1
|
Agliani G, Giglia G, Marshall EM, Gröne A, Rockx BH, van den Brand JM. Pathological features of West Nile and Usutu virus natural infections in wild and domestic animals and in humans: A comparative review. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
2
|
Masri A, Tully TN, Mayer C, Falconnier N, Erwood E, Piero FD, Carossino M. What is Your Diagnosis? J Avian Med Surg 2022; 36:333-337. [DOI: 10.1647/22-00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Erdogan Bamac O, Cizmecigil UY, Mete A, Yilmaz A, Aydin O, Tali HE, Tali BH, Yilmaz SG, Gurel A, Turan N, Ozsoy S, Vatansever Celik E, Sadeyen JR, Roman-Sosa G, Iqbal M, Richt JA, Yilmaz H. Emergence of West Nile Virus Lineage-2 in Resident Corvids in Istanbul, Turkey. Vector Borne Zoonotic Dis 2021; 21:892-899. [PMID: 34748405 DOI: 10.1089/vbz.2021.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
West Nile fever is a vector-borne viral disease affecting animals and humans causing significant health and economic problems globally. This study was aimed at investigating circulating West Nile virus (WNV) strains in free-ranging corvids in Istanbul, Turkey. Brain, liver, and kidney were collected from corvids (n = 34) between June 2019 and April 2020 and analyzed for the presence of WNV-specific RNA by quantitative RT-PCR. In addition, histopathologic and immunohistochemical examinations were also performed. Samples found to be positive by qRT-PCR were partially sequenced. WNV-specific RNA was detected in 8 of 34 corvids analyzed, which included 7 hooded crows (Corvus cornix) and 1 Eurasian magpie (Pica pica). Phylogenetic analysis based on partial WNV sequences from the 8 WNV-positive corvids identified in this study revealed that all sequences clustered within the WNV lineage-2; they were at least 97% homologues to WNV lineage-2 sequences from Slovakia, Italy, Czechia, Hungary, Senegal, Austria, Serbia, Greece, Bulgaria, and Germany. WNV sequences showed a divergence (87.94-94.46%) from sequences reported from Romania, Central African Republic, South Africa, Madagascar, Israel, and Cyprus, which clustered into a different clade of WNV lineage-2. Common histopathologic findings of WNV-positive corvids included lymphoplasmacytic hepatitis, myocarditis, and splenitis. The liver and heart were found to be the tissues most consistently positive for WNV-specific antigen by immunohistochemistry, followed by the kidney and brain. This study demonstrates for the first time the existence of WNV virus belonging to the genetic lineage-2 in resident corvids in Istanbul, Turkey. We hypothesize that the WNV strains circulating in Istanbul are possibly the result of a spillover event from Europe. Since WNV is a zoonotic pathogen transmitted by mosquito vectors, the emergence of WNV in Istanbul also poses a risk to humans and other susceptible animals in this densely populated city and needs to be addressed by animal and public health authorities.
Collapse
Affiliation(s)
- Ozge Erdogan Bamac
- Department of Pathology, and Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Utku Y Cizmecigil
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Asli Mete
- California Animal Health and Food Safety Laboratory, Davis Branch, University of California-Davis, Davis, California, USA
| | - Aysun Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Ozge Aydin
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Hasan E Tali
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Besim H Tali
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Semaha G Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Aydin Gurel
- Department of Pathology, and Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Nuri Turan
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Serhat Ozsoy
- Department of Wild Animals and Ecology, Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Ezgi Vatansever Celik
- Department of Wild Animals and Ecology, Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Jean-Remy Sadeyen
- Avian Influenza Group, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Gleyder Roman-Sosa
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Munir Iqbal
- Avian Influenza Group, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Juergen A Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Huseyin Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| |
Collapse
|
4
|
Keenan AV, Oster S, McMullen RJ, Shaw GC, Dubielzig RR, Teixeira LBC, Bellah JR, Moore PA, Boveland SD. Clinical and pathologic evaluation of chorioretinal lesions in wild owl species. Vet Ophthalmol 2021; 25:128-139. [PMID: 34590771 DOI: 10.1111/vop.12942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 08/10/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Investigate histopathology and spectral-domain optical coherence tomography (OCT) imaging of wild owls with chorioretinitis and identify any potential correlation with an infectious etiology. MATERIALS AND METHODS Ophthalmic examination and retinal OCT imaging were performed on fifteen great horned (Strix varia) and barred (Bubo virginianus) owls (30 eyes) with chorioretinitis and five owls with normal eyes (10 eyes). Testing to investigate the presence of potential infectious diseases included a complete blood count, biochemistry, protein electrophoresis, West Nile virus (WNV) plaque reduction neutralization test, Toxoplasma gondii modified direct agglutination test, WNV RT-PCR, and Avian Influenza RT-PCR. A necropsy was performed on all owls, including ocular histopathology. RESULTS Fundus lesions included retinal detachment (7/15 owls), depigmented lesions (12/15), pigment clumping (8/15), and retinal tear (4/15). All birds were negative for WNV and Avian Influenza on RT-PCR. Of the owls with chorioretinitis, 3/15 were seropositive for WNV and 7/15 for T. gondii. Optical coherence tomography of 25/30 affected eyes revealed outer retinal lesions (19/25 eyes), retinal detachment (16/25), and retinal tears (3/25). Histopathological examination revealed outer nuclear layer atrophy (19/30 eyes), retinal detachment (18/30), retinal tears (7/30), suprachoroidal hemorrhage (12/30), scleral rupture (3/30), and ossicle fracture (3/30). CONCLUSIONS Although 20% of birds were seropositive for WNV and 46.6% for T. gondii, histopathologic findings supported that the posterior segment lesions in the study group were likely due to blunt ocular trauma rather than an infectious etiology. The results of OCT imaging and histopathology documented retinal changes most consistent with blunt ocular trauma.
Collapse
Affiliation(s)
- Alessandra V Keenan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Seth Oster
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Richard J McMullen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Gillian C Shaw
- Comparative Ocular Pathology Laboratory of Wisconsin, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard R Dubielzig
- Comparative Ocular Pathology Laboratory of Wisconsin, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Leandro B C Teixeira
- Comparative Ocular Pathology Laboratory of Wisconsin, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jamie R Bellah
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Phillip A Moore
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Shannon D Boveland
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
5
|
Genetic Characterization of a Neurovirulent West Nile Virus Variant Associated with a Fatal Great Grey Owl Infection. Viruses 2021; 13:v13040699. [PMID: 33920598 PMCID: PMC8073349 DOI: 10.3390/v13040699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/24/2022] Open
Abstract
This study reports on a fatal case of a captive great grey owl infected with the West Nile virus (WNV) in the zoological garden Košice, eastern Slovakia (Central Europe). The tissue samples of the dead owl were used for virus isolation and genetic characterization. The novel isolate is genetically closer to Hungarian, Greek, and Bulgarian strains from the central/southern European clade of lineage 2 than to the strains previously isolated in Slovakia. Interestingly, it carries NS3-249P, a molecular virulence determinant associated with higher neurovirulence, which has not previously been observed in Slovakia. Subsequent serological investigation of the captive owls revealed additional seropositive animals, indicating local WNV transmission. Although no WNV-positive mosquitoes were found, the presence of the WNV principal vector Culex pipiens complex together with the described fatal case and further serological findings indicate an endemic focus of bird-neurovirulent WNV variant in the area.
Collapse
|
6
|
Abstract
Climate change and the interaction with humans and domestic species influences disease in avian wildlife. This article provides updated information on emerging disease conditions such as the spread of an Asian tick, Haemaphysalis longicornis, and its associated diseases among migratory birds in the eastern United States; lymphoproliferative disease virus in wild turkeys in the United States; and salmonellosis, particularly among passerines, which has zoonotic potential. In addition, it includes updated information on West Nile virus, Wellfleet Bay virus, and avian influenza and is intended to serve as a complement to the current veterinary literature for veterinarians treating avian wildlife species.
Collapse
Affiliation(s)
- Susan J Tyson-Pello
- Mount Laurel Animal Hospital, 220 Mount Laurel Road, Mount Laurel, NJ 08054, USA.
| | - Glenn H Olsen
- USGS Patuxent Wildlife Research Center, 12302 Beech Forest Road, Laurel, MD 20708, USA
| |
Collapse
|
7
|
Vidaña B, Busquets N, Napp S, Pérez-Ramírez E, Jiménez-Clavero MÁ, Johnson N. The Role of Birds of Prey in West Nile Virus Epidemiology. Vaccines (Basel) 2020; 8:vaccines8030550. [PMID: 32967268 PMCID: PMC7564710 DOI: 10.3390/vaccines8030550] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Reported human cases of West Nile virus (WNV) in Europe increased dramatically in 2018. Lineage 1 strains had been circulating in Euro-Mediterranean countries since the early 1990s. The subsequent introduction of WNV lineage 2 has been responsible for the remarkable upsurge of European WNV outbreaks since 2004, including the dramatic increase in human cases observed since 2018. The virus exists in a natural cycle between mosquitoes and wild birds, with humans and horses acting as dead-end hosts. As the key vertebrate hosts in the transmission cycle of WNV, avian species have been the focus of surveillance across many countries. Raptors appear particularly susceptible to WNV infection, resulting in higher prevalence, and in some cases exhibiting neurological signs that lead to the death of the animal. In addition, birds of prey are known to play an important role as WNV reservoir and potentially amplifying hosts of infection. Importantly, raptor higher susceptibility/prevalence may indicate infection through predation of infected prey. Consequently, they are considered important target species when designing cost-effective surveillance for monitoring both seasonal WNV circulation in endemic countries and its emergence into new areas, where migrating raptors may play a critical role in virus introduction. This review summarizes the different aspects of the current knowledge of WNV infection in birds of prey and evaluates their role in the evolution of the epizootic that is spreading throughout Europe.
Collapse
Affiliation(s)
- Beatriz Vidaña
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK
- Correspondence:
| | - Núria Busquets
- IRTA, Animal Health Research Centre (CReSA IRTA-UAB), 08193 Bellaterra, Spain; (N.B.); (S.N.)
| | - Sebastian Napp
- IRTA, Animal Health Research Centre (CReSA IRTA-UAB), 08193 Bellaterra, Spain; (N.B.); (S.N.)
| | - Elisa Pérez-Ramírez
- Animal Health Research Centre INIA-CISA C, 28130 Madrid, Spain; (E.P.-R.); (M.Á.J.-C.)
| | | | - Nicholas Johnson
- Virology Department, Animal and Plant Health Agency, Addlestone KT15 3NB, UK;
| |
Collapse
|
8
|
Affiliation(s)
- Ho Yi Wan
- School of Earth Sciences and Environmental Sustainability; Northern Arizona University; Flagstaff AZ 86011 USA
| | - Joseph L. Ganey
- USDA Forest Service Rocky Mountain Research Station; 2500 S. Pine Knoll Flagstaff AZ 86001 USA
| | - Christina D. Vojta
- Landscape Conservation Initiative; Northern Arizona University; PO Box 5767 Flagstaff AZ 86011 USA
| | - Samuel A. Cushman
- USDA Forest Service Rocky Mountain Research Station; 2500 S. Pine Knoll Flagstaff AZ 86001 USA
| |
Collapse
|
9
|
Wünschmann A, Armién AG, Khatri M, Martinez LC, Willette M, Glaser A, Alvarez J, Redig P. Ocular Lesions in Red-Tailed Hawks (Buteo jamaicensis) With Naturally Acquired West Nile Disease. Vet Pathol 2016; 54:277-287. [DOI: 10.1177/0300985816669404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ocular lesions are common in red-tailed hawks with West Nile (WN) disease. These lesions consist of pectenitis, choroidal or retinal inflammation, or retinal necrosis, but detailed investigation of the ocular lesions is lacking. Postmortem examination of the eyes of 16 red-tailed hawks with naturally acquired WN disease and 3 red-tailed hawks without WN disease was performed using histopathology, immunohistochemistry for West Nile virus (WNV) antigen, glial fibrillary acid protein, cleaved caspase-3, and the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling method. Retinal lesions were classified as type I or type II lesions. Type I lesions were characterized by lymphoplasmacytic infiltrates in the subjacent choroid with degeneration limited to the outer retina (type Ia lesion) or with degeneration and necrosis of the outer retina or outer and inner retina (type Ib lesion) while retinal collapse, atrophy, and scarring were hallmarks of type II lesions. Type II retinal lesions were associated with a more pronounced choroiditis. Although not statistically significant, WNV antigen tended to be present in larger quantity in type Ib lesions. Type I lesions are considered acute while type II lesions are chronic. The development of retinal lesions was associated with the presence of an inflammatory infiltrate in the choroid. A breakdown of the blood-retina barrier is suspected to be the main route of infection of the retina. Within the retina, virus appeared to spread via both neuronal and Müller cell processes.
Collapse
Affiliation(s)
- A. Wünschmann
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA
| | - A. G. Armién
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA
| | - M. Khatri
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St Paul, MN, USA
| | - L. C. Martinez
- The Raptor Center, University of Minnesota, St Paul, MN, USA
| | - M. Willette
- The Raptor Center, University of Minnesota, St Paul, MN, USA
| | - A. Glaser
- Animal Health Diagnostic Center, Cornell University, Cornell, NY, USA
| | - J. Alvarez
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA
| | - P. Redig
- The Raptor Center, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
10
|
Victoriano Llopis I, Tomassone L, Grego E, Serrano E, Mosca A, Vaschetti G, Andrade D, Rossi L. Evaluating the feeding preferences of West Nile virus mosquito vectors using bird-baited traps. Parasit Vectors 2016; 9:479. [PMID: 27580694 PMCID: PMC5006430 DOI: 10.1186/s13071-016-1744-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/10/2016] [Indexed: 01/05/2023] Open
Abstract
Background The total contact rates (TCRs) between mosquito vectors and their potential hosts have a serious impact on disease transmission dynamics. Culex pipiens (sensu stricto) (s.s.) is considered the main vector of the West Nile Virus (WNV) in Europe and birds are the reservoir hosts. The results of our previous study showed that WNV seroreactors are significantly more prevalent among raptors compared to a range of other wild avian groups. The current study aims to assess the role of bird type (raptor vs others) and bird size on mosquito feeding preferences in a free-choice experiment using bird-baited traps. Methods From July to September 2014, a battery of six bird-baited traps was operated in twelve mosquito capture sessions. Eight bird species, belonging to five different orders, including raptors, were used. After each session, the trapped mosquitoes were collected and identified using standard keys. Two sets of independent generalized linear mixed models (GLMM) were used to assess mosquito vector feeding preferences (MFp) among different bird species and types. Results A total of 304 mosquitoes belonging to seven taxa were collected, C. pipiens being by far the most abundant (84.2 % of the total mosquito catch). Most C. pipiens were engorged (83.59 %). The selected model showed that 25.6 % of the observed variability of MFp is explained by the interaction between bird size and bird type, with C. pipiens preferring to feed on large birds, especially raptors. The proportion of engorged mosquitoes was 1.9-fold higher in large (22.88 %; range 0–42 %) than in medium-sized raptors (11.71 %; range 0–33 %), and was nearly the same in medium-sized (9.08 %; range 0–26 %) and large (8.5 %; 6–24 %) non-raptor species. Conclusion Culex pipiens showed an obvious preference for large raptors, which concurs with the higher seroprevalence to WNV in our previous study. The appreciable feeding by C. pipiens on large raptors makes them useful alternative sentinels to poultry for WNV surveillance. Thus, wildlife parks and rehabilitation centers can contribute to surveillance efforts to a greater extent.
Collapse
Affiliation(s)
| | - Laura Tomassone
- Dipartimento di Scienze Veterinarie, University of Turin, Turin, Italy
| | - Elena Grego
- Dipartimento di Scienze Veterinarie, University of Turin, Turin, Italy
| | - Emmanuel Serrano
- CESAM, Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal.,Servei d' Ecopatologia de Fauna Salvatge, Departamento de Medicina y Cirugia Animal, Universidad Autónoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Andrea Mosca
- Istituto per le Piante da Legno e l'Ambiente, IPLA spa, Turin, Italy
| | | | - Daniela Andrade
- Dipartimento di Scienze Veterinarie, University of Turin, Turin, Italy
| | - Luca Rossi
- Dipartimento di Scienze Veterinarie, University of Turin, Turin, Italy
| |
Collapse
|
11
|
Cox SL, Campbell GD, Nemeth NM. Outbreaks of West Nile virus in captive waterfowl in Ontario, Canada. Avian Pathol 2015; 44:135-41. [PMID: 25636141 DOI: 10.1080/03079457.2015.1011604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The detrimental effects of West Nile virus (WNV) have been well characterized in several taxonomic groups of North American birds, such as corvids and raptors. Relatively less is known about the virus' effects in waterfowl species, many of which are abundant in North America and occupy habitats, for example wetlands and marshes, likely to harbour dense mosquito populations. In two successive years, outbreaks of WNV-associated disease were observed in waterfowl at a rehabilitation centre. In the present report, clinical and pathological findings are provided for seven mallards (Anas platyrhynchos) and one Canada goose (Branta canadensis) that developed acute disease and either died or were killed humanely. The most severe and consistent microscopic lesion in mallards was myocardial degeneration and coagulative necrosis consistent with acute heart failure. The Canada goose had necrotizing myocarditis. Other lesions included pulmonary perivascular oedema, lymphoplasmacytic hepatitis, and splenic and bursal lymphoid depletion. WNV infection was confirmed using reverse transcriptase-polymerase chain reaction and immunohistochemical staining. Myofibres within all cardiac muscle layers had positive immunohistochemical staining, as did blood vessel walls in the heart and spleen. These results suggest that juvenile mallards are highly susceptible to fatal WNV-associated cardiac failure, and confirm that adult Canada geese are susceptible to fatal WNV-associated disease. The synchronous timing of clinical disease and death in these waterfowl are consistent with WNV mosquito-borne infections within a WNV transmission focus during the summer (July and August) of 2012 and 2013.
Collapse
Affiliation(s)
- Sherri L Cox
- a Office of the Vice President of Research , University of Guelph , Guelph , ON , Canada
| | | | | |
Collapse
|
12
|
Fischer D, Angenvoort J, Ziegler U, Fast C, Maier K, Chabierski S, Eiden M, Ulbert S, Groschup MH, Lierz M. DNA vaccines encoding the envelope protein of West Nile virus lineages 1 or 2 administered intramuscularly, via electroporation and with recombinant virus protein induce partial protection in large falcons (Falco spp.). Vet Res 2015; 46:87. [PMID: 26282836 PMCID: PMC4538736 DOI: 10.1186/s13567-015-0220-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 07/07/2015] [Indexed: 11/10/2022] Open
Abstract
As West Nile virus (WNV) can cause lethal diseases in raptors, a vaccination prophylaxis of free-living and captive populations is desirable. In the absence of vaccines approved for birds, equine vaccines have been used in falcons, but full protection against WNV infection was not achieved. Therefore, two DNA vaccines encoding the ectodomain of the envelope protein of WNV lineages 1 and 2, respectively, were evaluated in 28 large falcons. Four different vaccination protocols were used, including electroporation and booster-injections of recombinant WNV domain III protein, before challenge with the live WNV lineage 1 strain NY99. Drug safety, plasmid shedding and antibody production were monitored during the vaccination period. Serological, virological, histological, immunohistochemical and molecular biological investigations were performed during the challenge trials. Antibody response following vaccination was low overall and lasted for a maximum of three weeks. Plasmid shedding was not detected at any time. Viremia, mortality and levels, but not duration, of oral virus shedding were reduced in all of the groups during the challenge trial compared to the non-vaccinated control group. Likewise, clinical scoring, levels of cloacal virus shedding and viral load in organs were significantly reduced in three vaccination groups. Histopathological findings associated with WNV infections (meningo-encephalitis, myocarditis, and arteritis) were present in all groups, but immunohistochemical detection of the viral antigen was reduced. In conclusion, the vaccines can be used safely in falcons to reduce mortality and clinical signs and to lower the risk of virus transmission due to decreased levels of virus shedding and viremia, but full protection was not achieved in all groups.
Collapse
Affiliation(s)
- Dominik Fischer
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Str. 91-93, 35392, Giessen, Germany.
| | - Joke Angenvoort
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Ute Ziegler
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Christine Fast
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Kristina Maier
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Str. 91-93, 35392, Giessen, Germany.
| | - Stefan Chabierski
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103, Leipzig, Germany.
| | - Martin Eiden
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103, Leipzig, Germany.
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Michael Lierz
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Str. 91-93, 35392, Giessen, Germany.
| |
Collapse
|
13
|
Abstract
West Nile virus (WNV) is an arbovirus transmitted enzootically by Culex mosquitoes among avian hosts. Since 2000, the California Dead Bird Surveillance Program (DBSP) has tracked avian mortality reported by the public on a telephone hotline and website and measured the prevalence of WNV infection in dead birds. We summarize herein WNV prevalence in dead birds tested and variation of WNV transmission over time and space with the use of DBSP data from 2003 to 2012. Prevalence among dead birds was highest in 2004, 2008, and 2012. This pattern was similar to peak WNV infection years for mosquitoes but not to human WNV incidence. Although American Crows (Corvus brachyrhynchos) were most frequently reported and tested, this species ranked third in infection prevalence (44%) after Yellow-billed Magpies (Pica nuttalli; 62%) and Western Scrub-Jays (Aphelocoma californica; 48%). Overall prevalence in American Robin (Turdus migratorius), House Finch (Haemorhous mexicanus), and House Sparrow (Passer domesticus) carcasses ranged from 18% to 22%. Corvid WNV prevalence was highest in South Coast, Bay/Delta, Sacramento, and San Joaquin valleys, and Klamath/North Coast bioregions, overlapping areas of elevated WNV activity in other surveillance measurements. Bioregional analysis revealed the avian species most likely to be reported and found positive in each bioregion. Our results may be useful to WNV surveillance and control efforts and provide insight into bird population trends in California.
Collapse
|
14
|
Abstract
The objective of this chapter is to provide an updated and concise systematic review on taxonomy, history, arthropod vectors, vertebrate hosts, animal disease, and geographic distribution of all arboviruses known to date to cause disease in homeotherm (endotherm) vertebrates, except those affecting exclusively man. Fifty arboviruses pathogenic for animals have been documented worldwide, belonging to seven families: Togaviridae (mosquito-borne Eastern, Western, and Venezuelan equine encephalilitis viruses; Sindbis, Middelburg, Getah, and Semliki Forest viruses), Flaviviridae (mosquito-borne yellow fever, Japanese encephalitis, Murray Valley encephalitis, West Nile, Usutu, Israel turkey meningoencephalitis, Tembusu and Wesselsbron viruses; tick-borne encephalitis, louping ill, Omsk hemorrhagic fever, Kyasanur Forest disease, and Tyuleniy viruses), Bunyaviridae (tick-borne Nairobi sheep disease, Soldado, and Bhanja viruses; mosquito-borne Rift Valley fever, La Crosse, Snowshoe hare, and Cache Valley viruses; biting midges-borne Main Drain, Akabane, Aino, Shuni, and Schmallenberg viruses), Reoviridae (biting midges-borne African horse sickness, Kasba, bluetongue, epizootic hemorrhagic disease of deer, Ibaraki, equine encephalosis, Peruvian horse sickness, and Yunnan viruses), Rhabdoviridae (sandfly/mosquito-borne bovine ephemeral fever, vesicular stomatitis-Indiana, vesicular stomatitis-New Jersey, vesicular stomatitis-Alagoas, and Coccal viruses), Orthomyxoviridae (tick-borne Thogoto virus), and Asfarviridae (tick-borne African swine fever virus). They are transmitted to animals by five groups of hematophagous arthropods of the subphyllum Chelicerata (order Acarina, families Ixodidae and Argasidae-ticks) or members of the class Insecta: mosquitoes (family Culicidae); biting midges (family Ceratopogonidae); sandflies (subfamily Phlebotominae); and cimicid bugs (family Cimicidae). Arboviral diseases in endotherm animals may therefore be classified as: tick-borne (louping ill and tick-borne encephalitis, Omsk hemorrhagic fever, Kyasanur Forest disease, Tyuleniy fever, Nairobi sheep disease, Soldado fever, Bhanja fever, Thogoto fever, African swine fever), mosquito-borne (Eastern, Western, and Venezuelan equine encephalomyelitides, Highlands J disease, Getah disease, Semliki Forest disease, yellow fever, Japanese encephalitis, Murray Valley encephalitis, West Nile encephalitis, Usutu disease, Israel turkey meningoencephalitis, Tembusu disease/duck egg-drop syndrome, Wesselsbron disease, La Crosse encephalitis, Snowshoe hare encephalitis, Cache Valley disease, Main Drain disease, Rift Valley fever, Peruvian horse sickness, Yunnan disease), sandfly-borne (vesicular stomatitis-Indiana, New Jersey, and Alagoas, Cocal disease), midge-borne (Akabane disease, Aino disease, Schmallenberg disease, Shuni disease, African horse sickness, Kasba disease, bluetongue, epizootic hemorrhagic disease of deer, Ibaraki disease, equine encephalosis, bovine ephemeral fever, Kotonkan disease), and cimicid-borne (Buggy Creek disease). Animals infected with these arboviruses regularly develop a febrile disease accompanied by various nonspecific symptoms; however, additional severe syndromes may occur: neurological diseases (meningitis, encephalitis, encephalomyelitis); hemorrhagic symptoms; abortions and congenital disorders; or vesicular stomatitis. Certain arboviral diseases cause significant economic losses in domestic animals-for example, Eastern, Western and Venezuelan equine encephalitides, West Nile encephalitis, Nairobi sheep disease, Rift Valley fever, Akabane fever, Schmallenberg disease (emerged recently in Europe), African horse sickness, bluetongue, vesicular stomatitis, and African swine fever; all of these (except for Akabane and Schmallenberg diseases) are notifiable to the World Organisation for Animal Health (OIE, 2012).
Collapse
Affiliation(s)
- Zdenek Hubálek
- Medical Zoology Laboratory, Institute of Vertebrate Biology, Academy of Sciences, v.v.i., Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Ivo Rudolf
- Medical Zoology Laboratory, Institute of Vertebrate Biology, Academy of Sciences, v.v.i., Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Vienna, Austria; Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
15
|
|
16
|
Buchebner N, Zenker W, Wenker C, Steinmetz HW, Sós E, Lussy H, Nowotny N. Low Usutu virus seroprevalence in four zoological gardens in central Europe. BMC Vet Res 2013; 9:153. [PMID: 23919825 PMCID: PMC3750400 DOI: 10.1186/1746-6148-9-153] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Usutu virus (USUV), a mosquito-borne flavivirus of the Japanese encephalitis virus antigenic group, caused bird die-offs in Austria, Hungary and Switzerland between 2001 and 2009. While the zoological gardens of Vienna and Zurich recorded USUV-associated mortality in different species of birds during this period, incidences in Budapest were limited to areas outside the zoo, and in the greater Basel area avian mortality due to USUV infection was not observed at all. The objectives of this investigation were to gain insight into USUV infection dynamics in captive birds in zoos with varying degrees of virus exposure and to study differences in susceptibility to USUV of different species of birds. RESULTS 372 bird sera were collected between October 2006 and August 2007. The samples were tested in parallel by hemagglutination inhibition (HI) and 90% plaque reduction neutralization tests (PRNT-90). 8.75%, 5.3% and 6.59% of birds in the zoos of Vienna, Zurich and Basel, respectively, showed USUV-specific antibodies by PRNT-90. No antibodies to USUV were detected in birds of the Budapest zoo. The order Strigiformes (owls) exhibited the highest USUV-seroprevalence, compared to other orders of birds. CONCLUSIONS USUV seems not to pose an imminent threat to zoo bird populations in central Europe at the moment. Depending on a variety of especially environmental factors, however, this may change at any time in the (near) future, as experienced with West Nile virus (WNV). It is therefore strongly suggested to continue with combined WNV and USUV surveillance activities in affected areas.
Collapse
Affiliation(s)
- Nicola Buchebner
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
17
|
Pello SJ, Olsen GH. Emerging and reemerging diseases of avian wildlife. Vet Clin North Am Exot Anim Pract 2013; 16:357-81. [PMID: 23642867 DOI: 10.1016/j.cvex.2013.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Of the many important avian wildlife diseases, aspergillosis, West Nile virus, avipoxvirus, Wellfleet Bay virus, avian influenza, and inclusion body disease of cranes are covered in this article. Wellfleet Bay virus, first identified in 2010, is considered an emerging disease. Avian influenza and West Nile virus have recently been in the public eye because of their zoonotic potential and links to wildlife. Several diseases labeled as reemerging are included because of recent outbreaks or, more importantly, recent research in areas such as genomics, which shed light on the mechanisms whereby these adaptable, persistent pathogens continue to spread and thrive.
Collapse
Affiliation(s)
- Susan J Pello
- Animal & Bird Health Care Center, Cherry Hill, NJ 08003, USA.
| | | |
Collapse
|
18
|
Gamino V, Höfle U. Pathology and tissue tropism of natural West Nile virus infection in birds: a review. Vet Res 2013; 44:39. [PMID: 23731695 PMCID: PMC3686667 DOI: 10.1186/1297-9716-44-39] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 04/24/2013] [Indexed: 01/26/2023] Open
Abstract
West Nile virus (WNV) is a globally distributed arthropod-borne flavivirus capable of infecting a wide variety of vertebrates, with birds as its natural reservoir. Although it had been considered a pathogen of little importance for birds, from the 1990's, and especially after its introduction in the North American continent in 1999, thousands of birds have succumbed to West Nile infection. This review summarizes the pathogenesis and pathology of WNV infection in birds highlighting differences in lesion and antigen distribution and severity among bird orders and families. Despite significant species differences in susceptibility to infection, WNV associated lesions and viral antigen are present in the majority of organs of infected birds. The non-progressive, acute or more prolonged course of the disease accounts for part of the differences in lesion and viral antigen distribution and lesion severity. Most likely a combination of host variables and environmental factors in addition to the intrinsic virulence and pathogenicity of the infecting WNV strain influence the pathogenesis of the infection.
Collapse
Affiliation(s)
- Virginia Gamino
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM) Ronda de Toledo s/n, Ciudad Real 13005, Spain
| | - Ursula Höfle
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM) Ronda de Toledo s/n, Ciudad Real 13005, Spain
| |
Collapse
|
19
|
Busquets N, Bertran K, Costa TP, Rivas R, de la Fuente JG, Villalba R, Solanes D, Bensaid A, Majó N, Pagès N. Experimental West Nile virus infection in Gyr-Saker hybrid falcons. Vector Borne Zoonotic Dis 2012; 12:482-9. [PMID: 22448746 DOI: 10.1089/vbz.2011.0782] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
West Nile disease (WND) has become a major public and veterinary health concern since the appearance of West Nile virus (WNV) in New York in 1999. The following panzootic spread in the U.S. and the recent WNV outbreaks in Europe and the Mediterranean Basin have increased interest in WND. Despite considerable investigation of WNV infection in birds, the effects of WNV on avian populations are still largely unknown. In Europe, raptors have been found to be particularly susceptible to WNV infection, but studies in birds of prey are lacking. To our knowledge, the present study is the first to report an experimental infection with WNV in Gyr-Saker hybrid falcons. We show that 10-week-old captive-reared Gyr-Saker (Falco rusticolus × Falco cherrug) hybrid falcons are susceptible to WNV infection. Neither morbidity nor mortality was observed after subcutaneous WNV inoculation with mixed extracts of non-infected mosquito salivary glands. Both the macroscopic and microscopic lesions observed were similar to those previously reported in naturally and experimentally infected North American raptors. The results obtained in the present study demonstrate that although Gyr-Saker hybrid falcons do not seem to be a good reservoir for WNV transmission via mosquito, they can become infected with WNV, develop viremia and antibodies, and are able to shed the virus.
Collapse
Affiliation(s)
- Núria Busquets
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Palmieri C, Franca M, Uzal F, Anderson M, Barr B, Woods L, Moore J, Woolcock P, Shivaprasad HL. Pathology and immunohistochemical findings of west nile virus infection in psittaciformes. Vet Pathol 2010; 48:975-84. [PMID: 21160024 DOI: 10.1177/0300985810391112] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
West Nile virus (WNV) infection was diagnosed in 38 psittacine birds based on histology, immunohistochemistry, and reverse transcriptase polymerase chain reaction (RT-PCR). Rosellas (Platycercus spp, n = 13), conures (Enicognathus, Aratinga, and Nandayus spp, n = 6), and lorikeets (Trichoglossus spp, n = 6) represented the most commonly affected species. Clinical signs ranged from lethargy, ruffled feathers, anorexia, and weight loss in most birds to sudden death in others. Except for mild to moderate enlargement of liver and spleen, there were no significant gross lesions at necropsy. Histopathologic findings included lymphoplasmacytic and histiocytic hepatitis, interstitial nephritis, myocarditis, splenitis, enteritis, pancreatitis, and occasionally, encephalitis. Viral antigen was detected by immunohistochemistry in 34 of 35 hearts (97.1%), 29 of 32 pancreata (90.6%), 33 of 37 kidneys (89.2%), 31 of 35 intestines (88.6%), 27 of 33 gizzards (81.8%), 8 of 10 ovaries (80%), 27 of 34 spleens (79.4%), 30 of 38 livers (78.9%), 23 of 32 lungs (71.9%), 21 of 31 proventriculi (67.7%), 14 of 21 adrenals (66.7%), 10 of 16 testes (62.5%), 17 of 30 brains (56.7%), 15 of 27 skins (55.5%), 3 of 6 oviducts (50%), 15 of 34 skeletal muscles (44.1%), 11 of 27 crop or esophagus (40.7%), and 1 of 6 thymuses (16.7%). Kidney was positive for WNV by RT-PCR in all the cases tested. In conclusion, Psittaciformes are susceptible to West Nile virus infection, and WNV infections are often associated with nonspecific clinical signs and widespread viral distribution in this order of birds.
Collapse
Affiliation(s)
- C Palmieri
- Veterinary Pathology Division, Faculty of Veterinary Medicine, Teramo University, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
West Nile virus (WNV) is a flavivirus that is maintained in a bird-mosquito transmission cycle. Humans, horses and other non-avian vertebrates are usually incidental hosts, but evidence is accumulating that this might not always be the case. Historically, WNV has been associated with asymptomatic infections and sporadic disease outbreaks in humans and horses in Africa, Europe, Asia and Australia. However, since 1994, the virus has caused frequent outbreaks of severe neuroinvasive disease in humans and horses in Europe and the Mediterranean Basin. In 1999, WNV underwent a dramatic expansion of its geographic range, and was reported for the first time in the Western Hemisphere during an outbreak of human and equine encephalitis in New York City. The outbreak was accompanied by extensive and unprecedented avian mortality. Since then, WNV has dispersed across the Western Hemisphere and is now found throughout the USA, Canada, Mexico and the Caribbean, and parts of Central and South America. WNV has been responsible for >27,000 human cases, >25,000 equine cases and hundreds of thousands of avian deaths in the USA but, surprisingly, there have been only sparse reports of WNV disease in vertebrates in the Caribbean and Latin America. This review summarizes our current understanding of WNV with particular emphasis on its transmission dynamics and changing epidemiology.
Collapse
|
23
|
Pauli AM, Cruz-Martinez LA, Ponder JB, Redig PT, Glaser AL, Klauss G, Schoster JV, Wünschmann A. Ophthalmologic and oculopathologic findings in red-tailed hawks and Cooper's hawks with naturally acquired West Nile virus infection. J Am Vet Med Assoc 2007; 231:1240-8. [PMID: 17937556 DOI: 10.2460/javma.231.8.1240] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess ophthalmologic features and ocular lesions in red-tailed hawks and Cooper's hawks naturally infected with West Nile virus (WNV). DESIGN Original study. ANIMALS 13 hawks. PROCEDURES All hawks underwent complete ophthalmic examinations including slit lamp biomicroscopy and binocular indirect ophthalmoscopy. Eleven hawks were euthanized because of a grave prognosis; complete necropsies were performed. Eyes, brain, heart, and kidneys were processed for histologic and immunohistochemical examinations. Pooled tissue homogenates and aqueous humor samples were assessed for WNV nucleic acid via PCR assay, and anti-WNV antibody titers in aqueous humor and plasma were determined. RESULTS All birds had similar funduscopic abnormalities including exudative chorioretinal lesions and chorioretinal scarring in a geographic or linear pattern. Eleven birds were euthanized, and 2 birds were released. Plasma from both released hawks and plasma and aqueous humor of all euthanized hawks that were evaluated contained anti-WNV antibodies. Except for 1 hawk, all euthanized hawks had WNV-associated disease (determined via detection of WNV antigen or nucleic acid in at least 1 organ). Histopathologic ocular abnormalities, most commonly pectenitis, were detected in all euthanized birds; several birds had segmental choroiditis, often with corresponding segmental retinal atrophy. West Nile virus antigen was detected in the retinas of 9 of the euthanized birds. In 2 hawks, WNV antigen was detected in the retina only. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that funduscopically detectable chorioretinal lesions appear to be associated with WNV disease in hawks. Detection of ocular lesions may aid in antemortem or postmortem diagnosis of this condition.
Collapse
Affiliation(s)
- Amy M Pauli
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Clippinger TL, Bennett RA, Platt SR. The avian neurologic examination and ancillary neurodiagnostic techniques: a review update. Vet Clin North Am Exot Anim Pract 2007; 10:803-36, vi. [PMID: 17765849 DOI: 10.1016/j.cvex.2007.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The purpose of this article is to guide the avian clinician in the assessment of neurologic function in birds. Physical and neurologic examinations that evaluate cranial nerves, postural reactions, and spinal reflexes identify neurologic dysfunction and the corresponding anatomic location of the lesion. Ancillary diagnostic tests, such as cerebrospinal fluid analysis, diagnostic imaging, muscle and nerve histology, and electrodiagnostics, are tools to confirm and clarify conclusions from the neurologic examination and to identify the cause of disease. Once the disease location and pathologic process have been identified, appropriate treatment and prognosis may be provided.
Collapse
Affiliation(s)
- Tracy L Clippinger
- Department of Veterinary Services, Zoological Society of San Diego-San Diego Zoo, 1354 Old Globe Way, San Diego, CA 92101-1635, USA.
| | | | | |
Collapse
|
25
|
Okeson DM, Llizo SY, Miller CL, Glaser AL. ANTIBODY RESPONSE OF FIVE BIRD SPECIES AFTER VACCINATION WITH A KILLED WEST NILE VIRUS VACCINE. J Zoo Wildl Med 2007; 38:240-4. [PMID: 17679507 DOI: 10.1638/1042-7260(2007)038[0240:arofbs]2.0.co;2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
West Nile virus has been associated with numerous bird mortalities in the United States since 1999. Five avian species at three zoological parks were selected to assess the antibody response to vaccination for West Nile virus: black-footed penguins (Spheniscus demersus), little blue penguins (Eudyptula minor), American flamingos (Phoenicopterus ruber), Chilean flamingos (Phoenicopterus chilensis), and Attwater's prairie chickens (Tympanuchus cupido attwateri). All birds were vaccinated intramuscularly at least twice with a commercially available inactivated whole virus vaccine (Innovator). Significant differences in antibody titer over time were detected for black-footed penguins and both flamingo species.
Collapse
Affiliation(s)
- Danelle M Okeson
- Center for Conservation and Research, Henry Doorly Zoo, 3701 South Tenth Street, Omaha, Nebraska 68107, USA.
| | | | | | | |
Collapse
|
26
|
Sensitivity and specificity of monoclonal and polyclonal immunohistochemical staining for West Nile virus in various organs from American crows (Corvus brachyrhynchos). BMC Infect Dis 2007; 7:49. [PMID: 17537263 PMCID: PMC1892560 DOI: 10.1186/1471-2334-7-49] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 05/30/2007] [Indexed: 12/03/2022] Open
Abstract
Background Based on results of earlier studies, brain, heart and kidney are most commonly used for West Nile virus (WNV) detection in avian species. Both monoclonal and polyclonal antibodies have been used for the immunohistochemical diagnosis of WNV in these species. Thus far, no studies have been performed to compare the sensitivity and specificity of monoclonal and polyclonal antibodies in detecting WNV in American crows (Corvus brachyrhynchos). Our objectives were to determine 1) the comparative sensitivities of monoclonal and polyclonal antibodies for immunohistochemical (IHC) diagnosis of WNV infection in free-ranging American crows, 2) which organ(s) is/are most suitable for IHC-based diagnosis of WNV, and 3) how real-time RT-PCR on RNA extracted from formalin-fixed paraffin-embedded tissues compared to IHC for the diagnosis of WNV infection. Methods Various combinations, depending on tissue availability, of sections of heart, kidney, brain, liver, lung, spleen, and small intestine from 85 free-ranging American crows were stained using a rabbit-polyclonal anti-WNV antibody as well as a monoclonal antibody directed against an epitope on Domain III of the E protein of WNV. The staining intensity and the extent of staining were determined for each organ using both antibodies. Real-time RT-PCR on formalin-fixed paraffin-embedded tissues from all 85 crows was performed. Results Forty-three crows were IHC-positive in at least one of the examined organs with the polyclonal antibody, and of these, only 31 were positive when IHC was performed with the monoclonal antibody. Real-time RT-PCR amplified WNV-specific sequences from tissue extracts of the same 43 crows that were IHC-positive using the polyclonal antibody. All other 42 crows tested negative for WNV with real-time PCR and IHC staining. Both antibodies had a test specificity of 100% when compared to PCR results. The test sensitivity of monoclonal antibody-based IHC staining was only 72%, compared to 100% when using the polyclonal antibody. Conclusion The most sensitive, readily identified, positively staining organs for IHC are the kidney, liver, lung, spleen, and small intestine. Real-time RT-PCR and IHC staining using a polyclonal antibody on sections of these tissues are highly sensitive diagnostic tests for the detection of WNV in formalin-fixed tissues of American crows.
Collapse
|
27
|
Lopes H, Redig P, Glaser A, Armien A, Wünschmann A. Clinical findings, lesions, and viral antigen distribution in great gray owls (Strix nebulosa) and barred owls (Strix varia) with spontaneous West Nile virus infection. Avian Dis 2007; 51:140-5. [PMID: 17461282 DOI: 10.1637/0005-2086(2007)051[0140:cflava]2.0.co;2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
West Nile Virus (WNV) infection manifests itself clinically a nd pathologically differently in various species of birds. The clinicopathologic findings and WNV antigen tissue distribution of six great gray owls (Strix nebulosa) and two barred owls (Strix varia) with WNV infection are described in this report. Great gray owls usually live in northern Canada, whereas the phylogenetically related barred owls are native to the midwestern and eastern United States and southern Canada. Naturally acquired WNV infection caused death essentially without previous signs of disease in the six great gray owls during a mortality event. Lesions of WNV infection we re dominated by hepatic and splenic necrosis, with evidence o f disseminatedintravascular coagulation in the great gray owls. WNV antigen was widely distributed in th e organs of the great gray owls and appeared totarget endothelial cells, macrophages, and hepatocytes. The barred owls represented two sporadic cases. They had neurologic disease with mental dullness that led to euthanasia. These birds had mild to moderate lymphoplasmacytic encephalitis with glial nodules and lymphoplasmacytic pectenitis. WNV antigen was sparse in barred owls and only present in a few brain neurons and renaltubular epithelial cells. The cause of the different manifestations of WNV disease in these fairly closely related owl species is uncertain.
Collapse
Affiliation(s)
- Hugo Lopes
- The Raptor Center, College of Veterinary Medicine, University of Minnesota, 1920 Fitch Avenue, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
28
|
Gancz AY, Smith DA, Barker IK, Lindsay R, Hunter B. Pathology and tissue distribution of West Nile virus in North American owls (family: Strigidae). Avian Pathol 2007; 35:17-29. [PMID: 16448938 DOI: 10.1080/03079450500465676] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study describes the macroscopic and microscopic lesions and the viral antigen distribution in 82 owls (Family: Strigidae) of 11 North American and one Eurasian species that died following natural West Nile virus infection. The range of lesions seen was greater than that previously reported for owls, and involved more organs. Two patterns of antigen distribution were identified: one that involved the blood and all major organs; and a second where antigen was sparse, localized, and absent from the blood. The first pattern was associated with species of northern natural breeding range, while the second was seen in owls of a more southern distribution and appeared to be associated with a more prolonged course of illness. Further differences in lesion and antigen distribution appeared to be either species related or individual. The findings underline the complexity and variability of West Nile virus pathology within birds of a relatively narrow taxonomic group.
Collapse
Affiliation(s)
- Ady Y Gancz
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, PO Box 12, 76100 Rehovot, Israel.
| | | | | | | | | |
Collapse
|
29
|
Wünschmann A, Ziegler A. West Nile virus-associated mortality events in domestic Chukar partridges (Alectoris chukar) and domestic Impeyan pheasants (Lophophorus impeyanus). Avian Dis 2006; 50:456-9. [PMID: 17039851 DOI: 10.1637/7507-012106r.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
West Nile virus (WNV) infection was diagnosed in captive juvenile chukars (Alectoris chukar), and captive juvenile Impeyan pheasants (Lophophorus impeyanus) on the basis of necropsy, histopathology, polymerase chain reaction, and immunohistochemistry. The chukars were kept in a game bird farm that experienced two outbreaks with approximately 25% mortality in hundreds of chukars between September and October 2002 and during the same months in 2003. The submitted pheasants were part of a group of 15 juvenile Impeyan pheasants that all died within approximately 2 wk at the end of August 2002. The macroscopic lesions in the pheasants were dominated by mucosal hemorrhage at the proventricular to ventricular junction and cecal ulcers, whereas the gross lesions in the chukar partridges were nonspecific. The predominant microscopic lesion in the chukar partridges was myocardial necrosis, whereas fibrinous and necrotizing splenitis was prominent in the pheasants. Viral antigen was usually widespread in animals of both species. Spontaneously occurring WNV infection should be considered a differential diagnosis in cases of mortality among select species of galliform birds.
Collapse
Affiliation(s)
- Arno Wünschmann
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN 55108, USA
| | | |
Collapse
|
30
|
Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) on a request from the Commission related with animal health and welfare risks associated with the import of wild birds other than poultry into the European Union. EFSA J 2006; 4:410. [PMID: 32313576 PMCID: PMC7163484 DOI: 10.2903/j.efsa.2006.410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
31
|
Nemeth NM, Hahn DC, Gould DH, Bowen RA. Experimental West Nile virus infection in Eastern Screech Owls (Megascops asio). Avian Dis 2006; 50:252-8. [PMID: 16863076 DOI: 10.1637/7466-110105r1.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Eastern Screech Owls (EASOs) were experimentally infected with the pathogenic New York 1999 strain of West Nile virus (WNV) by subcutaneous injection or per os. Two of nine subcutaneously inoculated birds died or were euthanatized on 8 or 9 days postinfection (DPI) after <24 hr of lethargy and recumbency. All subcutaneously inoculated birds developed levels of viremia that are likely infectious to mosquitoes, with peak viremia levels ranging from 10(5.0) to 10(9.6) plaque-forming units/ml. Despite the viremia, the remaining seven birds did not display signs of illness. All birds alive beyond 5 DPI seroconverted, although the morbid birds demonstrated significantly lower antibody titers than the clinically normal birds. Cagemates of infected birds did not become infected. One of five orally exposed EASOs became viremic and seroconverted, whereas WNV infection in the remaining four birds was not evident. All infected birds shed virus via the oral and cloacal route. Early during infection, WNV targeted skin, spleen, esophagus, and skeletal muscle. The two morbid owls had myocardial and skeletal muscle necrosis and mild encephalitis and nephritis, whereas some of the clinically healthy birds that were sacrificed on 14 DPI had myocardial arteritis and renal phlebitis. WNV is a significant pathogen of EASOs, causing pathologic lesions with varying clinical outcomes.
Collapse
Affiliation(s)
- Nicole M Nemeth
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins 80523, USA
| | | | | | | |
Collapse
|
32
|
Chvala S, Bakonyi T, Hackl R, Hess M, Nowotny N, Weissenböck H. Limited Pathogenicity of Usutu Virus for the Domestic Goose (Anser anser f. domestica) Following Experimental Inoculation. ACTA ACUST UNITED AC 2006; 53:171-5. [PMID: 16629984 DOI: 10.1111/j.1439-0450.2006.00942.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Usutu virus (USUV) is a mosquito-borne flavivirus of the Japanese encephalitis virus group, which has been associated with avian mortality in Austria since 2001. The affected birds are predominantly Eurasian blackbirds (Turdus merula). In the present study, the pathogenicity of USUV for domestic geese (Anser anser f. domestica) was investigated. Eleven 2-week-old geese were inoculated intramuscularly with 5 x 10(4) 50% tissue culture infectious dose of USUV strain Vienna-2001 blackbird. No clinical signs were seen during the observation period. Four inoculated and one in-contact geese died without preceding clinical signs. Two of the deaths could be attributed to bacterial septicaemia and strangulation, respectively. The cause of death of two experimental and one in-contact animals remained unclear, but lack of evidence for viral lesions and viral antigen in their tissues argued against association with the USUV infection. Although in organs of the majority of inoculated geese (9/11) USUV was detected by reverse transcriptase-polymerase chain reaction, immunohistochemistry for USUV antigen was negative in all tissues of all geese. Evidence of plasma viraemia or viral excretion was found in one goose only. Seroconversion was detected in three inoculated geese 10 days post-inoculation. Geese placed in contact with inoculated geese and control animals did not exhibit USUV in their internal organs or plasma and lacked USUV-specific antibodies. This experiment shows that USUV is able to replicate in geese, but does not induce clinical disease, is unlikely to induce mortality, and only infrequently leads to viraemia or virus shedding.
Collapse
Affiliation(s)
- S Chvala
- Department of Pathobiology, Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
33
|
Stout WE, Cassini AG, Meece JK, Papp JM, Rosenfield RN, Reed KD. Serologic evidence of West Nile virus infection in three wild raptor populations. Avian Dis 2006; 49:371-5. [PMID: 16252490 DOI: 10.1637/7335-012805r1.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We assayed for West Nile virus (WNV) antibodies to determine the presence and prevalence of WNV infection in three raptor populations in southeast Wisconsin during 2003-04. This study was conducted in the framework of ongoing population studies that started before WNV was introduced to the study area. For 354 samples, 88% of 42 adult Cooper's hawks (Accipiter cooperii), 2.1% of 96 nestling Cooper's hawks, 9.2% of 141 nestling red-tailed hawks (Buteo jamaicensis), and 12% of 73 nestling great horned owls (Bubo virginianus) tested positive for WNV antibodies by the constant virus-serum dilution neutralization test. Samples that tested positive for WNV antibodies were collected across a wide variety of habitat types, including urban habitats (both high and low density), roads, parking areas, recreational areas, croplands, pastures, grasslands, woodlands, and wetlands. Based on the increased prevalence and significantly higher WNV antibody titers in adults compared with nestlings, we suggest that nestlings with detectable antibody levels acquired these antibodies through passive transmission from the mother during egg production. Low levels of WNV antibodies in nestlings could serve as a surrogate marker of exposure in adult raptor populations. Based on breeding population densities and reproductive success over the past 15 yr, we found no apparent adverse effects of WNV infections on these wild raptor populations.
Collapse
|
34
|
Wünschmann A, Shivers J, Bender J, Carroll L, Fuller S, Saggese M, van Wettere A, Redig P. Pathologic and immunohistochemical findings in goshawks (Accipiter gentilis) and great horned owls (Bubo virginianus) naturally infected with West Nile virus. Avian Dis 2005; 49:252-9. [PMID: 16094831 DOI: 10.1637/7297-103104r] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The carcasses of 25 great horned owls and 12 goshawks were investigated for West Nile virus (WNV) infection by immunohistochemistry (IHC) performed on various organs, including brain, spinal cord, heart, kidney, eye, bone marrow, spleen, liver, lungs, pancreas, intestine, and proventriculus, using a WNV-antigen-specific monoclonal antibody and by WNV-specific reverse transcriptase-polymerase chain reaction (RT-PCR), performed on fresh brain tissue only. WNV infection was diagnosed by IHC in all owls and all goshawks. WNV-specific RT-PCR amplified WNV-RNA in the brain of all goshawks but only 12 owls (48%). Cachexia was a common macroscopic finding associated with WNV infection in owls (76%). Myocarditis was occasionally macroscopically evident in goshawks (33%). Microscopically, inflammatory lesions, including lymphoplasmacytic and histiocytic encephalitis, myocarditis, endophthalmitis, and pancreatitis were present in both species but were more common and more severe in goshawks than in owls. The most characteristic brain lesion in owls was the formation of glial nodules, in particular in the molecular layer of the cerebellum, while encephalitis affecting the periventricular parenchyma of the cerebral cortex was common in the goshawks. In owls, WNV-antigen-positive cells were present usually only in very small numbers per organ. Kidney (80%), heart (39%), and cerebellum (37%) were the organs that most commonly contained WNV antigen in owls. WNV antigen was frequently widely distributed in the organs of infected goshawks, with increased amounts of WNV antigen in the heart and the cerebrum. Spleen (75%), cerebellum (66%), heart (58%), cerebrum (58%), and eye (50%) were often WNV-antigen positive in goshawks. In contrast with the goshawks, WNV antigen was not present in cerebral and retinal neurons of owls. WNV infection appears to be capable of causing fatal disease in great horned owls and goshawks. However, the distribution and severity of histologic lesions, the antigen distribution in the various organs, and the amount of antigen varied among both species. Therefore, the diagnostician may choose organs for histology and immunohistochemistry as well as RT-PCR depending on the investigated species in order to avoid false-negative results.
Collapse
Affiliation(s)
- Arno Wünschmann
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Many viruses definitively cause disease in our companion birds, whereas other viruses have been implicated or associated with typical clinical signs. Some families of viruses that have been discovered in mammals have not been associated with disease in birds. It is imperative to perform a necropsy on any birds that die--whether a pet, aviary, or display bird, and despite the fact that other diseases may be present--because viruses can occur concurrently, especially when immunosuppression is present. Also, it is imperative to use available vaccines to decrease and control the incidence of these diseases, as has occurred in the canine and feline pet populations.
Collapse
Affiliation(s)
- Cheryl B Greenacre
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, C247 2407 River Drive, Knoxville, TN 374996, USA.
| |
Collapse
|
36
|
Wünschmann A, Shivers J, Bender J, Carroll L, Fuller S, Saggese M, van Wettere A, Redig P. Pathologic findings in red-tailed hawks (Buteo jamaicensis) and Cooper's hawks (Accipiter cooper) naturally infected with West Nile virus. Avian Dis 2005; 48:570-80. [PMID: 15529979 DOI: 10.1637/7170-022004r] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Carcasses of 13 red-tailed hawks (RTHAs) and 11 Cooper's hawks (COHAs) were tested for West Nile virus (WNV) using WNV-specific reverse transcriptase-polymerase chain reaction (RT-PCR) on fresh brain tissue and WNV-specific immunohistochemistry (IHC) on various organs. Ten COHAs (91%) and 11 RTHAs (85%) were positive for WNV RNA by RT-PCR. All 11 COHAs (100%) and 10 RTHAs (77%) were positive for WNV antigen by IHC. A triad of inflammatory lesions, including chronic lymphoplasmacytic and histiocytic encephalitis, endophthalmitis, and myocarditis, was common in both species. In COHAs, the heart (54%), cerebrum (50%), and eye (45%) were the organs that most commonly contained WNV antigen. The amount of WNV antigen was usually small. In RTHAs, the kidney (38%), cerebrum (38%), cerebellum (38%), and eye (36%) were the organs most commonly containing WNV antigen. Unlike COHAs, larger amounts of WNV antigen were present in the cerebrum of RTHAs. WNV antigen was detected in similar cell populations in both species, including neurons of brain, spinal cord, and retina, pigmented epithelial cells of the retina, epithelial cells of renal medullary tubules, cardiomyocytes, endothelial cells and smooth muscle cells of arteries, dendritic cells of splenic lymph follicles, exocrine pancreatic cells, adrenal cells, and keratinocytes of the skin. The study presents strong evidence that WNV can cause a chronic fatal disease in RTHAs and COHAs. The lesion distribution of WNV infection in both species is variable, but inflammatory lesions are common, and a triad of lesions including encephalitis, myocarditis, and endophthalmitis is indicative of WNV infection in both species.
Collapse
Affiliation(s)
- Arno Wünschmann
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|