources for large-scale manufacturing of adult NCSCs with similar biological properties. We demonstrated that the NCSC population from SD was homogenous and displayed significantly higher growth rate than HF NCSCs. Moreover, SD NCSC isolation is cheaper, easier, and minimally time-consuming method.
Collapse
|
26
|
Serrano F, Bernard WG, Granata A, Iyer D, Steventon B, Kim M, Vallier L, Gambardella L, Sinha S. A Novel Human Pluripotent Stem Cell-Derived Neural Crest Model of Treacher Collins Syndrome Shows Defects in Cell Death and Migration. Stem Cells Dev 2019; 28:81-100. [PMID: 30375284 PMCID: PMC6350417 DOI: 10.1089/scd.2017.0234] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 10/29/2018] [Indexed: 01/05/2023] Open
Abstract
The neural crest (NC) is a transient multipotent cell population present during embryonic development. The NC can give rise to multiple cell types and is involved in a number of different diseases. Therefore, the development of new strategies to model NC in vitro enables investigations into the mechanisms involved in NC development and disease. In this study, we report a simple and efficient protocol to differentiate human pluripotent stem cells (HPSC) into NC using a chemically defined media, with basic fibroblast growth factor 2 (FGF2) and the transforming growth factor-β inhibitor SB-431542. The cell population generated expresses a range of NC markers, including P75, TWIST1, SOX10, and TFAP2A. NC purification was achieved in vitro through serial passaging of the population, recreating the developmental stages of NC differentiation. The generated NC cells are highly proliferative, capable of differentiating to their derivatives in vitro and engraft in vivo to NC specific locations. In addition, these cells could be frozen for storage and thawed with no loss of NC properties, nor the ability to generate cellular derivatives. We assessed the potential of the derived NC population to model the neurocristopathy, Treacher Collins Syndrome (TCS), using small interfering RNA (siRNA) knockdown of TCOF1 and by creating different TCOF1+/- HPSC lines through CRISPR/Cas9 technology. The NC cells derived from TCOF1+/- HPSC recapitulate the phenotype of the reported TCS murine model. We also report for the first time an impairment of migration in TCOF1+/- NC and mesenchymal stem cells. In conclusion, the developed protocol permits the generation of the large number of NC cells required for developmental studies, disease modeling, and for drug discovery platforms in vitro.
Collapse
Affiliation(s)
- Felipe Serrano
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - William George Bernard
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alessandra Granata
- Division of Clinical Neurosciences, Clifford Allbutt Building, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Dharini Iyer
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ben Steventon
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Kim
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ludovic Vallier
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Laure Gambardella
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sanjay Sinha
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Sobrino V, Annese V, Pardal R. Progenitor Cell Heterogeneity in the Adult Carotid Body Germinal Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:19-38. [PMID: 31016593 DOI: 10.1007/978-3-030-11096-3_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Somatic stem cells confer plasticity to adult tissues, permitting their maintenance, repair and adaptation to a changing environment. Adult germinal niches supporting somatic stem cells have been thoroughly characterized throughout the organism, including in central and peripheral nervous systems. Stem cells do not reside alone within their niches, but they are rather accompanied by multiple progenitor cells that not only contribute to the progression of stem cell lineage but also regulate their behavior. Understanding the mechanisms underlying these interactions within the niche is crucial to comprehend associated pathologies and to use stem cells in cell therapy. We have described a stunning germinal niche in the adult peripheral nervous system: the carotid body. This is a chemoreceptor organ with a crucial function during physiological adaptation to hypoxia. We have shown the presence of multipotent stem cells within this niche, escorted by multiple restricted progenitor cell types that contribute to niche physiology and hence organismal adaptation to the lack of oxygen. Herein, we discuss new and existing data about the nature of all these stem and progenitor cell types present in the carotid body germinal niche, discussing their role in physiology and their clinical relevance for the treatment of diverse pathologies.
Collapse
Affiliation(s)
- Verónica Sobrino
- Dpto. de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Valentina Annese
- Dpto. de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ricardo Pardal
- Dpto. de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
28
|
Matsushita T, Steinfeld J, Fujihara A, Urayama S, Taketani S, Araki M. Regulation of neuronal and photoreceptor cell differentiation by Wnt signaling from iris-derived stem/progenitor cells of the chick in flat vs. Matrigel-embedding cultures. Brain Res 2018; 1704:207-218. [PMID: 30347217 DOI: 10.1016/j.brainres.2018.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 01/03/2023]
Abstract
Previously we developed a simple culture method of the iris tissues and reported novel properties of neural stem/progenitor-like cells in the iris tissues of the chick and pig. When the iris epithelium or connective tissue (stroma) was treated with dispase, embedded in Matrigel, and cultured, neuronal cells extended from the explants within 24 h of culture, and cells positively stained for photoreceptor cell markers were also observed within a few days of culturing. In ordinary flat tissue culture conditions, explants had the same differentiation properties to those in tissue environments. Previously, we suggested that iris neural stem/progenitor cells are simply suppressed from neuronal differentiation within tissue, and that separation from the tissue releases the cells from this suppression mechanism. Here, we examined whether Wnt signaling suppressed neuronal differentiation of iris tissue cells in tissue environments because the lens, which has direct contact with the iris, is a rich source of Wnt proteins. When the Wnt signaling activator 6-bromoindirubin-3'-oxime (BIO) was administered to Matrigel culture, neuronal differentiation was markedly suppressed, but cell proliferation was not affected. When Wnt signaling inhibitors, such as DKK-1 and IWR-1, were applied to the same culture, they did not have any effect on cell differentiation and proliferation. However, when the inhibitors were applied to flat tissue culture, cells with neural properties emerged. These results indicate that the interaction of iris tissue with neighboring tissues and the environment regulates the stemness nature of iris tissue cells, and that Wnt signaling is a major factor.
Collapse
Affiliation(s)
- Tamami Matsushita
- Developmental Neurobiology Laboratory, Nara Women's University, Nara 630-8506, Japan
| | | | - Ai Fujihara
- Developmental Neurobiology Laboratory, Nara Women's University, Nara 630-8506, Japan
| | - Satoshi Urayama
- Unit of Neural Development and Regeneration, Nara Medical University, Kashihara 634-8521, Japan
| | - Shigeru Taketani
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Masasuke Araki
- Developmental Neurobiology Laboratory, Nara Women's University, Nara 630-8506, Japan; Unit of Neural Development and Regeneration, Nara Medical University, Kashihara 634-8521, Japan.
| |
Collapse
|
29
|
Yamashita K, Inagaki E, Hatou S, Higa K, Ogawa A, Miyashita H, Tsubota K, Shimmura S. Corneal Endothelial Regeneration Using Mesenchymal Stem Cells Derived from Human Umbilical Cord. Stem Cells Dev 2018; 27:1097-1108. [PMID: 29929442 DOI: 10.1089/scd.2017.0297] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corneal blindness is the third leading cause of blindness in the world, and one of the main etiologies is dysfunction of the corneal endothelium. Current treatment of corneal endothelial disease is allogenic corneal transplantation, which is limited by the global shortage of donor corneas and immunological rejection. The corneal endothelium consists of a monolayer of cells derived from the neural crest and mesoderm. Its main function is to prevent corneal edema by tight junctions formed by zonular occludens-1 (ZO-1) and Na, K-ATPase pump function. The human umbilical cord (UC) is a rich source of mesenchymal stem cells (MSCs). UC-MSCs that have multi-lineage potential may be an accessible allogenic source. After inducing differentiation with medium containing glycogen synthase kinase (GSK) 3-β inhibitor, UC-MSCs formed polygonal corneal endothelial-like cells that functioned as tissue-engineered corneal endothelium (UTECE). Expressions of major corneal endothelial markers were confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and quantitative RT-PCR (qRT-PCR). Western blotting confirmed the expression of Na,K-ATPase and PITX2, the functional and developmental markers of corneal endothelial cells. Immunohistochemistry revealed the localization of Na,K-ATPase and ZO-1 in cell-cell junctions, suggesting the presence of tight junctions. In vitro functional analysis revealed that UTECE had significantly high pump function compared with UC-MSCs. Moreover, UTECE transplanted into a rabbit model of bullous keratopathy successfully maintained corneal thickness and transparency. Our findings suggest that UTECE may be used as a source of allogenic cells for the treatment of corneal endothelial disease.
Collapse
Affiliation(s)
- Kazuya Yamashita
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| | - Emi Inagaki
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| | - Shin Hatou
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| | - Kazunari Higa
- 2 Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital , Ichikawa, Japan
| | - Akiko Ogawa
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| | - Hideyuki Miyashita
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| | - Kazuo Tsubota
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| | - Shigeto Shimmura
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| |
Collapse
|
30
|
Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 2018; 444 Suppl 1:S110-S143. [PMID: 29802835 DOI: 10.1016/j.ydbio.2018.05.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Collapse
|
31
|
Acuna-Mendoza S, Martin S, Kuchler-Bopp S, Ribes S, Thalgott J, Chaussain C, Creuzet S, Lesot H, Lebrin F, Poliard A. A New Wnt1-CRE TomatoRosa Embryonic Stem Cell Line: A Tool for Studying Neural Crest Cell Integration Capacity. Stem Cells Dev 2017; 26:1682-1694. [DOI: 10.1089/scd.2017.0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Soledad Acuna-Mendoza
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Sorbonne Paris Cité, University Paris Descartes, Paris, France
- Department of Pathology and Oral Medicine, Dental Faculty, University of Chile, Santiago, Chile
| | - Sabrina Martin
- CNRS UMR 7241/INSERM U1050, CIRB, Collège de France, Paris, France
| | - Sabine Kuchler-Bopp
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Sandy Ribes
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Sorbonne Paris Cité, University Paris Descartes, Paris, France
| | - Jérémy Thalgott
- The Einthoven Laboratory for Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Catherine Chaussain
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Sorbonne Paris Cité, University Paris Descartes, Paris, France
- AP-HP Department of Odontology, Bretonneau Hospital, Paris, France
| | - Sophie Creuzet
- Laboratoire Neurobiologie et Développement, Institut de Neurobiologie, CNRS-UPR3294, Gif-sur-Yvette, France
| | - Hervé Lesot
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Franck Lebrin
- CNRS UMR 7241/INSERM U1050, CIRB, Collège de France, Paris, France
- The Einthoven Laboratory for Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne Poliard
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Sorbonne Paris Cité, University Paris Descartes, Paris, France
| |
Collapse
|
32
|
Ghoubay-Benallaoua D, de Sousa C, Martos R, Latour G, Schanne-Klein MC, Dupin E, Borderie V. Easy xeno-free and feeder-free method for isolating and growing limbal stromal and epithelial stem cells of the human cornea. PLoS One 2017; 12:e0188398. [PMID: 29149196 PMCID: PMC5693460 DOI: 10.1371/journal.pone.0188398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Epithelial and stromal stem cells are required to maintain corneal transparency. The aim of the study was to develop a new method to isolate and grow both corneal stromal (SSC) and epithelial limbal (LSC) stem cells from small human limbal biopsies under culture conditions in accordance with safety requirements mandatory for clinical use in humans. Superficial limbal explants were retrieved from human donor corneo-scleral rims. Human limbal cells were dissociated by digestion with collagenase A, either after epithelial scraping or with no scraping. Isolated cells were cultured with Essential 8 medium (E8), E8 supplemented with EGF (E8+) or Green’s medium with 3T3 feeder-layers. Cells were characterized by immunostaining, RT-qPCR, colony forming efficiency, sphere formation, population doubling, second harmonic generation microscopy and differentiation potentials. LSC were obtained from unscraped explants in E8, E8+ and Green’s media and were characterized by colony formation and expression of PAX6, ΔNP63α, Bmi1, ABCG2, SOX9, CK14, CK15 and vimentin, with a few cells positive for CK3. LSC underwent 28 population doublings still forming colonies. SSC were obtained from both scraped and unscraped explants in E8 and E8+ media and were characterized by sphere formation, expression of PAX6, SOX2, BMI1, NESTIN, ABCG2, KERATOCAN, VIMENTIN, SOX9, SOX10 and HNK1, production of collagen fibrils and differentiation into keratocytes, fibroblasts, myofibroblasts, neurons, adipocytes, chondrocytes and osteocytes. SSC underwent 48 population doublings still forming spheres, Thus, this new method allows both SSC and LSC to be isolated from small superficial limbal biopsies and to be primary cultured in feeder-free and xeno-free conditions, which will be useful for clinical purposes.
Collapse
Affiliation(s)
- Djida Ghoubay-Benallaoua
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
| | | | - Raphaël Martos
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Gaël Latour
- Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Marie-Claire Schanne-Klein
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS, INSERM U1182, Université Paris-Saclay, Palaiseau, France
| | - Elisabeth Dupin
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Vincent Borderie
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
| |
Collapse
|
33
|
The characterization of human oral mucosal fibroblasts and their use as feeder cells in cultivated epithelial sheets. Future Sci OA 2017; 3:FSO243. [PMID: 29134127 PMCID: PMC5674271 DOI: 10.4155/fsoa-2017-0074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/07/2017] [Indexed: 01/22/2023] Open
Abstract
Aim To characterize human oral mucosa middle interstitial tissue fibroblasts (hOMFs) and their application in the cultivation of epithelial sheets. Methodology hOMFs were cultured with methylcellulose to form cell clusters. hOMFs amplified in adhesive culture were analyzed by flow cytometry, and were found to differentiate into multiple cell types suitable for the cultivation of human corneal epithelial sheets. hOMFs were expanded from clusters to analyze CD56 and PDGFRα expression. Results These cells showed similar differentiation patterns as keratocytes, and similar expression patterns as mesenchymal and neural cells. Furthermore, we established human corneal epithelial sheets using hOMFs. Conclusion hOMFs may be of neural crest origin and possess multipotent differentiation capacity, and are suitable for use as an autologous cell source for corneal regeneration.
Collapse
|
34
|
Human bone marrow harbors cells with neural crest-associated characteristics like human adipose and dermis tissues. PLoS One 2017; 12:e0177962. [PMID: 28683107 PMCID: PMC5500284 DOI: 10.1371/journal.pone.0177962] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
Adult neural crest stem-derived cells (NCSC) are of extraordinary high plasticity and promising candidates for use in regenerative medicine. Several locations such as skin, adipose tissue, dental pulp or bone marrow have been described in rodent, as sources of NCSC. However, very little information is available concerning their correspondence in human tissues, and more precisely for human bone marrow. The main objective of this study was therefore to characterize NCSC from adult human bone marrow. In this purpose, we compared human bone marrow stromal cells to human adipose tissue and dermis, already described for containing NCSC. We performed comparative analyses in terms of gene and protein expression as well as functional characterizations. It appeared that human bone marrow, similarly to adipose tissue and dermis, contains NESTIN+ / SOX9+ / TWIST+ / SLUG+ / P75NTR+/ BRN3A+/ MSI1+/ SNAIL1+ cells and were able to differentiate into melanocytes, Schwann cells and neurons. Moreover, when injected into chicken embryos, all those cells were able to migrate and follow endogenous neural crest migration pathways. Altogether, the phenotypic characterization and migration abilities strongly suggest the presence of neural crest-derived cells in human adult bone marrow.
Collapse
|
35
|
Abstract
Craniofacial mesenchymal stem cells (MSCs), isolated from an abundant and accessible source of craniofacial tissues, possess self-renewal and multilineage differentiation potential. It has been reported that craniofacial MSCs show elevated proliferation and regeneration capacities compared to bone marrow mesenchymal stem cells (BMMSCs). Furthermore, the immunomodulatory property has generated an emerging multidisciplinary research field that translates MSC-based therapies to the clinic for the treatment of inflammatory and autoimmune diseases. Due to tremendous unmet clinical needs, it was extensively investigated how craniofacial MSCs impose their therapeutic effects, especially by interacting with immune cells. Mechanically, MSCs take advantage of a variety of pathways to regulate immune cells, including paracrine signaling such as transforming growth factor (TGF)-β and hepatocyte growth factor (HGF) pathways, and cell-cell contact Fas/FasL signaling-induced apoptosis. In return, immune cells attenuate MSC function by secreting inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β. This perspective review critically discusses the interaction of craniofacial MSCs with the immune milieu, as well as the underlying molecular mechanism contributing to the future improved therapeutic effects of craniofacial MSCs.
Collapse
Affiliation(s)
- Ruili Yang
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, #22 Zhongguancun South Avenue, Beijing, 100081, China.
| | - Tingting Yu
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, #22 Zhongguancun South Avenue, Beijing, 100081, China
| | - Yanheng Zhou
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, #22 Zhongguancun South Avenue, Beijing, 100081, China
| |
Collapse
|
36
|
Ishii T, Sakai D, Schol J, Nakai T, Suyama K, Watanabe M. Sciatic nerve regeneration by transplantation of in vitro differentiated nucleus pulposus progenitor cells. Regen Med 2017. [DOI: 10.2217/rme-2016-0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: To assess the applicability of mouse intervertebral disc-derived nucleus pulposus (NP) progenitor cells as a cell source for sciatic nerve regeneration. Materials & methods: P0-Cre/Floxed-EGFP-transgenic mouse-derived NP progenitor cells were differentiated to Schwann-like cells in conventional induction medium. Schwann-like cells were subsequently transplanted into a mouse model of sciatic nerve transection, and nerve regeneration assessed by immunohistochemistry, electron microscopy and functional walking track analysis and heat stimulus reflex. Results & conclusion: NP progenitor cells differentiated into Schwann-like cells. Transplantation of these cells promoted myelinated axon formation, morphology restoration and nerve function improvement. NP progenitor cells have the capacity to differentiate into neuronal cells and are candidates for peripheral nerve regeneration therapy.
Collapse
Affiliation(s)
- Takayuki Ishii
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine; 143 Shimokasuya, Isehara, Kanagawa, 259–1143, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine; 143 Shimokasuya, Isehara, Kanagawa, 259–1143, Japan
| | - Jordy Schol
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine; 143 Shimokasuya, Isehara, Kanagawa, 259–1143, Japan
| | - Tomoko Nakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine; 143 Shimokasuya, Isehara, Kanagawa, 259–1143, Japan
| | - Kaori Suyama
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine; 143 Shimokasuya, Isehara, Kanagawa, 259–1143, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine; 143 Shimokasuya, Isehara, Kanagawa, 259–1143, Japan
| |
Collapse
|
37
|
Ogawa R, Fujita K, Ito K. Mouse embryonic dorsal root ganglia contain pluripotent stem cells that show features similar to embryonic stem cells and induced pluripotent stem cells. Biol Open 2017; 6:602-618. [PMID: 28373172 PMCID: PMC5450311 DOI: 10.1242/bio.021758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the present study, we showed that the dorsal root ganglion (DRG) in the mouse embryo contains pluripotent stem cells (PSCs) that have developmental capacities equivalent to those of embryonic stem (ES) cells and induced pluripotent stem cells. Mouse embryonic DRG cells expressed pluripotency-related transcription factors [octamer-binding transcription factor 4, SRY (sex determining region Y)-box containing gene (Sox) 2, and Nanog] that play essential roles in maintaining the pluripotency of ES cells. Furthermore, the DRG cells differentiated into ectoderm-, mesoderm- and endoderm-derived cells. In addition, these cells produced primordial germ cell-like cells and embryoid body-like spheres. We also showed that the combination of leukemia inhibitor factor/bone morphogenetic protein 2/fibroblast growth factor 2 effectively promoted maintenance of the pluripotency of the PSCs present in DRGs, as well as that of neural crest-derived stem cells (NCSCs) in DRGs, which were previously shown to be present there. Furthermore, the expression of pluripotency-related transcription factors in the DRG cells was regulated by chromodomain helicase DNA-binding protein 7 and Sox10, which are indispensable for the formation of NCSCs, and vice versa. These findings support the possibility that PSCs in mouse embryonic DRGs are NCSCs.
Collapse
Affiliation(s)
- Ryuhei Ogawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kyohei Fujita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kazuo Ito
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
38
|
Chen G, Ishan M, Yang J, Kishigami S, Fukuda T, Scott G, Ray MK, Sun C, Chen SY, Komatsu Y, Mishina Y, Liu HX. Specific and spatial labeling of P0-Cre versus Wnt1-Cre in cranial neural crest in early mouse embryos. Genesis 2017; 55. [PMID: 28371069 DOI: 10.1002/dvg.23034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 01/02/2023]
Abstract
P0-Cre and Wnt1-Cre mouse lines have been widely used in combination with loxP-flanked mice to label and genetically modify neural crest (NC) cells and their derivatives. Wnt1-Cre has been regarded as the gold standard and there have been concerns about the specificity of P0-Cre because it is not clear about the timing and spatial distribution of the P0-Cre transgene in labeling NC cells at early embryonic stages. We re-visited P0-Cre and Wnt1-Cre models in the labeling of NC cells in early mouse embryos with a focus on cranial NC. We found that R26-lacZ Cre reporter responded to Cre activity more reliably than CAAG-lacZ Cre reporter during early embryogenesis. Cre immunosignals in P0-Cre and reporter (lacZ and RFP) activity in P0-Cre/R26-lacZ and P0-Cre/R26-RFP embryos was detected in the cranial NC and notochord regions in E8.0-9.5 (4-19 somites) embryos. P0-Cre transgene expression was observed in migrating NC cells and was more extensive in the forebrain and hindbrain but not apparent in the midbrain. Differences in the Cre distribution patterns of P0-Cre and Wnt1-Cre were profound in the midbrain and hindbrain regions, that is, extensive in the midbrain of Wnt1-Cre and in the hindbrain of P0-Cre embryos. The difference between P0-Cre and Wnt1-Cre in labeling cranial NC may provide a better explanation of the differential distributions of their NC derivatives and of the phenotypes caused by Cre-driven genetic modifications.
Collapse
Affiliation(s)
- Guiqian Chen
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, 30602
| | - Mohamed Ishan
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, 30602
| | - Jingwen Yang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Satoshi Kishigami
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709
| | - Tomokazu Fukuda
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709
| | - Greg Scott
- Knockout Core, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709
| | - Manas K Ray
- Knockout Core, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709
| | - Chenming Sun
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, 30602
| | - Shi-You Chen
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, 30602
| | - Yoshihiro Komatsu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, 48109.,Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709.,Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas, 77030
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, 48109.,Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709.,Knockout Core, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
39
|
|
40
|
Inagaki E, Hatou S, Higa K, Yoshida S, Shibata S, Okano H, Tsubota K, Shimmura S. Skin-Derived Precursors as a Source of Progenitors for Corneal Endothelial Regeneration. Stem Cells Transl Med 2017; 6:788-798. [PMID: 28186681 PMCID: PMC5442762 DOI: 10.1002/sctm.16-0162] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/16/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022] Open
Abstract
Corneal blindness is the fourth leading cause of blindness in the world. Current treatment is allogenic corneal transplantation, which is limited by shortage of donors and immunological rejection. Skin-derived precursors (SKPs) are postnatal stem cells, which are self-renewing, multipotent precursors that can be isolated and expanded from the dermis. Facial skin may therefore be an accessible autologous source of neural crest derived cells. SKPs were isolated from facial skin of Wnt1-Cre/Floxed EGFP mouse. After inducing differentiation with medium containing retinoic acid and GSK 3-β inhibitor, SKPs formed polygonal corneal endothelial-like cells (sTECE). Expression of major corneal endothelial markers were confirmed by Reverse transcription polymerase chain reaction (RT-PCR) and quantitative Real time polymerase chain reaction (qRT-PCR). Western blots confirmed the expression of Na, K-ATPase protein, the major functional marker of corneal endothelial cells. Immunohistochemistry revealed the expression of zonular occludens-1 and Na, K-ATPase in cell-cell junctions. In vitro functional analysis of Na, K-ATPase pump activity revealed that sTECE had significantly high pump function compared to SKPs or control 3T3 cells. Moreover, sTECE transplanted into a rabbit model of bullous keratopathy successfully maintained corneal thickness and transparency. Furthermore, we successfully induced corneal endothelial-like cells from human SKPs, and showed that transplanted corneas also maintained corneal transparency and thickness. Our findings suggest that SKPs may be used as a source of autologous cells for the treatment of corneal endothelial disease. Stem Cells Translational Medicine 2017;6:788-798.
Collapse
Affiliation(s)
- Emi Inagaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shin Hatou
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Higa
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
| | - Satoru Yoshida
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Chen CC, Hsia CW, Ho CW, Liang CM, Chen CM, Huang KL, Kang BH, Chen YH. Hypoxia and hyperoxia differentially control proliferation of rat neural crest stem cells via distinct regulatory pathways of the HIF1α-CXCR4 and TP53-TPM1 proteins. Dev Dyn 2017; 246:162-185. [PMID: 28002632 DOI: 10.1002/dvdy.24481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neural crest stem cells (NCSCs) are a population of adult multipotent stem cells. We are interested in studying whether oxygen tensions affect the capability of NCSCs to self-renew and repair damaged tissues. NCSCs extracted from the hair follicle bulge region of the rat whisker pad were cultured in vitro under different oxygen tensions. RESULTS We found significantly increased and decreased rates of cell proliferation in rat NCSCs (rNCSCs) cultured, respectively, at 0.5% and 80% oxygen levels. At 0.5% oxygen, the expression of both hypoxia-inducible factor (HIF) 1α and CXCR4 was greatly enhanced in the rNCSC nuclei and was suppressed by incubation with the CXCR4-specific antagonist AMD3100. In addition, the rate of cell apoptosis in the rNCSCs cultured at 80% oxygen was dramatically increased, associated with increased nuclear expression of TP53, decreased cytoplasmic expression of TPM1 (tropomyosin-1), and increased nuclear-to-cytoplasmic translocation of S100A2. Incubation of rNCSCs with the antioxidant N-acetylcysteine (NAC) overcame the inhibitory effect of 80% oxygen on proliferation and survival of rNCSCs. CONCLUSIONS Our results show for the first time that extreme oxygen tensions directly control NCSC proliferation differentially via distinct regulatory pathways of proteins, with hypoxia via the HIF1α-CXCR4 pathway and hyperoxia via the TP53-TPM1 pathway. Developmental Dynamics 246:162-185, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chien-Cheng Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Neihu District, Taipei City, Taiwan
| | - Ching-Wu Hsia
- Department of Finance, School of Management, Shih Hsin University, Wenshan District, Taipei City, Taiwan
| | - Cheng-Wen Ho
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Neihu District, Taipei City, Taiwan
- Division of Rehabilitation Medicine, Taoyuan Armed Forces General Hospital, Longtan District, Taoyuan City, Taiwan
| | - Chang-Min Liang
- Department of Ophthalmology, Tri-Service General Hospital, Neihu District, Taipei City, Taiwan
| | - Chieh-Min Chen
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Neihu District, Taipei City, Taiwan
| | - Kun-Lun Huang
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Neihu District, Taipei City, Taiwan
- Department of Undersea and Hyperbaric Medicine, Tri-Service General Hospital, Neihu District, Taipei City, Taiwan
| | - Bor-Hwang Kang
- Division of Diving Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Zuoying District, Kaohsiung City, Taiwan
- Department of Otorhinolaryngology - Head and Neck Surgery, Tri-Service General Hospital, Taipei City, Taiwan
| | - Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Neihu District, Taipei City, Taiwan
| |
Collapse
|
42
|
Liu Y, Sun H, Guo P, Hu M, Zhang Y, Tighe S, Chen S, Zhu Y. Characterization and Prospective of Human Corneal Endothelial Progenitors. Int J Med Sci 2017; 14:705-710. [PMID: 28824304 PMCID: PMC5562123 DOI: 10.7150/ijms.19018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022] Open
Abstract
Corneal endothelial cells play a critical role in maintaining corneal transparency and dysfunction of these cells caused by aging, diseases (such as Fuch's dystrophy), injury or surgical trauma, which can lead to corneal edema and blindness. Due to their limited proliferative capacity in vivo, the only treatment method is via transplantation of a cadaver donor cornea. However, there is a severe global shortage of donor corneas. To circumvent such issues, tissue engineering of corneal tissue is a viable option thanks to the recent discoveries in this field. In this review, we summarize the recent advances in reprogramming adult human corneal endothelial cells into their progenitor status, the expansion methods and characteristics of human corneal endothelial progenitors, and their potential clinical applications as corneal endothelial cell grafts.
Collapse
Affiliation(s)
- Yongsong Liu
- Department of Ophthalmology, Yan' An Hospital of Kunming City, Kunming, 650051, China
| | - Hong Sun
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ping Guo
- Shenzhen Eye Hospital, School of Optometry & Ophthalmology of Shenzhen University, Shenzhen Key Laboratory of Department of Ophthalmology, Shenzhen, 518000, China
| | - Min Hu
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, 650021, China
| | - Yuan Zhang
- Research and Development Department, TissueTech, Inc., 7000 SW 97th Avenue, Suite 212, Miami, FL 33173, USA
| | - Sean Tighe
- Research and Development Department, TissueTech, Inc., 7000 SW 97th Avenue, Suite 212, Miami, FL 33173, USA
| | - Shuangling Chen
- Research and Development Department, TissueTech, Inc., 7000 SW 97th Avenue, Suite 212, Miami, FL 33173, USA
| | - Yingting Zhu
- Research and Development Department, TissueTech, Inc., 7000 SW 97th Avenue, Suite 212, Miami, FL 33173, USA
| |
Collapse
|
43
|
Katikireddy KR, Schmedt T, Price MO, Price FW, Jurkunas UV. Existence of Neural Crest-Derived Progenitor Cells in Normal and Fuchs Endothelial Dystrophy Corneal Endothelium. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2736-50. [PMID: 27639969 DOI: 10.1016/j.ajpath.2016.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022]
Abstract
Human corneal endothelial cells are derived from neural crest and because of postmitotic arrest lack competence to repair cell loss from trauma, aging, and degenerative disorders such as Fuchs endothelial corneal dystrophy (FECD). Herein, we identified a rapidly proliferating subpopulation of cells from the corneal endothelium of adult normal and FECD donors that exhibited features of neural crest-derived progenitor (NCDP) cells by showing absence of senescence with passaging, propensity to form spheres, and increased colony forming efficacy compared with the primary cells. The collective expression of stem cell-related genes SOX2, OCT4, LGR5, TP63 (p63), as well as neural crest marker genes PSIP1 (p75(NTR)), PAX3, SOX9, AP2B1 (AP-2β), and NES, generated a phenotypic footprint of endothelial NCDPs. NCDPs displayed multipotency by differentiating into microtubule-associated protein 2, β-III tubulin, and glial fibrillary acidic protein positive neurons and into p75(NTR)-positive human corneal endothelial cells that exhibited transendothelial resistance of functional endothelium. In conclusion, we found that mitotically incompetent ocular tissue cells contain adult NCDPs that exhibit a profile of transcription factors regulating multipotency and neural crest progenitor characteristics. Identification of normal NCDPs in FECD-affected endothelium holds promise for potential autologous cell therapies.
Collapse
Affiliation(s)
| | - Thore Schmedt
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts; AbbVie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | | | | | - Ula V Jurkunas
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts.
| |
Collapse
|
44
|
Liu JA, Cheung M. Neural crest stem cells and their potential therapeutic applications. Dev Biol 2016; 419:199-216. [PMID: 27640086 DOI: 10.1016/j.ydbio.2016.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
The neural crest (NC) is a remarkable transient structure generated during early vertebrate development. The neural crest progenitors have extensive migratory capacity and multipotency, harboring stem cell-like characteristics such as self-renewal. They can differentiate into a variety of cell types from craniofacial skeletal tissues to the trunk peripheral nervous system (PNS). Multiple regulators such as signaling factors, transcription factors, and migration machinery components are expressed at different stages of NC development. Gain- and loss-of-function studies in various vertebrate species revealed epistatic relationships of these molecules that could be assembled into a gene regulatory network defining the processes of NC induction, specification, migration, and differentiation. These basic developmental studies led to the subsequent establishment and molecular validation of neural crest stem cells (NCSCs) derived by various strategies. We provide here an overview of the isolation and characterization of NCSCs from embryonic, fetal, and adult tissues; the experimental strategies for the derivation of NCSCs from embryonic stem cells, induced pluripotent stem cells, and skin fibroblasts; and recent developments in the use of patient-derived NCSCs for modeling and treating neurocristopathies. We discuss future research on further refinement of the culture conditions required for the differentiation of pluripotent stem cells into axial-specific NC progenitors and their derivatives, developing non-viral approaches for the generation of induced NC cells (NCCs), and using a genomic editing approach to correct genetic mutations in patient-derived NCSCs for transplantation therapy. These future endeavors should facilitate the therapeutic applications of NCSCs in the clinical setting.
Collapse
Affiliation(s)
- Jessica Aijia Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
45
|
Trubiani O, Guarnieri S, Diomede F, Mariggiò MA, Merciaro I, Morabito C, Cavalcanti MFXB, Cocco L, Ramazzotti G. Nuclear translocation of PKCα isoenzyme is involved in neurogenic commitment of human neural crest-derived periodontal ligament stem cells. Cell Signal 2016; 28:1631-41. [PMID: 27478064 DOI: 10.1016/j.cellsig.2016.07.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 12/15/2022]
Abstract
Stem cells isolated from human adult tissue niche represent a promising source for neural differentiation. Human Periodontal Ligament Stem Cells (hPDLSCs) originating from the neural crest are particularly suitable for induction of neural commitment. In this study, under xeno-free culture conditions, in undifferentiated hPDLSCs and in hPDLSCs induced to neuronal differentiation by basic Fibroblast Growth Factor, the level of some neural markers have been analyzed. The hPDLSCs spontaneously express Nestin, a neural progenitor marker. In these cells, the neurogenic process induced to rearrange the cytoskeleton, form neurospheres and express higher levels of Nestin and Tyrosine Hydroxylase, indicating neural induction. Protein Kinase C (PKC) is highly expressed in neural tissue and has a key role in neuronal functions. In particular the Ca(2+) and diacylglycerol-dependent activation of PKCα isozyme is involved in the regulation of neuronal differentiation. Another main component of the pathways controlling neuronal differentiation is the Growth Associated Protein-43 (GAP-43), whose activity is strictly regulated by PKC. The aim of this study is to investigate the role of PKCα/GAP-43 nuclear signal transduction pathway during neuronal commitment of hPDLSCs. During hPDLSCs neurogenic commitment the levels of p-PKC and p-GAP-43 increased both in cytoplasmic and nuclear compartment. PKCα nuclear translocation induced GAP-43 movement to the cytoplasm, where it is known to regulate growth cone dynamics and neuronal differentiation. Moreover, the degree of cytosolic Ca(2+) mobilization appeared to be more pronounced in differentiated hPDLSCs than in undifferentiated cells. This study provides evidences of a new PKCα/GAP-43 nuclear signalling pathway that controls neuronal differentiation in hPDLSCs, leading the way to a potential use of these cells in cell-based therapy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences - CeSI-MET, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy
| | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy
| | - Maria A Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences - CeSI-MET, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy
| | - Ilaria Merciaro
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy
| | - Caterina Morabito
- Department of Neuroscience, Imaging and Clinical Sciences - CeSI-MET, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy
| | - Marcos F X B Cavalcanti
- Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, 9, avenue de la Forêt de Haye, 54500 Vandoeuvre-lés-Nancy, France; Cruzeiro do Sul University, Rua Galvão Bueno 868, 01506-000 São Paulo, SP, Brazil
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
46
|
Abstract
Recently, regenerative medicine has become a highlighted field because it has great potential to induce a paradigm shift of supportive conventional therapy into definitive treatment. The cornea is the avascular, transparent, dome-shaped outermost layer of the eyeball, and it consists of three layers: epithelium, stroma, and endothelium. Conventional corneal transplantation, known as keratoplasty, has two main problems, a donor shortage and immunological rejection. Therefore, regenerative medicine has been applied to overcome these challenges. Regenerative medicine involving the corneal epithelium has been clinically applied, along with an understanding of corneal epithelial stem cell biology, earlier than that of the corneal stroma or endothelium. Thus, the effectiveness and safety of cultivated corneal or oral mucosal epithelial cell sheet transplantation have been reported by many researchers. Clinical studies on regenerative medicine for corneal stroma or endothelium have begun after basic and nonclinical study. Translational research has been performed to make corneal regenerative medicine a universal therapy. This article reviews corneal regenerative medicine.
Collapse
Key Words
- COMET, cultivated oral mucosal epithelial cell sheet transplantation
- Cornea
- GAG, glycosaminoglycan
- LEC, limbal epithelial crypts
- LSCD, limbal stem-cell deficiency
- PMD Act, Act on Securing Quality, Efficacy and Safety of Pharmaceuticals, Medical Devices, Regenerative and Cellular Therapy Products, Gene Therapy Products, and Cosmetics (PMD Act)
- Regenerative medicine
- Translational research
- iPS, induced pluripotent stem
Collapse
Affiliation(s)
| | - Kohji Nishida
- Corresponding author. Tel.: +81 6 6879 3451; fax: +81 6 6879 3458.
| |
Collapse
|
47
|
Lin SC, Gou GH, Hsia CW, Ho CW, Huang KL, Wu YF, Lee SY, Chen YH. Simulated Microgravity Disrupts Cytoskeleton Organization and Increases Apoptosis of Rat Neural Crest Stem Cells Via Upregulating CXCR4 Expression and RhoA-ROCK1-p38 MAPK-p53 Signaling. Stem Cells Dev 2016; 25:1172-93. [PMID: 27269634 DOI: 10.1089/scd.2016.0040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neural crest stem cells (NCSCs) are a population of multipotent stem cells that are distributed broadly in many tissues and organs and are capable of differentiating into a variety of cell types that are dispersed throughout three germ layers. We are interested in studying the effects of simulated microgravity on the survival and self-renewal of NCSCs. NCSCs extracted from the hair follicle bulge region of the rat whisker pad were cultured in vitro, respectively, in a 2D adherent environment and a 3D suspension environment using the rotatory cell culture system (RCCS) to simulate microgravity. We found that rat NCSCs (rNCSCs) cultured in the RCCS for 24 h showed disrupted organization of filamentous actin, increased globular actin level, formation of plasma membrane blebbing and neurite-like artifact, as well as decreased levels of cortactin and vimentin. Interestingly, ∼70% of RCCS-cultured rNCSCs co-expressed cleaved (active) caspase-3 and neuronal markers microtubule-associated protein 2 (MAP2) and Tuj1 instead of NCSC markers, suggesting stress-induced formation of neurite-like artifact in rNCSCs. In addition, rNCSCs showed increased C-X-C chemokine receptor 4 (CXCR4) expression, RhoA GTPase activation, Rho-associated kinase 1 (ROCK1) and p38 mitogen-activated protein kinase (MAPK) phosphorylation, and p53 expression in the nucleus. Incubation of rNCSCs with the Gα protein inhibitor pertussis toxin or CXCR4 siRNA during RCCS-culturing prevented cytoskeleton disorganization and plasma membrane blebbing, and it suppressed apoptosis of rNCSCs. Taken together, we demonstrate for the first time that simulated microgravity disrupts cytoskeleton organization and increases apoptosis of rNCSCs via upregulating CXCR4 expression and the RhoA-ROCK1-p38 MAPK-p53 signaling pathway.
Collapse
Affiliation(s)
- Shing-Chen Lin
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Guo-Hau Gou
- 2 Graduate Institute of Medical Sciences, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Ching-Wu Hsia
- 2 Graduate Institute of Medical Sciences, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Cheng-Wen Ho
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan .,3 Division of Rehabilitation Medicine, Taoyuan Armed Forces General Hospital , Longtan Township, Taoyuan County, Taiwan
| | - Kun-Lun Huang
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan .,4 Department of Undersea and Hyperbaric Medicine, Tri-Service General Hospital , Neihu District, Taipei City, Taiwan
| | - Yung-Fu Wu
- 5 Department of Medical Research, Tri-Service General Hospital , Neihu District, Taipei City, Taiwan
| | - Shih-Yu Lee
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Yi-Hui Chen
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| |
Collapse
|
48
|
Veréb Z, Póliska S, Albert R, Olstad OK, Boratkó A, Csortos C, Moe MC, Facskó A, Petrovski G. Role of Human Corneal Stroma-Derived Mesenchymal-Like Stem Cells in Corneal Immunity and Wound Healing. Sci Rep 2016; 6:26227. [PMID: 27195722 PMCID: PMC4872602 DOI: 10.1038/srep26227] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/25/2016] [Indexed: 12/13/2022] Open
Abstract
Corneal tissue regeneration is of crucial importance for maintaining normal vision. We aimed to isolate and cultivate human corneal stroma-derived mesenchymal stem-like cells (CSMSCs) from the central part of cadaver corneas and study their phenotype, multipotency, role in immunity and wound healing. The isolated cells grew as monolayers in vitro, expressed mesenchymal- and stemness-related surface markers (CD73, CD90, CD105, CD140b), and were negative for hematopoietic markers as determined by flow cytometry. CSMSCs were able to differentiate in vitro into fat, bone and cartilage. Their gene expression profile was closer to bone marrow-derived MSCs (BMMSCs) than to limbal epithelial stem cells (LESC) as determined by high-throughput screening. The immunosuppressive properties of CSMSCs were confirmed by a mixed lymphocyte reaction (MLR), while they could inhibit proliferation of activated immune cells. Treatment of CSMSCs by pro-inflammatory cytokines and toll-like receptor ligands significantly increased the secreted interleukin-6 (IL-6), interleukin-8 (IL-8) and C-X-C motif chemokine 10 (CXCL-10) levels, as well as the cell surface adhesion molecules. CSMSCs were capable of closing a wound in vitro under different stimuli. These cells thus contribute to corneal tissue homeostasis and play an immunomodulatory and regenerative role with possible implications in future cell therapies for treating sight-threatening corneal diseases.
Collapse
Affiliation(s)
- Zoltán Veréb
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Szilárd Póliska
- Center for Clinical Genomics and Personalized Medicine, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Réka Albert
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ole Kristoffer Olstad
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Anita Boratkó
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Csilla Csortos
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Morten C Moe
- Centre of Eye Research, Department of Ophthalmology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Andrea Facskó
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Goran Petrovski
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Centre of Eye Research, Department of Ophthalmology, Oslo University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
49
|
Fujimura T, Shibata S, Shimojima N, Morikawa Y, Okano H, Kuroda T. Fluorescence Visualization of the Enteric Nervous Network in a Chemically Induced Aganglionosis Model. PLoS One 2016; 11:e0150579. [PMID: 26943905 PMCID: PMC4778943 DOI: 10.1371/journal.pone.0150579] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/17/2016] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal motility disorders, severe variants in particular, remain a therapeutic challenge in pediatric surgery. Absence of enteric ganglion cells that originate from neural crest cells is a major cause of dysmotility. However, the limitations of currently available animal models of dysmotility continue to impede the development of new therapeutics. Indeed, the short lifespan and/or poor penetrance of existing genetic models of dysmotility prohibit the functional evaluation of promising approaches, such as stem cell replacement strategy. Here, we induced an aganglionosis model using topical benzalkonium chloride in a P0-Cre/GFP transgenic mouse in which the neural crest lineage is labeled by green fluorescence. Pathological abnormalities and functional changes in the gastrointestinal tract were evaluated 2–8 weeks after chemical injury. Laparotomy combined with fluorescence microscopy allowed direct visualization of the enteric neural network in vivo. Immunohistochemical evaluation further confirmed the irreversible disappearance of ganglion cells, glial cells, and interstitial cell of Cajal. Remaining stool weight and bead expulsion time in particular supported the pathophysiological relevance of this chemically-induced model of aganglionosis. Interestingly, we show that chemical ablation of enteric ganglion cells is associated with a long lifespan. By combining genetic labeling of neural crest derivatives and chemical ablation of enteric ganglion cells, we developed a newly customized model of aganglionosis. Our results indicate that this aganglionosis model exhibits decreased gastrointestinal motility and shows sufficient survival for functional evaluation. This model may prove useful for the development of future therapies against motility disorders.
Collapse
Affiliation(s)
- Takumi Fujimura
- Department of Pediatric Surgery, Keio University School of Medicine, Shinjuku Tokyo, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Naoki Shimojima
- Department of Pediatric Surgery, Keio University School of Medicine, Shinjuku Tokyo, Japan
| | - Yasuhide Morikawa
- Department of Pediatric Surgery, Keio University School of Medicine, Shinjuku Tokyo, Japan
- Department of Pediatric Surgery, International University of Health and Welfare, Ohtawara, Tochigi, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
- * E-mail: (HO); (TK)
| | - Tatsuo Kuroda
- Department of Pediatric Surgery, Keio University School of Medicine, Shinjuku Tokyo, Japan
- * E-mail: (HO); (TK)
| |
Collapse
|
50
|
Boddupally K, Wang G, Chen Y, Kobielak A. Lgr5 Marks Neural Crest Derived Multipotent Oral Stromal Stem Cells. Stem Cells 2016; 34:720-31. [PMID: 26865184 DOI: 10.1002/stem.2314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 10/09/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
Abstract
It has been suggested that multipotent stem cells with neural crest (NC) origin persist into adulthood in oral mucosa. However their exact localization and role in normal homeostasis is unknown. In this study, we discovered that Lgr5 is expressed in NC cells during embryonic development, which give rise to the dormant stem cells in the adult tongue and oral mucosa. Those Lgr5 positive oral stromal stem cells display properties of NC stem cells including clonal growth and multipotent differentiation. RNA sequencing revealed that adult Lgr5+ oral stromal stem cells express high number of neural crest related markers like Sox9, Twist1, Snai1, Myc, Ets1, Crabp1, Epha2, and Itgb1. Using lineage-tracing experiments, we show that these cells persist more than a year in the ventral tongue and some areas of the oral mucosa and give rise to stromal progeny. In vivo transplantation demonstrated that these cells reconstitute the stroma. Our studies show for the first time that Lgr5 is expressed in the NC cells at embryonic day 9.5 (E9.5) and is maintained during embryonic development and postnataly in the stroma of the ventral tongue, and some areas of the oral mucosa and that Lgr5+ cells participate in the maintenance of the stroma.
Collapse
Affiliation(s)
- Keerthi Boddupally
- Department of Otolaryngology, Head & Neck Surgery, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Guangfang Wang
- Department of Otolaryngology, Head & Neck Surgery, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yibu Chen
- Norris Medical Library, University of Southern California, Los Angeles, California, USA
| | - Agnieszka Kobielak
- Department of Otolaryngology, Head & Neck Surgery, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|