1
|
Göttling J, Heckel JO, Hotzel H, Fruth A, Pfeifer Y, Henning K, Kopp P, Mertens-Scholz K, Rietschel W, Pfeffer M. Zoonotic bacteria in clinically healthy goats in petting zoo settings of zoological gardens in Germany. Zoonoses Public Health 2022; 69:333-343. [PMID: 35229466 DOI: 10.1111/zph.12922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 12/28/2022]
Abstract
Goats and other small ruminants are frequently used as contact animals in petting zoo settings of zoological gardens. However, they are capable to carry a broad spectrum of zoonotic pathogens without clinical signs. In this study, we analysed the presence of different zoonotic pathogens in 300 clinically healthy goats from 14 zoological gardens in Germany. Rectal and nasal swabs were investigated with a series of cultural and molecular techniques. In addition, vaginal swabs of the 230 female goats were investigated for the presence of Coxiella burnetii by real-time PCR. Antibodies against C. burnetii were tested in milk and serum by ELISA. Campylobacter spp. were found in 22.7%, Shiga-toxigenic Escherichia coli in 20.0% and Arcobacter spp. were found in 1.7% of the tested 300 goats after culture from rectal swabs and subsequent PCR. One sample contained an Escherichia fergusonii isolate with a blaCTX-M-1 -encoded extended-spectrum beta-lactamase phenotype. Neither Yersinia spp. nor Salmonella spp. were found. Nasal swabs of 20.7% of the goats yielded Staphylococcus aureus including one mecC-positive methicillin-resistant isolate. Neither Yersinia spp. nor Salmonella spp. were found, and none of the 230 vaginal swabs was positive for C. burnetii. Attempts to detect dermatophytes failed. In conclusion, a possible risk of transmission of zoonotic bacteria from goats in petting zoos to visitors should be considered. Appropriate information and facilities for hand washing and disinfection should be provided in all zoological gardens using goats as contact animals due to the regular presence of zoonotic bacteria in the collection.
Collapse
Affiliation(s)
| | | | - Helmut Hotzel
- Institute for Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Angelika Fruth
- Robert Koch Institute, National Reference Centre for Salmonella and other Bacterial Enterics, Wernigerode, Germany
| | - Yvonne Pfeifer
- Robert Koch Institute, Nosocomial Pathogens and Antibiotic Resistance, Wernigerode, Germany
| | - Klaus Henning
- Institute for Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Peter Kopp
- IDEXX Vet Med Labor GmbH, Kornwestheim, Germany
| | - Katja Mertens-Scholz
- Institute for Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Wolfram Rietschel
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Martin Pfeffer
- Institute for Animal Hygiene and Veterinary Public Health, University Leipzig, Germany
| |
Collapse
|
2
|
On SLW, Miller WG, Biggs PJ, Cornelius AJ, Vandamme P. Aliarcobacter, Halarcobacter, Malaciobacter, Pseudarcobacter and Poseidonibacter are later synonyms of Arcobacter: transfer of Poseidonibacter parvus, Poseidonibacter antarcticus, ' Halarcobacter arenosus', and ' Aliarcobacter vitoriensis' to Arcobacter as Arcobacter parvus comb. nov., Arcobacter antarcticus comb. nov., Arcobacter arenosus comb. nov. and Arcobacter vitoriensis comb. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 34825881 DOI: 10.1099/ijsem.0.005133] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This paper re-examines the taxonomic positions of recently described Poseidonibacter (P. parvum and P. antarcticus), Aliarcobacter ('Al. vitoriensis'), Halarcobacter ('H. arenosus') and Arcobacter (A. caeni, A. lacus) species, and other species proposed to represent novel genera highly related to the genus Arcobacter. Phylogenomic and several overall genome relatedness indices (OGRIs) were applied to a total of 118 representative genomes for this purpose. Phylogenomic analyses demonstrated the Arcobacter clade to be distinct from other Epsilonproteobacteria, clearly defined and containing closely related species. Aliarcobacter butzleri and Malaciobacter pacificus did not cluster with other members of these proposed genera, indicating incoherence of these genera. Every OGRI measure applied indicated a high level of relatedness among all Arcobacter clade species, including the recently described taxa studied here, and substantially lower between type species representatives for other Epsilonproteobacteria. Where published guidelines were available, OGRI values for Arcobacter clade species were either unsupportive of division into other genera or were at the lowest boundary range (for average amino acid identity). We propose that Aliarcobacter, Halarcobacter, Malaciobacter, Pseudarcobacter, Poseidonibacter and Arcobacter sensu stricto be considered members of a single genus, Arcobacter, and subsequently transfer P. parvum, P. antarcticus, 'Al. vitoriensis' and 'H. arenosus' to Arcobacter as Arcobacter parvum comb. nov., Arcobacter antarcticus comb. nov., Arcobacter vitoriensis comb. nov. and Arcobacter arenosus comb. nov.
Collapse
Affiliation(s)
- Stephen L W On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Springs Road, Lincoln, 7467 New Zealand
| | - William G Miller
- US Department of Agriculture, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Patrick J Biggs
- Bioinformatics and Statistics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,mEpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Angela J Cornelius
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Peter Vandamme
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| |
Collapse
|
3
|
Çelik E, Otlu S. Isolation of Arcobacter spp. and identification of isolates by multiplex PCR from various domestic poultry and wild avian species. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01603-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Purpose
The purpose of the present study was to determine the extent and seasonal prevalence of Arcobacter spp. in domestic poultry and wild birds in the Kars region of Turkey using multiplex polymerase chain reaction (m-PCR).
Methods
In this study, 1570 samples were collected from domestic poultry and wild avian species. The numbers of collected samples were as follows: 182 fecal samples from chickens, geese, and turkeys from family farms in the Kars region in Turkey; 1089 cloacal swab samples from chickens, geese, ducks, turkeys, and quails from family farms in this region; and 299 fecal samples from wild pigeons, crows, and owls in the same region.
Results
Arcobacter spp. were isolated from 17.43%, 35.77%, 3.63%, 6.87%, and 3.33% of the cloacal swab samples obtained from geese, ducks, chickens, turkeys, and quails, respectively. In the stool samples, Arcobacter spp. were isolated from 9.62%, 13.33%, and 4% of chicken, goose, and turkey samples, respectively. In wild birds, the isolation rates of Arcobacter spp. were 6.6%, 12.15%, and 0% in pigeons, crows, and owls, respectively. Using m-PCR, among 171 Arcobacter spp. isolates obtained from poultry and wild birds, 67, 78, 24, and 2 were identified as Arcobacter cryaerophilus, Arcobacter butzleri, Arcobacter skirrowii, and Arcobacter cibarius, respectively.
Conclusions
Both poultry and wild avian species exhibited variable rates of Arcobacter species positivity. The presence of Arcobacter spp. in the digestive tracts of healthy poultry and wild birds may serve as a potential reservoir for the dissemination of these microbes in the environment and their transmission to other animals and humans.
Collapse
|
4
|
Chieffi D, Fanelli F, Fusco V. Arcobacter butzleri: Up-to-date taxonomy, ecology, and pathogenicity of an emerging pathogen. Compr Rev Food Sci Food Saf 2020; 19:2071-2109. [PMID: 33337088 DOI: 10.1111/1541-4337.12577] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/19/2022]
Abstract
Arcobacter butzleri, recently emended to the Aliarcobacter butzleri comb. nov., is an emerging pathogen causing enteritis, severe diarrhea, septicaemia, and bacteraemia in humans and enteritis, stillbirth, and abortion in animals. Since its recognition as emerging pathogen on 2002, advancements have been made in elucidating its pathogenicity and epidemiology, also thanks to advent of genomics, which, moreover, contributed in emending its taxonomy. In this review, we provide an overview of the up-to-date taxonomy, ecology, and pathogenicity of this emerging pathogen. Moreover, the implication of A. butzleri in the safety of foods is pinpointed, and culture-dependent and independent detection, identification, and typing methods as well as strategies to control and prevent the survival and growth of this pathogen are provided.
Collapse
Affiliation(s)
- Daniele Chieffi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| | - Vincenzina Fusco
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| |
Collapse
|
5
|
Isolation of Arcobacter species and other neglected opportunistic agents from aborted bovine and caprine fetuses. BMC Vet Res 2019; 15:257. [PMID: 31340816 PMCID: PMC6651951 DOI: 10.1186/s12917-019-2009-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/16/2019] [Indexed: 01/05/2023] Open
Abstract
Background Infectious abortion in ruminants is a problem in animal husbandry worldwide. It is important to obtain a diagnosis, to make sure that proper control measures can be instituted, but most abortion cases remain without an etiologic diagnosis. This report describes the presence of Arcobacter species and several neglected opportunistic abortifacient agents in ruminant abortion cases showing or not co-infections among at least one of the major recognized protozoal, fungal, bacterial and viral abortifacient agents. Results A total of 67 fetuses (55 cattle and 12 goats) and just one placenta (cattle) were considered. Among the most common abortive agents, Neospora caninum (19,4%), followed by Chlamydophila abortus (4,5%), Listeria monocytogenes 1/2a (2,98%), Bovine Viral Diarrhea Virus type 1b (2,98%), Bovine herpesvirus 4 (2,98%), and Aspergillus spp. (2,98%) were detected. The isolated neglected opportunistic bacteria include Escherichia coli, Acinetobacter lwoffii, Staphylococcus spp., Streptococcus spp., Streptococcus uberis, Streptococcus suis, Trueperella pyogenes, Mannheimia haemolytica, Bacillus cereus and Nocardia spp. Other bacterial species, not associated with abortion by literature, but described as causes of diseases occurring sporadically both in humans and animals, were also detected. Three Arcobacter strains, namely two A. skirrowii and one A. cryaerophilus, were isolated from 3 bovine aborted fetuses, and A. butzleri was isolated from the placenta. Conclusions A not negligible isolation of Arcobacter species and other neglected abortifacient agents has to be mentioned, with prevalences that seem to be emerging and replacing or co-placing the major infectious players in bovine and caprine reproductive failure due to abortion disease, even if further studies investigating the aetiological power and transmission routes are needed in order to define the role of these microrganisms in ruminant abortion.
Collapse
|
6
|
Riesenberg A, Frömke C, Stingl K, Feßler AT, Gölz G, Glocker EO, Kreienbrock L, Klarmann D, Werckenthin C, Schwarz S. Antimicrobial susceptibility testing of Arcobacter butzleri: development and application of a new protocol for broth microdilution. J Antimicrob Chemother 2018; 72:2769-2774. [PMID: 29091194 DOI: 10.1093/jac/dkx211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/02/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives To develop a standard reference broth microdilution method for antimicrobial susceptibility testing (AST) of Arcobacter butzleri. The protocol was subsequently applied to a collection of A. butzleri isolates from different sources. Methods Broth microdilution susceptibility testing was performed on eight A. butzleri isolates in three media: non-supplemented CAMHB, CAMHB + 2% FBS and CAMHB + 5% FBS. The MIC values were read after 24 and 48 h of incubation at 35 ± 2 °C in ambient air. A logistic regression model was used to determine the combination of medium and incubation time yielding the most homogeneous results. Subsequently, the protocol was applied to 65 A. butzleri isolates to determine their MICs of 31 antimicrobial agents. Results The statistical analysis revealed that the most homogeneous MIC values were obtained with CAMHB + 5% FBS and reading of MIC values after 24 h of incubation. The standardized method was successful for AST of all 65 A. butzleri isolates. MIC values were distributed unimodally for most antimicrobial agents. However, one field isolate showed elevated MIC values of gentamicin, streptomycin, tetracycline and trimethoprim/sulfamethoxazole. Conclusions This study presents a new protocol for AST of A. butzleri by broth microdilution and shows the distribution of MIC values of 31 antimicrobial agents for a collection of A. butzleri isolates from different origins.
Collapse
Affiliation(s)
- Anne Riesenberg
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Oldenburg, Oldenburg, Germany.,Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Cornelia Frömke
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training in Veterinary Public Health, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Kerstin Stingl
- National Reference Laboratory for Campylobacter, Federal Institute for Risk Assessment, Berlin, Germany
| | - Andrea T Feßler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany.,Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Greta Gölz
- Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Erik-Oliver Glocker
- Institute of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany.,Institute of Laboratory Medicine, Brandenburg Hospital, Brandenburg Medical School, Brandenburg, Germany
| | - Lothar Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training in Veterinary Public Health, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Dieter Klarmann
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Oldenburg, Oldenburg, Germany
| | - Christiane Werckenthin
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Oldenburg, Oldenburg, Germany
| | - Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany.,Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Hsu TTD, Lee J. Global Distribution and Prevalence of Arcobacter in Food and Water. Zoonoses Public Health 2015; 62:579-89. [PMID: 26172312 DOI: 10.1111/zph.12215] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Indexed: 01/29/2023]
Abstract
The emerging foodborne and waterborne pathogen, Arcobacter, has been linked to various gastrointestinal diseases. Currently, 19 species are established or proposed; consequently, there has been an increase in the number of publications regarding Arcobacter since it was first introduced in 1991. To better understand the potential public health risks posed by Arcobacter, this review summarizes the current knowledge concerning the global distribution and the prevalence of Arcobacter in food and water. Arcobacter spp. were identified in food animals, food-processing environments and a variety of foods, including vegetables, poultry, beef, dairy products, seafood, pork, lamb and rabbit. A wide range of waterbodies has been reported to be contaminated with Arcobacter spp., such as wastewater, seawater, lake and river water, drinking water, groundwater and recreational water. In addition, Arcobacter has also been isolated from pets, domestic birds, wildlife, zoo and farm animals. It is expected that advancements in molecular techniques will facilitate better detection worldwide and aid in understanding the pathogenicity of Arcobacter. However, more extensive and rigorous surveillance systems are needed to better understand the occurrence of Arcobacter in food and water in various regions of the world, as well as uncover other potential public health risks, that is antibiotic resistance and disinfection efficiency, to reduce the possibility of foodborne and waterborne infections.
Collapse
Affiliation(s)
- T-T D Hsu
- Environmental Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | - J Lee
- Environmental Science Graduate Program, The Ohio State University, Columbus, OH, USA.,Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA.,Department of Food Science & Technology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
|